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Abstract Recently, cutting planes derived from maximal lattice-free convex sets
have been studied intensively by the integer programming community. An important
question in this research area has been to decide whether the closures associated with
certain families of lattice-free sets are polyhedra. For a long time, the only result
known was the celebrated theorem of Cook, Kannan and Schrijver who showed that
the split closure is a polyhedron. Although some fairly general results were obtained by
Andersen et al. (Math Oper Res 35(1):233–256, 2010) and Averkov (Discret Optimiz
9(4):209–215, 2012), some basic questions have remained unresolved. For example,
maximal lattice-free triangles are the natural family to study beyond the family of
splits and it has been a standing open problem to decide whether the triangle closure
is a polyhedron. In this paper, we show that when the number of integer variables
m = 2 the triangle closure is indeed a polyhedron and its number of facets can be
bounded by a polynomial in the size of the input data. The techniques of this proof
are also used to give a refinement of necessary conditions for valid inequalities being
facet-defining due to Cornuéjols and Margot (Math Program 120:429–456, 2009) and
obtain polynomial complexity results about the mixed integer hull.
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1 Introduction

We study the following system, introduced by Andersen et al. [2]:

x = f +
k∑

j=1

r j s j

x ∈ Z
m

s j ≥ 0 for all j = 1, . . . , k. (1)

This model has been studied extensively with the purpose of providing a unifying
theory for cutting planes and exploring new families of cutting planes [2,6–8,12–14].
In this theory, an interesting connection is explored between valid inequalities for the
convex hull of solutions to (1) (the mixed integer hull) and maximal lattice-free convex
sets in R

m . A lattice-free convex set is a convex set that does not contain any integer
point in its interior. A maximal lattice-free convex set is a lattice-free convex set that is
maximal with respect to set inclusion. Since the x variables are uniquely determined
by the s j variables, only the values of the s j variables need to be recorded for the
system (1), as done with the following notation:

R f =
{

s ∈ R
k+
∣∣∣∣ f +

k∑

j=1

r j s j ∈ Z
m

}
(2)

where R
k+ denotes the nonnegative orthant in R

k . The mixed integer hull is then
denoted by conv(R f ) and can be obtained by intersecting all valid inequalities derived
using the Minkowski functional of maximal lattice-free convex sets containing f
in their interior [2,5,9,20]. We explain this more precisely after introducing some
notation.

Let B ∈ R
n×m be a matrix with n rows b1, . . . , bn ∈ R

m . We write B =
(b1; . . . ; bn). Let

M(B) = { x ∈ R
m | B · (x − f ) ≤ e }, (3)

where e is the vector of all ones. This is a polyhedron with f in its interior. We will
denote the set of its vertices by vert(B). In fact, any polyhedron with f in its interior
can be given such a description. We will mostly deal with matrices B such that M(B)
is a maximal lattice-free convex set in R

m .
The Minkowski functional for the set M(B) can be defined as

ψB(r) = max
i∈{1,...,n} bi · r for r ∈ R

m .
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The triangle closure is a polyhedron 21

Proposition 1.1 If B ∈ R
n×m is a matrix such that M(B) is a lattice-free convex

set in R
m with f in its interior, then the inequality

∑k
j=1 ψB(r j )s j ≥ 1 is a valid

inequality for (1).

Proof Let s ∈ R f . Then x = f + ∑k
j=1 r j s j ∈ Z

m . Consider ψB(x − f ) and let

b ∈ {b1, . . . , bn} such that ψB(x − f ) = b · (x − f ). Since x ∈ Z
m and M(B) is

lattice-free, by definition of M(B), we have b · (x − f ) ≥ 1. Thus

1 ≤ b · (x − f ) = b ·
k∑

j=1

r j s j =
k∑

j=1

(b · r j )s j ≤
k∑

j=1

ψB(r
j )s j .

Therefore, the inequality
∑k

j=1 ψB(r j )s j ≥ 1 holds for s. Since s ∈ R f was chosen
arbitrarily, it is a valid inequality for (1). ��

We define the vector of coefficients as

γ (B) =
(
ψB(r

j )
)k

j=1

and therefore can write the mixed integer hull as

conv(R f ) =
{

s ∈ R
k+
∣∣∣∣
γ (B) · s ≥ 1 for all B ∈ R

n×m such that
M(B) is a maximal lattice-free convex set

}
. (4)

Motivation All maximal lattice-free convex sets are polyhedra [7,16]. The most prim-
itive type of maximal lattice-free convex set in R

m is the split, which is of the form
π0 ≤ π · x ≤ π0 + 1 for some π ∈ Z

m and π0 ∈ Z. A famous theorem due to Cook
et al. [11] implies that the intersection of all valid inequalities for (1) derived from
splits, known as the split closure, is a polyhedron. The split closure result has been used
repeatedly as a theoretical as well as practical tool in many diverse settings within the
integer programming community. This motivates the following question: For which
families of lattice-free convex sets is the associated closure a polyhedron? Not much
was known about this question until very recently when some elegant results of a
more general nature were obtained in [1] and [3]. Even so, some basic questions have
remained open. Consider the case m = 2. For this case, the different types of maximal
lattice-free convex sets have been classified quite satisfactorily. Lovász characterized
the maximal lattice-free convex sets in R

2 as follows.

Theorem 1.2 (Lovász [16]) In the plane, a maximal lattice-free convex set with non-
empty interior is one of the following:

(a) A split c ≤ ax1 + bx2 ≤ c + 1 where a and b are co-prime integers and c is an
integer;

(b) A triangle with an integral point in the interior of each of its edges;
(c) A quadrilateral containing exactly four integral points, with exactly one of them in

the interior of each of its edges. Moreover, these four integral points are vertices
of a parallelogram of area 1.
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22 A. Basu et al.

Fig. 1 Types of maximal lattice-free convex sets in R
2

Following Dey and Wolsey [14], the maximal lattice-free triangles can be further
partitioned into three canonical types:

– Type 1 triangles: triangles with integral vertices and exactly one integral point in
the relative interior of each edge;

– Type 2 triangles: triangles with at least one fractional vertex v, exactly one integral
point in the relative interior of the two edges incident to v and at least two integral
points on the third edge;

– Type 3 triangles: triangles with exactly three integral points on the boundary, one
in the relative interior of each edge.

Figure 1 shows these three types of triangles as well as a maximal lattice-free
quadrilateral and a split satisfying the properties of Theorem 1.2.

For this simple case of m = 2, it was not even known whether the triangle closure
(the convex set formed by the intersection of all inequalities derived from maximal
lattice-free triangles) is a polyhedron. The results from [1] and [3] cannot be used as
they use an assumption of the so-called bounded lattice-width, which is not applicable
here. In this paper, we settle this question in the affirmative under the assumption of
rationality of all the data. The techniques used are substantially different from those
in [1] and [3].

Statement of results Given a matrix B ∈ R
3×2, if M(B) is a lattice-free set, then it

will be either a triangle or a split in R
2 (not necessarily maximal); the latter case occurs

when one row of B is a scaling of another row.
We define the split closure as

S = { s ∈ R
k+ | γ (B) · s ≥ 1 for all B ∈ R

3×2 such that M(B) is a lattice-free split}.

Note that we are using a redundant description of convex sets that are splits, i.e., using
3 inequalities to describe it, instead of the standard 2 inequalities. It follows from the
result of Cook et al. [11] that the split closure is a polyhedron. We are interested in
the closure using all inequalities derived from lattice-free triangles.
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The triangle closure is a polyhedron 23

We define the triangle closure, first defined in [6], as

T =
{

s ∈ R
k+

∣∣∣∣
γ (B) · s ≥ 1 for all B ∈ R

3×2 such that
M(B) is a lattice-free triangle

}
.

It is proved in [6] that T ⊆ S, and therefore, T = T ∩ S. This is because we can write
a sequence of triangles whose limit is a split, and therefore all split inequalities are
limits of triangle inequalities. Hence, using the fact that T = T ∩ S, we can write the
triangle closure as

T = { s ∈ R
k+ | γ (B) · s ≥ 1 for all B ∈ R

3×2 such that M(B) is lattice-free}. (5)

The reason we describe split sets using 3 inequalities is to write the triangle closure
in a uniform manner using 3 × 2 matrices as in (5). We note here that in the definition
of T , we do not insist that the lattice-free set M(B) is maximal.

We will prove the following theorem.

Theorem 1.3 Let m = 2. Suppose that the data in (1) is rational, i.e., f ∈ Q
2 and

r j ∈ Q
2 for all j = 1, . . . , k. Then the triangle closure T is a polyhedron with

only a polynomial number of facets with respect to the binary encoding sizes of f,
r1, . . . , rk .

We will first use convex analysis in Sect. 2 to illuminate the convex geometry
of T by studying a set obtained from the defining inequalities of T . We will then
demonstrate in Lemma 2.4 that it suffices to show that an associated convex set has
finitely many extreme points. In Sect. 3, we prove that there are indeed only finitely
many such extreme points, and in Sect. 4, we complete the proof of Theorem 1.3.

The tools developed in Sect. 3 for proving Theorem 1.3 will then be used to prove
the following result about the mixed integer hull in Sect. 5.

Theorem 1.4 For m = 2, the number of facets of the mixed integer hull conv(R f ) is
polynomial in the binary encoding sizes of f, r1, . . . , rk .

We prove the following result in Sect. 5 as a direct consequence of our proof for
Theorem 1.4.

Theorem 1.5 There exists a polynomial time algorithm to enumerate all the facets
of conv(R f ) when m = 2.

Apart from being the main machinery behind Theorems 1.3, 1.4 and 1.5, the results
in Sect. 3 also shed light on the classification results of Cornuéjols and Margot for
the facets of the mixed integer hull [12]. In Sect. 3, we provide a more detailed set
of necessary conditions for a maximal lattice-free convex set to give a facet-defining
inequality. This avoids the use of an algorithm for a statement of such necessary
conditions (as was done in [12] via the Reduction Algorithm) and also provides a
completely different proof technique for such classifications. This might also help
towards obtaining such results in dimensions higher than two, i.e., m ≥ 3. On the
other hand, we do not provide sufficient conditions, as was done in [12].

123



24 A. Basu et al.

We make a remark about the proof structure of Theorem 1.3 here. In this context,
the most important result from Sect. 3 is Theorem 3.2. Theorem 3.2 can be viewed as
the bridge between Sects. 2 and 4. The reader can follow the proof of Theorem 1.3 by
reading only Sects. 2 and 4, if Theorem 3.2 is assumed true. One can then return to
Sect. 3 to see the proof of Theorem 3.2, which is rather technical.

2 Preliminaries: convex analysis and the geometry of T

We will prove several preliminary convex analysis lemmas relating to the geometry of
T . We show that we can write the triangle closure T using a smaller set of inequalities.
We begin by defining the set of vectors which give the inequalities defining T ,

Δ = { γ (B) | B ∈ R
3×2 such that M(B) is lattice-free (not necessarily maximal)}.

It is easily verified that for any matrix B ∈ R
3×2, if M(B) is lattice-free, thenψB(r) ≥

0 for all r ∈ R
2 and therefore Δ ⊆ R

k+.
Let Δ′ = cl(conv(Δ)) + R

k+ where cl(conv(Δ)) denotes the closed convex hull
of Δ and + denotes the Minkowski sum. Then Δ ⊆ Δ′ and Δ′ is convex as it is the
Minkowski sum of two convex sets (see Theorem 3.1 in [18]). In general the Minkowski
sum of two closed sets is not closed (for example, X = { (x, y) | y ≥ 1/x, x > 0 },
Y = { (x, y) | x = 0 }, X + Y = { (x, y) | x > 0 }). However, in this particular case,
we show now that Δ′ is closed. We will use the well-known fact that the Minkowski
sum of two compact sets is indeed closed. We prove the following more general result.

Lemma 2.1 Let X,Y ⊆ R
k+ be closed subsets of R

k+. Then X + Y is closed.

Proof Let Z = X + Y and let (zn) ∈ Z such that zn → z ∈ R
k . We want to show

that z ∈ Z . Let A = { x ∈ R
k+ | ‖x‖∞ ≤ ‖z‖∞ + 1 }. Since ‖zn − z‖∞ → 0 as

n → ∞, for some N ∈ N, we must have that ‖zn‖∞ ≤ ‖z‖∞ +1, that is, zn ∈ Z ∩ A,
for all n ≥ N . Since X,Y ⊆ R

k+, we see that Z ∩ A ⊆ (X ∩ A) + (Y ∩ A). Since
(X ∩ A) + (Y ∩ A) is a Minkowski sum of two closed and bounded subsets of R

k ,
i.e., compact, (X ∩ A)+ (Y ∩ A) is closed. Therefore, the tail of (zn) is contained in
a closed set, so it must converge to a point in the set, that is, z ∈ (X ∩ A)+ (Y ∩ A).
Since (X ∩ A)+ (Y ∩ A) ⊆ X + Y = Z , we have that z ∈ Z . Therefore, Z is closed.

��
Lemma 2.2 T = { s ∈ R

k+ | γ · s ≥ 1 for all γ ∈ Δ′ }.
Proof Since Δ ⊆ Δ′, we have that

{ s ∈ R
k+ | γ · s ≥ 1 for all γ ∈ Δ′ } ⊆ { s ∈ R

k+ | γ · s ≥ 1 for all γ ∈ Δ } = T .

We now show the reverse inclusion. Consider any s ∈ T and γ ∈ Δ′. We show that
γ · s ≥ 1.

SinceΔ′ = cl(conv(Δ))+ R
k+, there exists r ∈ R

k+ and a ∈ cl(conv(Δ)) such that
γ = a + r . Moreover, there exists a sequence (an) such that (an) converges to a and
(an) is in the convex hull of points q j ∈ Δ, j ∈ J . Since q j · s ≥ 1 for all j ∈ J ,
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The triangle closure is a polyhedron 25

we have that an · s ≥ 1 for all n ∈ N. Therefore a · s = limn→∞ an · s ≥ 1. Since
r ∈ R

k+, r · s ≥ 0 and so γ · s = (a + r) · s ≥ a · s ≥ 1. ��
We say that a ∈ Δ′ is a minimal point if there does not exist x ∈ Δ′ such that

a−x ∈ R
k+\{0}. If such an x exists then we say that a is dominated by x . We introduce

some standard terminology from convex analysis. Given a convex set C ⊆ R
k , a

supporting hyperplane for C is a hyperplane H = { x ∈ R
k | h · x = d } such that

h · c ≤ d for all c ∈ C and H ∩ C = ∅. A point x ∈ C is called extreme if there do
not exist y1 and y2 in C different from x such that x = 1

2 (y
1 + y2). If such y1 = y2

exist, we say that x is a strict convex combination of y1 and y2. A point x is called
exposed is there exists a supporting hyperplane H for C such that H ∩ C = {x}. We
will denote the closed ball of radius r around a point y as B(y, r). We denote the
boundary of this ball by ∂B(y, r).

Lemma 2.3 Δ′ is a closed convex set with R
k+ as its recession cone.

Proof Recall that Δ ⊆ R
k+. Since R

k+ is closed and convex, cl(conv(Δ)) ⊆ R
k+ and

soΔ′ = cl(conv(Δ))+R
k+ is closed by Lemma 2.1. Since the Minkowski sum of two

convex sets is convex, Δ′ is convex. Moreover since Δ′ ⊆ R
k+, the recession cone of

Δ′ is R
k+. ��

Lemma 2.4 Let C be the set of extreme points of Δ′. Then

T = { s ∈ R
k+ | a · s ≥ 1 for all a ∈ C }.

Proof Let T̂ = { s ∈ R
k+ | a · s ≥ 1 for all a ∈ C }. Since C ⊆ Δ′, we have that

T ⊆ T̂ . We show the reverse inclusion. Consider any s ∈ T̂ .
By Lemma 2.3,Δ′ is a closed convex set with R

k+ as its the recession cone. There-
fore, Δ′ contains no lines. This implies that any point a ∈ Δ′ can be represented as
a = z + ∑

j λ jv
j where z is a recession direction of Δ′, v j ’s are extreme points of

Δ′, λ j ≥ 0 and
∑

j λ j = 1 (see Theorem 18.5 in [18]). Moreover, since the v j ’s are

extreme points, v j ∈ C and therefore v j ·s ≥ 1 for all j because s ∈ T̂ . Since z ∈ R
k+,

s ∈ R
k+, λ j ≥ 0 for all j and

∑
j λ j = 1, a · s = z · s +∑

j λ j (v
j · s) ≥ 1. Therefore,

for all a ∈ Δ′, a · s ≥ 1. By Lemma 2.2, s ∈ T . ��
Observation 2.5 Since the recession cone of Δ′ is R

k+ by Lemma 2.3, every extreme
point of Δ′ is minimal.

We end this section with the following technical lemma.

Lemma 2.6 Let A be any subset of R
k and let A′ = cl(conv(A)). Then for any

extreme point x of A′, there exists a sequence of points (an) ∈ A converging to x.

Proof We first show the following claim.

Claim α For any exposed point a of A′, there exists a sequence of points (an) ∈ A
converging to a.
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Proof Let H = { x ∈ R
k | h · x = d } be a supporting hyperplane for A′ such that

H ∩ A′ = {a}. Suppose to the contrary that there does not exist such a sequence in A.
This implies that there exists ε > 0 such that B(a, ε)∩ A = ∅. Let D = ∂B(a, ε)∩H .
Since H ∩ A′ = {a}, for any point c ∈ D, dist(c, A′) > 0. Since D is a compact
set and the distance function is a Lipschitz continuous function, there exists δ > 0
such that dist(c, A′) > δ for all c ∈ D. We choose δ′ such that for any y ∈ ∂B(a, ε)
satisfying d ≥ h · y > d − δ′, there exists c ∈ D with dist(c, y) < δ.

Since a ∈ cl(conv(A)), there exists a sequence of points (bn) ∈ conv(A) converging
to a. This implies that (h · bn) converges to h · a = d. Therefore, we can choose b
in this sequence such that h · b > d − δ′ and b ∈ B(a, ε). Since b ∈ conv(A) there
exist v j ∈ A, j = 0, . . . , k such that b = conv({v0, . . . , vk}). Therefore, for some j ,
h · v j > d − δ′. Moreover, since v j ∈ A and B(a, ε) ∩ A = ∅, v j ∈ B(a, ε). Since
b ∈ B(a, ε) and v j ∈ B(a, ε), there exists a point p ∈ ∂B(a, ε) such that p is a
convex combination of b and v j . Since h · b > d − δ′ and h · v j > d − δ′, we have
that h · p > d − δ′. Moreover b ∈ conv(A) implying b ∈ A′ and v j ∈ A′, so we have
p ∈ A′ and so d ≥ h · p since H is a supporting hyperplane for A′. So by the choice
of δ′, we have that there exists c ∈ D with dist(c, p) < δ. However, dist(c, A′) > δ

for all c ∈ D which is a contradiction because p ∈ A′. ��
By Straszewicz’s theorem (see for example Theorem 18.6 in [18]), for any extreme

point x of A′, there exists a sequence of exposed points converging to x . So for any
n ∈ N, there exists an exposed point en such that dist(en, x) < 1

2n and using Claim α,
there exists an ∈ A such that dist(en, an) < 1

2n . Now the sequence (an) converges to
x since dist(an, x) < 1

n . ��

3 Polynomially many extreme points in Δ′

In this section, we will introduce certain tools and use them to prove the following
proposition.

Proposition 3.1 There exists a finite set Ξ ⊆ Δ, such that if γ ∈ Δ \ Ξ , then γ is
dominated by some γ ′ ∈ Δ, or γ is the strict convex combination of γ 1 and γ 2 ∈ Δ.
Furthermore, the cardinality of Ξ is bounded polynomially in the binary encoding
sizes of f, r1, . . . , rk .

This proposition will be proved by carefully counting the triangles and splits M(B)
such that γ (B) is not dominated by a point inΔ and is not a strict convex combination
of points in Δ. To this end, we define the following subsets of R

k+:

Δi = { γ (B) | B ∈ R
3×2, M(B) is a Type i triangle } for i = 1, 2, 3

and

Π = { γ (B) | B ∈ R
3×2, M(B) is a maximal lattice-free split }.

Note that these sets are not disjoint, as the same vector γ can be realized by maximal
lattice-free convex sets of different kinds.
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The triangle closure is a polyhedron 27

We first develop some important concepts in Sect. 3.1, followed by the main count-
ing arguments in Sect. 3.2. In Sect.3.3, we prove Proposition 3.1. It has the following
theorem as a consequence, which is the most important ingredient for the triangle
closure result.

Theorem 3.2 There exists a finite set Ξ ⊂ Δ such that if γ is an extreme point of
Δ′, then γ /∈ Δ \Ξ . Furthermore, the cardinality #Ξ is bounded polynomially in the
binary encoding sizes of f, r1, . . . , rk .

Proof Let Ξ be the set from Proposition 3.1. Since Δ ⊆ Δ′, together with
Observation 2.5 and the definition of extreme point, this implies that Δ \ Ξ does
not contain any extreme points of Δ′. ��

3.1 Tools

For fixed f , given a set of rays R ⊆ R
m and a matrix B = (b1; . . . ; bn) ∈ R

n×m , we
refer to the set of ray intersections

P(B, R) = {
p(B, r) ∈ R

m
∣∣r ∈ R, ψB(r) > 0

}

where p(B, r) = f + 1
ψB (r)

r is the point where r meets the boundary of the

set M(B). Therefore, P(B, R) ⊂ ∂M(B). Furthermore, if P(B1, {r1, . . . , rk}) =
P(B2, {r1, . . . , rk}), then γ (B1) = γ (B2). If p(B, r) is a vertex of M(B), then we
call r a corner ray of M(B).

Whenever ψB(r) > 0, the set IB(r) = argmaxi=1,...,nbi · r is the index set of all
defining inequalities of the polyhedron M(B) that the ray intersection p(B, r) satisfies
with equality. In particular, for m = 2, when all the inequalities corresponding to the
rows of B are different facets of M(B), we have #IB(r) = 1 when r points to the
relative interior of a facet, and #IB(r) = 2 when r points to a vertex of M(B), where
#X denotes the cardinality of the set X .

Let Fi (B) = M(B) ∩ {x ∈ R
m | bi · (x − f ) = 1} for each i = 1, . . . , n (in what

follows, Fi (B) will usually be a facet of M(B)). Let Y (B) be the set of integer points
contained in M(B). Recall that if M(B) is a maximal lattice-free convex set, then each
facet Fi (B) contains at least one integer point in its relative interior. In our proofs, it
is convenient to choose, for every i = 1, . . . , n, a certain subset Yi ⊆ Y (B) ∩ Fi (B)
of the integer points on Fi (B).

Definition 3.3 LetY denote the tuple (Y1,Y2, . . . ,Yn). The tilting spaceT (B,Y , R)
⊂ R

n×m is defined as the set of matrices A = (a1; a2; . . . ; an) ∈ R
n×m that satisfy

the following conditions:

ai · (y − f ) = 1 for y ∈ Yi , i = 1, . . . , n, (6a)

ai · r = ai ′ · r for i, i ′ ∈ IB(r), and all r ∈ R (6b)

ai · r > ai ′ · r for i ∈ IB(r), i ′ /∈ IB(r), and all r ∈ R. (6c)
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28 A. Basu et al.

Note that if R′ ⊇ R, thenT (B,Y , R′) ⊆ T (B,Y , R). The tilting spaceT (B,Y ,

R) is defined for studying perturbations of the lattice-free set M(B). This is done by
changing or tilting the facets of M(B) subject to certain constraints to construct a new
lattice-free set M(A). Constraint (6a) requires that Fi (A) must contain subset Yi of
integer points. Constraints (6b) and (6c) together imply that for any r ∈ R, the ray
intersection p(A, r) = f + 1

ψA(r)
r lies on Fi (A) of M(A) if and only if the ray inter-

section p(B, r) = f + 1
ψB (r)

r for M(B) lies on the corresponding Fi (B) of M(B).
Thus we have IA(r) = IB(r). In particular, this means that if r ∈ R is a corner ray of
M(B), then r must also be a corner ray for M(A) if A ∈ T (B,Y , R).

Note that T (B,Y , R) is defined by linear equations and strict linear inequalities
and, since B ∈ T (B,Y , R), it is non-empty. Thus it is a convex set whose dimension
is the same as that of the affine space given by the Eqs. (6a) and (6b) only. This
motivates the following definition.

Definition 3.4 N (B,Y , R) will denote the nullspace of the Eqs. (6a) and (6b), i.e.,

N (B,Y , R) =
{

A = (a1; . . . ; an) ∈ R
n×m

∣∣∣∣
ai · (y − f ) = 0 ∀ y ∈ Yi , i = 1, . . . , n,

ai · r = ai ′ · r ∀ i, i ′ ∈ IB(r) and r ∈ R

}
.

If R′ ⊇ R, then N (B,Y , R′) ⊆ N (B,Y , R). For many cases when γ (B) is not
extreme, we will find a matrix Ā ∈ N (B,Y , R) such that γ (B) can be expressed as
the convex combination of γ (B + ε Ā) and γ (B − ε Ā) and M(B + ε Ā),M(B − ε Ā)
are lattice-free polytopes. If γ (B) ∈ Δ, then γ (B + ε Ā), γ (B − ε Ā) will also be in
Δ.

For convenience, we shorten notation in the following way: for the rest of the paper
we fix the input data f and the set of rays R = {r1, . . . , rk}. Furthermore, whenever
the matrix B is clear from context, we write N (Y ) = N (B,Y , R), T (Y ) =
T (B,Y , R), P = P(B, R), p j = p(B, r j ) for j = 1, . . . , k, and Fi = Fi (B).

Next we introduce a tool that helps to ensure that sets M(B ± ε Ā) are lattice-free.
This will be done by utilizing now-classic results in the theory of parametric linear
programming. Specifically, consider a parametric linear program,

sup{ c(t) · x : A(t)x ≤ b(t) } ∈ R ∪ {±∞}, (7)

where all coefficients depend continuously on a parameter vector t within some para-
meter region R ⊆ R

q .

Theorem 3.5 (D. H. Martin [17], Lemma 3.1) Suppose that the solution set of (7)
for t = t0 is non-empty and bounded. Then, in parameter space, there is an open
neighborhood O of t0 such that the union of all solution sets for t ∈ O is bounded.

We use this theorem of parametric linear programming to prove the following
lemma.

Lemma 3.6 Let B ∈ R
n×m be such that M(B) is a bounded maximal lattice-free set.

Then for every Ā ∈ R
n×m, there exists δ > 0 such that for all 0 < ε < δ, the set

Y (B + ε Ā) of integer points contained in M(B + ε Ā) is a subset of Y (B).
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Proof Consider the parametric linear program

max{ 0 | ai · (x − f ) ≤ 1, i = 1, . . . , n }

with parameters t = A = (a1; . . . ; an) ∈ R
n×m . By the assumption of the lemma, the

solution set for t0 = B = (b1; . . . ; bn) is bounded. Let O be the open neighborhood
of t0 from Theorem 3.5, and let Ŝ be the union of all solution sets for t ∈ O , which is
by the theorem a bounded set.

For each of the finitely many lattice points y ∈ Ŝ \ M(B), let i(y) ∈ {1, . . . , n}
be an index of an inequality that cuts off y, that is, bi(y) · (y − f ) > 1. Then,
given any Ā ∈ R

n×m , there exists δ > 0 such that for all 0 < ε < δ such that
(bi(y) + εāi(y)) · (y − f ) > 1 for all y ∈ Ŝ \ M(B). Therefore, for all such ε, we have
Y (B + εA) ⊆ Y (B). ��
Lemma 3.7 (General tilting lemma) Let B ∈ R

n×m be such that M(B) is a bounded
lattice-free set. Suppose Y = (Y1, . . . ,Yn) is a covering of Y (B), i.e., Y (B) ⊆
Y1 ∪· · ·∪Yn. For any Ā ∈ N (Y )\ {0}, there exists δ > 0 such that for all 0 < ε < δ

the following statements hold:

(i) IB(r j ) = IB+ε Ā(r
j ) = IB−ε Ā(r

j ) for all j = 1, . . . , k.
(ii) γ (B) = 1

2γ (B + ε Ā)+ 1
2γ (B − ε Ā).

(iii) Both M(B ± ε Ā) are lattice-free.
(iv) Suppose m = 2 and let ā1, …, ān ∈ R

2 denote the rows of Ā. Suppose there
exists an index i ∈ {1, . . . , n} such that āi = 0, #Yi = 1, and (Fi ∩ P)\Z

2 = ∅.
Then γ (B) is a strict convex combination of γ (B + ε Ā) and γ (B − ε Ā).

Proof Since Ā ∈ N (Y ) \ {0}, B ± ε Ā satisfies the Eqs. (6a) and (6b) for any ε,
and there exists δ1 > 0 such that B ± ε Ā satisfies the strict inequalities (6c) for
0 ≤ ε < δ1. Thus B ± ε Ā ∈ T (Y ) for 0 ≤ ε < δ1. Let δ2 > 0 be obtained by
applying Lemma 3.6. Choose δ = min{δ1, δ2}.

Part (i). This follows from the fact that B ± ε Ā ∈ T (Y ), and thus (6b) and (6c)
hold, for all 0 < ε < δ.
Part (ii). This is a consequence of (i), since γ (B) j = ψB(r j ) = bi · r j for
any i ∈ IB(r j ), and γ (B ± ε Ā) j = ψB ± ε Ā(r

j ) = (bi ± εāi ) · r j for any
i ∈ IB±ε Ā(r

j ).
Part (iii). This follows from Lemma 3.6 and the fact that Y (B) remains on the
boundary of M(B ± ε Ā), due to constraint (6a).
Part (iv). Since (Fi ∩ P) \ Z

2 = ∅, there exists a ray r j ∈ R such that p j ∈
(Fi ∩ P)\Z

2. We will show that āi ·r j = 0. Suppose for the sake of contradiction
that āi · r j = 0. Let y ∈ Yi . By definition of N (Y ), āi · (y − f ) = 0. Since
r j does not point to an integer point from f , the vectors r j and y − f are not
parallel. Therefore, the system āi · r j = 0, āi · (y − f ) = 0 has the unique
solution āi = 0, which is a contradiction since we assumed āi = 0. Hence,
āi · r j = 0 and therefore ψB+ε Ā(r

j ) = ψB−ε Ā(r
j ). Therefore, γ (B) is a strict

convex combination of γ (B + ε Ā) and γ (B − ε Ā). ��
We will now apply this principle to obtain two lemmas for the case m = 2. The first

simple application is to tilt a single facet of a polytope to show that the corresponding
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(a) (b)

Fig. 2 Single facet tilts: tilting one facet of a polytope to generate new inequalities. In both examples,
there is a ray pointing to a non-integer point on the interior of the facet being tilted. This ensures that the
inequalities from the tilted sets are distinct, and therefore we see that γ (B) is the strict convex combination
of other points in Δ. This is the assertion of Lemma 3.8

inequality is a strict convex combination of other inequalities, as shown in Fig. 2. This
is summarized in the following lemma.

Lemma 3.8 (Single facet tilt lemma) Let M(B) be a lattice-free polytope for some
matrix B ∈ R

n×2. Suppose that F1(B) ∩ Z
2 = {y1}, y1 ∈ rel int(F1(B)), and P ∩

F1(B) ⊂ rel int(F1(B)), i.e., there are no ray intersections on the lower-dimensional
faces of F1(B), and P ∩ F1(B) \ Z

2 = ∅. Then there exist ā1 = 0 and ε > 0 such
that Ā = (ā1; 0; . . . ; 0) has the property that γ (B) is a strict convex combination of
γ (B + ε Ā) and γ (B − ε Ā) and M(B + ε Ā) and M(B − ε Ā) are lattice-free.

Proof Let Y1 = {y1} and Yi = Y (B)∩ Fi , i = 2, . . . , n, so that Y = (Y1, . . . ,Yn) is
a covering of the set Y (B) of integer points in M(B).

Let ā1 = 0 such that ā1 · (y1 − f ) = 0 and observe that Ā = (ā1; 0; . . . ; 0) ∈
N (Y ) because there are no constraints (6b) involving ā1, as there are no ray inter-
sections on the lower-dimensional faces of F1(B). By Lemma 3.7, for some ε > 0,
γ (B) is a strict convex combination of γ (B + ε Ā) and γ (B − ε Ā) and M(B + ε Ā)
and M(B − ε Ā) are lattice-free. ��

We give another application of the perturbation arguments to Type 3 triangles and
quadrilaterals, before moving on to more specific counting arguments in the next
subsection.

Lemma 3.9 Let B ∈ R
n×2 be such that M(B) is a Type 3 triangle (n = 3) or

a maximal lattice-free quadrilateral (n = 4). Let rel int(Fi ) ∩ Z
2 = {yi } and set

Yi = {yi }; then (Y1, . . . ,Yn) form a covering of Y (B). If P ⊂ Z
2 and M(B) has

fewer than n corner rays, then γ (B) is a strict convex combination of γ (B1) and
γ (B2), where B1, B2 ∈ R

n×2 are matrices such that M(B1), M(B2) are both lattice-
free.

Proof Let Yi = {yi } for i = 1, . . . , n. Let R′ ⊇ R = {r1, . . . , rk} such that R′
contains exactly n − 1 corner rays pointing to different vertices of M(B) from f . We
examine the null space N (B,Y , R′). With n − 1 corner rays, N (B,Y , R′) is the
set of matrices A = (a1; . . . ; an) satisfying the following system of equations, where,
for convenience, we define ȳi := yi − f :

ai · ȳi =0 for i = 1, . . . , n and ai · r i = ai+1 · r i for i =1, . . . , n − 1.
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We have assumed, without loss of generality, that the corner rays and facets are num-
bered such that we have corner rays r i ∈ Fi ∩ Fi+1 for i = 1, . . . , n − 1. Note that
ȳi is linearly independent from r i for i = 1, . . . , n − 1 and linearly independent from
r i−1 for i = 2, . . . , n, because yi lies in the relative interior of Fi and the rays point
to the vertices.

There are 2n − 1 equations and 2n variables, so dim N (B,Y , R′) ≥ 1. Choose
Ā = (ā1; . . . ; ān) ∈ N (B,Y , R′) \ {0}. Notice that for i = 1, . . . , n − 1, if āi = 0,
then āi+1 must satisfy āi+1 ·r i = 0 and āi+1 · ȳi+1 = 0, which implies that āi+1 = 0,
since ȳi+1 and r i are linearly independent. Similarly, for i = 2, . . . , n, if āi = 0, then
āi−1 must satisfy āi−1 · r i−1 = 0 and āi−1 · ȳi−1 = 0, which implies that āi−1 = 0.
By induction, this shows that if āi = 0 for any i = 1, . . . , n, then Ā = 0, which
contradicts our assumption. Hence, āi = 0 for all i = 1, . . . , n.

Since R′ ⊇ R, we have that N (B,Y , R′) ⊆ N (B,Y , R); thus, Ā ∈
N (B,Y , R) \ {0}. Since P ⊂ Z

2, there exists r ∈ R that does not point to an
integer point. Let i ∈ IB(r). Since āi = 0, by applying Lemma 3.7 with Ā we obtain
ε > 0 such that γ (B) is a strict convex combination of γ (B + ε Ā) and γ (B − ε Ā)
and M(B + ε Ā),M(B − ε Ā) are lattice-free. ��

3.2 Counting arguments

An important ingredient in the proof of Proposition 3.1 is the following consequence
of the Cook et al. [10] theorem on the polynomial-size description of the integer hulls
of polyhedra in fixed dimension combined with an algorithm by Hartmann [15] for
enumerating all the vertices, which runs in polynomial time in fixed dimension.

Lemma 3.10 Given two rays r1 and r2 in R
2, we define the affine cone

C(r1, r2) = { x ∈ R
2 | x = f + s1r1 + s2r2 for s1, s2 ≥ 0 }.

The number of facets and vertices of the integer hull

(C(r1, r2))I = conv(C(r1, r2) ∩ Z
2)

is bounded by a polynomial in the binary encoding sizes of f, r1, r2. Furthermore,
the facets and vertices of the integer hull can be enumerated in polynomial time in the
binary encoding sizes of f, r1, r2.

In the following, the closed line segment between two points x1 and x2 will be
denoted by [x1, x2], and the open line segment will be denoted by (x1, x2).

Lemma 3.11 Consider any lattice-free convex set M(B) for B ∈ R
n×2. Suppose

there exist two rays r j1, r j2 such that the corresponding ray intersections p j1 , p j2 are
distinct and lie on a facet F of M(B).

(i) If [p j1, p j2 ] ∩ Z
2 = {y} and y ∈ (p j1, p j2), then y is a vertex of the inte-

ger hull (C(r j1, r j2))I. Moreover, the line aff(F) is a supporting hyperplane for
(C(r j1, r j2))I, i.e., (C(r j1, r j2))I lies on one side of this line.

123



32 A. Basu et al.

(ii) If [p j1, p j2 ] ∩ Z
2 contains at least two points, then the line aff(F) contains a

facet of the integer hull (C(r j1, r j2))I.

Proof Suppose H is the halfspace corresponding to F that contains f . Then H ∩
C(r j1, r j2) ⊂ M(B) and since M(B) does not contain any integer points in its interior,
neither does H ∩ C(r j1, r j2). Since we assume [p j1 , p j2 ] ∩ Z

2 is non-empty and
p j1, p j2 lie on the line defining H (and also F), this line is a supporting hyperplane
for (C(r j1, r j2))I.

If [p j1, p j2 ] ∩ Z
2 contains the single point y and y ∈ (p j1 , p j2), then clearly y is

an extreme point of (C(r j1, r j2))I.
If [p j1, p j2 ] ∩ Z

2 contains two (or more) points, then the line defining H (and also
F) defines a facet of (C(r j1, r j2))I. ��
Observation 3.12 (Integral ray intersections) Let R = {r1, . . . , rk}. Then there is a
unique γ ∈ R

k such that γ = γ (B), M(B) is a lattice-free convex set and P(B, R) ⊂
Z

2. (Note that there may be multiple matrices B ∈ R
n×2 yielding γ .)

Proof Let B be the family of matrices B ∈ R
n×2 such that P(B, R) ⊂ Z

2 and M(B)
is a lattice-free set. Then P(B1, R) = P(B2, R) for all B1, B2 ∈ B because M(B1)

and M(B2) are lattice-free. Hence, γ (B) is the same vector for all B ∈ B. ��
Proposition 3.13 (Counting Type 3 triangles) There exists a finite subset Ξ3 ⊆ Δ3
such that for any γ ∈ Δ3 \ Ξ3, there exist γ 1, γ 2 ∈ Δ such that γ is a strict convex
combination of γ 1 and γ 2. Moreover, the cardinality of Ξ3 is bounded polynomially
in the binary encoding sizes of f, r1, . . . , rk . Specifically,Ξ3 can be chosen as the set
of all γ (B) such that M(B) is a Type 3 triangle and one of the following holds, where
R = {r1, . . . , rk}:

Case a. P(B, R) ⊂ Z
2.

Case b. M(B) has three corner rays, that is, vert(B) ⊆ P(B, R).

Proof Step 1. Let γ = γ (B) for some fixed B ∈ R
3×2 such that M(B) is a Type 3

triangle. By Lemma 3.9, if γ ∈ Δ3 \ Ξ3, then there exist γ 1, γ 2 ∈ Δ such that γ
is a strict convex combination of γ 1 and γ 2. Therefore, we are left to determine the
cardinality of Ξ3.

Step 2. We now bound the cardinality of Ξ3 by considering each case.
Case a. Observation 3.12 shows that there is a unique γ ∈ Ξ3 corresponding to

this case.
Case b. M(B) has three corner rays. First we pick any triplet of pairwise distinct

rays, say r j1, r j2 , r j3 ∈ R, as the corner rays; there are O(k3) such triplets. Because we
are constructing a Type 3 triangle, there needs to be an integer point y3 ∈ (p j1 , p j2).
By Lemma 3.11 (i), y3 is a vertex of (C(r j1, r j2))I. By the same argument, there exist
integer points y2 ∈ (p j1 , p j3) and y1 ∈ (p j2 , p j3) that are vertices of (C(r j1, r j3))I
and (C(r j2 , r j3))I, respectively. By Proposition 7.1 in “Appendix 7”, a triangle is
uniquely determined by three corner rays and and one point on the relative interior of
each facet. Thus, we can use a triplet of rays and a vertex from each integer hull of
the three cones spanned by consecutive rays to uniquely define the triangle. These are
polynomially bounded in number by Lemma 3.10.
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(a) (b)

Fig. 3 Geometry of necessary conditions for splits in proof of Proposition 3.14. a Lattice-free quadrilateral
M(B̂) that is created such that γ (B) = γ (B̂). b Lattice-free quadrilateral M(B̂ + ε Ā) and the lattice-free
triangle M(A). We see that P(A, R) = P(B̂ + ε Ā, R) and hence γ (A) = γ (B̂ + ε Ā)

Thus the number of elements of Ξ3 corresponding to each case has a polynomial
bound, and the result is proved. ��
Proposition 3.14 (Counting splits) There exists a finite subset Ξ0 ⊆ Π such that for
any γ ∈ Π \ Ξ0, there exist γ 1, γ 2 ∈ Δ such that γ is a strict convex combination
of γ 1 and γ 2. Moreover, the cardinality of Ξ0 is bounded polynomially in the binary
encoding sizes of f, r1, . . . , rk . Specifically, Ξ0 can be chosen as the set of all γ (B)
such that M(B) is a maximal lattice-free split and one of the following holds, where
R = {r1, . . . , rk}:

Case a. P(B, R) ⊂ Z
2.

Case b. There exists j ∈ {1, . . . , k} such that r j lies in the recession cone of the
split.

Case c. #(conv(P(B, R) ∩ F1) ∩ Z
2) ≥ 2.

Proof Step 1. Consider γ (B) ∈ Π \ Ξ0, and so M(B) is a maximal lattice-free
split such that none of Case a, Case b, or Case c hold. So we suppose that, possibly
by exchanging the rows of B, no ray in R lies in the recession cone of the split,
P(B, R) ∩ F1 \ Z

2 = ∅, and #(conv(P(B, R) ∩ F1) ∩ Z
2) ≤ 1.

We will first construct a lattice-free quadrilateral M(B̂) such that γ (B) = γ (B̂).
We will consider the sub-lattice of Z

2 contained in the linear space parallel to F1.
We use the notation v(F1) to denote a primitive lattice vector which generates this
one-dimensional lattice. Choose y1 ∈ Z

2 such that P(B, R)∩ F1 ⊂ (y1 −v(F1), y1 +
v(F1)). Pick any x1, x2 ∈ F1 such that

(P(B, R) ∩ F1) ∪ {y1} � (x1, x2) � (y1 − v(F1), y1 + v(F1)).

We can assume that F2 corresponds to the facet opposite F1, with another exchange
of the rows of B if necessary. Next, choose distinct integer points x3, x4 ∈ F2 ∩ Z

2

such that P(B, R)∩ F2 ⊂ (x3, x4) and f ∈ int(conv({x1, x2, x3, x4})). Now, let B̂ =
(b̂1; b̂2; b̂3; b̂4) ∈ R

4×2 such that M(B̂) = conv({x1, x2, x3, x4}) and let F1(B̂) =
[x1, x2], F2(B̂) = [x3, x4], F3(B̂) = [x1, x3] and F4(B̂) = [x2, x4] (see Fig. 3a).
The set M(B̂) is a lattice-free quadrilateral with no corner rays. By construction, the
ray intersections are the same for M(B̂) and M(B), i.e., P(B̂, R) = P(B, R), and
therefore γ (B̂) = γ (B). Furthermore, F1(B̂) ∩ P(B, R) ⊂ rel int(F1(B̂)), that is,
all ray intersections on F1(B̂) are contained in its relative interior. Since P(B, R) ∩
F1(B̂) ⊂ Z

2 and is non-empty, by Lemma 3.8, γ (B̂) = γ (B) is a strict convex
combination of γ (B̂ + ε Ā) and γ (B̂ − ε Ā), where Ā = (ā1; 0; 0; 0) and ā1 = 0.
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Fig. 4 Step 3 of the proof of
Proposition 3.14: uniquely
determining the split M(B) for
Cases (b) and (c). Case (b)
requires only the ray r j which is
in the recession cone of the split,
whereas Case (c) is determined
by a facet of (C(r j1 , r j2 ))I

Lastly, we need to show that there exist A, A′ ∈ R
3×2 such that γ (A) = γ (B̂ +ε Ā)

and γ (A′) = γ (B̂ − ε Ā), and M(A),M(A′) are lattice-free triangles. Since the cases
are similar, we will just show that such a matrix A exists. More concretely, we want to
exhibit a matrix A such that P(A, R) = P(B̂ + ε Ā, R) and that M(A) is lattice-free.
As Ā comes from Lemma 3.8, ā1 · v(F1) = 0. Suppose, without loss of generality,
that ā1 · v(F1) > 0. Let a1 = b̂1 + εā1, a2 = b̂2, and a3 = b̂3 and A = (a1; a2; a3)

(see Fig. 3b). Let α > 0. Then

(b̂1 + ā1) · (y1 + αv(F1)− f ) = (b̂1 + ā1) · (y1 − f )+ αb̂1 · v(F1)+ αā1 · v(F1)

= 1 + 0 + αā1 · v(F1) > 1,

and therefore, y1 + αv(F1) /∈ M(A) for all α > 0. Recalling that M(B) is a split, it
follows that int(M(A))\int(M(B)) ⊆ int(M(B̂+ε Ā)) and int(M(A))∩ int(M(B)) ⊆
int(M(B)). Therefore, int(M(A)) ⊆ int(M(B̂ + ε Ā)) ∪ int(M(B)). Because of this
inclusion, M(A) is lattice-free.

Step 2. We now bound the cardinality of Ξ0 by considering each case.
Case a. P(B, R) ⊂ Z

2. Observation 3.12 shows that there is a unique γ ∈ Ξ0
corresponding to this case.

The two remaining cases are illustrated in Fig. 4.
Case b. A ray direction r j is parallel to the split. There are at most k such ray

directions, and thus at most k splits in this case.

Case c. There exist p j1 , p j2 ∈ P(B, R) such that #([p j1 , p j2 ] ∩ Z
2) ≥ 2, and

therefore, the split must run parallel to a facet of (C(r j1, r j2))I by Lemma 3.11 (ii), of
which there are only polynomially many. There are only

(k
2

)
ways to choose two rays

for this possibility.
Since each case has a polynomial bound, we conclude that #Ξ0 is polynomially

bounded as well. ��

Proposition 3.15 (Counting Type 1 triangles) There exists a finite subset Ξ1 ⊆ Δ1,
such that for any γ ∈ Δ1 \(Ξ1 ∪Π∪Δ2), there exist γ 1, γ 2 ∈ Δ such that γ is a strict
convex combination of γ 1 and γ 2 or there exists γ ′ ∈ Δ such that γ is dominated by
γ ′. Moreover, the cardinality of Ξ1 is bounded polynomially in the binary encoding
sizes of f, r1, . . . , rk . Specifically,Ξ1 is chosen as the set of all γ (B) such that M(B)
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Fig. 5 Proposition 3.15, Step 2:
Uniquely determining Type 1
triangles that are in Cases a and
b. In both cases, the triangle is
uniquely determined by y1, y2

and the ray intersections
p j1 , p j2 ∈ vert(B) ∩ F3

Fig. 6 In the proof of
Proposition 3.15, Step 1, a Type
1 triangle can be replaced by a
Type 2 triangle (dotted) that
gives the same inequality

is a Type 1 triangle, there exist distinct points p j1 , p j2 ∈ vert(B) ∩ F3 ∩ P(B, R),
i.e., F3 has two corner rays, and one of the following holds:

Case a. f /∈ M(S3).
Case b. f ∈ M(S3), and P(B, R) ⊂ M(S3).
Here R = {r1, . . . , rk} and S3 ∈ R

3×2 is a matrix such that M(S3) is a maximal
lattice-free split with the property that one facet of M(S3) contains F3 and M(S3) ∩
int(M(B)) = ∅.

Figure 5 illustrates these two cases.

Proof Consider any γ ∈ Δ1 \ (Ξ1 ∪Π ∪Δ2) and let γ = γ (B) for some B ∈ R
3×2

such that M(B) is a Type 1 triangle. For the sake of brevity, we use P to denote
P(B, R) in the remainder of this proof.

Step 1. Suppose #(vert(B) ∩ P) ≤ 1. This implies that some facet has no corner
rays; without loss of generality, let this be F1. Thus F1 ∩ vert(B) ∩ P = ∅. Let y1 be
the integer point in rel int(F1). If P ∩ F1 \Z

2 = ∅, then we can tilt F1 slightly in either
direction without making new ray intersections on F1. This creates a Type 2 triangle
that realizes γ (see Fig. 6), which contradicts the hypothesis that γ /∈ Δ2. Therefore,
we can assume P ∩ rel int(F1) \ Z

2 = ∅. Under this assumption, Lemma 3.8 shows
that there exist γ 1, γ 2 ∈ Δ such that γ is a strict convex combination of γ 1 and γ 2.

Step 2. Suppose #(vert(B)∩ P) ≥ 2. Thus there exist p j1 , p j2 ∈ vert(B)∩ P , and
we assume, by possibly exchanging rows of B, that F3 is a facet containing p j1 , p j2 .
Since γ ∈ Ξ1, neither Case a nor Case b holds. Thus P ∪ { f } ⊂ M(S3). But then γ
is dominated by or equal to γ (S3). Since γ ∈ Π , γ must be dominated by γ (S3).
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Thus we have shown that either γ is a strict convex combination of γ 1 and γ 2 with
γ 1, γ 2 ∈ Δ or there exists γ ′ ∈ Δ such that γ is dominated by γ ′.

Step 3. We next bound the cardinality of Ξ3, i.e., the number of Type 1 triangles
with two corner rays r j1 , r j2 on F3 such that Case a or Case b holds. There are O(k2)

ways to choose the two corner rays on F3, which uniquely determine F3.
Case a. Since f does not lie in the split S3, the integer points y1, y2 are uniquely

determined.

Case b. In this case f lies in the split S3 and there exists a ray intersection p j3

outside the split. After choosing the ray r j3 ∈ R, the integer points y1, y2 are uniquely
determined; there are at most k choices for r j3 .

Since the triangle is uniquely determined from the points y1, y2 and the two corner
rays r j1 , r j2 on F3, there are only polynomially many Type 1 triangles which give
vectors in Ξ1. ��

We next consider Type 2 triangles, which are the most complicated to handle. For
this, we first establish some notation and an intermediate lemma.

Consider a matrix B = (b1; b2; b3) ∈ R
3×2 such that M(B) is a Type 2 triangle.

For i = 1, 2, 3, we denote Fi = Fi (B). Without loss of generality, we assume that the
facet containing multiple integer points is F3. We label the unique integer points in the
relative interiors of F1 and F2 as y1 and y2, respectively. Within the case analysis of
some of the proofs, we will refer to certain points lying within splits. For convenience,
for i = 1, 2, 3, we define Si ∈ R

3×2 such that M(Si ) is the maximal lattice-free split
with the properties that one facet of M(Si ) contains Fi and M(Si ) ∩ int(M(B)) = ∅.

Lemma 3.16 (Type 3 dominating Type 2 lemma) Let R = {r1, . . . , rk}. Consider any
B ∈ R

3×2 such that M(B) is a Type 2 triangle. Denote the vertex F1 ∩ F3 by v and
let y3 ∈ F3 be the integer point in rel int(F3) closest to v. Suppose P(B, R)∩ F3 is a
subset of the line segment connecting v and y3. Then there exists a matrix B ′ ∈ R

3×2

such that M(B ′) is a Type 3 triangle and either γ (B) is dominated by γ (B ′), or
γ (B) = γ (B ′).
Proof Choose ā3 such that ā3 ·(y3 − f ) = 0 and ā3 ·(y3 −v) > 0. Consider tilting F3
by adding ε Ā = ε(0; 0; ā3) to B for some small enough ε > 0 so that the following
two conditions are met. First, ε is chosen small enough such that the set of integer
points contained in M(B + ε Ā) is a subset of Y (B); this can be done by Lemma 3.6.
Second, since P(B, R) ∩ F3 ⊂ [y3, v], we know that there is no corner ray pointing
to F2 ∩ F3, and therefore we can choose ε small enough such that for all rays r j such
that 2 ∈ IB(r j ), IB+ε Ā(r

j ) = IB(r j ). This means that p j = p(B, r j ) ∈ F2 if and
only if p(B + ε Ā, r j ) ∈ F2(B + ε Ā).

Now suppose r j is a ray pointing from f to F3. Since P(B, R)∩ F3 ⊂ [y3, v], we
can describe r j as the linear combination r j = α1(y3 − f ) − α2(y3 − v) for some
α1, α2 ≥ 0. Observe that ψB+ε Ā(r

j ) = max{b1 · r j , (b3 + εā3) · r j } and

(b3+εā3) · r j =b3 · r j +εā3 · (
α1(y

3 − f )−α2(y
3−v)) ≤ b3 · r j =ψB(r

j ). (8)

By definition of ψB(r j ), we also have b1 · r j ≤ ψB(r j ). Therefore, ψB+ε Ā(r
j ) ≤

ψB(r j ).
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Fig. 7 We depict the geometry
of Lemma 3.16 and show how
we can change a facet of M(B)
to find a new matrix B′ ∈ R

3×2

such that M(B′) is a Type 3
triangle and γ (B′) either
dominates γ (B), or
γ (B) = γ (B′)

Finally suppose r j is such that p j ∈ P(B, R)∩(F1 ∪ F2)\ F3). ThenψB+ε Ā(r
j ) =

ψB(r j ) since by construction IB(r j ) = IB+ε Ā(r
j ) for all such rays. Also, note that

for any y ∈ F3 ∩ Z
2, y = y3 + β(y3 − v) for some β ≥ 0. Therefore,

(b3 + εā3) · (y − f ) ≥ b3 · (y − f ) = 1,

meaning that none of these integer points are contained in the interior of M(B + ε Ā).
Since the set of integer points contained in M(B + ε Ā) is a subset of Y (B) and facets
F1 and F2 were not tilted, M(B + ε Ā) is lattice-free; in fact, it is a Type 3 triangle
(see Fig. 7).

Thus, we can choose B ′ = B + ε Ā. The vector γ (B) is dominated by γ (B ′) when
the inequality (8) is strict for some r j ; otherwise, γ (B) = γ (B ′). ��
Proposition 3.17 (Counting Type 2 triangles) There exists a finite subset Ξ2 ⊆ Δ2
such that if γ ∈ Δ2 \ (Ξ2 ∪Δ3 ∪Π), then there exist γ 1, γ 2 ∈ Δ such that γ is a strict
convex combination of γ 1 and γ 2 or there exists γ ′ ∈ Δ such that γ is dominated by
γ ′. Moreover, the cardinality of Ξ2 is bounded polynomially in the binary encoding
sizes of f, r1, . . . , rk . Specifically, Ξ2 can be chosen as the set of all γ (B) such that
M(B) is a Type 2 triangle satisfying one of the following, where P = P(B, R) and
Fi = Fi (B) such that F3 is the facet of M(B) containing multiple integer points:

Case a. P ⊂ Z
2.

Case b. P ⊂ Z
2 and there exist p j1 ∈ P ∩ F1 ∩ F3 (i.e., there is a corner ray

pointing from f to F1 ∩ F3) and p j2 ∈ P ∩ F3 with #([p j1, p j2 ]∩Z
2) ≥ 2. Moreover,

if P ∩ rel int(F2) \ Z
2 = ∅, then there is a corner ray of M(B) pointing to a vertex

different from F1 ∩ F3. Also, one of the following holds:
Case b1. f /∈ M(S3).
Case b2. f ∈ M(S3) and P ⊂ M(S3).
Case c. P ⊂ Z

2 and there exist p j1 ∈ P ∩ F1 ∩ F3 ∩ Z
2 (i.e., there is a corner ray

pointing from f to F1 ∩ F3 ⊂ Z
2) and p j2 ∈ P ∩ F1 with #([p j1 , p j2 ] ∩ Z

2) ≥ 2.
Moreover, if P ∩ rel int(F2)\Z

2 = ∅, then p j2 can be chosen such that p j2 ∈ F1 ∩ F2
(i.e., there is a corner ray pointing from f to F1 ∩ F2). Also, one of the following
holds:

Case c1. f /∈ M(S1).
Case c2. f ∈ M(S1) and P ⊂ M(S1).
Case d. P ⊂ Z

2, for all i ∈ {1, 2, 3} and all p j1, p j2 ∈ P ∩ Fi we have
#([p j1, p j2 ] ∩ Z

2) ≤ 1, there exists a corner ray pointing from f to F1 ∩ F3, and
F1 ∩ F3 ⊂ Z

2. Let y3, y4 ∈ F3 such that y3 is the closest integer point in rel int(F3)

to F1 ∩ F3, and y4 is the next closest integer point. Let H2,4 be the half-space adjacent
to [y2, y4] and containing y1.
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Then, we further have P ∩ (y3, y4) = ∅. Moreover, one of the following holds:
Case d1. f /∈ H2,4, there exists a corner ray pointing from f to F1 ∩ F2.
Case d2. f /∈ H2,4, there exists a ray pointing from f through (y1, y2) to F1 and

there are no rays pointing from f to rel int(F2) \ Z
2.

Case d3. f ∈ H2,4, P ⊂ H2,4, and there exists a corner ray pointing from f to
F1 ∩ F2.

Proof Consider any γ ∈ Δ2. By definition of Δ2, there exists a matrix B ∈ R
3×2

such that γ (B) = γ and M(B) is a Type 2 triangle. Recall the labeling of the facets
of M(B) as F1, F2, F3 with corresponding labels for the rows of B. For the sake of
brevity, let P denote the set P(B, R) of the ray intersections in M(B) for the rest of
this proof. If P ⊂ Z

2, we are in Case a. Therefore, in the remainder of the proof, we
always assume P ⊂ Z

2. ��

Proof steps 1 and 2: dominated, convex combination, or Case d Suppose P ⊂ Z
2

and for all i ∈ {1, 2, 3} and all p j1, p j2 ∈ P ∩ Fi , we have #([p j1, p j2 ] ∩ Z
2) ≤ 1.

We will show that at least one of the following occurs:

(i) γ (B) is dominated by some γ ′ ∈ Δ, or is a strict convex combination of some
γ 1, γ 2 ∈ Δ, or there exists a maximal lattice-free split or Type 3 triangle M(B ′)
such that γ (B ′) = γ (B).

(ii) Either Case d1, Case d2, or Case d3 occurs.

First note that if there exist distinct p j1 , p j2 ∈ P∩vert(B)∩F3, then [p j1 , p j2 ] = F3
and #([p j1 , p j2 ]∩Z

2) ≥ 2 since F3 contains multiple integer points, and thus violating
the assumptions. Therefore #(P ∩ vert(B) ∩ F3) ≤ 1.

Recall that F3 is the facet of M(B) that contains at least 2 integer points and
consider the sub-lattice of Z

2 contained in the linear space parallel to F3. We use
the notation v(F3) to denote the primitive lattice vector which generates this one-
dimensional lattice and lies in the same direction as the vector pointing from F1 ∩ F3
to F2 ∩ F3. Since #([p j1, p j2 ] ∩ Z

2) ≤ 1 for all p j1 , p j2 ∈ P ∩ F3, there exists
y3 ∈ F3 ∩ Z

2 such that P ∩ F3 ⊂ (y3 − v(F3), y3 + v(F3)). Let y4 = y3 + v(F3)

and let y5 = y3 − v(F3) and so P ∩ F3 is a subset of the open segment (y5, y4). Note
that y4, y5 are not necessarily contained in F3. In Step 1 we will analyze the case with
no corner rays on F3 and see that we always arrive in conclusion (i), whereas in Step
1 we will analyze the case with a corner ray on F3 and see that we will also arrive in
conclusion (i), except for the last step, Step 2d, where we arrive in conclusion (ii).

Step 1. Suppose that F3 has no corner rays, i.e., vert(B) ∩ P ∩ F3 = ∅.
Step 1a. Suppose P ∩ (F1 ∪ F2) \ Z

2 = ∅, i.e., there exists an index j ∈ {1, . . . , k}
such that p j ∈ (F1 ∪ F2)\(F3 ∪Z

2). We will use the tilting space to show that γ (B) is
a strict convex combination of points in Δ. Let Y1 = {y1},Y2 = {y2},Y3 = F3 ∩ Z

2,
Y = {Y1,Y2,Y3}. Let r ′ be a corner ray that points from f to the vertex F1 ∩ F2 and
let R′ = {r1, . . . , rk, r ′}. Since R′ ⊇ R, we have N (B,Y , R′) ⊆ N (B,Y , R).

We first count the equations that define N (B,Y , R′). The equation a3 = b3 is
implicit in T (B,Y , R′) since there are multiple integer points on F3. There are two
other equations for integer points on F1 and F2. The null space N (B,Y , R′) is given
by the equations
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Fig. 8 Steps 1a and 1b1. The left figure depicts Step 1a where P ∩ (F1 ∪ F2) = ∅ and there are no
corner rays on F3, and shows that γ (B) is a strict convex combination of other points in Δ by finding two
lattice-free triangles through tilting the facets F1 and F2. The right figure depicts Step 1b1, where we find
the split M(S3) such that γ (S3) dominates γ (B)

Fig. 9 Step 1b2. In this step we consider f /∈ M(S3). On the left we see that P ∩ F3 ⊂ [y5, y3] and
both y5, y3 ∈ F3, which allows γ (B) to be dominated by γ (S). This split satisfies γ (S) ∈ Δ because
f /∈ M(S3), meaning that f is located somewhere on the top of the triangle, which is completely contained
by M(S). On the right, y5 /∈ F3, which means that the split S cuts off the top corner of the triangle,
potentially leaving f outside the split. This is problematic, so instead, we use Lemma 3.16 to create a new
Type 3 triangle M(B′) such that γ (B′) dominates γ (B)

a1 · (y1 − f ) = 0, a2 · (y2 − f ) = 0, a1 · r ′ = a2 · r ′, a3 = 0.

Since N (B,Y , R′) ⊂ R
3×2 and there are 5 equations (note that a3 = 0 is actually

two equations), we see dim(N (B,Y , R)) ≥ dim(N (B,Y , R′)) ≥ 1. Let Ā =
(ā1; ā2; ā3) ∈ N (B,Y , R)\{0}. Since Y is a covering of the lattice points in M(B),
by Lemma 3.7, there exists ε > 0 such that γ (B) = 1

2γ (B + ε Ā)+ 1
2γ (B − ε Ā) and

M(B ± ε Ā) are both lattice-free. See Fig. 8 for these possible triangles.
We next show that γ (B − ε Ā) = γ (B + ε Ā). Observe that ā3 = 0 since we

are restricted by the equation a3 = b3. If ā1 = 0, then ā2 must satisfy ā2 · r ′ = 0
and ā2 · (y2 − f ) = 0, which implies that ā2 = 0 since r ′ and y2 − f are linearly
independent (since y2 ∈ rel int(F2) and r ′ points to a corner of F2). Similarly, if
ā2 = 0, then ā1 = 0. Since Ā = 0, we must have both ā1, ā2 = 0. Then, since
#Y1 = #Y2 = 1 and 1, 2 ∈ IB(r ′) and p j ∈ (F1 ∪ F2) \ (F3 ∪ Z

2), by Lemma 3.7
γ (B) is a strict convex combination of γ (B + ε Ā) and γ (B − ε Ā) and M(B ± ε Ā)
are lattice-free triangles.

Step 1b. Suppose P ∩ (F1 ∪ F2) \ Z
2 = ∅, i.e., there only exist rays pointing from

f to F3, y1, y2. Therefore, P ⊂ M(S3). We now analyze further subcases.

Step 1b1. Suppose f ∈ M(S3). Then γ (B) is either dominated by or equal to γ (S3).
If P ∩ F3 = ∅, then P ⊂ {y1, y2} ⊂ Z

2, which is a contradiction with the assumption
of Step 1 that P ⊂ Z

2 (see Fig. 8).
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Fig. 10 Step 1b3. This figure
demonstrates a new triangle
M(B′) that yields the same
inequality as M(B)

Step 1b2. Suppose that f /∈ M(S3) and P ∩ F3 = ∅. Suppose further that either
P ∩ F3 ⊂ [y3, y4] or P ∩ F3 ⊂ [y5, y3]. These two cases are very similar, so we will
just show the case with P ⊂ [y5, y3], which is illustrated in Fig. 9.

If both y5, y3 ∈ F3, then γ (B) is dominated by γ (S)where S is the maximal lattice-
free split with its two facets along [y3, y2] and [y5, y1]. This is because P ⊂ Z

2 and
so there exists a ray intersection lying in the open segment (y5, y3).

Otherwise, suppose y5 /∈ F3. Note that y3 /∈ vert(B), because otherwise since
P ∩ F3 = ∅, we find that P ∩ F3 ⊂ [y5, y3] ∩ F3 = {y3}, and therefore, y3 ∈ P ,
contradicting the fact that there are no corner rays on F3. Thus y3 is the integer point
in rel int(F3) closest to F1 ∩ F3. This implies that M(B) satisfies the hypotheses of
Lemma 3.16. Hence there exists B ′ such that M(B ′) is a Type 3 triangle and either
γ (B) is dominated by γ (B ′) or γ (B) = γ (B ′).

Step 1b3. Suppose that f /∈ M(S3), P ∩ F3 = ∅, and P ⊂ [y3, y4], P ⊂ [y5, y3],
i.e., conv(P ∩ F3) contains the integer point y3 in its relative interior.

We define a new triangle M(B ′) by choosing its facets F ′
i = Fi (B ′), and thus,

uniquely defining the matrix B ′ ∈ R
3×2. Let F ′

3 = F3 ∩ [y5, y4]. Next, let F ′
1 and F ′

2
be given by lines from the endpoints of F ′

3 through y1 and y2, respectively (see Fig. 10).
We will show γ (B ′) = γ (B) and then that γ (B ′) is a strict convex combination of
other points in Δ.

Claim β The set M(B ′) is lattice-free.

Proof First note that #(F3 ∩[y5, y4]∩Z
2) ≥ 2 since y3 is in the relative interior of F3

and F3 contains multiple integer points. Without loss of generality, suppose y4 ∈ F3.
Let S ∈ R

3×2 such that M(S) is the maximal lattice-free split with facets on [y1, y3]
and [y2, y4]. Then M(B ′) is lattice-free since M(B ′) ⊂ M(S) ∪ M(B), which are
both lattice-free sets. ��
Claim γ We have f ∈ M(B ′) and γ (B ′) = γ (B).

Proof Since f ∈ M(B) ∩ M(S) and M(B) ∩ M(S) ⊂ M(B ′) ∩ M(S), it follows
that f ∈ M(B ′). Recall that we are under the assumption that all rays point to y1, y2

or F3. Moreover, all ray intersections on F3 are contained in (y5, y4) and hence the
ray intersections are contained in F ′

3. Therefore, the set P(B ′, R) of ray intersections
with respect to M(B ′) is the same as P , and therefore γ (B) = γ (B ′). ��
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Fig. 11 Step 2a. Depending on
where f is located in the
triangle, at least one of γ (S3) or
γ (S1) either dominates or
realizes γ (B). In this picture,
γ (S3) realizes γ (B), while
γ (S1) /∈ Δ since
f /∈ int(M(S1))

Since conv(P ∩ F3) contains y3 in its relative interior and P ∩ F3 is contained in
the open segment (y5, y4), we must have P ∩ rel int(F3) \ Z

2 = ∅. Furthermore, let
P ′ = P(B ′, R) be the set of ray intersections for M(B ′), then P ′ ∩ F ′

3 = P ∩ F3 by
definition of F ′

3. Therefore, P ′ ∩ rel int(F ′
3) \ Z

2 = ∅. Furthermore, P ′ ∩ vert(B ′) ∩
F ′

3 = ∅ since M(B) has no corner rays pointing to F3 and there cannot exist rays
pointing to y4 or y5 since P ∩ F3 is contained in the open segment (y5, y4). Moreover,
rel int(F ′

3)∩Z
2 = {y3}. Therefore, Lemma 3.8 can be applied to M(B ′)with F = F ′

3,
which shows that γ (B ′) = γ (B) is a strict convex combination of other points in Δ.

Step 2. Suppose there is a corner ray on F3 and, if necessary, relabel the facets of
M(B) (and the rows of B) such that this corner ray points from f to the intersection
F1 ∩ F3. Recall that we label the integer points y1 ∈ F1, y2 ∈ F2. Since F1 ∩ F3 ⊆ P ,
observe that y3 ∈ F3 (as defined in the paragraph before Step 1) is the closest integer
point in F3 to F1 ∩ F3, and since M(B) is a Type 2 triangle, we have y4 ∈ F3. Let
H2,4 be the half-space with boundary containing the segment [y2, y4] and with interior
containing y1 (see Fig. 12).

Step 2a. Suppose y3 ∈ F1∩F3 and recall that there is a corner ray pointing from f to
F1∩F3. Note that this implies that P∩F2∩vert(B) = ∅, because #([p j1 , p j2 ]∩Z

2) ≤ 1
for all p j1, p j2 ∈ P ∩ Fi for any i ∈ {1, 2, 3} and including any corner ray pointing
from f to F1 ∩ F2 or F2 ∩ F3 would contradict this. Therefore, P ∩ F2 ⊂ rel int(F2).

If P ∩ F2 \ Z
2 = P ∩ rel int(F2) \ Z

2 = ∅, then M(B) satisfies the hypotheses of
Lemma 3.8 with F = F2 and γ (B) is a strict convex combination of points in Δ.

If instead P ∩ F2 \Z
2 = ∅, then P ∩ F2 ⊂ {y2}, and since F1 ∩ F3 ⊆ P and no two

ray intersections within a facet can contain two integer points between them, we must
have P∩F1 ⊆ [y3, y1] and P∩F3 ⊆ [y3, y4]. Therefore, P ⊂ conv({y1, y2, y3, y4}).
Since M(S1) ∪ M(S3) ⊃ M(B), we must have P ∪ { f } ⊂ M(Si ) for i = 1 or 3, and
hence γ (B) is either dominated by or equal to γ (Si ) (see Fig. 11).

Step 2b. Suppose y3 /∈ F1 ∩ F3 and P ∪ { f } ⊂ H2,4. Let B ′ ∈ R
3×2 such that

M(B ′) is the lattice-free Type 2 triangle with base F ′
3 along [y2, y4], the facet F ′

1 given
by the line defining F1 for M(B) and the facet F ′

2 given by the line defining F3 for
M(B). Let P ′ be the set of ray intersections for M(B ′) (see Fig. 12).

If P ∩ rel int(F2)\ {y2} = ∅, then γ (B ′) dominates γ (B) because P ∪{ f } ⊂ H2,4.
Otherwise, γ (B) = γ (B ′) and P ∩ rel int(F2) \ {y2} = ∅. This implies that no ray

points from f to the corner F ′
1 ∩ F ′

3 of M(B ′). Recall that P ∩ F3 is a subset of the
open segment (y5, y4), therefore, y4 ∈ P . Hence, M(B ′) has no corner rays on F ′

3.
Also, since there exists a corner ray pointing from f to F1 ∩ F3 = F ′

1 ∩ F ′
2, we see that

P ′ ∩ (F ′
1 ∪ F ′

2) \ Z
2 = ∅. Hence, M(B ′) is a Type 2 triangle satisfying the conditions
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Fig. 12 Step 2b. We show that
if P ∪ { f } ⊂ H2,4, then we can
create a different Type 2
triangle M(B′) such that γ (B′)
dominates γ (B). If
γ (B) = γ (B′), i.e., the ray
pointing from f to the facet F2
does not exist in the above
picture, then the new triangle is
a Type 2 triangle that was
considered in Step 1a

Fig. 13 Steps 2d1 and 2d2. These steps arrive at Cases d1, d2, and d3, which are depicted here. Other rays
may also exist. Cases d1 and d2, because of their commonalities, are represented in one picture on the left,
and Case d3 is on the right

considered in Step 1a, and using the same reasoning from that step, γ (B ′) = γ (B)
can be shown to be a strict convex combination of points in Δ.

Step 2c. Suppose P ∩ F3 ⊂ [F1 ∩ F3, y3], y3 /∈ F1 ∩ F3. Recall that y3 is the
closest integer point in F3 to the corner F1 ∩ F3. Then M(B) satisfies the hypotheses
of Lemma 3.16 and we can find a Type 3 triangle M(B ′) such that γ (B) is dominated
by γ (B ′) or γ (B) = γ (B ′).

Step 2d. We can now assume that P ⊂ Z
2 (the assumption for Steps 1 and 2),

there is a corner ray pointing from f to F1 ∩ F3 (assumption in beginning of Step 2),
y3 /∈ F1 ∩ F3 (negation of the assumption in Step 2a), P ∪ { f } ⊂ H2,4 (negation of
the second assumption in Step 2b), and (y3, y4)∩ P = ∅ (negation of the assumption
in Step 2c), which implies y3 ∈ int(conv(P ∩ F3)). Furthermore, we may be in one
of the following subcases.

Step 2d1. f /∈ H2,4. This implies f ∈ M(S3) since M(B) \ H2,4 ⊂ M(S3). If P is
also contained in M(S3), then either γ (B) is dominated by γ (S3), or γ (B) = γ (S3).
Therefore, we assume P ⊂ M(S3), and so there must exist a ray r pointing from f
through (y1, y2).

Suppose there is a ray that points from f to rel int(F2). If there is no corner ray
pointing from f to F1 ∩ F2, then M(B) would satisfy the hypotheses of Lemma 3.8
with F = F2 since no ray points to F2 ∩ F3. Therefore, γ (B) can be expressed as the
strict convex combination of points fromΔ. On the other hand, if there is a corner ray
pointing to F1 ∩ F2, then we satisfy the statement of Case d1 (see Fig. 13).

Suppose now that no ray points from f to rel int(F2). This implies that the ray r
points from f to F1 through (y1, y2) and P ∩ rel int(F2) \ Z

2 = ∅. This is Case d2.
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Step 2d2. f ∈ H2,4 and P ⊂ H2,4. Because also P ∩ F3 ⊆ H2,4, this implies that
P ∩ rel int(F2) \ Z

2 = ∅.
If there is no corner ray pointing from f to F1 ∩ F2, then M(B) satisfies the

hypotheses of Lemma 3.8 with F = F2 because there is no ray intersection in F2 ∩ F3.
Then γ (B) can be expressed as the strict convex combination of points from Δ.

On the other hand, if there is a corner ray pointing from f to F1 ∩ F2, then we
satisfy the statement of Case d3.

From the analysis of Steps 1 and 2, we conclude that if P ⊂ Z
2, γ is not dominated

by any γ ′ ∈ Δ, is not a strict convex combination of any γ 1, γ 2 ∈ Δ, and there does
not exist a maximal lattice-free split or Type 3 triangle M(B ′) such that γ (B ′) = γ ,
then one of the following holds:

(i) There exist ray intersections p j1, p j2 ∈ P ∩ Fi with #([p j1, p j2 ] ∩ Z
2) ≥ 2 for

some i ∈ {1, 2, 3}.
(ii) We are in Case d.

Proof steps 3 and 4: remaining cases We now assume that γ = γ (B) is not dominated
by any γ ′ ∈ Δ, is not a strict convex combination of any γ 1, γ 2 ∈ Δ, and there does
not exist a maximal lattice-free split or Type 3 triangle M(B ′) such that γ (B ′) =
γ (B), and we are not in Case d, and we are not in Case a (so P ⊂ Z

2). Therefore,
from our previous analysis, there exist ray intersections p j1 , p j2 ∈ P ∩ Fi with
#([p j1, p j2 ] ∩ Z

2) ≥ 2 for some i ∈ {1, 2, 3}. We will show that either Case b1, b2,
c1, or c2 occurs. In Step 3 below, we analyze the case when i = 3, and in Step 4, we
analyze the case when i = 1 or i = 2.

Step 3. Suppose P ⊂ Z
2 and there exist p j1 , p j2 ∈ P∩F3 with #([p j1 , p j2 ]∩Z

2) ≥
2. Let p j1, p j2 be such that P ∩ F3 ⊆ [p j1 , p j2 ].

Step 3a. We first show that there exists a matrix B ′ such that M(B ′) is a lattice-free
Type 2 triangle that has a corner ray on F3, and γ (B) = γ (B ′).

If either p j1 or p j2 is a vertex of M(B), then we let B ′ = B and move to Step 3b.
We now deal with the case that p j1 , p j2 /∈ vert(B), i.e., there are no corner rays

pointing from f to F3.

Claim δ If there exists a ray r j ∈ R such that p j ∈ F1 ∪ F2 \ (F3 ∪ Z
2), then γ (B)

is a strict convex combination of other points in Δ.

Proof We define Y = (Y1,Y2,Y3) as Y1 = {y1}, Y2 = {y2} and Y3 = F3∩Z
2. Hence,

Y is a covering of Y (B). Define a new ray r ′ to be a corner ray pointing from f to the
intersection F1 ∩ F2 and let R′ = {r1, . . . , rk, r ′}. Then N (B,Y , R′) ⊆ N (Y ).

Since there are no corner rays pointing to F3, there is only one independent equa-
tion coming from a corner ray condition in the system defining N (B,Y , R′). The
integer point sets Y1 and Y2 each contribute one equation. Since Y3 contains two inte-
ger points, it contributes a system of equalities involving a3 with rank 2. Therefore,
dim N (B,Y , R′) = 6 − 5 = 1.

Note that the equations from Y3 impose that ā3 = 0. Therefore, either ā1 = 0 or
ā2 = 0. Since p j ∈ rel int(Fi ) \ Z

2 for either i = 1, 2, we have that i ∈ IB(r j ) for
either i = 1, 2. Then, since #Y1 = #Y2 = 1, by Lemma 3.7, there exists ε > 0 such
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(a) (b)

Fig. 14 Step 3a. Either F1 or F2 is tilted to give a new triangle M(B′) (dotted). a Here F2 cannot be used
because tilting would remove f from the interior. b Instead, F1 needs to be used

that γ (B) is a strict convex combination of γ (B + ε Ā) and γ (B−ε Ā) and M(B+ε Ā)
and M(B − ε Ā) are lattice-free. ��

We now show that either F1 or F2 can be tilted to create a new Type 2 triangle
M(B ′) that has a corner ray pointing to the facet that contains multiple integer points,
F3(B ′), and γ (B ′) = γ (B). Let y1, y2 be the integer points in rel int(F1), rel int(F2),
respectively. Since, by Claim δ, there are no rays pointing to F1 ∪ F2 \ Z

2, tilting Fi

with fulcrum yi does not change γ (B) unless f is no longer on the interior of the
perturbed set. For i = 1, 2, consider changing Fi to now lie on the line through p ji

and yi . At most one of these facet tilts puts f outside the perturbed set, and therefore,
at least one of these changes is possible. This is illustrated in Fig. 14. We can assume
that the tilt of facet F1 is possible (by exchanging the rows of B, if necessary). Let
B ′ ∈ R

3×2 such that M(B ′) is the new set after this tilting operation. The facets
F ′

i = Fi (B ′) of M(B ′) are chosen such that F ′
1 corresponds to the new tilted F1 and

F ′
2, F ′

3 correspond to F2, F3 respectively.
We claim that M(B ′) is lattice-free. To see this, we will show that int(M(B ′)) is a

subset of the union of interiors of two lattice-free sets. Let y3, y4 ∈ [p j1, p j2 ] ∩ Z
2

be distinct integer points adjacent to each other. Then consider the maximal lattice-
free split M(S), where S ∈ R

2×2, whose facets contain the segments [y3, y1] and
[y4, y2], respectively. Since [y3, y4] ⊂ (p j1, F2 ∩ F3) is a strict subset, the former
and new intersections F1 ∩ F2 and F ′

1 ∩ F ′
2 are contained in the split M(S). Observe

that int(M(B ′))∩ M(S3) ⊆ int(M(B)) and int(M(B ′))\ M(S3) ⊆ int(M(S)). Hence
int(M(B ′)) ⊂ int(M(B)) ∪ int(M(S)). Therefore M(B ′) is lattice-free since M(S)
and M(B) are both lattice-free.

Therefore, we have shown that γ (B) = γ (B ′) where M(B ′) is a Type 2 triangle
that has a corner ray pointing to the facet F ′

3. Note that since γ (B) = γ (B ′), the sets
of ray intersections coincide, that is, P(B ′, R) = P .

Step 3b. After Step 3a, we now focus on the new triangle M(B ′) with facets F ′
i =

Fi (B ′) for i = 1, 2, 3 that has a corner ray pointing from f to the vertex at F ′
1 ∩ F ′

3.
We will show that the conditions of Case b are satisfied.

If P(B ′, R)∩ rel int(F ′
2) \ Z

2 = ∅ and there are no corner rays on F ′
2, then M(B ′)

satisfies the hypotheses of Lemma 3.8 and γ (B) = γ (B ′) could be expressed as a
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Fig. 15 Proposition 3.17, Step
5: Uniquely determining Type 2
triangles that are in Case b using
a facet of (C(r j1 , r j2 )I) and the
integer points y1 and y2

strict convex combination of points inΔ. Therefore, if P(B ′, R)∩rel int(F ′
2)\Z

2 = ∅,
then there must be a corner ray pointing from f to F ′

2 (and thus pointing to a vertex
different from F ′

1 ∩ F ′
3).

Hence, the conditions of Case b are met for B ′ (instead of B). Furthermore, if P ∪
{ f } ⊂ M(S3), then γ (B) = γ (B ′) is dominated by or equal to γ (S3), a contradiction
to our assumption; hence, either Case b1 or Case b2 occurs.

Thus, from the analysis of Step 3, when there exist points p j1, p j2 ∈ P ∩ F3 with
#([p j1, p j2 ] ∩ Z

2) ≥ 2, then M(B ′) is a Type 2 triangle satisfying the statement of
Case b.

Step 4. Suppose P ⊂ Z
2 and there exist p j1 , p j2 ∈ P∩Fi with #([p j1 , p j2 ]∩Z

2) ≥ 2,
for i = 1 or i = 2. After a relabeling of the facets of M(B) and the rows of B, we
can assume i = 1. Since M(B) is a Type 2 triangle and F1 is a facet with at most
one integer point in its relative interior, we must have #(F1 ∩ Z

2) ≤ 2. In order for
#([p j1, p j2 ] ∩ Z

2) ≥ 2, it has to equal exactly two, and one of the points, say p j1 ,
must lie in F1 ∩ F3 ∩ Z

2. Thus, p j1 corresponds to a corner ray.
If P ∩ rel int(F2)\Z

2 = ∅, then again, there must be a corner ray on F2; otherwise,
Lemma 3.8 shows that γ (B) is a strict convex combination of points in Δ. We can
assume that this corner ray points from f to F1 ∩ F2, otherwise we are back to the
assumptions in Step 3 and M(B) will satisfy the conditions of Case b. Thus p j2 can
be chosen such that p j2 ∈ F1 ∩ F2.

As in Case b, if P ∪ { f } ⊂ M(S1), then γ (B) is dominated by or equal to γ (S1).
Hence, we are either in Case c1 or Case c2.

Proof step 5: Bounding the cardinality of Ξ2 by a polynomial Recall that we have
a set of k rays {r1, . . . , rk} and P is the set of ray intersections. Given this set of
rays, we count how many distinct vectors γ (B) can arise when M(B) satisfies the
conditions in Cases a, b, c and d. We will apply Lemma 3.10 to show that there are
only polynomially many possibilities for γ (B) in each case.

Case a. P(B, R) ⊂ Z
2. Observation 3.12 shows that there is a unique γ ∈ Ξ2

corresponding to this case.

Case b. We now count the vectors γ (B) such that M(B) satisfies the conditions of
Case b with respect to our set of rays {r1, . . . , rk}. Consider any such M(B). From
the conditions stated in Case b, we can assume that M(B) has a corner ray on F3.
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Fig. 16 Proposition 3.17, Step
5: Uniquely determining Type 2
triangles that are in Case c using
a facet of (C(r j1 , r j2 )I) and the
integer points y2 and y4

We label as r j1, r j2 the two rays whose corresponding ray intersections are on F3, so
that r j1 points to F1 ∩ F3 and the ray intersection of r j2 is closest to F2 ∩ F3; and
so r j1 is a corner ray by the statement of Case b. There are 2 × (k

2

)
ways to choose

r j1, r j2 from the set {r1, . . . , rk} with one of them as the corner ray (see Fig. 15).
By Lemma 3.11, aff(F3) contains a facet of (C(r j1, r j2))I. By Lemma 3.10, we have
polynomially many choices for aff(F3). Once we choose aff(F3), we consider the
possible choices for y1, y2, which are the integer points on F1, F2, respectively.

In Case b1, where f ∈ M(S3), y1, y2 are given uniquely by where f is. To see this,
we observe a few things. Let y3 and y4 be the integer points on F3 that are closest to
F1 ∩ F3. The split with one side going through y1, y3 and the other side going through
y2, y4 contains f . Now consider the family of maximal lattice-free splits with one side
going through y3 and the other side going through y4. Observe that since f ∈ M(S3),
only one member of this family of splits contains f . This uniquely determines y1 and
y2.

In Case b2, P ⊂ M(S3), which implies that there exists a ray r j3 such that r j3 points
between y1 and y2. Moreover, since y1, y2 have to lie on the lattice plane adjacent
to F3, we have a unique choice for y1, y2 once we choose r j3 from our set of k rays.
Now r j3 can be chosen in O(k) ways and so there are O(k) ways to pick y1, y2.

We already know there is a corner ray pointing to F1 ∩ F3. By the statement of
Case b, either P ∩ rel int(F2) \ Z

2 = ∅, in which case we have a corner ray of M(B)
pointing to a different vertex, or P ∩ rel int(F2) \ Z

2 = ∅. If M(B) has a corner ray
pointing to a vertex different from F1 ∩ F3, then we can choose it in O(k) ways, and
the triangle is uniquely determined by these two corner rays, aff(F3), y1, and y2.

On the other hand, if M(B) has corner rays pointing only to F1 ∩ F3 (one of which
is r j1 ), then the facet F2 has no non-integer ray intersections in its relative interior.
Therefore, any possible choice of this facet such that no ray points to rel int(F2) \ Z

2

will give a triangle that yields the same vector γ (B).
Hence, there are only polynomially many possibilities for Case b.

Case c. We now count the vectors γ (B) such that M(B) satisfies the conditions of
Case c with respect to our set of rays {r1, . . . , rk}. Consider any such M(B). Then
there exist r j1, r j2 such that p j1, p j2 ∈ F1 and #([p j1 , p j2 ]∩Z

2) ≥ 2, where p j1, p j2

are the ray intersections for r j1, r j2 , respectively. Moreover, p j1 is an integer point on
the facet F3. There are 2 × (k

2

)
ways to choose r j1, r j2 from the set {r1, . . . , rk} with

r j1 pointing from f to F1 ∩ F3 (see Fig. 16).
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We next choose aff(F1) as the affine hull of a facet of (C(r j1, r j2))I, which can
be done because of Lemma 3.11. Since p j1 is the integer point that r j1 points to, one
of the facets of (C(r j1, r j2))I that is incident to the vertex p j1 is unbounded and lies
on the infinite ray f + R+r j1 , while the other facet is bounded. Since F1 must be
bounded, there is a unique choice of aff(F1) as the affine hull of the bounded facet
of (C(r j1, r j2))I that is incident to the vertex p j1 .

Now we pick the integer points y2, y4 where y2 is the integer point on the facet
F2 of M(B) and y4 is the integer point in the relative interior of F3 that is closest to
p j1 . This analysis is the same as with Cases b1 and b2. In Case c1, these points are
uniquely determined by f . In Case c2, these are uniquely determined by one of the
rays pointing between them. There are O(k) ways of choosing this ray.

The statement of Case c implies that either there is also a corner ray pointing to
F1 ∩ F2, or P ∩ rel int(F2) \ Z

2 = ∅.
If there is a corner ray pointing to F1 ∩ F2, then the triangle is uniquely determined

by the two corner rays, aff(F1), y2, and y4.
On the other hand, if P ∩ rel int(F2) \ Z

2 = ∅, then F2 can be chosen in any
possible way such that no ray points to rel int(F2) \ Z

2. Then the triangle is uniquely
determined by r1, aff(F1), aff(F2), y2, and y4.

Therefore, there are only polynomially many possibilities for Case c.

Case d. We consider Type 2 triangles with a corner ray r j1 pointing from f to F1 ∩ F3.
We label the closest integer point in rel int(F3) to F1 ∩ F3 as y3, and the next closest
integer point in rel int(F3) as y4. Also, since P ∩ (y3, y4) = ∅, there exists a ray r j3

that points from f through (y3, y4) (we use the notation r j3 to remind ourselves that it
points to F3). Moreover, the condition that no two ray intersections on F3 can contain
two (or more) integer points between them implies that the ray intersections on F3 are
contained in the segment [F1 ∩ F3, y4]. As before, y1 and y2 will denote the integer
points on the facets F1 and F2.

Case d1 and Case d2. For these two cases, there exists a ray r j2 that points from f
through (y1, y2) to F1 (for example, in Case d1 this will be the corner ray pointing from
f to F1 ∩ F2). Observe that [p j1 , p j2 ]∩Z

2 = {y1} and [p j1 , p j3 ]∩Z
2 = {y3}, where

y1 and y3 lie in (p j1 , p j2) and (p j1, p j3), respectively. We now count the choices of
these triangles.

First pick rays r j1, r j2 , r j3 , for which there are
(k

3

)
ways to do this. Pick y1 as a vertex

of (C(r j1, r j2))I and pick y3 as a vertex of (C(r j1, r j3))I, utilizing Lemma 3.11 (i).
By Lemma 3.10, there are only polynomially many ways to do this.

Claim ε The vector γ (B) is uniquely determined by the choices of r j1, r j2 , r j3 , y1,
and y3 in Case d1 and Case d2.

Proof First note that [y2, y4] is necessarily parallel to [y1, y3]. Therefore, regardless
of the choice of y2, y4, the half-space H2,4 is already determined by [y1, y3]. Recall
that, by assumption, f /∈ H2,4. Define the family of splits

S =
{

S ∈ R
3×2

∣∣∣∣
y1, y3 ∈ M(S), and M(S) ∩ int(H2,4) = ∅,
M(S) is a maximal lattice-free split

}
.
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For any distinct M(S1),M(S2) with S1, S2 ∈ S , since they both contain [y1, y3], we
find that M(S1) ∩ M(S2) \ H2,4 = ∅. Since f /∈ H2,4, there exists a unique M(S)
with S ∈ S such that f ∈ M(S). Therefore, the unique choices for y2, y4 are the two
points given by ∂M(S) ∩ ∂H2,4.

Now we show how to choose M(B). The affine hull of facet F3 is determined by
the segment [y3, y4] ⊂ F3, and aff(F1) is determined by [p j1 , y1] ⊂ F1, where p j1

is the corner ray intersection of r j1 on F3. Lastly, aff(F2) must be chosen. For Case
d1, r j2 is chosen as a corner ray pointing from f to F1 ∩ F2, and therefore, aff(F2)

is determined by the ray intersection p j2 of r j2 on F1, and by y2, i.e., by the segment
[p j2 , y2]. For Case d2, any choice of aff(F2) such that there are no rays pointing from
f to rel int(F2) \ Z

2 and such that f ∈ M(B) will yield the same vector γ (B), thus,
we only need to consider one such triangle. ��

Since the vector γ (B) is uniquely determined by these choices, there are only
polynomially many possibilities for this case.

Case d3. For this case, there exists a corner ray r j2 that points from f to
F1 ∩ F2. Since P ⊂ H2,4, there also exists a ray r j4 such that it points from f
through (y2, y4). Since r j1 is a corner ray pointing from f to F1 ∩ F3 and the ray
intersections are contained in [F1 ∩ F3, y4], r j4 must be chosen to point from f
to F2.

We now count triangles of this description. First pick rays r j1, r j2 , r j3 , r j4 from the
set {r1, . . . , rk}. There are at most

(k
4

)
ways to do this. According to Lemma 3.11 (i),

pick y1 as a vertex of (C(r j1, r j2))I, y2 as a vertex of (C(r j2 , r j4))I, and y3 as a vertex
of (C(r j1, r j3))I. By Lemma 3.10, there are only polynomially many ways to do this.
Then y4 is uniquely determined since y1, y2, y3, y4 form an area 1 parallelogram.
The affine hull of F3 is uniquely determined, since it runs along [y3, y4]. Since r j1

is a corner ray pointing to F1 ∩ F3, the choice of y1 fixes aff(F1). Finally, since
r j2 is a corner ray pointing to F1 ∩ F2, the choice of y2 fixes aff(F2). Therefore,
there are only polynomially many Type 2 triangles satisfying the conditions of this
case.

This concludes the proof of the fact that there are only a polynomial (in the binary
encoding sizes of f, r1, . . . , rk) number of vectors γ (B) such that M(B) is a Type 2
triangle satisfying Cases a, b, c and d. ��

3.3 Proof of Proposition 3.1

Proof of Proposition 3.1 Let Ξ = Ξ0 ∪Ξ1 ∪Ξ2 ∪Ξ3 using the setsΞi from Propo-
sitions 3.13, 3.14, 3.15 and 3.17. We show that for any γ ∈ Δ \ Ξ , γ is domi-
nated by some γ ′ ∈ Δ, or γ is a strict convex combination of some γ1, γ2 ∈ Δ. If
γ ∈ Π ∪ Δ1 ∪ Δ2 ∪ Δ3, then γ cannot be realized by a maximal lattice-free split
or triangle and so γ = γ (B) for some B ∈ R

3×2 such that M(B) is not a maximal
lattice-free convex set. This implies that there exists B ′ ∈ R

3×2 such that M(B ′) is a
maximal lattice-free convex set containing M(B) and γ is dominated by γ (B ′).

So we consider γ ∈ Π ∪ Δ1 ∪ Δ2 ∪ Δ3. Observe that Π ∪ Δ1 ∪ Δ2 ∪ Δ3 =
Π ∪ (Δ1 \ (Π ∪ Δ2)) ∪ Δ3 ∪ (Δ2 \ (Δ3 ∪ Π)) and so γ is in one of the sets Π ,
Δ1 \ (Π ∪ Δ2), Δ3 or Δ2 \ (Δ3 ∪ Π). Since γ ∈ Ξ0 ∪ Ξ1 ∪ Ξ2 ∪ Ξ3, we have
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that γ is in one of the four sets (Π \ Ξ0), (Δ1 \ (Ξ1 ∪ Π ∪ Δ2)), (Δ3 \ Ξ3) or
(Δ2 \ (Ξ2 ∪ Δ3 ∪ Π)). Now it follows from Propositions 3.13, 3.14, 3.15 and 3.17
that γ is dominated by some γ ′ ∈ Δ, or γ is a strict convex combination of some
γ 1, γ 2 ∈ Δ. Furthermore, the cardinality #Ξ , being bounded above by the sum of
the cardinalities of Ξi , i = 0, . . . , 3, is polynomial in the binary encoding sizes of
f, r1, . . . , rk .

4 Proof of Theorem 1.3

In this section, we will complete the proof of Theorem 1.3. As stated in the introduction,
the only result we will need from Sect. 3 is Theorem 3.2. Apart from this, we will
utilize the results proved in Sect. 2. We first state the following proposition.

Proposition 4.1 Let ‖ · ‖ be a norm on the space of matrices R
3×2. Let B be a family

of matrices in R
3×2. If there exists ε > 0 such that B( f, ε) ⊆ M(B) for all B ∈ B,

then there exists a real number M depending only on ε such that ‖B‖ < M for all
B ∈ B.

Proof Since B( f, ε) ⊆ M(B), the point f + εbi ∈ M(B), where bi is the i-th row
of B. Therefore, bi · ( f + εbi − f ) ≤ 1. Therefore, ‖bi‖2 ≤ 1√

ε
. Since this holds for

every row bi , there exists M depending only on ε such that ‖B‖ < M . ��
We will use the following set to derive a bound on a sequence of matrices to show

there exists a convergent subsequence. For any vector γ ∈ R
k+, define

Mγ = conv({ f } ∪ { f + 1
γ j

r j | γ j = 0 })+ cone({ r j | γ j = 0 }).

Observation 4.2 For all B ∈ R
3×2 we have the inclusion Mγ (B) ⊆ M(B).

Proof Clearly f ∈ M(B). Next observe that f + 1
ψB (r j )

r j ∈ M(B) if ψB(r j ) > 0.

Finally, ψB(r j ) = 0 implies that r j is in the recession cone of M(B). The claim
follows. ��
Theorem 4.3 Assume that f ∈ Q

2 and r j ∈ Q
2 for all indices j ∈ {1, . . . , k}. If

cone({r1, . . . , rk}) = R
2, then Δ′ has a polynomial (in the binary encoding sizes of

f, r1, . . . , rk) number of extreme points.

Proof Consider any extreme point x ofΔ′. By Observation 2.5, x ∈ cl(conv(Δ)). By
Lemma 2.6, there exists a sequence (an) of points from Δ such that (an) converges
to x . ��
Claim ζ There exists a bounded sequence of matrices (Bn) ∈ R

3×2 such that γ (Bn) =
an and M(Bn) is lattice-free.

Proof Since (an) converges to x , there exists N ∈ N such that an
i ≤ xi + 1 for every

n ≥ N and i ∈ {1, . . . , k}. Since (an) is a sequence in Δ, there exists a sequence
of matrices (Bn) such that (an) = (γ (Bn)) and M(Bn) is lattice-free for all n ∈ N.
Consider the sequence of polyhedra Mγ (Bn). Let ε = 1

1+maxi xi
.
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By the definition of N , for every n ≥ N , we have that 1
an

i
≥ ε. Since the conical

hull of the rays r1, . . . , rk is R
2, this implies that there exists ε̄ such that B( f, ε̄) ⊆

Mγ (Bn) for all n ≥ N . By Observation 4.2, Mγ (Bn) ⊆ M(Bn). Therefore, for every
n ≥ N , B( f, ε̄) ⊆ M(Bn). Proposition 4.1 implies that there exists a real number M
depending only on ε̄ such that ‖Bn‖ ≤ M for all n ≥ N . This implies that (Bn) is a
bounded sequence. ��

By the Bolzano–Weierstrass theorem, we can extract a convergent subsequence
(B̄n) converging to a point B̄. The map B �→ γ (B) is continuous because ψB(r) is
continuous in B for every fixed r . Therefore, the sequence (γ (B̄n)) converges to γ (B̄).
By assumption (an) = (γ (Bn)) converges to x and therefore γ (B̄) = x . Moreover,
since M(B̄n) is lattice-free for all n ∈ N, M(B̄) is also lattice-free and hence it is
a lattice-free triangle or a lattice-free split. Thus, x = γ (B̄) ∈ Δ since M(B̄) is
a lattice-free triangle or lattice-free split. Therefore, we have shown that for every
extreme point x of Δ′, we have that x ∈ Δ.

Let Ξ be the set from Theorem 3.2. Theorem 3.2 implies that the extreme point
x ∈ Δ \ Ξ . Since we show that x ∈ Δ, this implies x ∈ Ξ . Since #Ξ is polynomial
in the encoding sizes of f, r1, . . . , rk , we have shown this property for the number of
extreme points Δ′ as well. ��
Corollary 4.4 Assume that f ∈ Q

2 and r j ∈ Q
2 for all indices j ∈ {1, . . . , k}. If

cone({r1, . . . , rk}) = R
2, then the triangle closure T is a polyhedron with a polyno-

mial (in the binary encoding sizes of f, r1, . . . , rk) number of facets.

Proof Lemma 2.4 and Theorem 4.3 together imply the corollary. ��
We can now finally prove Theorem 1.3.

Proof of Theorem 1.3 If cone({r1, . . . , rk}) = R
2, then Corollary 4.4 gives the result.

Otherwise we add rays rk+1, . . . , rk′
such that cone({r1, . . . , rk, rk+1, . . . , rk′ }) =

R
2. Now consider the system (1) with the rays r1, . . . , rk′

. We can similarly define the
triangle closure T ′ for this extended system. Given a matrix B ∈ R

3×2, let α(B) =
(ψB(r i ))k

′
i=1 ∈ R

k′
(we will continue to use γ (B) = (ψB(r i ))ki=1). So T ′ is defined

as

T ′ = {
s ∈ R

k′
+
∣∣α(B) · s ≥ 1 for all B such that M(B) is a lattice-free triangle

}
. ��

Claim η We have T ′ ∩ {sk+1 = 0, . . . , sk′ = 0} = T × {0k′−k}.
Proof Consider any point s ∈ T ′ ∩ {sk+1 = 0, . . . , sk′ = 0} and let sk = (s1, . . . , sk)

be the truncation of s to the first k coordinates. Consider any a ∈ R
k such that a = γ (B)

for some matrix B where M(B) is a lattice-free triangle. Consider a′ = α(B). Clearly,
a′

i = ai for i ∈ {1, . . . , k}. Since a′ · s ≥ 1 and a′ · s = a · sk , we have that a · sk ≥ 1.

So, s ∈ T × {0k′−k}.
For the reverse inclusion, consider a point s ∈ T ×{0k′−k} and let sk = (s1, . . . , sk)

be the truncation of s to the first k coordinates. Consider any a′ ∈ R
k′

such that
a′ = α(B) for some matrix B where M(B) is a lattice-free triangle. Let a = γ (B).
As before, a′

i = ai for i ∈ {1, . . . , k}. Since a · sk ≥ 1 and a′ · s = a · sk , we have
that a′ · s ≥ 1. So, s ∈ T ′ ∩ {sk+1 = 0, . . . , sk′ = 0}.
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Fig. 17 Example of a
quadrilateral for which the ratio
condition does not hold, i.e.,
there exists t > 0 satisfying (9).
Here dim N (Y ) = 0

Since cone({r1, . . . , rk, rk+1, . . . , rk′ }) = R
2, Corollary 4.4 says that T ′ is a poly-

hedron with a polynomial (in the binary encoding sizes of f, r1, . . . , rk) number of
facets. Since T ′ ∩ {sk+1 = 0, . . . , sk′ = 0} = T × {0k′−k}, this shows that T is a
polyhedron with a polynomial number of facets. ��

This concludes the part of the paper which deals with the result that the triangle
closure is a polyhedron.

5 Proof of Theorems 1.4 and 1.5

We now complete our second result showing that the mixed integer hull conv(R f ) has
only polynomially many facets. We first make a counting argument for quadrilaterals
that is similar to the counting arguments in Sect. 3.2. For quadrilaterals, Cornuéjols and
Margot [12] defined the ratio condition as a necessary and sufficient condition to yield
an extreme inequality when all corner rays are present. Suppose p j1, p j2 , p j3 , p j4 are
the corner ray intersections assigned in a counter-clockwise orientation, and yi is the
integer point contained in [p ji , p ji+1 ], where we set j5 = j1. The ratio condition holds
if there does not exist a scalar t > 0 such that

‖yi − p ji ‖2

‖yi − p ji+1‖2
=

{
t for i = 1, 3
1
t for i = 2, 4.

(9)

This is illustrated in Fig. 17.

Proposition 5.1 (Counting quadrilaterals) There exists a finite setΞ4 ⊆ R
k+ such that

if γ (B) ∈ Ξ4 for some B ∈ R
4×2 where M(B) is a maximal lattice-free quadrilateral,

then γ (B) is not extreme. Moreover, the cardinality ofΞ4 is bounded by a polynomial
in the binary encoding size of f, r1, . . . , rk . Specifically, Ξ4 can be chosen as the set
of all γ (B) such that M(B) is a maximal lattice-free quadrilateral satisfying one of
the following:

Case a. P ⊂ Z
2.

Case b. M(B) has four distinct corner rays and the ratio condition holds.

Proof Step 1. Suppose that γ (B) is extreme and that we are not in Case a. Lemma 3.9
shows that all four corner rays must exist. Suppose, for the sake of contradiction,
that the ratio condition does not hold. Lemma 8.1 in Appendix 8 then shows that
dim N (Y ) ≥ 1. Let Ā = (ā1; ā2; ā3; ā4) ∈ N (Y ) \ {0}. Since Ā = 0, we have
āi = 0 for some i = 1, . . . , 4. Since there are 4 corner rays, p j ∈ Fi for some
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j = 1, . . . , k. Lastly, since {yi } = Yi , Lemma 3.7 shows that for some ε > 0, γ (B) is
a strict convex combination of γ (B+ε Ā) and γ (B−ε Ā) and M(B+ε Ā), M(B−ε Ā)
are lattice-free quadrilaterals. Therefore, γ (B) is not extreme, which is a contradiction.
Hence, the ratio condition must hold.

Step 2. We now bound the number of possible vectors in Ξ4.
Case a. Observation 3.12 shows that there is a unique γ ∈ Ξ3 corresponding to

this case.
Case b. M(B) has all four corner rays and the ratio condition holds. By Lemma 8.1,

the quadrilateral we construct must be uniquely determined by the choice of four corner
rays and choice of four integer points that lie on the facets of the quadrilateral. There
are O(k4)ways to pick four rays r j1, r j2 , r j3 , r j4 to be corner rays. By Lemma 3.11 (i),
the four integer points y1, y2, y3, y4 are such that yi is a vertex of (C(r ji , r ji+1))I,
with i = 1, 2, 3 and y4 a vertex of (C(r j4 , r j1))I. Lemma 3.10 shows that there are
polynomially many possibilities for y1, . . . , y4. ��
Proof of Theorem 1.4 We now introduce the set Γ of all vectors γ (B) that come from
arbitrary (not necessarily maximal) lattice-free polyhedra in R

2,

Γ =
⋃

n∈N

{ γ (B) | B ∈ R
n×2 such that M(B) is a lattice-free convex set }.

Since we consider B ∈ R
n×2 for all n ∈ N, this includes all γ (B) such that

M(B) is a lattice-free split, triangle, or quadrilateral and all other polyhedra that
are lattice-free in R

2. It is easy to verify (see Lemma 1.6 and its proof in [12])
that conv(R f ) is a polyhedron of blocking type (see Section 9.2 in [19] for a dis-
cussion of blocking polyhedra). In fact, because of the correspondence (4) between
valid inequalities for the mixed integer hull and lattice-free sets, one can show
that Γ is actually the blocking polyhedron of conv(R f ), i.e., conv(R f ) = {s ∈
R

k+ | γ · s ≥ 1 for all γ ∈ Γ } and Γ = {γ ∈ R
k+ | γ · s ≥ 1 for all s ∈ conv(R f )}.

Hence, by Theorem 9.2 (iv) in [19], the facets of conv(R f ) are given by γ · s ≥ 1
where γ is an extreme point of Γ . So we need to enumerate the extreme points
of Γ . Moreover, if γ is an extreme point of Γ , then there does not exist γ ′ ∈ Γ

such that γ is dominated by γ ′. By Propositions 3.13, 3.14, 3.15, 3.17 and 5.1,
the extreme points of Γ can only be in Ξ0 ∪ Ξ1 ∪ Ξ2 ∪ Ξ3 ∪ Ξ4, whose car-
dinalities are bounded above by a polynomial in the binary encoding sizes of
f, r1, . . . , rk . ��
Proof of Theorem 1.5 As established in the proof of Theorem 1.4, we only need to
search in the set Ξ0 ∪Ξ1 ∪Ξ2 ∪Ξ3 ∪Ξ4 to find the facet-defining inequalities. The
conditions defining these five sets and the counting arguments presented in Sect. 3
and Proposition 5.1 can be converted into an algorithm for enumerating all the points
in Ξ0 ∪ Ξ1 ∪ Ξ2 ∪ Ξ3 ∪ Ξ4. This relies on the algorithm by Hartmann [15] for
computing the facets and vertices of integer hulls, which runs in polynomial time in
fixed dimension (cf. Lemma 3.10). Thus we generate a set of valid inequalities (of
polynomial cardinality) that is a superset of all the facets. We can then use standard
LP techniques to select the facet-defining ones from these. ��
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6 Conclusion

We conclude this paper with a discussion of some interesting open problems.

Generalized triangle closures A drawback of the triangle closure result presented in
this paper is that it only applies to a system with two integer variables. Here is one
way to generalize to general mixed integer linear programs. Consider the polyhedron
C = {(x, y) ∈ R

p × R
q : Px + Qy ≤ d} for some matrices P ∈ R

m×p, Q ∈ R
m×q .

We are interested in the mixed integer hull CI = conv(C ∩ (Zp × R
q)). We define

the generalized triangle closure in the following way. Consider any two-dimensional
lattice subspace of Z

p and consider a lattice-free triangle in this subspace. Let T be
the family of all such triangles from all possible two-dimensional lattice subspaces.
For any T ∈ T , let b1, . . . , bp be a lattice basis for Z

p such that b1 and b2 are a
basis for the lattice subspace containing T . Let L(T ) be the linear subspace spanned
by b3, . . . , bp . Then R(T ) = (T ⊕ L(T )) × R

q is a polyhedron which contains no
point from Z

p × R
q in its interior. We define the generalized triangle closure as

⋂

T ∈T

conv(C \ int(R(T ))).

We would like to show that the generalized triangle closure is also a polyhedron.

Quadrilateral closures Even for the case m = 2, one can ask about the quadrilateral
closure. If one considers this to be the intersection of inequalities derived from all
possible lattice-free quadrilaterals (and not just the maximal ones), then this convex
set can be seen to be the same as the mixed integer hull conv(R f ), since every maximal
lattice-free triangle and split can be arbitrarily well approximated by a quadrilateral
(but not necessarily a maximal one). Of course, conv(R f ) is known to be a polyhedron,
and so the question for the quadrilateral closure becomes interesting only if we restrict
ourselves to the maximal quadrilaterals. We conjecture that this is also a polyhedron,
but it does not seem to be an immediate corollary of the results of this paper.

On a related note, we mention that in this paper, we included non-maximal triangles
to define the triangle closure. However, one can see that if we restrict ourselves to only
maximal triangles, we would obtain the same convex set. This is because an inequality
derived from a non-maximal triangle is equal to or dominated by one derived from a
maximal triangle or a split, and a split can be obtained as the limit of maximal triangles.
In this respect, the quadrilateral closure differs from the triangle closure: an inequality
derived from a non-maximal quadrilateral may not be equal to or dominated by an
inequality from a maximal quadrilateral or a limit of such inequalities.

Higher dimensions Many of the tools described in Sect. 3.1 readily extend to m ≥ 3.
This can be used to study the extremality of inequalities arising from maximal lattice-
free convex sets in higher dimension. Unfortunately, it is unclear what results can be
obtained in higher dimensions due to the difficult task of first classifying all maximal
lattice-free convex sets in higher dimensions. Such a classification for m = 3 is only
partially known [4] while even less is known for m > 3. That said, the tools given

123



54 A. Basu et al.

in this paper may be found useful for studying specific classses of lattice-free convex
sets in higher dimensions such as simplices or cross-polytopes. Studying such classes
of inequalities may produce stronger valid inequalities simply because more rows of
the simplex tableau are utilized.

7 Appendix: Uniqueness of a triangle defined by 3 corner rays and a point on
the relative interior of each facet

Proposition 7.1 Any triangle defined by 3 corner rays and 3 points (one on the relative
interior of each facet) is uniquely defined.

Proof The space of triangles with these three corner rays and 3 points is exactly the
tilting space of any such triangle satisfying this. For convenience we define ȳi := yi− f
and p̄i := pi − f , where pi are the ray intersections. Then p̄i = 1

ψB (r i )
r i .

We want to show that the solution to the following systems of equations is unique.

a1 · ȳ1 = 1
a1 · p̄2 = a2 · p̄2

a2 · ȳ2 = 1
a2 · p̄3 = a3 · p̄3

a3 · ȳ3 = 1
a3 · p̄1 = a1 · p̄1

⇒

⎡

⎢⎢⎢⎢⎢⎢⎣

ȳ1

p̄2 − p̄2

ȳ2

p̄3 − p̄3

ȳ3

− p̄1 p̄1

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎣
a1

a2

a3

⎤

⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎣

1
0
1
0
1
0

⎤

⎥⎥⎥⎥⎥⎥⎦

We then write this down as a matrix equation where every vector in the matrix is a row
vector of size 2, therefore we have a 6 × 6 matrix. We will analyze the determinant of
the matrix.

Since the points ȳ1, ȳ2, ȳ3 are on the interior of each facet, they can be written as
convex combinations of p̄1, p̄2, p̄3.

ȳ1 = 1
α′ p̄1 + α

α′ p̄2 p̄1 = α′ ȳ1 − α p̄2

ȳ2 = 1
β ′ p̄2 + β

β ′ p̄3 ⇒ p̄2 = β ′ ȳ2 − β p̄3

ȳ3 = 1
γ ′ p̄3 + γ

γ ′ p̄1 p̄3 = γ ′ ȳ3 − γ p̄1

Therefore, we can perform row reduction on the last row. Just tracking the last row,
we have

[− p̄1 0 p̄1
] → [

0 α p̄2 p̄1
] → [

0 0 p̄1 − αβ p̄3
]
.

This matrix now has an upper block triangular form, and the determinant is easily
computed as

det(ȳ1; p̄2) det(ȳ2; p̄3) det(ȳ3; p̄1 − αβ p̄3).
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The first two determinants are non-zero because those vectors are linearly independent.
The last determinant requires some work:

[
ȳ3

p̄1 − αβ p̄3

]
=

[ 1
γ ′ p̄3 + γ

γ ′ p̄1

p̄1 − αβ p̄3

]
=

[ γ
γ ′ 1

γ ′
1 −αβ

] [
p̄1

p̄3

]
.

Since all the coefficients are positive, the determinant of the first matrix is strictly
negative, and since p̄1, p̄3 are linearly independent, the determinant of the second
matrix is non-zero.

Hence, the determinant of the original matrix is non-zero, and therefore the system
of equations has a unique solution. ��

8 Appendix: Ratio condition for quadrilaterals

Lemma 8.1 Suppose M(B) is a quadrilateral with four corner rays r j1, r j2 , r j3, r j4 .
The following are equivalent:

(i) The ratio condition holds.
(ii) dim N (Y ) = 0.

(iii) The quadrilateral is uniquely defined by these corner rays and the integer points
lying on the boundary.

Proof We will first analyze the tilting space equations with four corner rays, and then
apply the assumption that the ratio condition does not hold. Label the integer points
on the facets of M(B) such that yi ∈ [p ji , p ji+1 ] for i = 1, 2, 3, 4 and j5 = j1,
as in Fig. 17. For convenience we define ȳi := yi − f and p̄i := p ji − f . Then
p̄i = 1

ψB (r ji )
r ji .

We want to determine when there is not a unique solution to the following system
of equations that come from the tilting space:

a1 · ȳ1 = 1
a1 · p̄2 = a2 · p̄2

a2 · ȳ2 = 1
a2 · p̄3 = a3 · p̄3

a3 · ȳ3 = 1
a3 · p̄4 = a4 · p̄4

a4 · ȳ4 = 1
a4 · p̄1 = a1 · p̄1

or

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ȳ1

p̄2 − p̄2

ȳ2

p̄3 − p̄3

ȳ3

p̄4 − p̄4

ȳ4

− p̄1 p̄1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎣

a1

a2

a3

a4

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
0
1
0
1
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

as an 8 × 8 matrix equation where every vector shown in the matrix is a row vector of
size 2. We will analyze the determinant of the matrix.

Since the points ȳ1, ȳ2, ȳ3, ȳ4 are on the interior of each facet, they can be written
as certain convex combinations of p̄1, p̄2, p̄3, p̄4. We write this in a complicated form
at first to simplify resulting calculations. Here, α′ = 1 + α, and α > 0, and similarly
for β, γ , and δ.
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ȳ1 = 1
α′ p̄1 + α

α′ p̄2 p̄1 = α′ ȳ1 − α p̄2

ȳ2 = 1
β ′ p̄2 + β

β ′ p̄3 ⇔ p̄2 = β ′ ȳ2 − β p̄3

ȳ3 = 1
γ ′ p̄3 + γ

γ ′ p̄4 p̄3 = γ ′ ȳ3 − γ p̄4

ȳ4 = 1
δ′ p̄4 + δ

δ′ p̄1 p̄4 = δ′ ȳ4 − δ p̄1

Now just changing the last row using the above columns

[− p̄1 0 0 p̄1
] → [

0 α p̄2 0 p̄1
] → [

0 0 −αβ p̄3 p̄1
] → [

0 0 0 αβγ p̄4 + p̄1
]

The resulting matrix, after adding this last row and substituting in ȳ4, is

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ȳ1

p̄2 − p̄2

ȳ2

p̄3 − p̄3

ȳ3

p̄4 − p̄4

1
δ′ p̄4 + δ

δ′ p̄1

αβγ p̄4 + p̄1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This is now an upper block triangular matrix, which is emphasized by shading. The
first three blocks are all non-singular, and the last block is non-singular if and only if
there does not exist a t such that

1

δ′
p̄4 + δ

δ′
p̄1 = t (αβγ p̄4 + p̄1) ⇒

( δ
δ′

− t
)

p̄1 +
( 1

δ′
− tαβγ

)
p̄4 = 0.

If such a t exists, then t = δ
δ′ since p̄1 and p̄4 are linearly independent. It follows that

αβγ δ = 1 if and only if dim N (Y ) = 0.
It is easy to see that the ratio condition does not hold if and only if α = 1

β
= γ = 1

δ
.

Therefore, it remains to show that α = 1
β

= γ = 1
δ

if and only if αβγ δ = 1. The

forward direction is obvious. We will show that if it is not true that α = 1
β

= γ = 1
δ
,

then αβγ δ = 1. To do so, we use ideas from the proof by Cornuéjols and Margot of
Theorem 3.10 in [12].

Let Y, X ∈ R
2×4 be the matrices with columns ȳ1, ȳ2, ȳ3, ȳ4 and p̄1, p̄2, p̄3, p̄4,

respectively. Next let Ȳ , X̄ ∈ R
3×4 be the matrices Y and X , respectively, after adding

a row of ones at the bottom. Observe that rank(Ȳ ) = rank(X̄) = 3.
Define the matrix S of coefficients as

S =

⎡

⎢⎢⎢⎣

1
α′ δ

δ′
α
α′ 1

β ′
β
β ′ 1

γ ′
γ
γ ′ 1

δ′

⎤

⎥⎥⎥⎦
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and note that Ȳ = X̄ S. Since y1, . . . , y4 form a parallelogram by Theorem 1.2,
ȳ1 + ȳ3 = ȳ2 + ȳ4, or equivalently, Ȳ u = 0 where u = (1;−1; 1;−1). This implies
that Ȳ u = X̄ Su = 0. Since we assume that it is not true that α = 1

β
= γ = 1

δ
, it

follows that Su = 0. Therefore, Su ∈ ker(X̄)\{0}, where ker denotes the kernel. Some
simple linear algebra, made more explicit in [12, Lemma 3.5, proof of Theorem 3.10],
shows that ker(X̄) ⊆ im(S), where im(S) denotes the column space, and that

rank(X̄ S) = rank(S)− dim(ker(X̄) ∩ im(S))

from which it follows that rank(S) = 4. Therefore, det(S) = d for some d = 0, where
det(S) = 1−αβγ δ

α′β ′γ ′δ′ . Therefore

αβγ δ = 1 − dα′β ′γ ′δ′

and since α′, β ′, γ ′, δ′ = 0, we conclude that αβγ δ = 1.
We have shown that the ratio condition holds if and only if dim N (Y ) = 0. Lastly,

note that the set { M(B + Ā) | Ā ∈ N (Y ) } is the set of all quadrilaterals defined by
the four corner rays r j1, r j2 , r j3 , r j4 and the four integer points y1, y2, y3, y4. Hence,
dim N (Y ) = 0 if and only if M(B) is the unique quadrilateral defined by these
corner rays and integer points.
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