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Abstract Monte Carlo sampling-based estimators of optimality gaps for stochas-
tic programs are known to be biased. When bias is a prominent factor, estimates of
optimality gaps tend to be large on average even for high-quality solutions. This dimin-
ishes our ability to recognize high-quality solutions. In this paper, we present a method
for reducing the bias of the optimality gap estimators for two-stage stochastic linear
programs with recourse via a probability metrics approach, motivated by stability
results in stochastic programming. We apply this method to the Averaged Two-Repli-
cation Procedure (A2RP) by partitioning the observations in an effort to reduce bias,
which can be done in polynomial time in sample size. We call the resulting procedure
the Averaged Two-Replication Procedure with Bias Reduction (A2RP-B). We pro-
vide conditions under which A2RP-B produces strongly consistent point estimators
and an asymptotically valid confidence interval. We illustrate the effectiveness of our
approach analytically on a newsvendor problem and test the small-sample behavior
of A2RP-B on a number of two-stage stochastic linear programs from the literature.
Our computational results indicate that the procedure effectively reduces bias. We also
observe variance reduction in certain circumstances.
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1 Introduction

In this paper, we combine a Monte Carlo sampling-based approach to optimality gap
estimation with stability results for a class of two-stage stochastic linear programs,
with the intention of reducing the bias of Monte Carlo sampling-based optimality gap
estimators. Stability results use probability metrics to provide continuity properties of
optimal values and optimal solution sets with respect to perturbations of the original
probability distribution of the random vector; see, e.g., the survey by Römisch [34].
Stability results have been successfully used for scenario reduction in stochastic pro-
grams; see, e.g., [9,13,14]. In this paper, we present a way to use stability results to
motivate bias reduction.

We consider a stochastic optimization problem of the form

min
x∈X

E f (x, ξ̃ ) = min
x∈X

∫

�

f (x, ξ)P(dξ), (SP)

where X ⊆ R
dx represents the set of constraints the decision vector x of dimension

dx must satisfy and ξ̃ is a random vector of dimension dξ on (�,B, P) with support
� ⊆ R

dξ and distribution P that does not depend on x . The function f : X ×� → R

is assumed to be a Borel measurable, real-valued function, with inputs being the deci-
sion vector x and a realization ξ of the random vector ξ̃ . Throughout the paper, we use
ξ̃ to denote the random vector and ξ to denote its realization. The expectation operator
E is taken with respect to P . We use z∗ to denote the optimal objective function value
of (SP) and x∗ to denote an optimal solution to (SP). The set of optimal solutions is
given by X∗ = arg minx∈X E f (x, ξ̃ ).

We are interested in assessing the quality of a solution to (SP). That is, given a
candidate (feasible) solution x̂ ∈ X to (SP), we would like to determine whether it
is optimal or nearly optimal. Assessing solution quality is critically important since
many real-world problems cast as (SP)—such as two-stage stochastic linear programs
with recourse, which are the focus of this paper—cannot be solved exactly and one
is often left with an approximate solution x̂ ∈ X without verification of its quality.
This is also fundamental in optimization algorithms, as these algorithms use quality
assessment iteratively, e.g., every time a new candidate solution is generated, they
need to identify an optimal or nearly optimal solution to stop.

We define the quality of a solution x̂ ∈ X to be its optimality gap, denoted G , where
G = E f (x̂, ξ̃ ) − z∗. (Throughout this paper, we are concerned with a fixed x̂ ∈ X ,
so we simply use G and suppress the dependence on x̂ .) The smaller the optimality
gap, the higher the quality of the candidate solution, and a zero optimality gap implies
x̂ is optimal. The optimality gap G cannot be evaluated explicitly, particularly as the
optimal value z∗ is not known. Furthermore, exact evaluation of E f (x̂, ξ̃ ) may not be
possible. Monte Carlo sampling-based methods bypass these difficulties by allowing
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Probability metrics for bias reduction 109

us to form statistical estimators of optimality gaps [2,27,29]. These take as input a
candidate solution x̂ ∈ X and a sample size n, and form point and interval estimators
on G . They are easy to implement, provided a sampling approximation of (SP) with
moderate sample sizes can be solved, and they can be used in conjunction with any
specialized solution procedure to solve the sampling approximations of the underlying
problem. These methods have been successfully applied to problems in finance [5],
stochastic vehicle routing [22,41], and supply chain network design [37].

It is well known that Monte Carlo statistical estimators of optimality gaps are biased
[27,29]. That is, on average, they tend to over-estimate G for a finite sample size n.
When a statistical estimate of G turns out to be large, this can be due to either the
bias or the variance of the estimator, or it can simply be due the fact that G is large.
When bias is the dominant factor, estimates of G tend to be large even if we have a
high-quality solution. This significantly diminishes our ability to identify an optimal
or nearly optimal solution.

Bias reduction in statistics and simulation is a well-established topic and resampling
methods such as jackknife and bootstrap are commonly used for this purpose [10,38].
In stochastic programming, while there has been a lot of focus on variance reduction
techniques [1,6,8,15,20,23,26], bias reduction has received relatively little attention.
Only a few studies exist for this purpose. Freimer et al. [12] study the effect on bias of
different sampling schemes mainly used for variance reduction, such as antithetic va-
riates and Latin Hypercube sampling on bias. These schemes can successfully reduce
the bias of the estimator of z∗ with minimal computational effort; however, the entire
optimality gap estimators are not considered. Partani [30] and Partani et al. [31], on
the other hand, develop a generalized jackknife technique for bias reduction in MRP
optimality gap estimators.

In this paper, bias reduction is motivated by the stability results in stochastic
programming rather than adaptation of well-established sampling or bias reduction
techniques. We specifically apply the bias reduction approach to the Averaged Two-
Replication Procedure (A2RP) of [2] and use a particular stability result from [34]
involving the Kantorovich metric. Utilizing the Kantorovich metric to calculate dis-
tances between probability measures results in a significant computational advantage
(see Sect. 4.1). The specific stability result we use, however, restricts (SP) to a class
of two-stage stochastic linear programs with recourse (see Sect. 2). The bias reduc-
tion approach presented in the paper does not require resampling—like the bootstrap
and jackknife methods commonly used in statistics—and thus no additional sam-
pling approximation problems need to be solved. The cost of bias reduction, however,
comes from solving a minimum-weight matching problem, which is used to partition
a random sample so as to reduce bias by minimizing the Kantorovich metric. Mini-
mum-weight matching is a well-known combinatorial optimization problem for which
efficient algorithms exist. It can be solved in polynomial time in sample size n and the
computational burden is likely to be minimal compared to solving (approximations
of) real-world stochastic programs with hundreds of stochastic parameters.

Partitioning a random sample in an effort to reduce bias as we do in this paper
results in observations that are no longer independent nor identically distributed. We
show that the resulting distributions on the partitioned subsets converge weakly to P ,
the original distribution of ξ̃ , almost surely (a.s.). We also provide conditions under
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which the point estimators are strongly consistent (i.e., converge to the true value a.s.
as opposed to in probability; simply referred to as consistent from now on) and the
interval estimator is asymptotically valid. Our computational experiments indicate that
variance may also be reduced, especially when x̂ = x∗. Thus, the method presented
in this paper has the potential to produce more reliable estimates of the optimality gap
and increase our ability to recognize optimal or nearly optimal solutions.

The rest of the paper is organized as follows. In the next section, we formally define
our problem setup and list necessary assumptions. In Sect. 3, we give an overview of
optimality gap estimation in stochastic programs and review A2RP from [2]. We also
present the stability result from [34]. We then introduce our bias reduction technique in
Sect. 4 and illustrate the technique on an instance of a newsvendor problem in Sect. 5.
Asymptotic properties of the resulting estimators are provided in Sect. 6. In Sect. 7,
we present our computational experiments on a number of test problems. Finally, in
Sect. 8, we provide a summary and outline future work.

2 Framework

While (SP) encompasses many classes of problems, in this paper, we focus on a partic-
ular class dictated by the specific stability result we use to motivate the proposed bias
reduction technique (see Sect. 3.2). We consider two-stage stochastic linear programs
with recourse, where f (x, ξ̃ ) = cx + h(x, ξ̃ ), X = {x : Ax = b, x ≥ 0}, and h(x, ξ)

is the optimal value of the minimization problem

min
y

{qy : W y = R(ξ) − T (ξ)x, y ≥ 0}.

The above problem has fixed recourse (W is non-random) and stochasticity only on
the right-hand side (R(ξ) and T (ξ) are random). We assume that X and � are con-
vex polyhedral. We also assume that T and R depend affine linearly on ξ , which
allows for modeling first-order dependencies between them, such as those that arise
in commonly-used linear factor models. Furthermore, we assume that our model has
relatively complete recourse, i.e., for each (x, ξ) ∈ X × �, there exists y ≥ 0 such
that W y = R(ξ) − T (ξ)x , and dual feasibility, i.e., {π : πW ≤ q} �= ∅. These
assumptions are needed to ensure the stability result presented in Sect. 3.2. We make
the following additional assumptions:

(A1) X �= ∅ and is compact,
(A2) � is compact.

Assumption (A1) requires that the problem be feasible and the set of feasible solutions
be closed and bounded. Let P(�) be the set of probability measures on � with finite
first order moments, i.e., P(�) = {

Q : ∫
�

‖ξ‖Q(dξ) < ∞}
. It follows immediately

from assumption (A2) that P ∈ P(�), a condition required by our theoretical results.
For the class of problems we consider, f (·, ξ) is convex in x for all fixed ξ ∈ �,

and f (x, ξ) satisfies the following Lipschitz continuity condition for all x, x ′ ∈ X
and ξ ∈ �, for some L > 0:

| f (x, ξ) − f (x ′, ξ)| ≤ L max {1, ‖ξ‖} ‖x − x ′‖,
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where ‖ · ‖ is some norm (see Proposition 22 in [34]). This result leads directly to the
continuity of f (·, ξ) in x for fixed ξ . We also note that f (x, ·) is Lipschitz continuous
and thus continuous in ξ ; see e.g., Corollary 25 in [34]. Assumptions (A1) and (A2)
along with continuity in both variables imply that f (x, ξ) is uniformly bounded, i.e.,
∃ C < ∞ such that | f (x, ξ)| < C for each x ∈ X, ξ ∈ �, a condition necessary for
establishing consistency of our point estimators (see Sect. 6.2). Uniform boundedness
also ensures that f (x, ξ) is a real-valued function and enforces the relatively complete
recourse and dual feasibility assumptions. In addition, convexity and continuity in x
implies that E f (x, ξ̃ ) < ∞ is convex and continuous in x . Hence, (SP) has a finite
optimal solution on X , and so X∗ is non-empty.

The results presented in this paper require precise probabilistic modeling of the
Monte Carlo sampling performed. In particular, the expectations and the almost sure
statements are made with respect to the underlying product measure. An overview
of this framework is as follows. Let (Ω,A , P̂) be the space formed by the product
of a countable sequence of identical probability spaces (�i ,Bi , Pi ), where �i =
�,Bi = B, and Pi = P , for i = 1, 2, . . ., and let ξ i denote an outcome in the sample
space �i . An outcome ω ∈ Ω then has the form ω = (ξ1, ξ2, . . .). Now, define the
countable sequence of projection random variables {ξ̃ i : Ω → �, i = 1, 2, . . .} by
ξ̃ i (ω) = ξ i . Then, the collection {ξ̃1, . . . , ξ̃n} is a random sample from (�,B, P),
and ξ̃ := ξ1 is a random variable with distribution P .

3 Background

In this section, we give an overview of the Monte Carlo sampling-based techniques
for assessing the quality of a candidate solution by estimating its optimality gap. In
particular, we review the A2RP from [2] to which we will apply the bias reduction
technique presented in Sect. 4. We also provide a stability result from [34] that is
fundamental to the bias reduction technique.

3.1 Assessing solution quality

3.1.1 Optimality gap estimation

Given a candidate solution x̂ ∈ X , we would like to determine whether it is optimal
or nearly optimal. This can be achieved through investigating G , the optimality gap of
x̂ , where G = E f (x̂, ξ̃ ) − z∗. Since G usually cannot be evaluated explicitly, we use
Monte Carlo sampling to provide an approximation of (SP) and exploit the properties
of this approximation to estimate the optimality gap. We first approximate P , using the
observations from a random sample {ξ̃1, . . . , ξ̃n} described in Sect. 2, by the empirical
distribution Pn(·) = ∑n

i=1
1
n δ{ξ̃ i }(·). The use of (·) indicates that Pn is a probability

measure on �. We then approximate (SP) by

min
x∈X

1

n

n∑
i=1

f (x, ξ̃ i ) = min
x∈X

∫

�

f (x, ξ)Pn(dξ). (SPn)
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Let x∗
n denote an optimal solution to (SPn) and z∗

n denote the corresponding optimal
value. As mentioned above, it is most convenient throughout the paper to interpret
expectations and almost sure statements relating to z∗

n with respect to the underlying
probability measure P̂ . For instance, Ez∗

n = ∫
Ω

z∗
n(ω)P̂(dω).

By interchanging minimization and expectation, we have

Ez∗
n = E

[
min
x∈X

1

n

n∑
i=1

f (x, ξ̃ i )

]
≤ min

x∈X
E

[
1

n

n∑
i=1

f (x, ξ̃ i )

]
= min

x∈X
E f (x, ξ̃ ) = z∗.

In other words, Ez∗
n provides us with a lower bound on z∗. An upper bound on G ,

E f (x̂, ξ̃ ) − z∗, is then given by E f (x̂, ξ̃ ) − Ez∗
n . We estimate E f (x̂, ξ̃ ) − Ez∗

n by

Gn = 1

n

n∑
i=1

f (x̂, ξ̃ i ) − min
x∈X

1

n

n∑
i=1

f (x, ξ̃ i ) = 1

n

n∑
i=1

f (x̂, ξ̃ i ) − z∗
n . (1)

With fixed x̂ ∈ X , 1
n

∑n
i=1 f (x̂, ξ̃ ) is an unbiased estimator of E f (x̂, ξ̃ ) due to i.i.d.

sampling. However, since Ez∗
n − z∗ ≤ 0,

EGn ≥ E f (x̂, ξ̃ ) − z∗,

and hence Gn is a biased estimator of the optimality gap. We assume the same obser-
vations are used in both terms on the right-hand side in (1), so Gn ≥ 0. This results
in variance reduction through the use of common random variates. Consequently,
compared to z∗

n , which has the same bias, bias can be a more prominent factor in Gn .
It is well-known that the bias decreases as the size of the random sample increases

[27,29]. That is, Ez∗
n ≤ Ez∗

n+1 for all n. However, the rate the bias shrinks to zero can
be slow, e.g., of order O(n−1/2); see for instance Example 4 in [3]. One way to reduce
bias is to simply increase the sample size. However, significant increases in sample
sizes are required to obtain a modest reduction in bias, and increasing the sample size
is not computationally desirable since obtaining statistical estimators of optimality
gaps requires solving a sampling approximation problem.

We note that there are other approaches to assessing solution quality. Some of these
approaches are motivated by the Karush–Kuhn–Tucker conditions, see, e.g., [17,40].
There is also work on assessing solution quality with respect to a particular sampling-
based algorithm, typically utilizing the bounds obtained through the course of the
algorithm, see, e.g., [7,16,19,25]. We apply the bias reduction technique on A2RP,
originally introduced in [2]. Given a candidate solution x̂ ∈ X , A2RP produces point
and interval estimators on G and can be used as a standalone procedure or within a
sequential framework [4].

3.1.2 The Averaged Two-Replication Procedure

Let n be even and let {ξ̃1, . . . , ξ̃n} be a random sample from P . Now, let I 1 be
a uniformly distributed random variable independent of {ξ̃1, . . . , ξ̃n} taking values
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in the set of all subsets of {1, . . . , n} of size n/2, and let I1 be an instance of I 1.
Let I2 = (I1)

C ; that is, I2 contains all n/2 elements of {1, . . . , n} that are not in
I1. This is essentially equivalent to generating two independent random samples of
size n/2. However, we prefer to use the notation I1 and I2 to emphasize the random
partitioning. Later, the proposed bias reduction technique will alter this partitioning
mechanism.

Let PIk (·) = ∑
i∈Ik

2
n δ{ξ̃ i }(·) be the empirical probability measure formed on the

kth set of observations, k = 1, 2. Similar to the definition of (SPn), let (SPIk ) denote
the problem

min
x∈X

1

n

∑
i∈Ik

f (x, ξ̃ i ) = min
x∈X

∫

�

f (x, ξ)PIk (dξ), (SPIk )

x∗
Ik

denote an optimal solution to (SPIk ), and let z∗
Ik

be the optimal value, for k = 1, 2.
Let zα be the 1 − α quantile of the standard normal distribution. A2RP is as follows:

A2RP
Input: Desired value of α ∈ (0, 1), even sample size n, and a candidate solution x̂ ∈ X .
Output: (1 − α)-level confidence interval (CI) on G .

1. Sample i.i.d. observations {ξ̃1, . . . , ξ̃n} from P .
2. Generate a random partition of {ξ̃1, . . . , ξ̃n} via I1 and I2, and produce PI1 and

PI2 .
3. For k = 1, 2:

3.1. Solve (SPIk ) to obtain x∗
Ik

and z∗
Ik

.
3.2. Calculate:

G Ik = 2

n

∑
i∈Ik

f (x̂, ξ̃ i ) − z∗
Ik

and

s2
Ik

= 1

n/2 − 1

∑
i∈Ik

[(
f (x̂, ξ̃ i ) − f (x∗

Ik
, ξ̃ i )

)
− G Ik

]2
.

4. Calculate the optimality gap and sample variance estimators by taking the average;

G I = 1
2

(
G I1 + G I2

)
and s2

I = 1
2

(
s2

I1
+ s2

I2

)
.

5. Output one-sided confidence interval on G :

[
0, G I + zαsI√

n

]
. (2)

For notational simplicity, we suppress the dependence on the sample size n and
candidate solution x̂ when defining the estimators. A set of conditions under which
the point estimator G I of A2RP is consistent, and the interval estimator of A2RP in
(2) is asymptotically valid are given in [2]. To understand the behavior of the interval
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estimator for small sample sizes, we consider the probability that it contains the opti-
mality gap, referred to as its coverage probability, or simply coverage, and compare
it to the desired coverage of 1 − α.

A2RP is a modification of the Single Replication Procedure (SRP), also presented
in [2]. Rather than dividing the n observations into two subsets, SRP produces a
single optimality gap estimator and sample variance estimator using all the n observa-
tions. The bias of the optimality gap estimator is thus decreased compared to A2RP.
However, for small sample sizes it can happen that x∗

n coincides with the candi-
date solution x̂ . The optimality gap and sample variance estimators are then zero
(e.g., when x̂ = x∗

n , Gn in (1) is zero). This also results in a confidence interval
estimator of width zero, even though the candidate solution may be significantly
suboptimal. For a detailed discussion on coinciding solutions, we refer the read-
ers to Section 6 of [2]. We repeat Examples 1 and 2 from [2] as an illustration:

Example 1 Consider the problem {min E[ξ̃ x] : −1 ≤ x ≤ 1}, where ξ̃ ∼ N (μ, 1)

and μ > 0. The optimal pair is (x∗, z∗) = (−1,−μ). We examine the candidate solu-
tion x̂ = 1, which has the largest optimality gap of 2μ. If the random sample satisfies
ξ̄ = 1

n

∑n
i=1 ξ̃ i < 0, then x∗

n = 1 coincides with x̂ , and so the point and interval
estimators of SRP are zero. Setting μ = 0.1, α = 0.10 and n = 50, and using normal
quantiles, we obtain an upper bound on the coverage of SRP as 1− P(ξ̄ < 0) ≈ 0.760,
which is considerably below the desired coverage of 0.90. Now consider A2RP that
uses two samples of size n/2 = 25 each. Let ξ̄1 = 2

n

∑
i∈I1

ξ̃ i be the sample mean
of the first subset of observations, and similarly let ξ̄2 be the sample mean of the
second subset. In this case, the probability of obtaining a confidence interval esti-
mator of non-zero width is given by 1 − P(ξ̄1 < 0)P(ξ̄2 < 0) ≈ 1 − (0.308)2 ≈
0.905.

Due to the difficulties that can arise when using SRP, we focus on A2RP and aim
to reduce the bias of this optimality gap estimator. We will return to the above exam-
ple in Sect. 4.2 to see how bias reduction affects coinciding solutions. Now, we turn
our attention to a stability result which forms the basis for the proposed reduction
technique.

3.2 A stability result

Stability results in stochastic programming quantify the behavior of (SP) when P , the
original distribution of ξ̃ , is perturbed. In this paper, we are particularly interested in
changes in the optimal value z∗ under perturbations of P; however, stability results
also examine the changes in the solution sets X∗. In this section, we will use z∗(P)

to denote the optimal value of (SP) when the distribution of ξ̃ is P . Similarly, z∗(Q)

denotes the optimal value under the distribution Q, a perturbation of P .
Probability metrics, which calculate distances between probability measures, can

provide upper bounds on |z∗(P) − z∗(Q)|, the change in the optimal value. One such
probability metric relevant for the class of problems we consider is μ̂d(P, Q), the
Kantorovich metric with cost function d(ξ1, ξ2) = ||ξ1 − ξ2||, where || · || is a norm.
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The following result—a restatement of Corollary 25 to Theorem 23 in [34], written to
match our paper’s notation—provides continuity properties of optimal values of (SP)
with respect to perturbations of P .

Theorem 1 Let only T (ξ) and R(ξ) be random, and assume that relatively complete
recourse and dual feasibility hold. Let P ∈ P(�), and X∗ be non-empty. Then, there
exist constants L > 0, δ > 0 such that∣∣z∗(P) − z∗(Q)

∣∣ ≤ Lμ̂d(P, Q)

whenever Q ∈ P(�) and μ̂d(P, Q) < δ.

All conditions necessary to apply Theorem 1 for the class of problems we consider
are satisfied, as specified in Sect. 2; see [34] for details. The above stability result
implies that if P and Q are sufficiently close with respect to the Kantorovich metric,
then the optimal value of (SP) behaves Lipschitz continuously with respect to changes
in the probability distribution.

Suppose that P is a discrete probability measure placing masses p1, . . . , pNP on
the points {ξ1, . . . , ξ NP } in �, respectively, and Q is a discrete measure with masses
q1, . . . , qNQ on the points {ν1, . . . , νNQ } in �, respectively. Then the Kantorovich
metric can be written in the form of the Monge–Kantorovich transportation problem,
which formulates the transfer of mass from P to Q:

μ̂d (P, Q) = min
η

⎧⎨
⎩

NP∑
i=1

NQ∑
j=1

‖ξ i − ν j ‖ηi j :
NP∑
i=1

ηi j = q j , ∀ j;
NQ∑
j=1

ηi j = pi ,∀i; ηi j ≥ 0,∀i, j

⎫⎬
⎭ .

(MKP)

This is the well-known transportation problem, where P can be viewed to have NP

supply nodes, each with supply pi , i = 1, . . . , NP ; similarly, Q has NQ demand
nodes, each with demand q j , j = 1, . . . , NQ ; and total supply and demand match,

i.e.,
∑NP

i=1 pi = ∑NQ
j=1 q j = 1. Thus, μ̂d(P, Q) is the minimum cost of transferring

mass from P to Q. Representing the Kantorovich metric as the optimal value of a well-
known, efficiently solvable optimization problem is vital in allowing us to implement
the bias reduction technique described in the next section.

4 Bias reduction via probability metrics

In this section, we present a technique to reduce the bias in sampling-based estimates
of z∗ in stochastic programs and apply it to the A2RP optimality gap estimators. We
begin by discussing the motivation behind the technique and explaining the connection
with Theorem 1. We then formally state the resulting procedure to obtain variants of
the A2RP optimality gap estimators after bias reduction.

4.1 Motivation for bias reduction technique

Consider a partition of n observations {ξ̃1, . . . , ξ̃n} given by index sets S1 and S2,
where
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(i) S1, S2 ⊂ {1, . . . , n} and S2 = (S1)
C ,

(ii) |S1| = |S2| = n/2, and
(iii) each ξ̃ i , i ∈ S1 ∪ S2, receives probability mass 2/n.

Note that S1 and S2 are functions of the random sample {ξ̃1, . . . , ξ̃n}. This is a general-
ization of the partitioning performed via I1 and I2, where we now allow dependencies
between S1 and S2. For any given {ξ̃1, . . . , ξ̃n}, we have

1

2
(z∗

S1
+ z∗

S2
) = 1

2

⎛
⎝min

x∈X

2

n

∑
i∈S1

f (x, ξ̃ i ) + min
x∈X

2

n

∑
i∈S2

f (x, ξ̃ i )

⎞
⎠

≤ min
x∈X

1

n

⎛
⎝∑

i∈S1

f (x, ξ̃ i ) +
∑
i∈S2

f (x, ξ̃ i )

⎞
⎠ = min

x∈X

1

n

n∑
i=1

f (x, ξ̃ i ) = z∗
n .

Therefore, by the monotonicity of expectation, the following inequality holds:

1

2
(Ez∗

S1
+ Ez∗

S2
) ≤ Ez∗

n ≤ z∗. (3)

Inequality (3) indicates that when n observations are divided in two, the expected gap
between 1

2 (z∗
S1

+ z∗
S2

) and z∗ grows. This motivates us to partition the observations

via index sets S1 and S2 that maximize 1
2 (Ez∗

S1
+ Ez∗

S2
). This approach will help to

alleviate the increase in bias that results from using two subsets of n/2 observations
rather than one set of n observations. Since 1

2 (Ez∗
S1

+ Ez∗
S2

) is always bounded above

by Ez∗
n , we equivalently aim to minimize Ez∗

n − 1
2 (Ez∗

S1
+ Ez∗

S2
). This problem can

be hard to solve, but an approximation is obtained by:

Ez∗
n − 1

2
(Ez∗

S1
+ Ez∗

S2
) ≤ 1

2
E
[∣∣z∗

n − z∗
S1

∣∣+ ∣∣z∗
n − z∗

S2

∣∣] .
We would thus like to minimize E[|z∗

n −z∗
S1

|+|z∗
n −z∗

S2
|], but again this is a hard prob-

lem. In an effort to achieve this, we focus on |z∗
n − z∗

S1
|+ |z∗

n − z∗
S2

| for a given sample

of size n. By viewing the empirical measure Pn of the random sample {ξ̃1, . . . , ξ̃n} as
the original measure and the measures PSk (·) = ∑

i∈Sk
2
n δ{ξ̃ i }(·), k = 1, 2, as pertur-

bations of Pn , we appeal to Theorem 1 to obtain an upper bound containing probability
metrics:

|z∗
n − z∗

S1
| + |z∗

n − z∗
S2

| ≤ Lμ̂d(Pn, PS1) + Lμ̂d(Pn, PS2). (4)

As a result, we aim to reduce the bias of the optimality gap estimator by partitioning the
observations according to sets S1 and S2 that minimize μ̂d(Pn, PS1) + μ̂d(Pn, PS2).
By minimizing these metrics, we would like PS1 and PS2 to mimic Pn as much as
possible. This way, we may expect the resulting optimal values of the partitions to be
closer to z∗

n , reducing the bias induced by partitioning.
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We note that several approximations were used above and (4) is valid only when
Pn and PSk are sufficiently close in terms of the Kantorovich metric, for k = 1, 2.
However, it is natural to think of PSk as a perturbation of Pn even though Theorem 1
does not specify how close they should be. The advantage of using these approxima-
tions is that it results in an easily solvable optimization problem (see the discussion
below). Even though it is approximate, we present strong evidence that the proposed
bias technique can be successful via analytical results on a newsvendor problem in
Sect. 5 and numerical results for several stochastic programs from the literature in
Sect. 7.

Let us now examine μ̂d(Pn, PSk ), k = 1, 2 when we have a known partition via
S1 and S2. Suppose given a realization of the random sample {ξ1, . . . , ξn} and the
corresponding empirical measure Pn , we have identified S1 and S2 that satisfy (i)–(iii)
above. Because d(ξ i , ξ j ) = ||ξ i − ξ j || = 0 whenever ξ i = ξ j , for i ∈ {1, . . . , n}
and j ∈ Sk , the Monge–Kantorovich problem (MKP) in this setting turns into an
assignment problem (for a given index set Sk):

μ̂d(Pn, PSk ) = min
η

⎧⎨
⎩
∑
i∈S2

∑
j∈S1

‖ξ i − ξ j‖ηi j :
∑
i∈S2

ηi j = 1

n
,∀ j;

∑
j∈S1

ηi j = 1

n
,∀i; ηi j ≥ 0,∀i, j

⎫⎬
⎭ .

Furthermore, since the cost function d(ξ i , ξ j ) = ||ξ i −ξ j || is symmetric, μ̂d(Pn, PS1)

= μ̂d(Pn, PS2). It follows that if we minimize μ̂d(Pn, PS1), we automatically mini-
mize μ̂d(Pn, PS2). Therefore, identifying sets S1 and S2 that minimize the sum of the
Kantorovich metrics is equivalent to finding an S1 that minimizes μ̂d(Pn, PS1). Thus,
to attempt to reduce the bias of the optimality gap estimator, we wish to find an index
set of size n/2 that solves the problem:

min
{
μ̂d
(
Pn, PS1

) : S1 ⊂ {1, . . . , n}, |S1| = n/2.
}

(PM)

Note that this is the well-known minimum-weight perfect matching problem. Given a
graph with n nodes and m edges, it can be solved in polynomial time of O(mn log n)

[28]. The running time for our problem is O(n3 log n) since we have a fully connected
graph. A special case of (PM) when ξ is univariate is solvable in O(n log n) via a sort-
ing algorithm, as the optimal solution is to place the odd order statistics in one subset
and the even order statistics in the other. For large-scale stochastic programs, solving
instances of (SPn) can be expected to be the computational bottleneck compared to
solving (PM).

4.2 The Averaged Two-Replication Procedure with Bias Reduction

In this section, we present the Averaged Two-Replication Procedure with Bias
Reduction (A2RP-B) that results from adapting A2RP to include the bias reduction
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technique described in Sect. 4.1. To distinguish from the uniformly chosen subsets
I1 and I2 defined Sect. 3.1.2, we denote an optimal solution to (PM) by J1 and let
J2 = (J1)

C . The resulting probability measures are denoted PJk , k = 1, 2, where
PJk = ∑

i∈Jk
2
n δξ̃ i .

A2RP-B
Input: Desired value of α ∈ (0, 1), even sample size n, and a candidate solution x̂ ∈ X .
Output: (1 − α)-level confidence interval on G .

1. Sample i.i.d. observations {ξ̃1, . . . , ξ̃n} from P .
2. Generate J1 and J2 by solving (PM), and produce PJ1 and PJ2 .
3. For k = 1, 2:

3.1. Solve (SPJk
) to obtain x∗

Jk
and z∗

Jk
.

3.2. Calculate:

G Jk = 2

n

∑
i∈Jk

f (x̂, ξ̃ i ) − z∗
Jk

and

s2
Jk

= 1

n/2 − 1

∑
i∈Jk

[(
f (x̂, ξ̃ i ) − f (x∗

Jk
, ξ̃ i )

)
− G Jk

]2
.

4. Calculate the optimality gap and sample variance estimators by taking the average;

G J = 1
2

(
G J1 + G J2

)
and s2

J = 1
2

(
s2

J1
+ s2

J2

)
.

5. Output one-sided confidence interval on G :

[
0, G J + zαsJ√

n

]
. (5)

A2RP-B differs from A2RP in Step 2. Here, a minimum-weight perfect match-
ing problem (PM) is solved to obtain an optimal partition of the observations via the
index sets J1 and J2. Note that the elements in J1 and J2 depend on the observations
{ξ̃1, . . . , ξ̃n}, and so J1 and J2 are random variables acting on Ω . Hence, J1 and J2
are not independent of {ξ̃1, . . . , ξ̃n}, distinguishing PJ1 and PJ2 from PI1 and PI2 .
The random partitioning mechanism of I1 and I2 results in i.i.d. observations in PI1

and PI2 . Unfortunately, this property is lost in PJ1 and PJ2 . Nevertheless, we prove in
Sect. 6 that the point estimators G J and s2

J are consistent and the interval estimator
given by (5) is asymptotically valid.

We conclude this section by updating Example 1 to include the effects of bias
reduction. We will illustrate A2RP-B in more detail on an instance of a newsvendor
problem in the next section.

Example 2 Consider the problem described in Example 1. As before, α = 0.10 and
n = 50. Let ξ̄J1 = 2

n

∑
i∈J1

ξ̃ i be the sample mean of the first subset of 25 observa-
tions (all odd order statistics), and similarly let ξ̄J2 be the sample mean of the second
subset (all even order statistics) after solving (PM). To estimate an upper bound on
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the coverage of A2RP-B, we ran 1,000,000 independent runs in MATLAB and com-
puted the proportions of runs ξ̄J1 and ξ̄J2 were negative. This resulted in the estimate
1 − P(ξ̄J1 < 0)P(ξ̄J2 < 0) ≈ 1 − (0.363)(0.145) ≈ 0.947. Compared to A2RP with
P(ξ̄k < 0) ≈ 0.308 for each subset k = 1, 2, after solving (PM), the sample mean
of the first subset shifted slightly downward, increasing this probability, whereas the
sample mean of the second subset shifted slightly upward, decreasing this probability.
As a result, the probability of obtaining coinciding solutions is decreased. Hence the
upper bound on the coverage of A2RP-B is greater than A2RP for this problem.

In general, A2RP-B may be viewed as in between SRP and A2RP. Like A2RP, it
can lower the occurrence of coinciding solutions while at the same time having a lower
bias like SRP. Computational results in Sect. 7 seem to support this hypothesis.

5 Illustration: newsvendor problem

Before presenting theoretical results, we illustrate the above bias reduction technique
on an instance of a newsvendor problem. For this problem, we are able to derive ana-
lytical results, and therefore can compare the optimality gap estimators produced by
A2RP, A2RP-B, and SRP to examine the efficacy of the bias reduction technique.

The specific newsvendor problem we consider is as follows: a newsvendor would
like to determine the number of newspapers to order daily, x , in order to maximize
expected daily profit. Each copy sells at a price r and costs the newsvendor c, where
0 < c < r . The daily demand, ξ̃ , is assumed to be random with a U (0, b) distribution.
The problem can be expressed as

min
x≥0

E

[
cx − r min{x, ξ̃ }

]
. (6)

The optimal solution is x∗ = b(r−c)/r and the optimal value is z∗ = −b(r−c)2/(2r).
Note that (6) can be rewritten as a two-stage stochastic linear program in the form pre-
sented in Sect. 2.

Prior to finding expressions for the biases of the optimality gap estimators, we note
two results that are used in the subsequent derivations. First, let {ξ̃1, . . . , ξ̃n} be a
random sample of size n from a U (0, b) distribution, and let {ξ̃ (1), . . . , ξ̃ (n)} denote
the ordering of the random sample, i.e., ξ̃ (1) ≤ ξ̃ (2) ≤ · · · ≤ ξ̃ (n). The optimal solution
to the approximated problem (SPn) using this random sample is x∗

n = ξ̃ (l∗), where
l∗ = �(r − c)n/r�. The optimal value of (SPn) is thus

z∗
n = cx∗

n − r

n

n∑
i=1

min{x∗
n , ξ̃ i } = cξ̃ (l∗) − r

n

l∗−1∑
i=1

ξ̃ (i) − r

n

(
n − l∗ + 1

)
ξ̃ (l∗).

Second, recall that the i th order statistic from a U (0, b) random sample of size n
satisfies ξ̃ (i)/b ∼ β(i, n + 1 − i), where β(α1, α2) denotes a random variable having
a Beta distribution with parameters α1 and α2.
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We now determine the bias of G I , the optimality gap estimator produced by A2RP.
In this case, the n observations are randomly partitioned into two subsets of size
n/2, generating the corresponding sampled problems (SPIk ), k = 1, 2. Relabel the
observations ξ̃ i , i ∈ I1, as ξ̃ i

I1
, and similarly for I2. The optimal solution to (SPIk ) is

x∗
Ik

= ξ̃
(i∗)
Ik

, where i∗ = �(r −c)n/2r� = (r −c)n/2r +κ , for some κ ∈ [0, 1). The i th

order statistic of each subset satisfies ξ̃
(i)
Ik

/b ∼ β
(
i, n

2 + 1 − i
)
. After some algebra,

the bias of G I is

z∗ − 1

2
(Ez∗

I1
+ Ez∗

I2
) = − b

n(n + 2)r

[
2κ(κ − 1)r2 − cnr + c2n

]
. (7)

The analysis changes somewhat under A2RP-B. The newsvendor problem is uni-
variate in ξ , and so (PM) places the odd order statistics in one subset and the even order
statistics in the other. Since the order statistics are computed from the original sample
size of n, the i th order statistic follows a β(i, n + 1 − i) distribution. Note that after
solving (PM), the observations in each subset are no longer i.i.d., since order statis-
tics are neither identically distributed nor independent. Solving the sampling problem
using the first subset of observations leads to the optimal solution x∗

J1
= ξ̃ (2i∗−1)

and using the second set of observations produces the optimal solution x∗
J2

= ξ̃ (2i∗).
Following the same steps, we calculate the bias of G J as

z∗ − 1

2
(Ez∗

J1
+ Ez∗

J2
) = − b

2n(n + 1)r

[
4κ(κ − 1)r2 − cnr + c2n

]
. (8)

We now consider the limiting behavior of the percentage reduction in the bias of the
optimality gap estimator going from A2RP to A2RP-B, which is given by subtracting
expression (8) from expression (7) and normalizing by (7). We get

% Red. in Bias = 1 − − b
2n(n+1)r

[
4κ(κ − 1)r2 − cnr + c2n

]
− b

n(n+2)r

[
2κ(κ − 1)r2 − cnr + c2n

] → 1 − 1

2
as n → ∞.

Therefore, the percentage reduction in the bias converges to 50 % as n → ∞. So,
simply partitioning the random sample into odd and even order statistics [the result
of solving (PM)] gives an optimality gap estimator with asymptotically half the bias
compared to using a random partitioning. This result holds regardless of the values of
the parameters r , c, and b for this specific newsvendor problem, so parameter choices
that change the bias of the optimality gap estimator will not alter the large-sample
behavior of the bias reduction technique. For small sample size behavior of this news-
vendor problem, see Sect. 7.3. Our numerical results indicate that convergence of the
percentage reduction in bias is achieved very quickly, e.g., around a sample size of
n = 100.

Finally, we compare A2RP-B and A2RP to SRP. Observe that replacing n with 2n
in (7) gives the bias of the optimality gap estimator produced by SRP. Consequently,
the ratio of the bias of the A2RP optimality gap estimator to the bias of the SRP esti-
mator converges to 2 as n → ∞, indicating that partitioning the observations into two

123



Probability metrics for bias reduction 121

random subsets doubles the bias for larger sample sizes. In contrast, the ratio of the
biases of the A2RP-B and SRP optimality gap estimators converges to 1 as n → ∞.
In essence, the bias reduction technique performs “anti-partitioning” for this problem
by eliminating the additional bias introduced from the partitioning.

6 Theoretical properties

We now prove that the estimators G J and s2
J of A2RP-B are strongly consistent and

that A2RP-B provides an asymptotically valid confidence interval on the optimality
gap. This is important because applying a bias reduction technique can sometimes
result in overcorrection of the bias and lead to undesirable behavior. In this section,
we show that asymptotically such unwanted behavior does not happen for our method.
The technical difficulty in the consistency proofs for the A2RP-B estimators comes
from the fact that the proposed bias reduction technique destroys the i.i.d. nature of
the observations in the partitioned subsets of observations. Recall that in A2RP, the
uniform partitioning of the observations preserves the i.i.d. property, but this is not the
case for A2RP-B; see Sect. 5 for an illustration from the newsvendor problem. Hence,
it is necessary to generalize the consistency proofs in [2] to cover the non-i.i.d. case
arising from solving (PM).

6.1 Weak convergence of empirical measures

We first establish the weak convergence of the empirical probability measures PJ1 and
PJ2 to P , the original distribution of ξ̃ , a.s. This provides the structure necessary to
obtain consistent estimators.

Theorem 2 Assume that {ξ̃1, . . . , ξ̃n} is an i.i.d. sample from distribution P and (A2)
holds. Then the probability measures on the partitioned sets obtained by solving (PM),
PJ1 and PJ2 , converge weakly to P, the original distribution of ξ̃ , a.s.

Proof Since μ̂d is a metric, by the triangle inequality we have that

μ̂d(P, PJ1) ≤ μ̂d(P, Pn) + μ̂d(Pn, PJ1).

Also, μ̂d(Pn, PJ1) ≤ μ̂d(Pn, PI1), since the partitioning of the observations via J1
minimizes the Kantorovich metric; hence, the random partition provides an upper
bound. Therefore,

μ̂d(P, PJ1) ≤ μ̂d(P, Pn) + μ̂d(Pn, PI1),

and by applying the triangle inequality again, we obtain

μ̂d(P, PJ1) ≤ μ̂d(P, Pn) + μ̂d(P, Pn) + μ̂d(P, PI1) = 2μ̂d(P, Pn) + μ̂d(P, PI1).

We would like to show that μ̂d(P, PJ1) → 0 as n → ∞, a.s. First, applying the
Strong Law of Large Numbers (SLLN) for all bounded, continuous functions on �
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gives that the random empirical measure Pn converges weakly to the non-random
measure P , a.s. This combined with (A2) yields

∫
�

‖ξ‖Pn(dξ) → ∫
�

‖ξ‖P(dξ),
a.s. Hence, applying Theorem 6.3.1 of [32], we obtain μ̂d(P, Pn) → 0 as n → ∞,
a.s. and similarly, μ̂d(P, PI1) → 0 as n → ∞, a.s. The second statement follows
from the fact that PI1 is essentially the same as Pn/2. Combining these, we obtain that
2μ̂d(P, Pn) + μ̂d(P, PI1) → 0, a.s. Therefore, μ̂d(P, PJ1) → 0, a.s., and another
application of Theorem 6.3.1 of [32] implies that PJ1 converges weakly to P , a.s. The
same argument holds for PJ2 . ��

Even though we lose the i.i.d. property of the observations in the partitioned subsets
after minimizing the Kantorovich metrics, Theorem 2 shows the weak convergence
of the resulting probability measures to the original measure.

6.2 Consistency of point estimators

We now show the consistency of the estimators G J and s2
J in the almost sure sense.

For a fixed x̂ ∈ X , define σ 2
x̂ (x) = var

(
f (x̂, ξ̃ ) − f (x, ξ̃ )

)
, and denote the opti-

mal solutions that minimize and maximize σ 2
x̂ (x) by x∗

min ∈ arg minx∈X∗ σ 2
x̂ (x) and

x∗
max ∈ arg maxx∈X∗ σ 2

x̂ (x), respectively. Note that since f (x, ξ̃ ) is continuous in x ,

E f (x, ξ̃ ) is continuous, and hence X∗ is closed (and therefore compact). In addition,
σ 2

x̂ (x) is continuous, and thus arg minx∈X∗ and arg maxx∈X∗ are nonempty.

Theorem 3 Assume x̂ ∈ X, {ξ̃1, . . . , ξ̃n} is an i.i.d. sample from distribution P, and
(A1) and (A2) hold. Fix 0 < α < 1. Let n be even and consider A2RP-B. Then,

(i) all limit points of x∗
Jk

lie in X∗, a.s., for k = 1, 2;
(ii) z∗

Jk
→ z∗, a.s., as n → ∞, for k = 1, 2;

(iii) G J → G , a.s., as n → ∞;
(iv) σ 2

x̂ (x∗
min) ≤ lim infn→∞ s2

J ≤ lim supn→∞ s2
J ≤ σ 2

x̂ (x∗
max), a.s.

Proof (i) First, note from Theorem 2 that the probability measures on the parti-
tioned subsets converge weakly to the original distribution of ξ̃ as n → ∞, a.s.
As a result, for k = 1, 2,

∫
�

f (x, ξ)PJk (dξ) epi-converges to
∫
�

f (x, ξ)P(dξ)

as n → ∞, a.s., by Theorem 3.9 of [43]. Thus by Theorem 3.9 of [43], all limit
points of x∗

Jk
lie in X∗, a.s., for k = 1, 2.

(ii) Using epi-convergence, Theorem 7.33 of [33] along with assumptions (A1) and
(A2) give that z∗

Jk
converges to z∗, a.s., as n → ∞.

(iii) By definition, G J = 1
2

[
G J1 + G J2

]
where G Jk = 2

n

∑
i∈Jk

f (x̂, ξ̃ i ) − z∗
Jk

,

for k = 1, 2. For a feasible x ∈ X , define f̄n(x) = 1
n

∑n
i=1 f (x, ξ̃ i ). Then

G J = f̄n(x̂) − 1
2 (z∗

J1
+ z∗

J2
). Since the original sample is formed using n i.i.d.

observations, f̄n(x̂) converges to E f (x̂, ξ̃ ), a.s., by the SLLN. Furthermore,
by part (ii), 1

2 (z∗
J1

+ z∗
J2

) converges to z∗, a.s., as n → ∞. We conclude that

G J → E f (x̂, ξ̃ ) − z∗, a.s., as n → ∞.
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(iv) Let w(x, ξ) = 2C − ( f (x̂, ξ) − f (x, ξ)) and w̄Jk = 2
n

∑
i∈Jk

w(x, ξ̃ i ),
for a given x ∈ X , k = 1, 2. Recall that the constant C gives a uniform
bound on f (x, ξ); see Sect. 2. We define w(x, ξ) in this fashion to enforce
non-negativity. Altering our notation slightly and fixing x̂ ∈ X , we define

s2
Jk

(x) = 1
n/2−1

∑
i∈Jk

(
w(x, ξ̃ i ) − w̄Jk (x)

)2
. Note that s2

Jk
(x∗

Jk
) is equivalent

to s2
Jk

defined in Sect. 4.2. Rewriting, we obtain

s2
Jk

(x) = n/2

n/2 − 1

⎡
⎣
⎛
⎝2

n

∑
i∈Jk

w2(x, ξ̃ i )

⎞
⎠− (

w̄Jk (x)
)2
⎤
⎦ . (9)

We show that the sequence of functions {s2
Jk

(x)} converges uniformly to σ 2
x̂ (x),

a.s., as n → ∞, for k = 1, 2. To this end, we first examine the two terms inside the
brackets in (9).

By the uniform boundedness of f (x, ξ), | f (x̂, ξ) − f (x, ξ)| ≤ 2C ; hence,
w(x, ξ) ≥ 0 for all x ∈ X, ξ ∈ �. It also immediately follows that w(x, ·)
is bounded in ξ since for all x ∈ X , |w(x, ξ)| ≤ 4C , and w(x, ·) is continu-
ous in ξ for the class of problems we consider. Therefore, for each x ∈ X , by
the definition of weak convergence and using Theorem 2, we have w̄Jk (x) →
Ew(x, ξ̃ ), a.s., as n → ∞, i.e., the SLLN holds pointwise, a.s. Since f (·, ξ) is
convex in x , w(·, ξ) is convex in x (note that x̂ is fixed). Hence, we apply Cor-
ollary 3 from [39] to obtain supx∈X

∣∣w̄Jk (x) − Ew(x, ξ̃ )
∣∣ → 0, a.s., as n → ∞,

i.e., w̄Jk (x) converges uniformly to Ew(x, ξ̃ ), a.s., as n → ∞. Note that w2(x, ·)
is bounded and continuous in ξ , and because w(·, ξ) ≥ 0, w2(·, ξ) is also convex
in x . Hence, following the same steps as above, we conclude that 2

n

∑
i∈Jk

w2(x, ξ̃ i )

converges uniformly to Ew2(x, ξ̃ ), a.s., as n → ∞. Combining these, it follows that
aJk (x) := [( 2

n

∑
i∈Jk

w2(x, ξ̃ i )
)− (

w̄Jk (x)
)2] converges uniformly, a.s., as n → ∞

to Ew2(x, ξ̃ ) − (
Ew(x, ξ̃ )

)2 = var(w(x, ξ̃ )) = σ 2
x̂ (x).

The remainder of the proof follows as a slightly modified version of the proof of
Proposition 1 in [2]. Specifically, the uniform convergence of s2

Jk
(x) = n/2

n/2−1 aJk (x)

to σ 2
x̂ (x) and the subsequent bounds on lim infn→∞ s2

Jk
(x∗

Jk
) and lim supn→∞ s2

Jk
(x∗

Jk
)

can be shown in a similar way for k = 1, 2. Averaging produces the final result. ��
Parts (i) and (ii) of Theorem 3 establish the consistency of x∗

Jk
and z∗

Jk
, an optimal

solution and the optimal value of (SPJk
). Similarly, parts (iii) and (iv) establish the

consistency of G J and s2
J , the point estimators produced by A2RP-B. Note that if (SP)

has a unique optimal solution; that is, X∗ = {x∗}, then part (i) implies that x∗
Jk

→ x∗,

for k = 1, 2, and part (iv) implies that limn→∞ s2
J = σ 2

x̂ (x∗), a.s., as n → ∞.

6.3 Asymptotic validity of the interval estimator

In our final result, we show the asymptotic validity of the confidence interval estimator
produced by A2RP-B, given in (5). This justifies the construction of an approximate
confidence interval after bias reduction.
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Theorem 4 Assume x̂ ∈ X, {ξ̃1, . . . , ξ̃n} is an i.i.d. sample from distribution P, and
(A1) and (A2) hold. Fix 0 < α < 1. Let n be even and consider A2RP-B. Then,

lim inf
n→∞ P

(
G ≤ G J + zαsJ√

n

)
≥ 1 − α.

Proof First, note that if x̂ ∈ X∗, then the inequality is satisfied automatically. Sup-
pose now that x̂ /∈ X∗. As in the proof of part (iii) of Theorem 3, we express G J

as G J = f̄n(x̂) − 1
2

(
z∗

J1
+ z∗

J2

)
, where f̄n(x) = 1

n

∑n
i=1 f (x, ξ̃ i ). Since z∗

Jk
=

minx∈X
∑

i∈Jk
f (x, ξ̃ i ) for k = 1, 2, G J ≥ f̄n(x̂) − f̄n(x), for all x ∈ X . Noting

that {ξ̃1, . . . , ξ̃n} is an i.i.d. sample, the rest of the proof proceeds as in the proof of
Theorem 1 in [2]. ��

7 Computational experiments

In Sect. 6, we proved asymptotic results regarding the consistency and validity of
estimators produced using A2RP-B. In this section, we apply A2RP-B to several test
problems in order to examine its small-sample behavior. We begin our discussion by
introducing the test problems used for evaluating the bias reduction technique, fol-
lowed by the experimental setup in Sects. 7.1 and 7.2. Then, in Sect. 7.3, we present
the results of our experiments and discuss computational effort. We end our discussion
by providing insights gained from our experiments in Sect. 7.4. Additional details and
discussion are presented in the online resource.

7.1 Test problems

To fully evaluate the efficacy of the proposed bias reduction technique, we consider
four test problems from the literature; namely the newsvendor problem (denoted NV),
APL1P, PGP2, and GBD. All four problems are two-stage stochastic linear programs
with fixed recourse and stochasticity on the right-hand side, and can be solved exactly,
allowing us to compute exact optimality gaps. Characteristics of these problems are
summarized in Table 1. NV is defined as in Sect. 5 and can be solved analytically. We
set the cost of one newspaper, c, to be 5, and its selling price, r , to 15. The demand ξ̃ is
assumed to have a U (0, 10) distribution. The electric power generation model PGP2
of [18] has 3 stochastic parameters and 576 scenarios. APL1P is a power expansion
problem with 5 independent stochastic parameters and 1,280 scenarios [21]. GBD,
described in [11], is an aircraft allocation model. The version we use has 646,425
scenarios generated by 5 independent stochastic parameters.

The standard formulations of these three problems differ slightly from the formu-
lation presented in Sect. 2, in that ξ := (R, T ) rather than R and T being functions
of ξ . This discrepancy can be easily remedied by defining the functions R(ξ) and
T (ξ) in our formulation to be the coordinate projections of ξ , so with a slight abuse
of notation, R(ξ) = R and T (ξ) = T . Then R(ξ) and T (ξ) satisfy the affine linearity
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Table 1 Test problem characteristics

Problem No. of 1st stage No. of 2nd stage No. of stochastic No. of scenarios
variables variables parameters

NV 1 1 1 ∞
PGP2 4 16 3 576

APL1P 2 9 5 1,280

GBD 17 10 5 646,425

Table 2 Optimal and suboptimal candidate solutions

Problem x∗ Suboptimal x̂ z∗ G

NV 6 2
3 8.775 33 1

3 3 1
3

PGP2 (1.5, 5.5, 5, 5.5) (1.5, 5.5, 5, 4.5) 447.32 1.14

APL1P (1800, 1571.43) (1111.11, 2300) 24,642.32 164.84

GBD (10, 0, 0, 0, 0, (10, 0, 0, 0, 0, 1,655.63 1.15

12.48, 1.19, 5.33, 0, 12.43, 1.22, 5.33, 0,

4.24, 0, 20.76, 7.81, 4.32, 0, 20.68, 8.05,

0, 7.20, 0, 0) 0, 6.95, 0, 0)

assumption in Sect. 2 and we can express the problems in the form assumed in this
paper. All test problems satisfy the required assumptions and can be solved exactly.

We selected two candidate solutions, x̂ , for each test problem listed in Table 1.
The first candidate solution is the optimal solution, i.e., x̂ = x∗. Note that all these
problems have a unique optimal solution. (We provide computations on newsvendor
instances with multiple optimal solutions in the online resource.) The second candi-
date solution is a suboptimal solution. For NV, APL1P, and PGP2, the suboptimal
solution is the solution used in the computational experiments in [2]. We selected a
suboptimal solution for GBD by solving an independent sampling problem and setting
its solution as the candidate solution. Table 2 summarizes the optimal and suboptimal
solutions used in our computational experiments, along with the optimal value and the
optimality gap of the suboptimal candidate solution.

7.2 Experimental setup

The primary objective of our computational experiments is to determine the reduction
in the bias of the point estimator G J of A2RP-B compared to the estimator G I of
A2RP for finite sample sizes n. It is well-known that bias reduction techniques in sta-
tistics can increase the variance of an estimator; therefore, we use the mean-squared
error (MSE) to capture both effects. Recall that if θ̂ is an estimator of θ , the MSE of θ̂

is given by E(θ̂ − θ)2 = (Eθ̂ − θ)2 + E(θ̂ − Eθ̂ )2, where the first term is the square
of the bias and the second term is the variance of θ̂ .

123



126 R. Stockbridge, G. Bayraksan

Our experiments were conducted as follows. First, for each test problem, we fixed
a candidate solution (optimal or suboptimal) and set α = 0.10. Then, we applied
A2RP and A2RP-B for a variety of sample sizes (n = 50, 100, 200, . . . , 1000) to
test the small-sample behavior and to observe any potential trends as n increases. For
each independent run, we used the same random number stream for both A2RP and
A2RP-B to enable a direct comparison of the two procedures. We used a batch size of
m to estimate the biases of G I and G J by averaging across m independent runs. We
also obtained single estimates of var(G I ), var(G J ), MSE(G I ), and MSE(G J ) using
the m runs. In order to obtain better estimates, we repeated this procedure M times,
resulting in a total of m × M independent runs. The means of the M estimates of
the bias, variance, and MSE and the m × M confidence interval widths were used to
compute percentage reductions.

Since the stochastic parameters of APL1P take values that vary by several orders
of magnitude, we used a weighted Euclidean norm to better calculate the distance
between scenarios when defining (PM). We used the standard Euclidean norm for
the other test problems. For NV, we used the quicksort algorithm (in C++) to solve
the sampling approximations (SPIk ) and (SPJk

), k = 1, 2, as the optimal solution
is a sample quantile of demand. We also used the quicksort algorithm to perform
the minimum-weight perfect matching. For all other test problems, we used the
regularized decomposition (RD) code (in C++) by Świetanowski and Ruszczyński
[35,36] to solve the sampling approximations. We modified this code to use the Mers-
enne Twister algorithm to generate random samples [42]. To solve (PM), we used
the Blossom V code of Kolmogorov [24]. We note that there are multiple ways to
partition the observations given a solution to (PM); we simply chose our partition
based on the output from Blossom V. Given that NV and its corresponding matching
problem can be solved efficiently, we set m = 1,000 and M = 1,000 for a total of
1,000,000 independent runs for each sample size n for this problem. For the other
problems, we used m = 10 and M = 1,000 for a total of 10,000 independent runs
for each n. For PGP2, APL1P, and GBD, we used the high performance comput-
ing center at the University of Arizona and for NV, we used the MORE Institute
facilities.

Finally, we know from Theorem 4 that the confidence intervals will attain the
desired coverage of 0.90 for large sample sizes. However, given that bias reduc-
tion may reduce the width of the confidence interval estimator, it is important to
consider the change in coverage for small sample sizes when applying bias reduc-
tion. We estimated the coverage for each algorithm and sample size. This was done
by computing p̂, the proportion of the m × M independent runs in which the con-
fidence interval contained the optimality gap. Note that when the candidate solu-
tion is optimal, the optimality gap is 0, and so the coverage is always trivially 1.
The estimator p̂ is a scaled binomial random variable, and hence for the subopti-
mal candidate solution we formed a 90 % confidence interval on the coverage via
p̂ ± 1.645

√
p̂(1 − p̂)/106 for NV and p̂ ± 1.645

√
p̂(1 − p̂)/(5 × 104) for the

other test problems.
We now present the computational results for each candidate solution, beginning

with the optimal candidate solution.
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(a) (b) (c)

Fig. 1 Percentage reductions between A2RP and A2RP-B in a bias and b MSE of optimality gap estimator,
and c CI width with respect to sample size n for optimal candidate solutions

7.3 Results of experiments

7.3.1 Optimal candidate solution

Figure 1 depicts a summary for all sample sizes in terms of the percentage reduction
in the bias and MSE of the optimality gap estimator and the width of the confidence
interval estimator between A2RP and A2RP-B when x̂ is fixed to the optimal solution.

In particular, Fig. 1a shows the percentage reduction between the biases of G I and
G J . The results for NV match the theory presented in Sect. 5, and we note the very
fast convergence of the percentage reduction in the bias to 50 %. For the other test
problems, we observe a monotonic increase in the percentage reduction in the bias
with sample size. The summary of results on the MSE of the optimality gap esti-
mator is depicted in Fig. 1b. We observe that the proposed bias reduction technique
not only reduces the bias but also the variance of the optimality gap estimator. Like
the bias, we observe increases in variance reduction as n increases. As a result, the
percentage reduction in the MSE is notable for all test problems, and is roughly mono-
tonically increasing. Finally, Fig. 1c shows the percentage reduction in the CI width
at an optimal candidate solution. Because the optimality gap of an optimal solution
is zero, reduction in the interval widths in this case is desirable. We again observe an
increasing trend with sample size. Detailed results are provided in the online resource.

7.3.2 Suboptimal candidate solution

We now consider the suboptimal candidate solutions. Figure 2 shows plots of the per-
centage reductions in the bias and the MSE of the optimality gap estimator and in
the CI width. Although the bias of the optimality gap estimator is independent of the
candidate solution, its variance, and hence MSE, depends on the candidate solution.
The MSE of the optimality gap estimator is reduced mainly at smaller sample sizes.
One exception is PGP2, which exhibits MSE reduction across all values of n. The
percentage reduction in the width of the confidence interval estimator is fairly small,
with the exception of GBD for small sample sizes. Table 3 provides confidence inter-
vals on the coverage for n = 200. The coverages are lowered under A2RP-B in every
case; however, they remain close to 90 %, with the exception of PGP2. Note that PGP2
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(a) (b) (c)

Fig. 2 Percentage reductions between A2RP and A2RP-B in a bias and b MSE of optimality gap estimator,
and c CI width with respect to sample size n for suboptimal candidate solutions

Table 3 Confidence interval
estimator for suboptimal
candidate solutions (n = 200)

Problem A2RP A2RP-B

NV 0.912 ± 0.000 0.894 ± 0.001
PGP2 0.821 ± 0.006 0.792 ± 0.007
APL1P 0.899 ± 0.005 0.867 ± 0.006
GBD 0.979 ± 0.002 0.939 ± 0.004

is known to have low coverage when A2RP is used [2]. A2RP-B reduces coverage
for PGP2 but is still much higher than SRP, which yields coverage probabilities of
0.50–0.60 at the same candidate solution [2].

7.4 Discussion

In this section, we summarize insights gained from our computational experiments
and discuss our findings.

– The percentage reduction in the bias of the optimality gap estimator tends to
increase as n increases. We hypothesize that this is due to the stability result that
motivates the bias reduction technique. Recall that Theorem 1 requires P and Q to
be to sufficiently close, and at larger sample sizes, we expect Pn and PJk , k = 1, 2,
to be closer.

– The bias reduction technique works well when an optimal candidate solution is
used. In this case, both the bias and the variance are reduced, resulting in a signif-
icant reduction in the MSE of the optimality gap point estimator.

– At a suboptimal candidate solution, bias reduction is not affected, but the bias
reduction technique reduces the variance, and hence the MSE, at smaller sample
sizes. However, it can sometimes increase the variance at higher sample sizes,
weakening the MSE reduction. The coverage is slightly reduced.

Suppose we solve an independent sampling problem (or use any other method) to
obtain a candidate solution. Fixing this solution, we apply A2RP to obtain an estimate
of its optimality gap. If this estimate is large, then we do not know if it is a good
solution or not. Note that even when an optimal solution is obtained, this estimate can
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be large due to bias or variance. Alternatively, the candidate solution itself may have
a large optimality gap. Suppose the candidate solution obtained is indeed an optimal
solution. Then, the use of A2RP-B can significantly increase our ability to detect that
this is an optimal solution. Our results indicate that A2RP-B reduces the bias, var-
iance, and MSE of the optimality gap point estimator, and the width of the interval
estimator, at an optimal solution. The risk in doing so is a decrease in the coverage at
suboptimal solutions. The reduction in bias remains same but the variance and MSE
are mainly reduced at smaller sample sizes at suboptimal solutions, indicating that
A2RP-B provides a more reliable point estimator at suboptimal solutions at smaller
sample sizes.

If identifying optimal solutions is of primary importance, then, we recommend
A2RP-B. If, on the other hand, conservative coverage is the primary concern, then we
recommend the Multiple Replications Procedure (MRP) of Mak et al. [27], which is
known to be more conservative; see the computational results and also the preliminary
guidelines in [2].

8 Summary and future work

In this paper, we present a bias reduction technique for a class of stochastic programs
that is rooted in a stability result. The proposed technique partitions the observations
by minimizing the Kantorovich metrics between the empirical measure of the original
sample and the probability measures on the resulting partitioned observations. This
amounts to solving a minimum-weight perfect matching problem, which is polyno-
mially solvable in the sample size. The bias reduction technique is applied to the
A2RP optimality gap estimators for a given candidate solution. Analytical results on
an instance of a newsvendor problem and computations indicate that bias reduction
technique can reduce the bias introduced by partitioning while maintaining appro-
priate coverage. We show that the optimality gap and sample variance estimators of
A2RP-B are consistent and the confidence interval estimator is asymptotically valid.
Preliminary computational results suggest that the technique works well for optimal
candidate solutions, decreasing both the bias and the variance of the optimality gap
estimator, and hence the MSE. For suboptimal solutions, bias reduction is unaffected
but variance and MSE reduction are weakened. Coverage is slightly lowered after bias
reduction.

Future work includes the application of the bias reduction technique to other opti-
mality gap estimators such as the MRP estimator, which is formed by averaging k ≥ 30
independent estimates of G I . By further partitioning, ideas discussed in this paper can
be used to form a variant of MRP. This also raises some interesting questions. For
instance, is there an optimal number of partitions that maximizes relative bias reduc-
tion? What happens when different partitioning schemes are used (e.g., one partition
gets 1/3 of the observations, the other 2/3)? These merit further investigations. Another
area of future research is studying the use of the A2RP-B estimators in a sequential
setting [4].

For other classes of stochastic programs, stability results use different probability
metrics [34]. Minimizing these metrics could potentially lead to more complicated
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problems than the minimum-weight perfect matching problem that arose in the cur-
rent context; see for instance the scenario reduction techniques for different classes
of stochastic programs [13,14]. However, quick solution methods could still provide
significant reduction in bias. This is another area of future research. Finally, future
work includes comparison of this approach to other bias reduction methods such as
the jackknife estimators of [30,31] and other sampling techniques.
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