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Vitamin B12: one carbon metabolism, fetal growth
and programming for chronic disease
EC Rush1, P Katre2 and CS Yajnik3

This review brings together human and animal studies and reviews that examine the possible role of maternal vitamin B12 (B12)
on fetal growth and its programming for susceptibility to chronic disease. A selective literature review was undertaken to identify
studies and reviews that investigate these issues, particularly in the context of a vegetarian diet that may be low in B12 and protein
and high in carbohydrate. Evidence is accumulating that maternal B12 status influences fetal growth and development. Low
maternal vitamin B12 status and protein intake are associated with increased risk of neural tube defect, low lean mass and excess
adiposity, increased insulin resistance, impaired neurodevelopment and altered risk of cancer in the offspring. Vitamin B12 is a key
nutrient associated with one carbon metabolic pathways related to substrate metabolism, synthesis and stability of nucleic acids
and methylation of DNA which regulates gene expression. Understanding of factors regulating maternal–fetal one carbon
metabolism and its role in fetal programming of non communicable diseases could help design effective interventions, starting
with maternal nutrition before conception.
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INTRODUCTION
Across the life course, the dietary supply of the methyl donors:
folate, vitamin B12, betaine, methionine and choline, is essential
for normal growth, development and physiological functions. One
carbon metabolism refers to a network of interrelated biochemical
pathways that donate and regenerate one–carbon units, including
the methyl group (Figure 1). Maternal diet is the primary source of
nutrient availability to the conceptus,1,2 and the placenta has a
vital regulatory role.3 The developmental pathway of the child
defines it’s phenotype and the balance between future health and
disease.4 Critical periods of cell division and differentiation occur
in utero.5 Optimal organogenesis, growth and development of the
foetus is dependent on the maternal diet and supply of nutrients,
including the methyl donors.

Folate, the key methyl donor, has been extensively studied and
world-wide there is recommendation for supplementation of
women who plan to become pregnant. In more than 50 countries
fortification of the food supply with folate is mandated but the
extent of implementation and effectiveness vary.6 On the other
hand, vitamin B12 is often deficient in pregnant women who are
ovo-lacto vegetarians or eat little or no meat,7 and this continues
to be a major nutritional problem in parts of the world where the
population is predominantly vegetarian. Even in countries, such as
Canada, where fortification has been effective there remains a
residual problem with B12 deficiency.8

MATERIALS AND METHODS
We performed a selective literature review and identified studies and
reviews that investigated the association of maternal B12 status with
metabolic pathways and future health of offspring. Over 250 articles were

identified, and we selected those that focussed on Vitamin B12, one
carbon metabolism, fetal growth and programming for chronic disease
and, where possible, were published in the last 10 years.

ONE CARBON METABOLIC PATHWAYS
The importance of dietary methyl donors, and in particular vitamin
B12, the subject of this review, requires a broad understanding of
the exquisite interrelationship and balances of one carbon
metabolic pathways. A figure (Figure 1) integrating metabolic
pathways involved in one carbon metabolism was constructed.

One carbon metabolism describes reactions including the
addition, transfer or removal of 1-C units in cellular metabolic
pathways. The central methylation pathway, the methylation cycle
(Figure 1) occurs in the cytoplasm of every cell where the
formation of S-adenosyl methionine from adenosine triphosphate
and methionine is catalysed by methionine adenosyl transferase.
In turn, S-adenosyl methionine is converted to S-adenosyl
homocysteine and then to homocysteine. Methionine is regene-
rated when a methyl group from 5-CH3-tetrahydofolate is
transferred to homocysteine. This last step of the cycle requires
the presence of vitamin B12 as a cofactor for methionine synthase.
When concentrations of available vitamin B12 are insufficient,
folate becomes trapped as 5-methyltretrahydrofolate, and the
regeneration of methionine is inhibited, and the concentrations of
homocysteine and its metabolites increased.9 Methionine
deficiency is a commonly used animal model to demonstrate
intrauterine growth retardation and fatty liver disease.10

Raised concentrations of homocysteine within the cell are toxic
and are actively regulated. Metabolism of homocysteine occurs
through intersecting enzymatic pathways: (1) remethylation,
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which requires vitamins B12 and B2, (2) transsulphuration, which
requires vitamin B6 and (3) the catalysis by betaine-homocysteine
methyltransferase of the transfer of one of the amino groups of
betaine to homocysteine to form methionine. The importance of
labile methyl groups and homocysteine remethylation in liver
function and diabetes has been demonstrated in humans and
animals.11

The remethylation of homocysteine to methionine intersects
with the folate cycle where methylenetetrahydrofolate reductase
catalyses the reduction of 5,10 methyl tetrahydrofolate to 5
methyl tetrahydrofolate, which is a co-substrate for the methyla-
tion of homocysteine to methionine (Figure). Folate is the methyl
acceptor and donor in this cycle where methionine is regenerated.
The folate cycle is essential for purine and pyrimidine nucleotide
synthesis, which are essential for the formation and stability of
DNA, RNA and nucleoside triphosphates such as adenosine
triphosphate.12,13

A critical step in the central methylation cycle is where
S-adenosyl methionine serves as a methyl donor and is converted
to S-adenosyl homocysteine. Methyl groups may be added to
many methyl acceptor substrates including DNA. Methylation of
DNA nucleotides is an important epigenetic mechanism for
control of gene expression. This control of gene expression is
particularly important during critical periods of growth and
development and may help explain why nutritional imbalances
are associated with fetal phenotypes, which increase the risk for
subsequent diseases.14

In liver, kidney, small intestine and pancreas, homocysteine may
enter the trans-sulphuration pathway (lower panel, Figure 1) and be
converted to cystathionine by the addition of serine. The active form
of vitamin B6, pyridoxal-5-phosphate, is a cofactor for this step.15

In the mitochondria, b-oxidation of fatty acids requires that they
are sequentially broken down into small even number carbon
units, the units are linked with coenzyme A (CoA) and are then
able to enter the tricarboxylic acid (TCA) cycle (Figure 1). The TCA
cycle is responsible for the ultimate oxidation of acetyl (2-carbon)
groups derived from lipids to carbon dioxide, water and energy.
However, breakdown of uneven number carbon unit fatty acids
results in the formation of propionyl-CoA, a three carbon unit.
Propionyl-CoA is carboxylated to methylmalonyl CoA which then

reversibly isomerizes to succinyl-CoA by the B12 dependent
enzyme, methyl malonyl-CoA mutase. Deficiency of B12 blocks the
production of succinyl-CoA, and leads to elevated methyl malonic
acid (MMA) and MMACoA. Increased concentrations of malonyl
CoA inhibit the activity of carnitine palmitoyltransferase (CPT1) the
enzyme that controls the rate of long chain fatty acyl-CoA transfer
into the mitochondria. The outcome is inhibition of b-oxidation.
Thus, there is accumulation of fatty acids in the cytosol of the
nucleus and increased inclusion of fatty acids into glycerolipids.

Thus, vitamin B12 influences folate-dependant reactions and
mitochondrial energy and lipid metabolic pathways.

B12 absorption, transport, storage and biomarkers
In food, B12 is bound to protein. This bond is released by the
action of gastric pepsin and acid and B12 binds to other proteins:
R binders (haptocorrins) secreted in saliva. The gastric parietal cells
secrete acid and a 50-kD glycoprotein called intrinsic factor. In the
small intestine, the R-binders are hydrolyzed by pancreatic
proteases and then the freed vitamin B12 binds to intrinsic factor.
Most absorption of vitamin B12 occurs in the distal ileum via a
specific receptor-mediated endocytotic process. The intrinsic
factor is degraded in the cell lysosomes, and vitamin B12 is
released into the cytosol of the gut epithelial cells. Vitamin B12 is
released from these cells into intercellular fluid as a complex
bound to a 38-kDa protein called (holo) transcobalamin II (TC-II).
Most of the dietary B12 is absorbed in this way with a further 1%
by passive diffusion.16 High oral doses of B12 will have
proportionately greater absorption by diffusion. Two additional
B12-binding glycoproteins TC-I and TC-III are less specific and have
a slower rate of turnover than TC-II and will bind inactive B12
analogues. Accordingly, TC-II is considered the best biomarker of
active or available B12.

The liver may store up to 3 mg of B12, which is sufficient
without repletion for 3–5 years. Efficient enterohepatic recycling
of vitamin B12 ensures that loss of B12 is minimal. Yet while most
dietary recommendations are for more than 2.4 mg/day of vitamin
B12, the adequacy and practicality of this recommendation for
optimal health needs of those whose diets do not include good
sources of the vitamin need to be investigated further.17

Figure 1. One carbon metabolic pathways, vegetarian diet and effects of B12 insufficiency: X blocked; 8 ‘secondarily’ inhibited;- stimulated;
inhibited by metabolite. BHMT, Betaine-homocysteine S-methyltransferase; CPT1, Carnitine palmitoyltransferase; CBS, Cystathionine-b-

synthase; DNMT, DNA methyltransferase; GNMT, Glycine N-methyltransferase; MCM, Methylmalonyl-CoA mutase; MMA-CoA, Methylmalonyl-
CoA; MTR, Methionine synthase; MTHFR, ethylenetetrahydrofolate reductase; MS, Methionine Synthase; R Methyl acceptors, including
adenosine and cytosine; R-CH3 Methylated acceptor; SAH, S-adenosyl homocysteine; SAM, S-adenosyl methionine; THF, Tetrahydrofolate.
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As the liver stores of vitamin B12 become depleted TC-II
concentration will start to fall before any decline of total serum
B12 concentrations are observed. Therefore, TC-II is considered a
more sensitive and early indicator of B12 insufficiency.18 Conversely,
with the repletion of vitamin B12, TC-II concentrations have been
shown to rise rapidly,19,20and this fact has been used to design a
test to measure absorption of vitamin B12.21

Also considered reliable markers of B12 insufficiency are
elevated serum concentrations of homocysteine and MMA.22

Elevated homocysteine is a non-specific marker influenced both
by B12 and folate insufficiency. On the other hand, plasma MMA is
a specific biomarker of B12 status.

Hypomethylation and altered gene expression
Alterations in the supply of one carbon units could influence DNA
methylation and therefore gene expression by determining which
genes are switched on and off and when.12 Evidence from sheep
models12 and growing evidence in humans2 suggests that
environmental insults, particularly of availability of folate and
B12 in utero, lead to differences in DNA methylation in the
offspring. The patterns of DNA methylation that are established in
utero could induce stable changes in gene expression lasting
through the life of the individual. These epigenetic alterations can
have profound and life-long effects on structure and function
(phenotype). The cell cycle may be switched from proliferation to
differentiation with adverse consequences for total cell number
and function.23 There is evidence that genetic polymorphism of
the methylenetetrahydrofolate reductase modulates genomic
DNA methylation.24 Therefore, it is tempting to speculate that
the balance of nutrient intake might ultimately affect patterns of
epigenetic modifications such as DNA methylation in a
population- and individual-specific manner.25 This may help
explain the associations of impaired intrauterine growth with
the programming of the fetal endocrine and cardiovascular
systems with consequences later in life.26,27 Epigenetic changes
related to one carbon metabolism and B12 status, for example,
alteration in promotor methylation in cancer-relevant genes, have
been associated with altered risk for cancer in offspring.28

Reduction in protein synthesis and deposition
Vitamin B12 is only derived from animal and microbial foods,
and a vegetarian diet therefore contains little vitamin B12. For
many Indian populations, religious and cultural beliefs and
socioeconomic factors29 contribute to low intakes of animal
products, legumes and protein.30 Such a diet is also a poor source
of the essential amino acid, methionine.

Methionine is central to protein synthesis because its genetic
codon is the most common start message for translation from
mRNA. The methylation cycle is influenced by nutrients (methio-
nine, B12, folate, B2 and B6) and hormones (insulin and glucagon)
and by changes in redox state.31 A plant-based diet may be
insufficient in methionine and other essential amino acids and has
been associated with hyperhomocysteinemia, reduced lean mass
and increased fat.32

Lipogenesis and insulin resistance
There is some evidence that low B12 status in children is
associated with increased lipogenesis, obesity and insulin
resistance.10,31,33,34 The possible biochemical-metabolic basis has
been described above. Increased lipogenesis within the myocyte
may be associated with increased intracellular accumulation of
triglycerides, which has been associated with insulin resistance,35

obesity and type 2 diabetes in some studies. Furthermore, from
birth, Indian individuals have relatively more fat and less muscle
compared to other ethnic groups,36–38 and this could be
associated with intergenerational dietary practices that are

traditionally low in animal products, B1229,39 and protein.40 The
reasons for this common dietary pattern include religious and
personal beliefs, cultural practices and poverty.29,39,41–44

FETAL PROGRAMMING: CONCEPTS AND EVIDENCE
Studies have shown that children born during the Dutch Hunger
Winter were at increased risk of non communicable diseases.45

This is thought to be related to epigenetic changes induced by
maternal undernutrition. Children conceived during the winter
hunger had less DNA methylation of the imprinted IGF2 gene
compared with their unexposed, same-sex siblings when studied
six decades later. Other studies have reported that maternal folic
acid supplementation in the periconceptional period was
associated with increased methylation of IGF 2 in the offspring.46

Waterland et al.47 studied establishment of metastable
epialleles in early life development by comparing differences in
DNA methylation by season of conception (dry or rainy). At the
five loci investigated, conception during the rainy season resulted
in significantly more methylation of DNA. Studying the influence
of early environmental exposures on metastable epialleles and
imprinted genes could offer insight into the mechanisms affecting
the fetal epigenome and subsequent disease susceptibility.

Genetic stability is related to the supply of dietary one carbon
nutrients in critical periods of growth. One of the most critical
periods of growth is the intrauterine period48 and the evidence for
the importance of maternal-fetal B12 status on growth and
programming of offspring is increasing. Selected references and
reviews that relate early life nutrition to foetal growth and later
function and disease are presented in Table 1, grouped by effects
on body composition, neurodevelopment and metabolic path-
ways including insulin resistance and cancer.

Maternal nutrition and early growth
Associations of low maternal B12 concentrations and raised
homocysteine with impaired foetal growth have been demon-
strated in diverse populations49–55 and have been recently
reviewed.56 Maternal whole body rate of protein metabolism is
lower in the first trimester than second and third trimester57 and
the rate of transulphuration is higher during early gestation in
contrast to the rate of transmethylation, which is higher in the
later gestation period. This suggests a greater need for methyl
donors, betaine and folate and protein in the later stages of
pregnancy. Total body water and circulating blood volume
increase in pregnancy, which results in hemodilution. This
makes it more difficult to interpret serial changes in B12, folate
and homocysteine concentrations as pregnancy proceeds.58 Little
is known about methyl donors in breastmilk, particularly for B12
deficient mothers. We do know that offspring who breastfed until
at least two years of age have lower B12 and higher homocysteine
concentrations than those who were weaned earlier.59 Most of the
evidence is from South Asian populations where the prevalence of
vitamin B12 deficiency is high.

Neurodevelopment
Throughout the life cycle, cognitive and neurological deficits are
traditionally recognized as hallmark signs of vitamin B12
deficiency.8,41,60–65 Neural tube defects are arguably the most
severe effect. As reviewed by Godbole et al.66 the reported
incidence of neural tube defects in India is high, that is, between
0.5–11/1000 births. This is related to the poor B12 status of Indian
women.67 The closure of the neural tube takes place by 28 days of
gestation68 so optimisation of pre and periconceptional nutrition
for the mother is a target. As reviewed by Black64 neural tube
defects and other neurological problems may be partially
attributed to deficits in myelination and also to increased
inflammation. Myelin is 80% lipid and the mechanism for
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defects in myelination may be related to accumulation of MMA
and myelin destabilisation.

Insulin resistance
A series of longitudinal studies in Pune, India is providing unique
insights into the developmental origins of phenotypic features
and associations with susceptibility for chronic disease. It has been
demonstrated that newborn Indian babies, who on average are
700 g lighter than European babies, have higher subcutaneous
adiposity,38 higher levels of intra-abdominal fat69 and higher
concentrations of insulin and leptin in cord blood70 than in
European babies. Moreover, maternal vitamin B12 deficiency and
high folate status are associated with offspring insulin resistance
at 6 years71 and maternal B12 is also predictive of offspring
cognition at 9 years.65 In a study72 in Mysore, there was an
intriguing association between maternal vitamin B12 deficiency,
obesity and gestational diabetes. In an earlier publication from the
same group73,74 hyperglycemia during pregnancy was shown to
be associated with adiposity and insulin concentration of the
children at 5 years. A combination of disturbed maternal one
carbon metabolism associated with a diet high in carbohydrates
and low in protein and vitamin B12 and high in folate appear to
be important drivers of the intergenerational amplification of the
diabetes epidemic in Indians.13
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