
Math. Program., Ser. A (2013) 137:325–341
DOI 10.1007/s10107-011-0490-y

FULL LENGTH PAPER

n-Fold integer programming in cubic time

Raymond Hemmecke · Shmuel Onn ·
Lyubov Romanchuk

Received: 15 January 2011 / Accepted: 16 September 2011 / Published online: 30 September 2011
© Springer and Mathematical Optimization Society 2011

Abstract n-Fold integer programming is a fundamental problem with a variety of
natural applications in operations research and statistics. Moreover, it is universal and
provides a new, variable-dimension, parametrization of all of integer programming.
The fastest algorithm for n-fold integer programming predating the present article
runs in time O

(
ng(A)L

)
with L the binary length of the numerical part of the input

and g(A) the so-called Graver complexity of the bimatrix A defining the system. In
this article we provide a drastic improvement and establish an algorithm which runs
in time O

(
n3L

)
having cubic dependency on n regardless of the bimatrix A. Our

algorithm works for separable convex piecewise affine objectives as well. Moreover,
it can be used to define a hierarchy of approximations for any integer programming
problem.

Mathematics Subject Classification (2000) 52B · 52C · 62H · 68Q · 68R · 90B · 90C

1 Introduction

n-Fold integer programming is the following problem in variable dimension nt ,

min
{

wx : A(n)x = b , l ≤ x ≤ u , x ∈ Z
nt

}
, (1)

where w, l, u ∈ Z
nt , b ∈ Z

r+ns , and where

R. Hemmecke (B)
Technische Universität Munich, Munich, Germany
e-mail: hemmecke@ma.tum.de

S. Onn · L. Romanchuk
Technion, Israel Institute of Technology, Haifa, Israel

123

326 R. Hemmecke et al.

A(n) :=

⎛

⎜⎜⎜
⎜⎜
⎝

A1 A1 · · · A1
A2 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · A2

⎞

⎟⎟⎟
⎟⎟
⎠

(2)

is an (r + ns) × nt matrix which is the n-fold product of a fixed (r, s) × tbimatrix
A = (A1

A2

)
, that is, of a matrix A consisting of two blocks A1, A2, with A1 its r × t

submatrix consisting of the first r rows and A2 its s × t submatrix consisting of the
last s rows. Note that, while the bimatrix A is typically fixed (but arbitrary), the matrix
A(n) defining the problem (1) varies with n and results in integer programs in large
variable dimension nt . Note also that the lower and upper bound vectors l, u, as well
as the right-hand side and objective vectors b, w, are assumed to be presented in their
binary encoding (see Sect. 2 for details), and so the variables can take on very large
values. Therefore, these programs are not amenable to standard dynamic programming
techniques for integer programs with unary presented right-hand sides, such as unary
(multi)-knapsack, which lead to pseudo-polynomial algorithms only. Our algorithms
for problem (1) are genuinely polynomial.

The n-fold integer programming problem (1) is a fundamental problem with a vari-
ety of natural applications in operations research and statistics which, along with exten-
sions and variations, include multiindex and multicommodity transportation problems,
privacy and disclosure control in statistical databases, and stochastic integer program-
ming. We briefly discuss some of these applications in Sect. 5 (Corollaries 5.1 and
5.2). For more information see e.g. [4,5,7,9–12,14,15,20], [17, Chapters 4, 5], and
the references therein.

Moreover, n-fold integer programming is universal [6] and provides a new, vari-
able-dimension, parametrization of all of integer programming: every program is an
n-fold program for some m over the bimatrix A := A(m) with first block A1 the
3m × 3m identity matrix and second block A2 the (3 + m) × 3m incidence matrix of
the complete bipartite graph K3,m . We make further discussion of this in Sect. 7.

The fastest algorithm for n-fold integer programming predating the present article
is in [10] and runs in time O

(
ng(A)L

)
with L = 〈w, b, l, u〉 the binary length of the

numerical part of the input, and g(A) the so-called Graver complexity of the bimatrix
A. Unfortunately, the Graver complexity is typically very large [2,18]: for instance,
the bimatrices A(m) mentioned above have Graver complexity g(A(m)) = �(2m),
yielding polynomial but very large n�(2m) dependency of the running time on n.

In this article we provide a drastic improvement and establish an algorithm which
runs in time O

(
n3L

)
having the cubic dependency on n which is alluded to in the title,

regardless of the fixed bimatrix A. So the Graver complexity g(A) now drops down
from the exponent of n to the constant multiplying n3. This is established in Sect. 3
(Theorem 3.9). Moreover, our construction can be used to define a natural hierarchy
of approximations for (1) for the bimatrices A(m) with variable parameter m, and
therefore, by the universality theorem of [6], for any integer programming problem.
These approximations are currently under study, implementation and testing, and will
be discussed briefly in Sect. 7 and in more detail elsewhere.

123

n-Fold integer programming in cubic time 327

Our algorithm works, moreover, for certain nonlinear objective functions: using
results of [16] on certain optimality criteria, we provide in Sect. 4 an optimality cer-
tification procedure for separable convex objectives whose time complexity is linear
in n (Theorem 4.1) and an algorithm for solving problems with separable convex
piecewise affine objectives whose time complexity is again cubic in n (Theorem 4.2).
Furthermore, the algorithm also leads to the first polynomial time solution of n-fold
integer programming problems over bimatrices with variable entries (Theorem 6.2).

2 Notation and preliminaries

We start with some notation and review of some preliminaries on Graver bases and
n-fold integer programming that we need later on. See the book [17] for more details.

Graver bases were introduced in [8] as optimality certificates for integer program-
ming. Define a partial order � on R

n by x � y if xi yi ≥ 0 and |xi | ≤ |yi | for all i .
So � extends the coordinate-wise partial order ≤ on the nonnegative orthant R

n+ to
all of R

n . By a classical lemma of Gordan, every subset Z ⊆ Z
n has finitely-many

�-minimal elements, that is, x ∈ Z such that no other y ∈ Z satisfies y � x.
We have the following fundamental definition from [8].

Definition 2.1 The Graver basis of an integer m × n matrix D is defined to be the
finite set G(D) ⊂ Z

n of �-minimal elements in {x ∈ Z
n : Dx = 0, x
= 0}.

For instance, the Graver basis of the matrix D := (1 2 1) consists of 8 vectors,

G(D) = ±{ (2 − 1 0) , (0 − 1 2) , (1 0 − 1) , (1 − 1 1) } .

Consider the general integer programming problem in standard form,

min
{
wx : Dx = b , l ≤ x ≤ u , x ∈ Z

n} . (3)

A feasible step for feasible point x in (3) is any vector v such that x+v is also feasible,
that is, Dv = 0 so D(x + v) = b, and l ≤ x + v ≤ u. An augmenting step for x is a
feasible step v such that x + v is better, that is, wv < 0 so w(x + v) < wx.

Graver has shown that a feasible point x in (3) is optimal if and only if there is no
element g ∈ G(D) in the Graver basis of D which is an augmenting step for x.

This suggests the following simple augmentation scheme: start from any feasible
point in (3) and iteratively augment it to an optimal solution using Graver augmenting
steps g ∈ G(D) as long as possible. While the number of iterations in this simple
scheme as is may be exponential, it was recently shown in [10] that if in each iteration
the best possible augmenting step of the form γ g with positive integer γ and g ∈ G(D)

is taken, then the number of iterations does become polynomial. In what follows, we
call an augmenting step t which is at least as good as the best possible augmenting
step γ g with γ ∈ Z+ and g ∈ G(D), a Graver-best augmenting step. Note that a
Graver-best augmenting step t itself need not be of the form γ g with γ ∈ Z+ and
g ∈ G(D), but w(z0 + t) ≤ w(z0 + γ g) must hold for all γ ∈ Z+ and g ∈ G(D) for
which z0 + γ g is feasible.

123

328 R. Hemmecke et al.

It was shown in [5] that for fixed bimatrix A, the Graver basis G (
A(n)

)
of the n-fold

product of A can be computed in time polynomial in n. Thus, to find a Graver-best
augmenting step of the form γ g for an n-fold integer program (1), it is possible, as
shown in [10], to check each element g ∈ G (

A(n)
)
, and for each, find the best possible

step size γ . However, as we explain below, the Graver basis G (
A(n)

)
is very large.

Therefore, in this article, we do it the other way around. For each of O(n) critical
positive integer potential step sizes γ , we determine an augmenting step γ h which
is at least as good as the best possible augmenting step γ g with g ∈ G (

A(n)
)
. We

then show that the best among these steps over all such γ is a Graver-best augmenting
step.

In preparation for this, we need to review some material on Graver bases of n-fold
products. Let A be a fixed integer (r, s) × t bimatrix. For any n we write each vec-
tor x ∈ Z

nt as a tuple x = (x1, . . . , xn) of n bricks xi ∈ Z
t . It has been shown

in [1,18], and [13], in increasing generality, that for every fixed bimatrix A, the
number of nonzero bricks appearing in any element in the Graver basis G (

A(n)
)

for any n is bounded by a constant independent of n. So we can make the following
definition.

Definition 2.2 The Graver complexity of an integer bimatrix A is defined to be
the largest number g(A) of nonzero bricks gi in any element g ∈ G (

A(n)
)

for
any n.

This was used in [5] to show that the Graver basis G(A(n)) has a polynomial number
O(ng(A)) of elements and is computable in time O(ng(A)) polynomial in n. Thus, the
computation of a Graver-best augmenting step in [10] was done by finding the best
step size γ for each of these O(ng(A)) elements of G(A(n)), resulting in polynomial
but very large O(ng(A)) dependency of the running time on n. In Sect. 3 we show
how to find a Graver-best augmenting step without constructing G(A(n)) explicitly in
quadratic time O(n2) regardless of the bimatrix A and its Graver complexity. Clearly,
the running time does depend on A and g(A), but both contribute only to the constant
in front of n2 and hence they disappear in the O-notation.

We conclude this section with some remarks about complexity and finiteness. The
binary length of an integer number z is the number of bits in its binary encod-
ing, which is �(log |z|), and is denoted by 〈z〉. The binary length 〈z〉 of an inte-
ger vector z is the sum of binary lengths of its entries. We denote by L the binary
length of all numerical part of the input. In particular L = 〈w, b, l, u〉 for problem
(1). All numbers manipulated by our algorithms remain polynomial in the binary
length of the input and our algorithms are polynomial time in the Turing machine
model. But we are mostly interested in the number of arithmetic operations per-
formed (additions, multiplications, divisions, comparisons), so time in our complex-
ity statements is the number of such operations as in the real arithmetic model of
computation.

For simplicity of presentation we assume throughout that all entries of the bounds
l, u in program (1) are finite and hence the set of feasible points in (1) is finite. This
is no loss of generality since, as is well known, it is always possible to add suit-
able polynomial upper and lower bounds without excluding some optimal solution if
any.

123

n-Fold integer programming in cubic time 329

3 The algorithm

We now show how to decide if a given feasible point x = (x1, . . . , xn) in (1) is optimal
in linear time O(n), and if not, determine a Graver-best augmenting step γ g for x in
quadratic time O(n2). This is then incorporated into an iterative algorithm for solving
(1).

We begin with a lemma about elements of Graver bases of n-fold products.

Lemma 3.1 Let A = (A1
A2

)
be integer (r, s)× t bimatrix with Graver complexity g(A).

Let

Z(A) := {
z ∈ Z

t : z is the sum of at most g(A) elements of G(A2)
}
. (4)

Then for any n, any g ∈ G (
A(n)

)
and any I ⊆ {1, . . . , n}, we have

∑
i∈I gi ∈ Z(A).

Proof Consider any Graver basis element g ∈ G (
A(n)

)
for some n. Then A(n)g = 0

and hence
∑n

i=1 A1gi = 0 and A2gi = 0 for all i . Therefore (see [17, Chapter 4])

each gi can be written as the sum gi = ∑ki
j=1 hi, j of some elements hi, j ∈ G(A2) for

all i, j . Let m := k1 + · · · + kn and let h be the vector

h := (h1,1, . . . , h1,k1 , . . . , hn,1, . . . , hn,kn) ∈ Z
mt .

Then
∑

i, j A1hi, j = 0 and A2hi, j = 0 for all i, j and hence A(m)h = 0. We claim

that moreover, h ∈ G (
A(m)

)
. Suppose indirectly this is not the case. Then there is an

h̄ ∈ G (
A(m)

)
with h̄ � h. But then the vector ḡ ∈ Z

nt defined by ḡi := ∑ki
j=1 h̄

i, j

for all i satisfies ḡ � g contradicting g ∈ G (
A(n)

)
. This proves the claim. Therefore,

by Definition 2.2 of Graver complexity, the number of nonzero bricks hi, j of h is at
most g(A). So for every I ⊆ {1, . . . , n}, we have that

∑
i∈I gi = ∑

i∈I
∑ki

j=1 hi, j is

a sum of at most g(A) nonzero elements hi, j ∈ G(A2) and hence
∑

i∈I gi ∈ Z(A).
��

Example 3.2 Let A := A(3) be the (9, 6)× 9 bimatrix mentioned in the introduction,
which arises in the universality of n-fold integer programming discussed further in
Sect. 7, having first block A1 = I9 the 9 × 9 identity matrix and second block the
following 6 × 9 incidence matrix of the complete bipartite graph K3,3,

A2 =

⎛

⎜⎜⎜⎜
⎜⎜
⎝

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

⎞

⎟⎟⎟⎟
⎟⎟
⎠

.

Since A2 is totally unimodular, its Graver basis G(A2) consists of the 30 vectors in
{0,±1}9 supported on circuits of K3,3 with alternating ±1, see [17]. Also, it is known

123

330 R. Hemmecke et al.

that the Graver complexity of this bimatrix is g(A) = 9, see [2,18]. Therefore, the
set Z(A) in (4) which corresponds to A, consists of all sums of at most 9 such circuit
vectors, and turns out to be comprised of 42931 vectors in Z

9, such as

(
9 −2 −7 −4 5 −1 −5 −3 8

)
.

We now define a dynamic program, that is, a weighted digraph, which will enable
to find a Graver-best augmenting step γ g for a feasible point x of (1) or detect that
none exists.

Definition 3.3 (the dynamic program) Let A be a fixed (r, s) × t bimatrix and let
g(A) be its Graver complexity. Given n, w, b, l, u, feasible point x in (1), and positive
integer γ , define a weighted digraph as follows. Its vertices are partitioned into n + 1
stages defined in terms of the fixed finite set Z(A) ⊂ Z

t in (4), by

S0 := {0} , S1 := S2 := · · · := Sn−1 := Z(A) , Sn := {z ∈ Z(A) : A1z = 0}.

Denote the vertices of Si by hi ∈ Z
t . Introduce an arc (hi−1, hi) from hi−1 ∈ Si−1 to

hi ∈ Si if gi := hi − hi−1 ∈ Z(A) and li ≤ xi + γ gi ≤ ui , and give it weight wi gi .

To each dipath h = (h0, h1, . . . , hn) from S0 to Sn in this digraph we associate a
vector g(h) := (h1 − h0, . . . , hn − hn−1) ∈ Z

nt . Note that 0 ∈ Z(A) and hence the
trivial path h = (0, . . . , 0) with weight 0 and vector g(h) = (0, . . . , 0) always exists.
Note also that wg(h) = ∑n

i=1 wi (hi − hi−1) is precisely the weight of the dipath h.
The following lemma relates this dynamic program to Graver augmentations.

Lemma 3.4 For any fixed bimatrix A there is an algorithm that, given n, γ, w, b, l, u,
and feasible point x for (1), finds a feasible step γ g for x which satisfies w(x + γ g) ≤
w(x + γ ḡ) for any feasible step γ ḡ with ḡ ∈ G (

A(n)
)

in linear time O(n).

Proof Let h be a minimum weight dipath from S0 to Sn and let g := g(h) be the vector
associated with h. We claim that γ g is the desired feasible step for x.

We begin with the complexity statement. Since A is fixed, so is g(A), and hence so
is each Si . As the digraph is acyclic, the minimum weight dipath from S0 to hi ∈ Si

decomposes into a minimum weight dipath from S0 to some hi−1 ∈ Si−1 plus the arc
from hi−1 to hi . Thus, we have to check at most a constant number |Si−1| · |Si | of
such pairs (hi−1, hi) to find the minimum weight dipaths from S0 to every hi ∈ Si

given the minimum weight dipaths from S0 to every hi−1 ∈ Si−1. Repeating this for
each of the sets S1, . . . , Sn one after the other takes O(n) time.

We next show that γ g is a good feasible step. Since gi = hi − hi−1 and (hi−1, hi)

is an arc, we have li ≤ xi + γ gi ≤ ui , and gi ∈ Z(A) and hence A2gi = 0, for all i .
Also,

∑n
i=1 gi = hn ∈ Sn and hence

∑n
i=1 A1gi = A1hn = 0. So x+γ g is feasible in

(1). Moreover, wg = ∑n
i=1 wi gi is the weight of the minimum weight dipath h. Now

consider any feasible step γ ḡ for x with ḡ ∈ G (
A(n)

)
. Define h̄

i := ∑
j≤i ḡ j for all i .

Then h̄
i ∈ Z(A) for all i by Lemma 3.1. Moreover, A1h̄

n = A1
∑n

j=1 ḡ j = 0. There-

fore h̄
i ∈ Si for all i . Furthermore, h̄

i − h̄
i−1 = ḡi ∈ Z(A) and li ≤ xi + γ ḡi ≤ ui

123

n-Fold integer programming in cubic time 331

and therefore (h̄
i−1

, h̄
i
) is an arc of weight wi ḡi for all i . So h̄ = (h̄

0
, h̄

1
, . . . , h̄

n
) is

a dipath from S0 to Sn with weight wḡ = ∑n
i=1 wi ḡi and associated vector g(h̄) = ḡ.

Since h is a minimum weight dipath, wg ≤ wḡ and so w(x + γ g) ≤ w(x + γ ḡ). ��
Remark 3.5 (optimality certification in linear time) As noted in Sect. 2, a feasible
point x in integer program (1) is optimal if and only if there is no Graver augmenting
step g ∈ G (

A(n)
)

for x. Thus, with γ := 1, Lemma 3.4 implies that the optimality of
a feasible point x in (1) can be determined in linear time O(n).

The next lemma shows that we can quickly find a Graver-best augmentation.

Lemma 3.6 For any fixed bimatrix A there is an algorithm that, given n, w, b, l, u,
and feasible point x for (1), finds a feasible step γ g for x which satisfies w(x + γ g) ≤
w(x + γ̄ ḡ) for any feasible step γ̄ ḡ with γ̄ ∈ Z+ and ḡ ∈ G (

A(n)
)

in quadratic time
O(n2).

Proof If Z(A) = {0} then G (
A(n)

) = ∅ by Lemma 3.1, so γ g := 0 will do. Otherwise,
construct a set � of O(n) positive integers in O(n) time as follows: for every i =
1, . . . , n and every z ∈ Z(A)\{0} determine the largest nonnegative integer γ such
that li ≤ xi + γ z ≤ ui and if it is positive, include it in �. Now, for each γ ∈ �, con-
struct and solve the corresponding dynamic program, resulting in total of O(n2) time
by Lemma 3.4. Let γ g be that feasible step for x which attains minimum value wγ g
among the best steps obtained from all these dynamic programs, and let γ̄ ḡ be that
feasible step for x which attains minimum value wγ̄ ḡ among γ̄ ḡ with ḡ ∈ G (

A(n)
)

if any. Assume that wγ̄ ḡ < 0 as otherwise we are done since wγ g ≤ wγ 0 = 0.
Then γ̄ is the largest positive integer such that l ≤ x + γ̄ ḡ ≤ u since otherwise the
step (γ̄ + 1)ḡ will be feasible and better. So for some i = 1, . . . , n, it must be that
γ̄ is the largest positive integer such that li ≤ xi + γ̄ ḡi ≤ ui . Since ḡ ∈ G (

A(n)
)
, it

follows from Lemma 3.1 that ḡi ∈ Z(A). Therefore γ̄ ∈ �. Now let γ̄ ĝ be the best
step attained from the dynamic program of γ̄ . Then wγ g ≤ wγ̄ ĝ by choice of γ g and
wγ̄ ĝ ≤ wγ̄ ḡ by Lemma 3.4. Therefore w(x + γ g) ≤ w(x + γ̄ ḡ) as claimed. ��

We next show, following [10], that repeatedly applying Graver-best augmenting
steps, we can augment an initial feasible point for (1) to an optimal one efficiently.

Lemma 3.7 For any fixed bimatrix A there is an algorithm that, given n, w, b, l, u,
and feasible point x for (1), finds an optimal solution x∗ for (1) in time O(n3L).

Proof Iterate the following: find by the algorithm of Lemma 3.6 a Graver-best aug-
menting step γ g for x; if it is augmenting then set x := x+γ g and repeat, else x∗ := x
is optimal.

To bound the number of iterations, following [10], note that while x is not optimal,
and x∗ is some optimal solution, we have that x∗ − x = ∑k

i=1 γi gi is a nonnegative
integer combination of Graver basis elements gi ∈ G (

A(n)
)

all lying in the same orth-
ant, and hence each x + γi gi is feasible in (1). Moreover, by the integer Carathéodory
theorem of [3,19], we can assume that k ≤ 2(nt − 1). Letting γi gi be a summand
attaining minimum wγi gi , and letting γ g be a Graver-best augmenting step for x
obtained from the algorithm of Lemma 3.6, we find that

123

332 R. Hemmecke et al.

w(x + γ g) − wx ≤ w(x + γi gi) − wx ≤ 1

2(nt − 1)

(
wx∗ − wx

)
.

So the Graver-best augmenting step provides an improvement which is a constant
fraction of the best possible improvement, and this can be shown to lead to a bound
of O(nL) on the number of iterations to optimality, see [10] for more details. Since
each iteration takes O(n2) time by Lemma 3.6, the overall running time is O(n3L) as
claimed. ��

We next show how to find an initial feasible point for (1) with the same complexity.
We follow the approach of [5] using a suitable auxiliary n-fold program.

Lemma 3.8 For any fixed bimatrix A there is an algorithm that, given n, b, l, u, either
finds a feasible point x for (1) or asserts that none exists, in time O(n3L).

Proof Construct an auxiliary n-fold integer program

min
{

w̄z : Ā(n)z = b , l̄ ≤ z ≤ ū , z ∈ Z
n(t+2r+2s)

}
(5)

as follows. First, construct a new fixed (r, s) × (t + 2r + 2s) bimatrix Ā with

Ā1 := (
A1 Ir −Ir 0r×s 0r×s

)
Ā2 := (

A2 0s×r 0s×r Is −Is
)
.

Now, the n(t + 2r + 2s) variables z have a natural partition into nt original variables
x and n(2r + 2s) new auxiliary variables y. Keep the original lower and upper bounds
on the original variables and introduce lower bound 0 and upper bound ‖b‖∞ on each
auxiliary variable. Let the new objective w̄z be the sum of auxiliary variables. Note
that the binary length of the auxiliary program satisfies L̄ = O(L) and an initial fea-
sible point z̄ with x̄ = 0 for (5) with the original b is easy to construct. Now apply the
algorithm of Lemma 3.7 and find in time O(n3 L̄) = O(n3L) an optimal solution z
for (5). If the optimal objective value is 0 then y = 0 and x is feasible in the original
program (1) whereas if it is positive then (1) is infeasible. ��

We can now obtain the main result of this article.

Theorem 3.9 For every fixed integer (r, s) × t bimatrix A, there is an algorithm
that, given n, vectors w, l, u ∈ Z

nt and b ∈ Z
r+ns having binary encoding length

L := 〈w, b, l, u〉, solves in time O(n3L) the n-fold integer programming problem

min
{

wx : A(n)x = b , l ≤ x ≤ u , x ∈ Z
nt

}
.

Proof Use the algorithm of Lemma 3.8 to either detect infeasibility or obtain a feasible
point and augment it by the algorithm of Lemma 3.7 to optimality. ��

123

n-Fold integer programming in cubic time 333

4 Extensions to nonlinear objectives

Here we extend some of our results to programs with nonlinear objective functions,

min
{

f (x) : A(n)x = b , l ≤ x ≤ u , x ∈ Z
nt

}
. (6)

A function f : R
nt → R is separable convex if f (x) = ∑n

i=1 f i (xi) =∑n
i=1

∑t
j=1 f i

j (xi
j) with each f i

j univariate convex. In [16] it was shown that Graver
bases provide optimality certificates for problem (6) with separable convex functions
as well: a feasible point x is optimal if and only if there is no feasible Graver step g
for x which satisfies f (x + g) < f (x). This was used in [10] to provide polynomial
time procedures for optimality certification and solution of problem (6) with separa-
ble convex functions f . However, this involved again checking each of the O(ng(A))

elements of G (
A(n)

)
.

Our results from Sect. 3 can be extended to provide linear time optimality certifi-
cation for separable convex functions and a cubic time solution of (6) for separable
convex piecewise affine functions. We discuss these respectively next.

4.1 Optimality certification for separable convex objectives

Here we assume that the objective function f is presented by a evaluation oracle that,
when queried on a vector x, returns the values f i (xi) for all i = 1, . . . , n. The time
complexity now measures the number of arithmetic operations and oracle queries.

Theorem 4.1 For any fixed bimatrix A, there is an algorithm that, given n, b, l, u,
separable convex f presented by an evaluation oracle, and feasible point x in program
(6), either asserts that x is optimal or finds an augmenting step g for x which satisfies
f (x + g) ≤ f (x + ḡ) for any feasible step ḡ ∈ G (

A(n)
)
, in linear time O(n).

Proof Given the feasible point x, set a dynamic program similar to that in Defini-
tion 3.3, with γ := 1, with the only modification that the weight of arc (hi−1, hi) from
hi−1 ∈ Si−1 to hi ∈ Si is now defined to be f i (xi +gi)− f i (xi) with gi := hi −hi−1.
Then, for every dipath h and its associated vector g := g(h), we now have

f (x + g) − f (x) =
n∑

i=1

(
f i (xi + gi) − f i (xi)

)
= weight of dipath h.

We now claim that the desired step is the vector g := g(h) associated with a minimum
weight dipath h in this dynamic program. Indeed, an argument similar to that in the
proof of Lemma 3.4 now implies that for any feasible step ḡ ∈ G (

A(n)
)

we have
f (x + g) − f (x) ≤ f (x + ḡ) − f (x) and therefore f (x + g) ≤ f (x + ḡ). ��

123

334 R. Hemmecke et al.

4.2 Optimization of separable convex piecewise affine objectives

In [10] it was shown that problem (6) can be solved for any separable convex function
in polynomial time, but with very large dependency of O(ng(A)) of the running time
on n, with the exponent g(A) depending on the bimatrix A. Here we restrict attention
to separable convex objective functions which are piecewise affine, for which we are
able to reduce the time dependency on n to O(n3) independent of A. Clearly, the con-
stant term in front of n3 does depend on A. However, the dependence on A is removed
from the exponent of n.

So we assume again that f (x) = ∑n
i=1 f i (xi) = ∑n

i=1
∑t

j=1 f i
j (xi

j) with each

f i
j : R → R univariate convex. Moreover, we now also assume that for some fixed

p, each f i
j is p-piecewise affine, that is, the interval between the lower bound lij and

upper bound ui
j is partitioned into at most p intervals with integer end-points, and the

restriction of f i
j to each interval k is an affine function wi

j,k xi
j +ai

j,k with all wi
j,k, ai

j,k
integers. We denote by 〈 f 〉 the binary length of f which is the sum of binary lengths
of all interval end-points and wi

j,k, ai
j,k needed to describe it. The binary length of the

input for the nonlinear problem (6) is now L := 〈 f, b, l, u〉.
Theorem 4.2 For any fixed p and bimatrix A, there is an algorithm that, given
n, b, l, u, and separable convex p-piecewise affine f , solves in time O(n3L) the pro-
gram

min
{

f (x) : A(n)x = b , l ≤ x ≤ u , x ∈ Z
nt

}
.

Proof We need to establish analogs of some of the lemmas of Sect. 3 for such objec-
tive functions. First, for the analog of Lemma 3.4, proceed as in the proof of Theo-
rem 4.1 above: given a feasible point x and positive integer γ , set again a dynamic
program similar to that in Definition 3.3, with the weight of arc (hi−1, hi) from
hi−1 ∈ Si−1 to hi ∈ Si defined to be f i (xi + γ gi) − f i (xi) with gi := hi −
hi−1. A similar argument to that in the proof of Lemma 3.4 now shows that γ g with
g := g(h) the vector associated with the minimum weight dipath h is a feasible
step for x which satisfies f (x + γ g) ≤ f (x + γ ḡ) for any feasible step γ ḡ with
ḡ ∈ G (

A(n)
)
.

For the analog of Lemma 3.6, we construct again a set � of critical step sizes γ as
follows. First, as in the proof of Lemma 3.6, we collect the critical step sizes due to
the lower and upper bound constraints by finding, for every i = 1, . . . , n and every
z ∈ Z(A)\{0}, the largest nonnegative integer γ such that li ≤ xi + γ z ≤ ui , and if
it is positive, include it in �. However, in contrast to Lemma 3.6, we are now dealing
with the more general class of piecewise affine objective functions f i

j . So we must
add also the following values γ to �: for every i = 1, . . . , n, every z ∈ Z(A)\{0}, and
every j = 1, . . . , t , if xi

j + γ z j and xi
j + (γ + 1)z j belong to different affine pieces

of f i
j , then γ and γ + 1 are included in �, if the bounds li

j ≤ xi
j + γ z j ≤ ui

j and

li
j ≤ xi

j + (γ + 1)z j ≤ ui
j are satisfied. Finally, for technical reasons (see below), we

include γ = 1 into �. Since the number p of affine pieces is constant, the number of

123

n-Fold integer programming in cubic time 335

such values for each i, z and j is also constant. So the total number of elements of �

remains linear and it can be constructed in linear time O(n) again. By construction,
the set � has the following nice property: if we order the elements in � by increasing
value and if we then choose two consecutive values γ1 < γ2, then either γ2 = γ1 + 1
or for all values γ ∈ [γ1, γ2] the corresponding dynamic programming programming
graphs are the same (as in the pure linear case) and the piece-wise affine linear objec-
tive function is linear (as, by construction, there is no change between linear pieces in
the given interval [γ1, γ2]). Hence, as in the pure linear case, we only need to solve the
dynamic program for the endpoints of the interval: γ = γ1 and γ = γ2 (which both lie
in �). In order to cover all such intervals, it is necessary to include γ = 1 into � to have
definitely available also the left endpoint for the interval of smallest γ -values, a simple
technicality.

Now we continue as in the proof of Lemma 3.6: for each γ in �, using the analog
of Lemma 3.4 established in the first paragraph above, we solve the corresponding
dynamic program in O(n) time, resulting in total of O(n2) time again. Let γ g be
that feasible step for x which attains minimum value f (x + γ g) among the best steps
obtained from all these dynamic programs, and let γ̄ ḡ be that feasible step for x which
attains minimum value f (x + γ̄ ḡ) among γ̄ ḡ with ḡ ∈ G (

A(n)
)

if any. It now follows
from the construction of � that if γ̄ ḡ is augmenting, namely, if f (x+ γ̄ ḡ)− f (x) < 0,
then γ̄ ∈ �, as otherwise the step (γ̄ + 1)ḡ will be feasible and better. Let γ̄ ĝ be the
best step attained from the dynamic program of γ̄ . Then

f (x + γ g) ≤ f (x + γ̄ ĝ) ≤ f (x + γ̄ ḡ)

where the first inequality follows from the choice of γ g and the second inequality
follows from the analog of Lemma 3.4. Therefore f (x + γ g) ≤ f (x + γ̄ ḡ).

For the analog of Lemma 3.7, we use the results of [10] incorporating the optimal-
ity criterion of [16], which assure that the number of iterations needed when using
a Graver-best augmenting step at each iteration, is bounded by O(n 〈 f 〉) = O(nL),
resulting again in overall time complexity O(n3L) for augmenting an initial feasible
point to an optimal solution of (6). Since an initial feasible point if any can be found
by Lemma 3.8 as before in the same complexity, the theorem now follows. ��

5 Some consequences

Here we briefly discuss two of the many consequences of n-fold integer programming
which, now with our new algorithm, can be solved drastically faster than before.

5.1 Nonlinear multicommodity transportation

The multicommodity transportation problem seeks minimum cost routing of l com-
modities from m suppliers to n consumers subject to supply, consumption and capacity
constraints. For l = 1 this is the classical transportation problem which is efficiently
solvable by linear programming. But already for l = 2 it is NP-hard. Here we consider
the problem with fixed (but arbitrary) number l of commodities, fixed (but arbitrary)

123

336 R. Hemmecke et al.

number m of suppliers, and variable number n of consumers. This is natural in typical
applications where few facilities serve many customers.

The data is as follows. Each supplier i has a supply vector si ∈ Z
l+ with si

k its sup-

ply in commodity k. Each consumer j has a consumption vector c j ∈ Z
l+ with c j

k its
consumption in commodity k. The amount of commodity k to be routed from supplier
i to consumer j is an integer decision variable x j

i,k . The total amount
∑l

k=1 x j
i,k of

commodities routed on the channel from i to j should not exceed the channel capac-

ity ui, j , and has cost fi, j

(∑l
k=1 x j

i,k

)
for suitable univariate functions fi, j . We can

handle standard linear costs as well as more realistic, convex piecewise affine cost
functions fi, j , which account for channel congestion under heavy routing.

As a corollary of Theorem 4.2, for any fixed numbers l of commodities and m of
suppliers, the problem can be solved in time cubic in the number n of consumers.

Corollary 5.1 For every fixed l commodities, m suppliers, and p, there exists an
algorithm that, given n consumers, supplies and demands si , c j ∈ Z

l+, capacities
ui, j ∈ Z+, and convex p-piecewise affine costs fi, j : Z → Z, solves in time O(n3L),
with L := 〈si , c j , ui, j , fi, j 〉, the integer multicommodity transportation problem

min

⎧
⎨

⎩

m∑

i=1

n∑

j=1

fi, j

⎛

⎝
l∑

k=1

x j
i,k

⎞

⎠ : x j
i,k ∈ Z+,

∑

j

x j
i,k = si

k ,
∑

i

x j
i,k = c j

k ,

l∑

k=1

x j
i,k ≤ ui, j

⎫
⎬

⎭
.

Proof Introduce new variables y j
i and equations y j

i = ∑l
k=1 x j

i,k for all i, j . Then

the objective function becomes
∑

i, j fi, j (y j
i) which is separable convex p-piecewise

affine in the new variables, and the capacity constraints become y j
i ≤ ui, j which are

upper bounds on the new variables. Use ui, j as an upper bound on x j
i,k and 0 as a

trivial lower bound on y j
i for all i, j, k. As shown in [11], arranging the original and

new variables in a tuple z = (z1, . . . , zn) of n bricks z j ∈ Z
m(l+1) defined by

z j : = (x j
1,1, . . . , x j

1,l , y j
1 , x j

2,1, . . . , x j
2,l , y j

2 , . . . , x j
m,1, . . . , x j

m,l , y j
m)

this problem can be modeled as an n-fold program, over a suitable (r, s) × t bimatrix
A with r = lm, s = l + m, and t = m(l + 1), resulting in solution in large time
O

(
ng(A)L

)
, with exponent depending on l, m. Theorem 4.2 now enables solution in

cubic time independent of the numbers l of commodities and m of suppliers. ��

5.2 Privacy in statistical databases

A common practice in the disclosure of sensitive data contained in a multiway table
is to release some of the table margins rather than the entries of the table. Once the
margins are released, the security of any specific entry of the table is related to the set
of possible values that can occur in that entry in all tables having the same margins
as those of the source table in the database, see [7,20] and the references therein. In
particular, if this set is small or consists of a unique value, that of the source table, then

123

n-Fold integer programming in cubic time 337

this entry can be exposed. Thus, it is desirable to compute the minimum and maximum
integer values that can occur in an entry, which in particular are equal if and only if
the entry value is unique, before margin disclosure is enabled.

Consider (d + 1)-way tables of format m0 ×· · ·× md , that is, arrays v = (vi0,...,id)

indexed by 1 ≤ i j ≤ m j for all j , with all entries vi0,...,id nonnegative integers. Our
results hold for arbitrary hierarchical margins, but for simplicity we restrict attention
to disclosure of d-margins, that is, the d + 1 many d-way tables (vi0,...,i j−1,∗,i j+1,...,id)

obtained from v by collapsing one factor 0 ≤ j ≤ d at a time, with entries given by

vi0,...,i j−1,∗,i j+1,...,id :=
m j∑

i j =1

vi0,...,i j−1,i j ,i j+1,...,id , 1 ≤ ik ≤ mk, 0 ≤ k ≤ d, k
= j.

The problem is then to compute the minimum and maximum integer values that can
occur in an entry subject to the margins of the source table in the database.

This problem is NP-hard already for 3-way tables of format n × m × 3, see [6].
However, as a corollary of Theorem 3.9, if only one side n of the table is variable, the
problem can be solved in cubic time regardless of the other sides mi as follows.

Corollary 5.2 For every fixed d, m1, . . . , md, there is an algorithm that, given n :=
m0, integer d-margins (v∗,i1,...,id), . . . , (vi0,...,id−1,∗), and index (k0, . . . , kd), deter-
mines, in time O(n3L), with L the binary length of the given margins, the minimum
and maximum values of entry xk0,...,kd among all tables with these margins, that is,
solves

min / max
{

xk0,...,kd : x ∈ Z
n×m1×···×md+ , (xi0,...,i j−1,∗,i j+1,...,id) = (vi0,...,i j−1,∗,i j+1,...,id) ∀ j

}
.

Proof Let u be the maximum value of any entry in the given margins and use it
as an upper bound on every variable. As shown in [5], this problem can be mod-
eled as an n-fold integer programming problem, over a suitable (r, s) × t bimatrix
A with t = r = m1m2 . . . md and s = ∑d

k=1
∏

i
=k mi , resulting in solution in

large running time O
(
ng(A)L

)
, with exponent which depends on m1, . . . , md . The-

orem 3.9 now enables to solve it in cubic time independent of the table dimensions
m1, . . . , md . ��

We note that long tables, with one side much larger than the others, often arise in
practical applications. For instance, in health statistical tables, the long factor may be
the age of an individual, whereas other factors may be binary (yes-no) or ternary (sub-
normal, normal, and supnormal). Moreover, it is always possible to merge categories
of factors, with the resulting coarser tables approximating the original ones, making
the algorithm of Corollary 5.2 applicable.

We also note that, by repeatedly incrementing a lower bound and decrementing an
upper bound on the entry xk0,...,kd , and computing its new minimum and maximum
values subject to these bounds, we can produce the entire set of values that can occur
in that entry in time proportional to the number of such values.

123

338 R. Hemmecke et al.

6 Solvability over bimatrices with variable entries

The drop of the Graver complexity from the exponent of n to the constant multiple
also leads to the first polynomial time solution of n-fold integer programming with
variable bimatrices. Of course, by the universality of n-fold integer programming, the
variability of the bimatrices must be limited. In what follows, we fix the dimensions
r, s, t of the input bimatrix A, and let the entries vary. We show that, given as part of
the input an upper bound a on the absolute value of every entry of A, we can solve
the problem in time polynomial in a, that is, polynomial in the unary length of a. This
holds for linear as well as separable convex piecewise affine objectives. Before we
state our complexity result, let us prove a useful bound on the Graver complexity of
A in this case.

Lemma 6.1 For any fixed r, s, t , and fixed (r, s)×t bimatrix A with all entries bounded
by a, the Graver complexity g(A) of A is bounded by g(A) = O(ars+st+r).

Proof Let G(A2) be the Graver basis of the s×t second block A2 of A, let q := |G(A2)|
be its cardinality, and arrange its elements as the columns of a t × q matrix G2. Since
r, s, t are fixed, it follows from bounds on Graver bases (see e.g. [17, Section 3.4])
that every g ∈ G(A2) satisfies ‖g‖∞ = O(as) and hence q = O(ast).

Now, it is known (see [13,18] or [17, Section 4.1]) that the Graver complexity
g(A) of A is equal to the maximum value ‖v‖1 of any element v in the Graver basis
G(A1G2) of the r ×q matrix A1G2. Since the entries of A1G2 are bounded in absolute
value by O(as+1), the bounds on Graver bases (see again [17, Section 3.4]) imply that
‖v‖1 = O(q · (as+1)r) for every v ∈ G(A1G2) and hence g(A) = O(ars+st+r). ��

We now have the following theorem, with L := 〈 f, a, b, l, u〉 the length of the
input.

Theorem 6.2 For any fixed r, s, t and p, there is an algorithm that, given n, a, (r, s)×t
bimatrix A with all entries bounded by a in absolute value, b, l, u, and separable con-
vex p-piecewise affine f , in polynomial time O(a3t (rs+st+r+s)n3L), solves

min
{

f (x) : A(n)x = b , l ≤ x ≤ u , x ∈ Z
nt

}
.

Proof Let G(A2) again denote the Graver basis of the s×t second block A2 of A. From
the proof of Lemma 6.1 we get that the maximum value of ‖g‖∞ over all g ∈ G(A2)

is O(as). Now, consider the following set defined in (4) in Lemma 3.1,

Z(A) := {
z ∈ Z

t : z is the sum of at most g(A) elements of G(A2)
}
.

For each z ∈ Z(A) we have that ‖z‖∞ is bounded by g(A) times the maximum value
of ‖g‖∞ over all g ∈ G(A2), and therefore, by Lemma 6.1, ‖z‖∞ = O(g(A) · as) =
O(ars+st+r+s). So the cardinality of Z(A) satisfies |Z(A)| = O((ars+st+r+s)t) =
O(at (rs+st+r+s)).

Now, suitable analogs of some of the lemmas of Sect. 3 go through, except that
the complexities now depend on the variable size of the set Z(A), as follows. The

123

n-Fold integer programming in cubic time 339

time complexity of the algorithm of Lemma 3.4 becomes O(|Z(A)|2n). The size of
the set � of critical values is now O(|Z(A)|n) and therefore the time complexity of
the algorithm of Lemma 3.6 now becomes O(|Z(A)|3n2). The number of iterations
needed to augment an initial feasible point to an optimal solution remains O(nL)

as before and therefore the time complexity of the algorithm of Lemma 3.7 now
become O(|Z(A)|3n3L). To find an initial feasible point, one can use the algorithm of
Lemma 3.8, but then t would have to be replaced by t + 2r + 2s for the auxiliary bim-
atrix Ā, resulting in a somewhat larger exponent for a in the running time. However, it
is possible to find an initial feasible point in an alternative, somewhat more involved
way, keeping the original system with the bimatrix A, as follows. First find an integer
solution to the system of equations only (without the lower and upper bounds) using
the Hermite normal forms of the blocks A1 and A2. Second, relax the bounds so as to
make that point feasible. Third, minimize the following auxiliary objective function
which is separable convex 3-piecewise affine, with

f i
j (xi

j) :=

⎧
⎪⎪⎨

⎪⎪⎩

li
j − xi

j , if xi
j ≤ li

j ,

0, if li
j ≤ xi

j ≤ ui
j ,

xi
j − ui

j , if xi
j ≥ ui

j .

If the optimal value is zero then the optimal auxiliary solution is feasible in the original
problem, whereas if it is positive then the original problem is infeasible. Since this mini-
mization can be done using the separable convex piecewise affine analog of Lemma 3.7
described in the proof of Theorem 4.2 in the same complexity O(|Z(A)|3n3L), the
overall running time is O(a3t (rs+st+r+s)n3L) as claimed. ��

7 Parametrization and approximation hierarchy

We conclude with a short discussion of the universality of n-fold integer programming
and the resulting parametrization and simple approximation hierarchy for all of integer
programming. As mentioned in the introduction, every integer program is an n-fold
program for some m over the bimatrix A(m) having first block the identity matrix I3m

and second block the (3 + m) × 3m incidence matrix of K3,m . It is convenient and
illuminating to introduce also the following description.

Consider the following special form of the n-fold product operator. For an s × t
matrix D, let D[n] := A(n) where A is the (t, s) × t bimatrix A = (A1

A2

)
with first

block A1 := It the t × t identity matrix and second block A2 := D. We consider
such m-fold products of the 1 × 3 matrix (1 1 1). Note that (1 1 1)[m] is precisely the
(3 + m) × 3m incidence matrix of the complete bipartite graph K3,m . For instance,

(1 1 1)[2] =

⎛

⎜
⎜⎜⎜
⎝

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 1 1 0 0 0
0 0 0 1 1 1

⎞

⎟
⎟⎟⎟
⎠

.

123

340 R. Hemmecke et al.

The following theorem was established in [6].
The Universality Theorem [6] Every (bounded) integer programming problem
min{cy : y ∈ Z

k+, V y = v} is polynomial time equivalent to some integer program

min
{

wx : x ∈ Z
3mn+ , (1 1 1)[m][n]x = b

} ∼= min
{

wx : x ∈ Z
3mn+ , A(m)(n)x = b

}
.

This theorem provides a new, variable dimension, parametrization of integer pro-
gramming: for each fixed value of the parameter m, the resulting programs above
with variable parameter n live in variable dimension 3mn and include natural mod-
els such as those described in Sect. 5, and can be solved in cubic time O(n3L) by
Theorem 3.9; and when the parameter m varies, every integer program appears for
some m.

Our new algorithm suggests a natural simple approximation hierarchy for integer
programming, parameterized by degree d, as follows. Fix any d. Then given any m,
let A := A(m), so t = 3m, A1 = I3m , and A2 is the incidence matrix of K3,m . Define
the approximation at degree d of the set Z(A) in Eq. (4) in Lemma 3.1 by

Zd(m) :=
{

z ∈ Z
3m : z is the sum of at most d elements of G(A2)

}
. (7)

Since A2 is totally unimodular, G(A2) consists of the O(m3) vectors in {0,±1}3m

supported on circuits of K3,m with alternating ±1 and hence |Zd(m)| = O(m3d).
Now, given a feasible point x in the universal program above, and positive integer

γ , set a dynamic program similar to that in Definition 3.3, with the only modifica-
tion that the sets Si are defined using the approximation Zd(m) of Z(A). Weaker
forms of Lemmas 3.4 and 3.6 now assert that in time O(|Zd(m)|2n2) = O(m6dn2),
which is polynomial in both m and n, we can find a good feasible step γ g. We use
this iteratively to augment an initial feasible point to one which is as good as pos-
sible and output it. However, Lemma 3.1 no longer holds and not all brick sums of
elements of the Graver basis G(A(n)) lie in Zd(m). So the bounds on the number of
iterations and total running time are no longer valid and the output point may be non
optimal.

By increasing the degree d we can get better approximations at increasing running
times, and when d = g(A) we get the true optimal solution. These approximations
are currently under study, implementation and testing. They show promising behavior
already at degree d = 3 and will be discussed in more detail elsewhere.

For m = 3, discussed in Example 3.2, for which the universal problem is equiv-
alent to optimization over 3-way n × 3 × 3 tables, the approximation Z3(3) at de-
gree d = 3 contains only 811 vectors out of the 42931 vectors in the true Z(A),
such as

(−3 2 1 2 −3 1 1 1 −2
)
.

Acknowledgments Shmuel Onn is supported in part by the Israel Science Foundation. Lyubov Roman-
chuk is supported in part by the Technion Graduate School.

123

n-Fold integer programming in cubic time 341

References

1. Aoki, S., Takemura, A.: Minimal basis for connected Markov chain over 3×3× K contingency tables
with fixed two-dimensional marginals. Aust. New Zeal. J. Stat. 45, 229–249 (2003)

2. Berstein, Y., Onn, S.: The Graver complexity of integer programming. Ann. Combin. 13, 289–296
(2009)

3. Cook, W., Fonlupt, J., Schrijver, A.: An integer analogue of Carathéodory’s theorem. J. Combin.
Theory Ser. B 40, 63–70 (1986)

4. De Loera, J., Hemmecke, R., Onn, S., Rothblum, U.G., Weismantel, R.: Convex integer maximization
via Graver bases. J. Pure Appl. Algebra 213, 1569–1577 (2009)

5. De Loera, J.A., Hemmecke, R., Onn, S., Weismantel, R.: N-fold integer programming. Discret. Optim.
5, 231–241 (2008). (Volume in memory of George B. Dantzig)

6. De Loera, J.A., Onn, S.: All linear and integer programs are slim 3-way transportation programs. SIAM
J. Optim. 17, 806–821 (2006)

7. Dobra, A., Fienberg, S.E., Rinaldo, A., Slavković, A., Zhou, Y.: Algebraic statistics and contingency
table problems: log-linear models, likelihood estimation, and disclosure limitation. In: Emerging Appli-
cations of Algebraic Geometry: IMA Volumes in Mathematics and its Applications, vol. 148, pp. 63–88.
Springer (2009)

8. Graver, J.E.: On the foundation of linear and integer programming I. Math. Program. 9, 207–226 (1975)
9. Hemmecke, R., Köppe, M., Weismantel, R.: A polynomial-time algorithm for optimizing over N-fold

4-block decomposable integer programs. In: IPCO, vol. 14 (2010)
10. Hemmecke, R., Onn, S., Weismantel, R.: A polynomial oracle-time algorithm for convex integer

minimization. Math. Program. 126, 97–117 (2011)
11. Hemmecke, R., Onn, S., Weismantel, R.: N-fold integer programming and nonlinear multi-

transshipment. Optim. Lett. 5, 13–25 (2011)
12. Hemmecke, R., Schultz, R.: Decomposition of test sets in stochastic integer programming. Math.

Program. 94, 323–341 (2003)
13. Hoşten, S., Sullivant, S.: Finiteness theorems for Markov bases of hierarchical models. J. Combin.

Theory Ser. A 114, 311–321 (2007)
14. Kobayashi, Y., Murota, K., Weismantel, R.: Cone superadditivity of discrete convex functions. Math.

Program. (to appear). doi:10.1007/s10107-011-0447-1
15. Louveaux, F.V., Schultz, R.: Stochastic integer programming. In: Handbooks in Operations Research

and Management Science, vol. 10 pp. 213–266. Elsevier (2003)
16. Murota, K., Saito, H., Weismantel, R.: Optimality criterion for a class of nonlinear integer programs.

Oper. Res. Lett. 32, 468–472 (2004)
17. Onn, S.: Nonlinear Discrete Optimization. Zurich Lectures in Advanced Mathematics. Eur. Math. Soc.

x+137 pp. (September 2010)
18. Santos, F., Sturmfels, B.: Higher Lawrence configurations. J. Combin. Theory Ser. A 103, 151–164

(2003)
19. Sebö, A.: Hilbert Bases, Carathéodory’s Theorem and Combinatorial Optimization. pp. 431–607.

vol. 1, Waterloo University Press, IPCO, Waterloo (1990)
20. Slavković, A.B., Zhu, X., Petrović, S.: A sample space of k-way tables given conditionals and their

relations to marginals: Implications for cell bounds and Markov bases. Preprint, 35 pp. (2009)

123

http://dx.doi.org/10.1007/s10107-011-0447-1

Copyright of Mathematical Programming is the property of Springer Science & Business Media B.V. and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

