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1. INTRODUCTION

In this article, we state and prove numerous second-order
nonparametric duality results under various generalized (� , �,�, �, �)-
sounivexity assumptions for the following semi-infinite discrete minmax
fractional programming problem:

(P ) Minimize max
1≤i≤p

fi(x)
gi(x)

subject to

Gj(x , t) ≤ 0 for all t ∈ Tj , j ∈ q ,

Hk(x , s) = 0 for all s ∈ Sk , k ∈ r ,

x ∈ X ,
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where p, q , and r are positive integers, X is a nonempty open convex subset
of �n (n-dimensional Euclidean space), for each j ∈ q ≡ �1, 2, � � � , q� and
k ∈ r , Tj , and Sk are compact subsets of complete metric spaces, for each
i ∈ p, fi and gi are real-valued functions defined on X , for each j ∈ q ,
z → Gj(z, t) is a real-valued function defined on X for all t ∈ Tj , for each
k ∈ r , z → Hk(z, s) is a real-valued function defined on X for all s ∈ Sk , for
each j ∈ q and k ∈ r , t → Gj(x , t) and s → Hk(x , s) are continuous real-
valued functions defined, respectively, on Tj and Sk for all x ∈ X , and for
each i ∈ p, gi(x) > 0 for all x satisfying the constraints of (P ).

The present study is essentially a continuation of the investigation
initiated in the companion articles [73, 74]. In [73], some information
about discrete minmax fractional programming is presented, the current
status of semi-infinite programming is briefly discussed and numerous key
references are cited, an overview of the concept of invexity and some
of its extensions is given, and a fairly large number of sets of global
nonparametric sufficient optimality results under various generalized
(�, �)-invexity assumptions are established. In [74], a number of first-
order nonparametric duality models are formulated and various weak,
strong, and strict converse duality theorems are proved under appropriate
generalized (�, �)-invexity conditions. For the necessary background
material and preliminaries, the reader is referred to [73, 74]. Here we shall
make use of some much broader classes of generalized convex functions to
construct several second-order nonparametric duality models for (P ) and
prove appropriate duality theorems.

Second-order duality for a conventional nonlinear programming
problem of the form

(P0) Minimize f (x) subject to gi(x) ≤ 0, i ∈ m, x ∈ �n ,

where f and gi , i ∈ m, are real-valued functions defined on �n , was initially
considered by Mangasarian [44]. The idea underlying his approach to
constructing a second-order dual problem was based on taking linear and
quadratic approximations of the objective and constraint functions about
an arbitrary but fixed point, forming the Wolfe dual of the approximated
problem, and then letting the fixed point to vary. More specifically, he
formulated the following second-order dual problem for (P0):

(D0) Maximize f (y) +
m∑
i=1

uigi(y) − 1
2

〈
z,

[
	2f (y) +

m∑
i=1

ui	
2gi(y)

]
z
〉

subject to

	 f (y) +
m∑
i=1

ui	gi(y) +
[
	2f (y) +

m∑
i=1

ui	
2gi(y)

]
z = 0,

y, z ∈ �n , u ∈ �m , u ≥ 0,
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where 	F (y) and 	2F (y) are, respectively, the gradient and Hessian of the
function F : �n → � evaluated at y, and 〈a, b〉 denotes the inner product
of the vectors a and b. Imposing somewhat complicated conditions on f ,
gi , i ∈ m, and z, he proved weak, strong, and converse duality theorems
for (P0) and (D0).

Reconsidering Mangasarian’s second-order dual problem, Mond [49]
established some duality results under relatively simpler conditions
involving a certain second-order generalization of the concept of convexity,
pointed out some possible computational advantages of second-order
duality results, and also studied a pair of second-order symmetric dual
problems. Subsequently, Mond’s original notion of second-order convexity
was generalized by other authors in different ways and utilized for
establishing various second-order duality results for several classes of
nonlinear programming problems. For brief accounts of the evolution of
these generalized second-order convexity concepts, the reader is referred
to [3, 14, 33, 52, 53], and for more information about second- and higher-
order duality results, the reader may consult [1–11, 13, 14, 16–31, 33–
40, 43–50, 52–54, 56–71, 75, 76].

Althoughpresently various second-orderduality resultsexist in therelated
literature for several classes of mathematical programming problems with a
finite number of constraints, so far no such results are available for any kind
of semi-infinite minmax fractional programming problems. To the best of
ourknowledge,all thesecond-ordernonparametricduality resultsestablished
in this article are new in the area of semi-infinite programming.

The rest of this article is organized as follows. In Section 2, we recall
a few definitions and auxiliary results that will be needed in the sequel.
In Section 3, we consider two second-order nonparametric duality models
with simple constraint structures and establish duality under appropriate
(� , �,�, �, �)-sounivexity hypotheses. In Section 4, we present two
parameter-free duality models with relatively more flexible constraint
structures for which duality can be proved under a greater variety of
generalized (� , �,�, �, �)-sounivexity conditions. We continue our
discussion of second-order duality in Section 5 where we use a certain
partitioning scheme and construct two generalized second-order
nonparametric duality models and obtain several duality results under
various generalized (� , �,�, �, �)-sounivexity assumptions. Finally, in
Section 6 we summarize our main results and also point out some further
research opportunities arising from certain modifications of the principal
problem model considered in this article.

Evidently, all the duality results established in this article can easily
be modified and restated for each one of the following seven classes of
nonlinear programming problems, which are special cases of (P ):

(P1) Minimize
x∈�

f1(x)
g1(x)

;
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(P2) Minimize
x∈�

max
1≤i≤p

fi(x);

(P3) Minimize
x∈�

f1(x),

where � (assumed to be nonempty) is the feasible set of (P ), that is,

� = �x ∈ X : Gj(x , t) ≤ 0 for all t ∈ Tj , j ∈ q ,

Hk(x , s) = 0 for all s ∈ Sk , k ∈ r �;

(P4) Minimize max
1≤i≤p

fi(x)
gi(x)

subject to

G̃j(x) ≤ 0, j ∈ q , H̃k(x) = 0, k ∈ r , x ∈ X ,

where fi and gi , i ∈ p, are as defined in the description of (P ), and G̃j ,
j ∈ q , and H̃k , k ∈ r , are real-valued functions defined on X ;

(P5) Minimize
x∈�

f1(x)
g1(x)

;

(P6) Minimize
x∈�

max
1≤i≤p

fi(x);

(P7) Minimize
x∈�

f1(x),

where � is the feasible set of (P4), that is,

� = �x ∈ X : G̃j(x) ≤ 0, j ∈ q , H̃k(x) = 0, k ∈ r ��

Since in most cases these results can easily be altered and rephrased for
each one of the above seven problems, we shall not state them explicitly.

2. PRELIMINARIES

In this section, we recall, for convenience of reference, the definitions
of certain classes of generalized convex functions which will be needed in
the sequel. For a brief discussion of the origins and predecessors of these
functions as well as numerous relevant references, the reader is referred
to [73].

Definition 2.1. Let f be a differentiable real-valued function defined
on �n . Then f is said to be �-invex (invex with respect to �) at y if there
exists a function � : �n × �n → �n such that for each x ∈ �n ,

f (x) − f (y) ≥ 〈	 f (y), �(x , y)〉;
f is said to be �-invex on �n if the above inequality holds for all x , y ∈ �n .
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From this definition it is clear that every differentiable real-valued
convex function is invex with �(x , y) = x − y. This generalization of the
concept of convexity was originally proposed by Hanson [32], who showed
that for a nonlinear programming problem of the form

Minimize f (x) subject to gi(x) ≤ 0, i ∈ m, x ∈ �n ,

where the differentiable functions f , gi : �n → �, i ∈ m, are invex with
respect to the same function � : �n × �n → �n , the Karush-Kuhn-Tucker
necessary optimality conditions are also sufficient. The term invex (for
invariant convex) was coined by Craven [15] to signify the fact that
the invexity property, unlike convexity, remains invariant under bijective
coordinate transformations.

In a similar manner, one can readily define �-pseudoinvex and �-
quasiinvex functions as generalizations of differentiable pseudoconvex and
quasiconvex functions.

The notion of invexity has been generalized in several directions. For
our present purposes, we shall need two simple extensions of invexity,
namely, �-invexity and � -convexity which were originally defined in [34,
41], respectively.

Let � be a function from �n × �n to �n , and let h be a differentiable
real-valued function defined on �n .

Definition 2.2. The function h is said to be (�, �)-invex at x∗ if there
exists � ∈ � such that for each x ∈ �n ,

h(x) − h(x∗) ≥ 〈	h(x∗), �(x , x∗)〉 + �‖x − x∗‖2�

An � -convex function is defined in terms of a sublinear function, that
is, a function that is subadditive and positively homogeneous.

Definition 2.3. A function � : �n → � is said to be sublinear(superlinear)
if � (x + y) ≤ (≥)� (x) + � (y) for all x , y ∈ �n , and � (ax) = a� (x) for all
x ∈ �n and a ∈ �+ ≡ [0,∞).

Now combining the definitions of � -convex and (�, �)-invex functions,
we can define (� , �)-convex, (� , �)-pseudoconvex, and (� , �)-quasiconvex
functions.

Let g be a differentiable real-valued function defined on �n , and
assume that for each x , y ∈ �n , the function � (x , y; ·) : �n → � is sublinear.

Definition 2.4. The function g is said to be (� , �)-convex at y if there
exists a real number � such that for each x ∈ �n ,

g (x) − g (y) ≥ � (x , y;	g (y)) + �‖x − y‖2�



1270 G. J. Zalmai

Definition 2.5. The function g is said to be (� , �)-pseudoconvex at y if
there exists a real number � such that for each x ∈ �n ,

� (x , y;	g (y)) ≥ −�‖x − y‖2 ⇒ g (x) ≥ g (y)�

Definition 2.6. The function g is said to be (� , �)-quasiconvex at y if there
exists a real number � such that for each x ∈ �n ,

g (x) ≤ g (y) ⇒ � (x , y;	g (y)) ≤ −�‖x − y‖2�

The foregoing classes of generalized convex functions have been
utilized for establishing numerous sets of sufficient optimality conditions
and a great variety of duality results for several categories of static and
dynamic optimization problems. For recent surveys and syntheses of these
results, the reader is referred to [42, 55].

Another significant generalization of the notion of invexity, called
univexity, which subsumes a number of previously proposed types of
generalized convex functions, was proposed in [12]. We recall the
definitions of univex, pseudounivex, and quasiunivex functions.

Let h be a differentiable real-valued function defined on �n , let � be
a function from �n × �n to �n , let 
 be a real-valued function defined
on �, and let b be a function from �n × �n to �+\�0� ≡ (0,∞).

Definition 2.7. The function h is said to be univex at y with respect to �,

, and b if for each x ∈ �n ,

b(x , y)
(h(x) − h(y)) ≥ 〈	h(y), �(x , y)〉�
Definition 2.8. The function h is said to be pseudounivex at y with respect
to �, 
, and b if for each x ∈ �n ,

〈	h(y), �(x , y)〉 ≥ 0 ⇒ b(x , y)
(h(x) − h(y)) ≥ 0�

Definition 2.9. The function h is said to be quasiunivex at y with respect
to �, 
, and b if for each x ∈ �n ,

b(x , y)
(h(x) − h(y)) ≤ 0 ⇒ 〈	h(y), �(x , y)〉 ≤ 0�

The concept of second-order convexity generalizing that of convexity,
as mentioned earlier, was originally proposed by Mond [49]. Subsequently,
this concept was extended to the class of invex functions by Hanson [33]
who demonstrated its use in establishing some duality relations in
nonlinear programming. Following are slightly modified versions of the
classes of second-order invex functions introduced in [33].

Let f be a twice differentiable real-valued function defined on �n .
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Definition 2.10. The function f is said to be second-order �-invex (invex
with respect to �) at x∗ if there exists a function � : �n × �n → �n such
that for each x ∈ �n and z ∈ �n ,

f (x) − f (x∗) ≥ 〈	 f (x∗) + 	2f (x∗)z, �(x , x∗)〉 − 1
2
〈z,	2f (x∗)z〉�

Definition 2.11. The function f is said to be second-order �-pseudoinvex
at x∗ if there exists a function � : �n × �n → �n such that for each x ∈
�n(x �= x∗) and z ∈ �n ,

〈	 f (x∗) + 	2f (x∗)z, �(x , x∗)〉 ≥ 0 ⇒ f (x) ≥ f (x∗) − 1
2
〈z,	2f (x∗)z〉�

Definition 2.12. The function f is said to be second-order �-quasiinvex
at x∗ if there exists a function � : �n × �n → �n such that for each x ∈ �n

and z ∈ �n ,

f (x) ≤ f (x∗) − 1
2
〈z,	2f (x∗)z〉 ⇒ 〈	 f (x∗) + 	2f (x∗)z, �(x , x∗)〉 ≤ 0�

Finally, we are in a position to give our definitions of generalized
second-order (� , �,�, �, �)-univex functions. They are formulated by
combining Definitions 2.1–2.12. We shall use the word sounivex, for
second-order univex.

Let x∗ ∈ X and assume that the function f : X → � is twice
differentiable at x∗.

Definition 2.13. The function f is said to be (strictly) (� , �,�, �, �)-
sounivex at x∗ if there exist functions � : X × X → �+\�0�,� : � →
�, � : X × X → �, � : X × X → �n , and a sublinear function � (x , x∗; ·) :
�n → � such that for each x ∈ X (x �= x∗) and z ∈ �n ,

�

(
f (x) − f (x∗) + 1

2
〈z,	2f (x∗)z〉

)
(>)

≥ � (x , x∗; �(x , x∗)[	 f (x∗) + 	2f (x∗)z]) + �(x , x∗)‖�(x , x∗)‖2�

Definition 2.14. The function f is said to be (strictly) (� , �,�, �, �)-
pseudosounivex at x∗ if there exist functions �:X×X →�+\�0�,� : �→�,
� : X × X → �, � : X × X → �n , and a sublinear function � (x , x∗; ·) :
�n → � such that for each x ∈ X (x �= x∗) and z ∈ �n ,

� (x , x∗; �(x , x∗)[	 f (x∗) + 	2f (x∗)z]) ≥ −�(x , x∗)‖�(x , x∗)‖2

⇒ �

(
f (x) − f (x∗) + 1

2
〈z,	2f (x∗)z〉

)
(>) ≥ 0�
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Definition 2.15. The function f is said to be (prestrictly) (� , �,�, �, �)-
quasisounivex at x∗ if there exist functions � : X × X → �+\�0�, � :
� → �, � : X × X → �, � : X × X → �n , and a sublinear function
� (x , x∗; ·) : �n → � such that for each x ∈ X and z ∈ �n ,

�

(
f (x) − f (x∗) + 1

2
〈z,	2f (x∗)z〉

)
(<) ≤ 0

⇒ �
(
x , x∗; �(x , x∗)[	 f (x∗) + 	2f (x∗)z]) ≤ −�(x , x∗)‖�(x , x∗)‖2�

From the above definitions it is clear that if f is (� , �,�, �, �)-sounivex
at x∗, then it is both (� , �,�, �, �)-pseudosounivex and (� , �,�, �, �)-
quasisounivex at x∗, if f is (� , �,�, �, �)-quasisounivex at x∗, then it is
prestrictly (� , �,�, �, �)-quasisounivex at x∗, and if f is strictly (� , �,�, �, �)-
pseudosounivex at x∗, then it is (� , �,�, �, �)-quasisounivex at x∗.

In the proofs of the duality theorems, sometimes it may be more
convenient to use certain alternative but equivalent forms of the
above definitions. These are obtained by considering the contrapositive
statements. For example, (� , �,�, �, �)-quasisounivexity can be defined in
the following equivalent way:

f is said to be (� , �,�, �, �)-quasisounivex at x∗ if there exist functions
� : X × X → �+\�0�, � : � → �, � : X × X → �, � : X × X → �n , and
a sublinear function � (x , x∗; ·) : �n → � such that for each x ∈ X and
z ∈ �n ,

� (x , x∗; �(x , x∗)[	 f (x∗) + 	2f (x∗)z]) > −�(x , x∗)‖�(x , x∗)‖2

⇒ �(f (x) − f (x∗) + 1
2
〈z,	2f (x∗)z〉) > 0�

Needless to say that the new classes of generalized convex functions
characterized in Definitions 2.13–2.15 contain a variety of special cases that
can easily be identified by appropriate choices of the functions � , �, �, �,
and �.

We conclude this section by recalling a set of nonparametric necessary
optimality conditions for (P ).

Theorem 2.1 ([73]). Let x∗ ∈ �, let the functions fi and gi , i ∈ p, be
continuously differentiable at x∗, for each j ∈ q, let the function � → Gj(�, t) be
continuously differentiable at x∗ for all t ∈ Tj , and for each k ∈ r , let the function
� → Hk(�, s) be continuously differentiable at x∗ for all s ∈ Sk. If x∗ is an optimal
solution of (P), if the generalized Abadie constraint qualification holds at x∗, and if
the set cone�	Gj(x∗, t) : t ∈ T̂j(x∗), j ∈ q� + span�	Hk(x∗, s) : s ∈ Sk , k ∈ r � is
closed, then there exist u∗ ∈ U and integers �0 and �, with 0 ≤ �0 ≤ � ≤ n + 1,
such that there exist �0 indices jm, with 1 ≤ jm ≤ q, together with �0 points tm ∈
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T̂jm (x
∗),m ∈ �0, � − �0 indices km, with 1 ≤ km ≤ r , together with � − �0 points

sm ∈ Skm for m ∈ �\�0, and � real numbers v∗
m with v∗

m > 0 for m ∈ �0, with the
property that

p∑
i=1

u∗
i [
(x∗,u∗)	 fi(x∗) − 
(x∗,u∗)	gi(x∗)]

+
�0∑

m=1

v∗
m	Gjm (x

∗, tm) +
�∑

m=�0+1

v∗
m	Hkm (x

∗, sm) = 0,

u∗
i [
(x∗,u∗)fi(x∗) − 
(x∗,u∗)gi(x∗)] = 0, i ∈ p,

max
1≤i≤p

fi(x∗)
gi(x∗)

= 
(x∗,u∗)

(x∗,u∗)

,

where U = �u ∈ �p : u ≥ 0,
∑p

i=1 ui = 1�, 
(x∗,u∗) = ∑p
i=1 u

∗
i fi(x

∗), 
(x∗,
u∗) = ∑p

i=1 u
∗
i gi(x

∗), and �\�0 is the complement of the set �0 relative to the set �.
We shall call x a normal feasible solution of (P ) if x satisfies all the

constraints of (P ), if the generalized Abadie constraint qualification holds
at x , and if the set cone�	Gj(x , t) : t ∈ T̂j(x), j ∈ q� + span�	Hk(x , s) : s ∈
Sk , k ∈ r � is closed. The form and contents of the necessary optimality
conditions given in the above theorem provide clear guidelines for
formulating numerous Wolfe- and Mond-Weir-type second-order duality
models for (P ). The rest of this article is devoted to investigating various
nonparametric duality results for (P ). These duality results are based
on Theorem 2.1 and the nonparametric sufficiency and duality results
discussed in [73, 74].

In the remainder of this article, we shall assume that the functions fi , gi ,
i ∈ p, � → Gj(�, t), and � → Hk(�, s) are twice continuously differentiable
on X for all t ∈ Tj , j ∈ q , and all s ∈ Sk , k ∈ r .

3. DUALITY MODEL I

In this section, we consider two parameter-free dual problems for (P )
with relatively simple constraint structures and prove weak, strong,
and strict converse duality theorems under appropriate (� , �,�, �, �)-
sounivexity conditions. More general duality models and results for (P ) will
be discussed in the subsequent sections.

Let

� = �(y, z,u, v, �, �0, J�0 ,K�\�0 , t̄ , s̄) : y ∈ X ; z ∈ �n ;u ∈ U ;

0 ≤ �0 ≤ � ≤ n + 1; v ∈ ��, vi > 0, 1 ≤ i ≤ �0;
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J�0 = (j1, j2, � � � , j�0), 1 ≤ ji ≤ q ;K�\�0 = (k�0+1 , � � � , k�), 1 ≤ ki ≤ r ;

t̄ = (t 1, t 2, � � � , t �0), t i ∈ Tji ; s̄ = (s�0+1, � � � , s�), si ∈ Ski ��

Consider the following two problems:

(DI ) sup
(y,z,u,v,�,�0,J�0 ,K�\�0 ,t̄ ,s̄)∈�

∑p
i=1 ui fi(y) + ∑�0

m=1 vmGjm (y, t
m) + ∑�

m=�0+1 vmHkm (y, s
m)∑p

i=1 uigi(y)

subject to


(y,u)
[ p∑

i=1

ui	 fi(y) +
�0∑

m=1

vm	Gjm (y, t
m) +

�∑
m=�0+1

vm	Hkm (y, s
m)

]

− [
(y,u) + �(y, v, t̄ , s̄)]
p∑

i=1

ui	gi(y)

+
{

(y,u)

[ p∑
i=1

ui	
2fi(y) +

�0∑
m=1

vm	2Gjm (y, t
m) +

�∑
m=�0+1

vm	2Hkm (y, s
m)

]

− [
(y,u) + �(y, v, t̄ , s̄)]
p∑

i=1

ui	
2gi(y)

}
z = 0, (3.1)

− 1
2

〈
z,

{

(y,u)

[ p∑
i=1

ui	
2fi(y) +

�0∑
m=1

vm	2Gjm (y, t
m) +

�∑
m=�0+1

vm	2Hkm (y, s
m)

]

− [
(y,u) + �(y, v, t̄ , s̄)]
p∑

i=1

ui	
2gi(y)

}
z
〉

≥ 0, (3.2)

where �(y, v, t̄ , s̄) = ∑�0
m=1 vmGjm (y, t

m) + ∑�

m=�0+1 vmHkm (y, s
m);

(D̃I ) sup
(y,z,u,v,�,�0,J�0 ,K�\�0 ,t̄ ,s̄)∈�

∑p
i=1 ui fi(y) + ∑�0

m=1 vmGjm (y, t
m) + ∑�

m=�0+1 vmHkm (y, s
m)∑p

i=1 uigi(y)

subject to (3.2) and

�
(
x , y; 
(y,u)

[ p∑
i=1

ui	 fi(y) +
�0∑

m=1

vm	Gjm (y, t
m) +

�∑
m=�0+1

vm	Hkm (y, s
m)

]

− [
(y,u) + �(y, v, t̄ , s̄)]
p∑

i=1

ui	gi(y)
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+
{

(y,u)

[ p∑
i=1

ui	
2fi(y) +

�0∑
m=1

vm	2Gjm (y, t
m) +

�∑
m=�0+1

vm	2Hkm (y, s
m)

]

− [
(y,u) + �(y, v, t̄ , s̄)]
p∑

i=1

ui	
2gi(y)

}
z
)

≥ 0 for all x ∈ �, (3.3)

where � (x , y; ·) is a sublinear function from �n to �.
Comparing (DI ) and (D̃I ), we see that (D̃I ) is relatively more general

than (DI ) in the sense that any feasible solution of (DI ) is also feasible
for (D̃I ), but the converse is not necessarily true. Furthermore, we observe
that (3.1) is a system of n equations, whereas (3.3) is a single inequality.
Clearly, from a computational point of view, (DI ) is preferable to (D̃I )
because of the dependence of (3.3) on the feasible set of (P ).

Despite these apparent differences, it turns out that the statements and
proofs of all the duality theorems for (P )–(DI ) and (P )–(D̃I ) are almost
identical and, therefore, we shall consider only the pair (P )–(DI ).

In the sequel, we shall make frequent use of the following auxiliary
result, which provides an alternative expression for the objective function
of (P ).

Lemma 3.1 ([72]). For each x ∈ X ,

�(x) ≡ max
1≤i≤p

fi(x)
gi(x)

= max
u∈U

∑p
i=1 uifi(x)∑p
i=1 uigi(x)

�

The next two theorems show that (DI ) is a dual problem for (P ).

Theorem 3.1 (Weak Duality). Let x and w ≡ (y, z,u, v, �, �0, J�0 ,K�\�0 , t̄ , s̄)
be arbitrary feasible solutions of (P) and (DI), respectively, and assume that

(y,u) + �(y, v, t̄ , s̄) ≥ 0, 
(y,u) > 0, and either one of the following two sets of
hypotheses is satisfied:

(a) (i) for each i ∈ p, fi is (� , �,�, �̄i , �)-sounivex and −gi is (� , �,�, �̃i , �)-
sounivex at y;

(ii) for each m ∈ �0, � → Gjm (�, t
m) is (� , �,�, �̂m , �)-sounivex at y;

(iii) for each m ∈ �\�0, � → vmHkm (�, s
m) is (� , �,�, �̆m , �)-sounivex at y;

(iv) � is superlinear and �(a) ≥ 0 ⇒ a ≥ 0;
(v)

∑p
i=1 ui�
(y,u)�̄i(x , y) + [
(y,u) + �(y, v, t̄ , s̄)]�̃i(x , y)� +∑�0
m=1 vm �̂m(x , y)
(y,u) + ∑�

m=�0+1 �̆m(x , y)
(y,u) ≥ 0;
(b) the Lagrangian-type function

� → L(�, y,u, v, �, �0, J�0 ,K�\�0 , t̄ , s̄)
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= 
(y,u)
[ p∑

i=1

uifi(�) +
�0∑

m=1

vmGjm (�, t
m) +

�∑
m=�0+1

vmHkm (�, s
m)

]

− [
(y,u) + �(y, v, t̄ , s̄)]
p∑

i=1

uigi(�)

is (� , �,�, 0, �)-pseudosounivex at y and �(a) ≥ 0 ⇒ a ≥ 0.

Then �(x) ≥ �1(w), where �1 is the objective function of (DI ).

Proof. (a) Using the hypotheses specified in (i)–(iii), we have

�

(
fi(x) − fi(y) + 1

2
〈z,	2fi(y)z〉

)
≥ � (x , y; �(x , y)[	 fi(y) + 	2fi(y)z]) + �̄i(x , y)‖�(x , y)‖2, i ∈ p, (3.4)

�

(
−gi(x) + gi(y) − 1

2
〈z,	2gi(y)z〉

)
≥ � (x , y; �(x , y)[−	gi(y) − 	2gi(y)z]) + �̃i(x , y)‖�(x , y)‖2, i ∈ p, (3.5)

�

(
Gjm (x , t

m) − Gjm (y, t
m) + 1

2
〈z,	2Gjm (y, t

m)z〉
)

≥ � (x , y; �(x , y)[	Gjm (y, t
m) + 	2Gjm (y, t

m)z]
+ �̂m(x , y)‖�(x , y)‖2, m ∈ �0, (3.6)

�

(
vmHkm (x , s

m) − vmHkm (y, s
m) + 1

2
〈z, vm	2Hkm (y, s

m)z〉
)

≥ � (x , y; �(x , y)[vm	Hkm (y, s
m) + vm	2Hkm (y, s

m)z])
+ �̆m(x , y)‖�(x , y)‖2, m ∈ �\�0� (3.7)

Now, multiplying (3.4) by ui
(y,u) and then summing over i ∈ p, (3.5) by
ui[
(y,u) + �(y,u, v, t̄ , s̄)] and then summing over i ∈ p, (3.6) by vm
(y,u)
and then summing over m ∈ �0, (3.7) by 
(y,u) and then summing over
m ∈ �\�0, adding the resulting inequalities, and using the superlinearity of
� and sublinearity of � (x , y; ·), we obtain

�

( p∑
i=1

ui�
(y,u)fi(x) − [
(y,u) + �(y,u, v, t̄ , s̄)]gi(x)�

+ 
(y,u)
[ �0∑

m=1

vmGjm (x , t
m) +

r∑
k=1

vmHkm (x , s
m)

]
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− 
(y,u)
[ p∑

i=1

uifi(y) +
�0∑

m=1

vmGjm (y, t
m) +

�∑
m=�0+1

vmHkm (y, s
m)

]

+ [
(y,u) + �(y, v, t̄ , s̄)]
p∑

i=1

uigi(y)

+ 1
2

〈
z,

{

(y,u)

[ p∑
i=1

ui	
2fi(y) +

�0∑
m=1

vm	2Gjm (y, t
m) +

�∑
m=�0+1

vm	2Hkm (y, s
m)

]

− [
(y,u) + �(y, v, t̄ , s̄)]
p∑

i=1

ui	
2gi(y)

}
z
〉)

≥ �
(
x , y; 
(y,u)

[ p∑
i=1

ui	 fi(y) +
�0∑

m=1

vm	Gjm (y, t
m) +

�∑
m=�0+1

vm	Hkm (y, s
m)

]

− [
(y,u) + �(y, v, t̄ , s̄)]
p∑

i=1

ui	gi(y)

+
{

(y,u)

[ p∑
i=1

ui	
2fi(y) +

�0∑
m=1

vm	2Gjm (y, t
m) +

�∑
m=�0+1

vm	2Hkm (y, s
m)

]

− [
(y,u) + �(y, v, t̄ , s̄)]
p∑

i=1

ui	
2gi(y)

}
z
)

+
{ p∑

i=1

ui�
(y,u)�̄i(x , y) + [
(y,u) + �(y, v, t̄ , s̄)]�̃i(x , y)�

+
�0∑

m=1

vm �̂m(x , y)
(y,u) +
�∑

m=�0+1

�̆m(x , y)
(y,u)
}
‖�(x , y)‖2�

Because of the sublinearity of � (x , y; ·), (3.1), and (v), the above inequality
reduces to

�

( p∑
i=1

ui�
(y,u)fi(x) − [
(y,u) + �(y,u, v, t̄ , s̄)]gi(x)]�

+ 
(y,u)
[ �0∑

m=1

vmGjm (x , t
m) +

r∑
k=1

wmHkm (x , s
m)

]

− 
(y,u)
[ p∑

i=1

uifi(y) +
�0∑

m=1

vmGjm (y, t
m) +

�∑
m=�0+1

vmHkm (y, s
m)

]



1278 G. J. Zalmai

+ [
(y,u) + �(y, v, t̄ , s̄)]
p∑

i=1

uigi(y)

+ 1
2

〈
z,

{

(y,u)

[ p∑
i=1

ui	
2fi(y) +

�0∑
m=1

vm	2Gjm (y, t
m) +

�∑
m=�0+1

vm	2Hkm (y, s
m)

]

− [
(y,u) + �(y, v, t̄ , s̄)]
p∑

i=1

ui	
2gi(y)

}
z
〉)

≥ 0�

In view of the definitions of 
, 
 , and �, and the fact that �(a) ⇒ a ≥ 0,
x ∈ �, and (3.2) holds, we deduce from the above inequality that

p∑
i=1

ui�
(y,u)fi(x) − [
(y,u) + �(y, v, t̄ , s̄)]gi(x)� ≥ 0� (3.8)

Now, using this inequality and Lemma 3.1, we see that

�(x) = max
d∈U

∑p
i=1 di fi(x)∑p
i=1 digi(x)

≥
∑p

i=1 uifi(x)∑p
i=1 uigi(x)

≥ 
(y,u) + �(y, v, t̄ , s̄)

(y,u)

= �1(w)�

(b) In view of the sublinearity of � (x , y; ·), positivity of �(x , y),
(� , �,�, 0, �)-pseudosounivexity of L(·, y,u, v, �, �0, J�0 ,K�\�0 , t̄ , s̄) at y, and
(3.1) we conclude that

�(L(x , y,u, v, �, �0, J�0 ,K�\�0 , t̄ , s̄) − L(y, y,u, v, �, �0, J�0 ,K�\�0 , t̄ , s̄))

+ 1
2
〈z,	2L(y, y,u, v, �, �0, J�0 ,K�\�0 , t̄ , s̄)z〉) ≥ 0�

But �(a) ≥ 0 ⇒ a ≥ 0, and, hence, the above inequality yields

L(x , y,u, v, �, �0, J�0 ,K�\�0 , t̄ , s̄) ≥ L(y, y,u, v, �, �0, J�0 ,K�\�0 , t̄ , s̄)

− 1
2
〈z,	2L(y, y,u, v, �, �0, J�0 ,K�\�0 , t̄ , s̄)z〉)

≥ 0,

where the second inequality follows from the definitions of 
, 
 , and �,
and (3.2). Now proceeding as in the proof of part (a), we obtain (3.8)
which leads, as seen above, to the desired conclusion that �(x) ≥ �1(w). �

Theorem 3.2 (Strong Duality). Let x∗ be a normal optimal solution of (P)
and assume that either one of the two sets of conditions set forth in Theorem 3.1 is
satisfied for all feasible solutions of (DI). Then there exist u∗, v∗, �∗, �∗

0, J�∗0 ,K�∗\�∗0 , t̄
∗,
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and s̄∗ such that w∗ ≡ (x∗, z∗ = 0,u∗, v∗, �∗, �∗
0, J�∗0 ,K�∗\�∗0 , t̄

∗, s̄∗) is an optimal
solution of (DI) and �(x∗) = �1(w∗).

Proof. Since x∗ is a normal optimal solution of (P ), by Theorem 2.1,
there exist u∗ ∈ U and integers �0 and �, with 0 ≤ �0 ≤ � ≤ n + 1, such
that there exist �0 indices jm , with 1 ≤ jm ≤ q , together with �0 points
tm ∈ T̂jm (x

∗),m ∈ �0, � − �0 indices km , with 1 ≤ km ≤ r , together with � − �0
points sm ∈ Skm for m ∈ �\�0, and � real numbers v̄m with v̄m > 0 for m ∈ �0,
with the property that

p∑
i=1

u∗
i [
(x∗,u∗)	 fi(x∗) − 
(x∗,u∗)	gi(x∗)]

+
�0∑

m=1

v̄m	Gjm (x
∗, tm) +

�∑
m=�0+1

v̄m	Hkm (x
∗, sm) = 0, (3.9)

max
1≤i≤p

fi(x∗)
gi(x∗)

= 
(x∗,u∗)

(x∗,u∗)

� (3.10)

Since �(x∗, v̄, t̄ , s̄) = 0, (3.9) can be rewritten as follows:


(x∗,u∗)
[ p∑

i=1

u∗
i 	 fi(x

∗) +
�0∑

m=1

v∗
m	Gjm (x

∗, tm) +
�∑

m=�0+1

v∗
m	Hkm (x

∗, sm)
]

− [
(x∗,u∗) + �(x∗, v∗, t̄ , s̄)]
p∑

i=1

u∗
i 	gi(x

∗) = 0, (3.11)

where v∗
m = v̄m/
(x∗,u∗) for m ∈ �. In as much as x∗ ∈ � and hence

�0∑
m=1

v∗
mGjm (x

∗, tm) +
�∑

m=�0+1

v∗
mHkm (x

∗, sm) = 0,

from (3.10) and (3.11) it is clear that w∗ is a feasible solution of (DI ) and
�(x∗) = �1(w∗). If w∗ were not optimal, then there would exist a feasible
solution w̃ ≡ (x̃ , z̃, ũ, ṽ, �̃, �̃, �̃0, J�̃0 , K�̃\�̃0 ,

¯̃t , ¯̃s) of (DI ) such that �1(w̃) >
�1(x∗) = �(x∗), contradicting Theorem 3.1. Therefore, w∗ is an optimal
solution of (DI ). �

We also have the following converse duality result for (P ) and (DI ).

Theorem 3.3 (Strict Converse Duality). Let x∗ be a normal optimal solution
of (P), let w̃ ≡ (x̃ , z̃, ũ, ṽ, �̃, �̃0, J�̃0 , K�̃\�̃0 ,

¯̃t , ¯̃s) be an optimal solution of (DI), and
assume that either one of the following two sets of conditions is satisfied:
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(a) The assumptions specified in part (a) of Theorem 3.1 are satisfied for the
feasible solution w̃ of (DI), �(a) > 0 ⇒ a > 0, fi is strictly (� , �,�, �̄i , �)-
sounivex at x̃ for at least one i ∈ p with the corresponding component ũi of ũ
positive, or −gi is strictly (� , �,�, �̃i , �)-sounivex at x̃ for at least one i ∈ p
with the corresponding component ũi of ũ positive, or � → Gjm (�, t̃

m) is strictly
(� , �,�, �̂i , �)-sounivex at x̃ for at least one m ∈ �̃0, or � → ṽmHkm (�, s̃

m) is
strictly (� , �,�, �̆i , �)-sounivex at x̃ for at least one m ∈ �̃\�̃0, or

p∑
i=1

ũi�
(x̃ , ũ)�̄i(x∗, x̃) + [
(x̃ , ũ) + �(x̃ , ṽ, ˜̄t , ˜̄s)]�̃i(x∗, x̃)�

+
�̃0∑

m=1

ṽm �̂m(x∗, x̃)
(x̃ , ũ) +
�̃∑

m=�̃0+1

�̆m(x∗, x̃)
(x̃ , ũ) > 0�

(b) The assumptions specified in part (b) of Theorem 3.1 are satisfied
for the feasible solution w̃ of (DI) and the function � →
L(�, x̃ , ũ, ṽ, �̃, �̃0, J�̃0 ,K�̃\�̃0 ,

¯̃t , ¯̃s) is strictly (� , �,�, 0, �)-pseudosounivex at x̃,
and �(a) > 0 ⇒ a > 0.

Then x̃ = x∗ and �(x∗) = �1(w̃).

Proof. (a): Suppose to the contrary that x̃ �= x∗. Since x∗ is
a normal optimal solution of (P ), by Theorem 2.1, there exist
u∗, v∗, �∗, �∗

0, J�∗0 ,K�∗\�∗0 , t̄
∗, and s̄∗ such that w∗ ≡ (x∗, z∗ = 0,u∗, v∗, �∗,

�∗
0, J�∗0 ,K�∗\�∗0 , t̄

∗, s̄∗) is an optimal solution of (DI ) and �(x∗) = �1(w∗). Now
proceeding as in the proof of Theorem 3.1 (with x replaced by x∗ and w
by w̃) and using any one of the conditions set forth above, we arrive at
the strict inequality

p∑
i=1

ũi�
(x̃ , ũ)fi(x∗) − [
(x̃ , ũ) + �(x̃ , ṽ, ˜̄t , ˜̄s)]gi(x∗)� > 0�

Using Lemma 3.1 and this inequality, as in the proof of Theorem 3.1,
we obtain �(x∗) > �1(w̃), which contradicts the fact that �(x∗) = �1(w∗) ≤
�1(w̃). Therefore, we conclude that x̃ = x∗ and �(x∗) = �1(w̃).

(b): The proof is similar to that of part (a). �

4. DUALITY MODEL II

In this section, we consider two duality models with special constraint
structures that allow for a greater variety of generalized (� , �,�, �, �)-
sounivexity conditions under which duality can be established.
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Consider the following two problems: (DII )

sup
(y,z,u,v,�,�0,J�0 ,K�\�0 ,t̄ ,s̄)∈�

∑p
i=1 uifi(y) + ∑�0

m=1 vmGjm (y, t
m) + ∑�

m=�0+1 vmHkm (y, s
m)∑p

i=1 uigi(y)

subject to


(y,u)
[ p∑

i=1

ui	 fi(y) +
�0∑

m=1

vm	Gjm (y, t
m) +

�∑
m=�0+1

vm	Hkm (y, s
m)

]

− [
(y,u) + �(y, v, t̄ , s̄)]
p∑

i=1

ui	gi(y)

+
{

(y,u)

[ p∑
i=1

ui	
2fi(y) +

�0∑
m=1

vm	2Gjm (y, t
m) +

�∑
m=�0+1

vm	2Hkm (y, s
m)

]

− [
(y,u) + �(y, v, t̄ , s̄)]
p∑

i=1

ui	
2gi(y)

}
z = 0, (4.1)


(y,u)fi(y) − [
(y,u) + �(y, v, t̄ , s̄)]gi(y) − 1
2
〈z, �
(y,u)	2fi(y)

− [
(y,u) + �(y, v, t̄ , s̄)]	2gi(y)�z〉 ≥ 0, i ∈ p, (4.2)

Gjm (y, t
m) − 1

2
〈z,	2Gjm (y, t

m)z〉 ≥ 0, m ∈ �0, (4.3)

vmHkm (y, s
m) − 1

2〈z, vm	2Hkm (y, s
m)z〉 ≥ 0, m ∈ �\�0; (4.4)

(D̃II )

sup
(y,z,u,v,�,�0,J�0 ,K�\�0 ,t̄ ,s̄)∈�

∑p
i=1 uifi(y) + ∑�0

m=1 vmGjm (y, t
m) + ∑�

m=�0+1 vmHkm (y, s
m)∑p

i=1 uigi(y)

subject to (3.3) and (4.2)–(4.4).
The remarks made about the relationships between (DI ) and (D̃I ) are,

of course, also applicable to (DII ) and (D̃II ).
The next two theorems show that (DII ) is a dual problem for (P ).

Theorem 4.1 (Weak Duality). Let x and w ≡ (y, z,u, v, �, �0, J�0 ,K�\�0 , t̄ , s̄)
be arbitrary feasible solutions of (P) and (DII), respectively, and assume that

(y,u) + �(y, v, t̄ , s̄) ≥ 0, 
(y,u) > 0, and any one of the following five sets of
hypotheses is satisfied:

(a) (i) for each i ∈ p, fi is (� , �, �̄, �̄i , �)-sounivex and −gi is (� , �, �̄, �̃i , �)-
sounivex at y, �̄ is superlinear, and �̄(a) ≥ 0 ⇒ a ≥ 0;
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(ii) the function � → Gjm (�, t
m) is (� , �, �̂m , �̂m , �)-quasisounivex at y, �̂m

is increasing, and �̂m(0) = 0 for each m ∈ �0;
(iii) the function � → vmHkm (�, s

m) is (� , �, �̆m , �̆m , �)-quasisounivex at
y, �̆m is increasing, and �̆m(0) = 0 for each m ∈ �\�0;

(iv) �∗(x , y) + ∑�0
m=1 vm �̂m(x , y) + ∑�

m=�0+1 �̆m(x , y) ≥ 0, where �∗(x , y) =∑p
i=1 ui�
(y,u)�̄i(x , y) + [
(y,u) + �(y, v, t̄ , s̄)]�̃i(x , y)�;

(b) (i) for each i ∈ p, fi is (� , �, �̄, �̄i , �)-sounivex and −gi is (� , �, �̄, �̃i , �)-
sounivex at y, �̄ is superlinear, and �̄(a) ≥ 0 ⇒ a ≥ 0;

(ii) the function � → ∑�0
m=1 vmGjm (�, t

m) is (� , �, �̂, �̂, �)-quasisounivex at
y, �̂ is increasing, and �̂(0) = 0;

(iii) the function � → vmHkm (�, s
m) is (� , �, �̆m , �̆m , �)-quasisounivex at

y, �̆m is increasing, and �̆m(0) = 0 for each m ∈ �\�0;
(iv) �∗(x , y) + �̂(x , y) + ∑�

m=�0+1 �̆m(x , y) ≥ 0;
(c) (i) for each i ∈ p, fi is (� , �, �̄, �̄i , �)-sounivex and −gi is (� , �, �̄, �̃i , �)-

sounivex at y, �̄ is superlinear, and �̄(a) ≥ 0 ⇒ a ≥ 0;
(ii) the function � → Gjm (�, t

m) is (� , �, �̂m , �̂m , �)-quasisounivex at y, �̂m

is increasing, and �̂m(0) = 0 for each m ∈ �0;
(iii) the function � → ∑�

m=�0+1 vmHkm (�, s
m) is (� , �, �̆, �̆, �)-quasisounivex

at y, �̆ is increasing, and �̆(0) = 0;
(iv) �∗(x , y) + ∑�0

m=1 vm �̂m(x , y) + �̆(x , y) ≥ 0;
(d) (i) for each i ∈ p, fi is (� , �, �̄, �̄i , �)-sounivex and −gi is (� , �, �̄, �̃i , �)-

sounivex at y, �̄ is superlinear, and �̄(a) ≥ 0 ⇒ a ≥ 0;
(ii) the function � → ∑�0

m=1 vmGjm (�, t
m) is (� , �, �̂, �̂, �)-quasisounivex at

y, �̂ is increasing, and �̂(0) = 0;
(iii) the function � → ∑�

m=�0+1 vmHkm (�, s
m) is (� , �, �̆, �̆, �)-quasisounivex

at y, �̆ is increasing, and �̆(0) = 0;
(iv) �∗(x , y) + �̂(x , y) + �̆(x , y) ≥ 0;

(e) (i) for each i ∈ p, fi is (� , �, �̄, �̄i , �)-sounivex and −gi is (� , �, �̄, �̃i , �)-
sounivex at y, �̄ is superlinear, and �̄(a) ≥ 0 ⇒ a ≥ 0;

(ii) the function � → ∑�0
m=1 vmGjm (�, t

m) + ∑�

m=�0+1 vmHkm (�, s
m) is

(� , �, �̂, �̂, �)-quasisounivex at y, �̂ is increasing, and �̂(0) = 0;
(iii) �∗(x , y) + �̂(x , y) ≥ 0.

Then �(x) ≥ �2(w), where �2 is the objective function of (DII ).

Proof. (a): Proceeding as in the proof of part (a) of Theorem 3.1, we
see that our assumptions in (i) lead to the following inequality:

�

( p∑
i=1

ui�
(y,u)fi(x) − [
(y,u) + �(y, v, t̄ , s̄)]gi(x)

− �
(y,u)fi(y) − [
(y,u) + �(y, v, t̄ , s̄)]gi(y)]��
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+ 1
2

〈
z,

p∑
i=1

ui�
(y,u)	2fi(y) − [
(y,u) + �(y, v, t̄ , s̄)]	2gi(y)�z
〉)

≥ �
(
x , y; �(x , y)

p∑
i=1

ui�
(y,u)	�fi(y)� − [
(y,u) + �(y, v, t̄ , s̄)]	gi(y)

+ �
(y,u)	2fi(y) − [
(y,u) + �(y, v, t̄ , s̄)]	2gi(y)�z
)

+
p∑

i=1

ui

× �
(y,u)�̄i(x , y) + [
(y,u) + �(y, v, t̄ , s̄)]�̃i(x , y)�‖�(x , y)‖2� (4.5)

From the primal feasibility of x , dual feasibility of w, and (4.3) we see that

Gjm (x , t
m) ≤ 0 ≤ Gjm (y, t

m) − 1
2
〈z,	2Gjm (y, t

m)z〉

for each m ∈ �0, and, hence, in view of the properties of the functions �m ,
we get

�j(Gjm (x , t
m) − [Gjm (y, t

m) − 1
2
〈z,	2Gjm (y, t

m)z〉]) ≤ 0,

which, in view of (ii), implies that

� (x , y; �(x , y)[	Gjm (y, t
m) + 	2Gjm (y, t

m)z]) ≤ −�̂m(x , y)‖�(x , y)‖2�

As vm > 0 for each m ∈ �0 and � (x , y; ·) is sublinear, the above inequalities
yield

�
(
x , y; �(x , y)

�0∑
m=1

vm[	Gjm (y, t
m) + 	2Gjm (y, t

m)z]
)

≤ −
�0∑

m=1

vm �̂m(x , y)‖�(x , y)‖2� (4.6)

Similarly, from the primal feasibility of x , dual feasibility of w, (4.4), and
(iii) we deduce that

�
(
x , y; �(x , y)

�∑
m=�0+1

vm[	Hkm (y, s
m) + 	2Hkm (y, s

m)z]
)

≤ −
�∑

m=�0+1

�̆m(x , y)‖�(x , y)‖2� (4.7)
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Combining (4.1) and (4.5)–(4.7), and using (iv) and the sublinearity of
� (x , y; ·), we obtain

�

( p∑
i=1

ui

{

(y,u)fi(x) − [
(y,u) + �(y, v, t̄ , s̄)]gi(x)

− �
(y,u)fi(y) − [
(y,u) + �(y, v, t̄ , s̄)]gi(y)]�
}

+ 1
2

〈
z,

{ p∑
i=1

ui�
(y,u)	2fi(y) − [
(y,u) + �(y, v, t̄ , s̄)]	2gi(y, sm)
}
z
〉)

≥ 0�

Since �(a) ≥ 0 ⇒ a ≥ 0 and (4.2) holds, the above inequality reduces to

p∑
i=1

ui�
(y,u)fi(x) − [
(y,u) + �(y, v, t̄ , s̄)]gi(x)� ≥ 0� (4.8)

Now using (4.8) and Lemma 3.1, we obtain the weak duality inequality as
follows:

�(x) = max
d∈U

∑p
i=1 di fi(x)∑p
i=1 digi(x)

≥
∑p

i=1 uifi(x)∑p
i=1 uigi(x)

≥ 
(y,u) + �(y, v, t̄ , s̄)

(y,u)

= �2(w)�

(b)–(e): The proofs are similar to that of part (a). �

Theorem 4.2 (Strong Duality). Let x∗ be a normal optimal solution of
(P) and assume that any one of the five sets of conditions set forth
in Theorem 4.1 is satisfied for all feasible solutions of (DII). Then there
exist u∗, v∗, �∗, �∗

0, J�∗0 ,K�∗\�∗0 , t̄
∗, and s̄∗ such that (x∗, z∗ = 0,u∗, v∗, �∗, �∗

0, J�∗0 ,
K�∗\�∗0 , t̄

∗, s̄∗) is an optimal solution of (DII) and �(x∗) = �2(x∗).

Proof. The proof is similar to that of Theorem 3.2. �

Theorem 4.3 (Strict Converse Duality). Let x∗ be a normal optimal solution
of (P), let w̃ ≡ (x̃ , z̃, ũ, ṽ, �̃, �̃0, J�̃0 , K�̃\�̃0 ,

¯̃t , ¯̃s) be an optimal solution of (DII), and
assume that any one of the following five sets of conditions is satisfied:

(a) The assumptions specified in part (a) of Theorem 4.1 are satisfied for the
feasible solution w̃ of (DII). Moreover, �̄(a) > 0 ⇒ a > 0, fi is strictly
(� , �, �̄, �̄i , �)-sounivex at x̃ for at least one i ∈ p with the corresponding
component ũi of ũ positive, or −gi is strictly (� , �, �̄, �̃i , �)-sounivex at x̃
for at least one i ∈ p with the corresponding component ũi of ũ positive, or

� → Gjm (�, t̃
m) is strictly (� , �, �̂m , �̂m , �)-pseudosounivex at x̃ for at least
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one m ∈ �̃0, or � → ṽmHkm (�, s̃
m) is strictly (� , �, �̆m , �̆m , �)-pseudosounivex

at x̃ for at least one m ∈ �̃\�̃0, or �∗(x∗, x̃) + ∑�̃0
m=1 ṽm �̂m(x∗, x̃) +∑�̃

m=�̃0+1 �̆m(x∗, x̃) > 0, where �∗(x∗, x̃) = ∑p
i=1 ũi�
(x̃ , ũ)�̄i(x∗, x̃) +

[
(x̃ , ũ) + �(x̃ , ṽ, ¯̃t , ¯̃s)]�̃i(x∗, x̃).
(b) The assumptions specified in part (b) of Theorem 4.1 are satisfied for

the feasible solution w̃ of (DII). Moreover, �̄(a) > 0 ⇒ a > 0, fi is strictly
(� , �, �̄, �̄i , �)-sounivex at x̃ for at least one i ∈ p with the corresponding
component ũi of ũ positive, or −gi is strictly (� , �, �̄, �̃i , �)-sounivex at x̃
for at least one i ∈ p with the corresponding component ũi of ũ positive,

or � → ∑�̃0
m=1 ṽmGjm (�, t̃

m) is strictly (� , �, �̂, �̂, �)-pseudosounivex at x̃, or
� → ṽmHkm (�, s̃

m) is strictly (� , �, �̆m , �̆m , �)-pseudosounivex at x̃ for at least
one m ∈ �̃\�̃0, or �∗(x∗, x̃) + �̂(x∗, x̃) + ∑�̃

m=�̃0+1 �̆m(x∗, x̃) > 0.
(c) The assumptions specified in part (c) of Theorem 4.1 are satisfied for the feasible

solution w̃ of (DII). Moreover, �̄(a) > 0 ⇒ a > 0, fi is strictly (� , �, �̄, �̄i , �)-
sounivex at x̃ for at least one i ∈ p with the corresponding component ũi of
ũ positive, or −gi is strictly (� , �, �̄, �̃i , �)-sounivex at x̃ for at least one
i ∈ p with the corresponding component ũi of ũ positive, or � → Gjm (�, t̃

m)

is strictly (� , �, �̂m , �̂m , �)-pseudosounivex at x̃ for at least one m ∈ �̃0, or
� → ∑�̃

m=�̃0+1 ṽmHkm (�, s̃
m) is strictly (� , �, �̆, �̆, �)-pseudosounivex at x̃, or

�∗(x∗, x̃) + ∑�̃0
m=1 ṽm �̂m(x∗, x̃) + �̆(x∗, x̃) > 0.

(d) The assumptions specified in part (d) of Theorem 4.1 are satisfied for
the feasible solution w̃ of (DII). Moreover, ¯�(a) > 0 ⇒ a > 0, fi is strictly
(� , �, �̄, �̄i , �)-sounivex at x̃ for at least one i ∈ p with the corresponding
component ũi of ũ positive, or −gi is strictly (� , �, �̄, �̃i , �)-sounivex at x̃
for at least one i ∈ p with the corresponding component ũi of ũ positive,

or � → ∑�̃0
m=1 ṽmGjm (�, t̃

m) is strictly (� , �, �̂, �̂, �)-pseudosounivex at x̃, or
� → ∑�̃

m=�̃0+1 ṽmHkm (�, s̃
m) is strictly (� , �, �̆, �̆m , �)-pseudosounivex at x̃, or

�∗(x∗, x̃) + �̂(x∗, x̃) + �̆(x∗, x̃) > 0.
(e) The assumptions specified in part (e) of Theorem 4.1 are satisfied for

the feasible solution w̃ of (DII). Moreover, �̄(a) > 0 ⇒ a > 0, fi is strictly
(� , �, �̄, �̄i , �)-sounivex at x̃ for at least one i ∈ p with the corresponding
component ũi of ũ positive, or −gi is strictly (� , �, �̄, �̃i , �)-sounivex at x̃
for at least one i ∈ p with the corresponding component ũi of ũ positive,

or � → ∑�̃0
m=1 ṽmGjm (�, t̃

m) + ∑�̃

m=�̃0+1 ṽmHkm (�, s̃
m) is strictly (� , �, �̂, �̂, �)-

pseudosounivex at x̃, or �∗(x∗, x̃) + �̂(x∗, x̃) > 0.

Then x̃ = x∗ and �(x∗) = �2(w̃).

Proof. The proof is similar to that of Theorem 3.3. �
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In Theorem 4.1, separate (� , �,�, �, �)-sounivexity assumptions were
imposed on the functions fi and −gi , i ∈ p. It is possible to formulate and
prove a multitude of additional sets of second-order nonparametric duality
results in which various generalized (� , �,�, �, �)-sounivexity requirements
are placed on various combinations of the functions � → 
(y,u)fi(�)−
[
(y,u)+�(y, v, t̄ , s̄)]gi(�), i ∈ p, �→∑p

i=1 ui�
(y,u)fi(�)−[
(y,u)+�(y, v,
t̄ , s̄)]gi(�)�, � → Gjm (�, t

m), � → vmHkm (�, s
m), � → ∑�0

m=1 vmGjm (�, t
m),

� → ∑�

m=�0+1 vmHkm (�, s
m), � → ∑�0

m=1 vmGjm (�, t
m) + ∑�

m=�0+1 vmHkm (�, s
m),

�→
(y,u)fi(�)−[
(y,u)+�(y, v, t̄ , s̄)]gi(�)+∑�0
m=1 vmGjm (�, t

m)+∑�

m=�0+1 vm
Hkm (�, s

m), i ∈ p, and � → ∑p
i=1 ui�
(y,u)fi(�) − [
(y,u) + �(y, v, t̄ , s̄)]

gi(�)� + ∑�0
m=1 vmGjm (�, t

m) + ∑�

m=�0+1 vmHkm (�, s
m). However, for the sake

of avoiding excessive repetition, these results will not be treated separately.
Furthermore, it turns out that a great majority of these duality results can
be obtained as special cases of some generalized duality theorems which
will be discussed in the next section. It is important to point out that
Theorems 4.1–4.3 are not subsumed by these more general duality results.

5. DUALITY MODEL III

In this section, we discuss several families of second-order
nonparametric duality results under various generalized (� , �,�, �, �)-
sounivexity hypotheses imposed on certain combinations of the problem
functions. This is accomplished by employing a certain partitioning
scheme which was originally proposed in [51] for the purpose of
constructing generalized dual problems for nonlinear programming
problems. For this we need some additional notation.

Let �0 and � be integers, with 1 ≤ �0 ≤ � ≤ n + 1, and let �J0, J1, � � � , JM �
and �K0,K1, � � � ,KM � be partitions of the sets �0 and �\�0, respectively;
thus, Ji ⊆ �0 for each i ∈ M ∪ �0�, Ji ∩ Jj = ∅ for each i , j ∈ M ∪ �0� with i �=
j , and ∪M

i=0 Ji = �0. Obviously, similar properties hold for �K0,K1, � � � ,KM �.
Moreover, if m1 and m2 are the numbers of the partitioning sets of �0
and �\�0, respectively, then M = max�m1,m2� and Ji = ∅ or Ki = ∅ for i >
min�m1,m2�.

In addition, we use the real-valued functions � → �(�, y,u, v, t̄ , s̄) and
� → ��(�, v, t̄ , s̄) defined, for fixed y,u, v, �, �0, J�0 ,K�\�0 , t̄ , and s̄, on X as
follows:

�(�, y,u, v, t̄ , s̄) = 
(y,u)
[ p∑

i=1

uifi(�) +
∑
m∈J0

vmGjm (�, t
m) +

∑
m∈K0

vmHkm (�, s
m)

]

− [�(y,u) + �0(y, v, t̄ , s̄)]
p∑

i=1

uigi(�),
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��(�, v, t̄ , s̄) =
∑
m∈J�

vmGjm (�, t
m) +

∑
m∈K�

vmHkm (�, s
m), � ∈ M ∪ �0��

Making use of the sets and functions defined above, we can state our
general parameter-free duality models as follows: (DIII )

sup
(y,z,u,v,�,�0,J�0 ,K�\�0 ,t̄ ,s̄)∈�

∑p
i=1 uifi(y) + ∑

m∈J0 vmGjm (y, t
m) + ∑

m∈K0 vmHkm (y, s
m)∑p

i=1 uigi(y)

subject to

p∑
i=1

ui

{

(y,u)

[
	 fi(y) +

∑
m∈J0

vm	Gjm (y, t
m) +

∑
m∈K0

wm	Hkm (y, s
m)

]

− [
(y,u) + �0(y, v, t̄ , s̄)]	gi(y)
}

+
∑

m∈�0\J0
vm	Gjm (y, t

m) +
∑

m∈(�\�0)\K0
vm	Hkm (y, s

m)

+
{ p∑

i=1

ui

{

(y,u)

[
	2fi(y) +

∑
m∈J0

vm	2Gjm (y, t
m) +

∑
m∈K0

vm	2Hkm (y, s
m)

]

− [
(y,u) + �0(y, v, t̄ , s̄)]	2gi(y)
}

+
∑

m∈�0\J0
vm	2Gjm (y, t

m) +
∑

m∈(�\�0)\K0
vm	2Hkm (y, s

m)

}
z = 0, (5.1)


(y,u)
[ p∑

i=1

uifi(y) +
∑
m∈J0

vmGjm (y, t
m) +

∑
m∈K0

wmHkm (y, s
m)

]

− [
(y,u) + �0(y, v, t̄ , s̄)]
p∑

i=1

uigi(y)

− 1
2

〈
z,

{

(y,u)

[ p∑
i=1

ui	
2fi(y) +

∑
m∈J0

vm	2Gjm (y, t
m) +

∑
m∈K0

vm	2Hkm (y, s
m)

]

− [
(y,u) + �0(y, v, t̄ , s̄)]
p∑

i=1

ui	
2gi(y)

}
z
〉

≥ 0, i ∈ p, (5.2)
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∑
m∈J�

vmGjm (y, t
m) +

∑
m∈K�

vmHkm (y, s
m)

− 1
2

〈
z,

[ ∑
m∈J�

vm	2Gjm (y, t
m) +

∑
m∈K�

vm	2Hkm (y, s
m)

]
z
〉

≥ 0, � ∈ M ; (5.3)

(D̃III )

sup
(y,z,u,v,�,�0,J�0 ,K�\�0 ,t̄ ,s̄)∈�

∑p
i=1 uifi(y) + ∑

m∈J0 vmGjm (y, t
m) + ∑

m∈K0 vmHkm (y, s
m)∑p

i=1 uigi(y)

subject to (5.2), (5.3), and

�
(
x , y;

p∑
i=1

ui

{

(y,u)

[
	 fi(y) +

∑
m∈J0

vm	Gjm (y, t
m) +

∑
m∈K0

vm	Hkm (y, s
m)

]

− [
(y,u) + �0(y, v, t̄ , s̄)]	gi(y)
}

+
∑

m∈�0\J0
vm	Gjm (y, t

m) +
∑

m∈(�\�0)\K0
vm	Hkm (y, s

m)

+
{ p∑

i=1

ui

{

(y,u)

[
	2fi(y) +

∑
m∈J0

vm	2Gjm (y, t
m) +

∑
m∈K0

vm	2Hkm (y, s
m)

]

− [
(y,u) + �0(y, v, t̄ , s̄)]	2gi(y)
}

+
∑

m∈�0\J0
vm	2Gjm (y, t

m) +
∑

m∈(�\�0)\K0
vm	2Hkm (y, s

m)

}
z
)

≥ 0 for all x ∈ �,

where � (x , y; ·) is a sublinear function from �n to �.
The remarks and observations made earlier about the relationships

between (DI ) and (D̃I ) are, of course, also valid for (DIII ) and (D̃III ).
The next two theorems show that (DIII ) is a dual problem for (P ).

Theorem 5.1 (Weak Duality). Let x and w ≡ (y, z,u, v, �, �0, J�0 ,K�\�0 , t̄ , s̄)
be arbitrary feasible solutions of (P) and (DIII), respectively, and assume that any
one of the following four sets of hypotheses is satisfied:

(a) (i) � → �(�, y,u, v, t̄ , s̄) is (� , �, �̄, �̄, �)-pseudosounivex at y, and
�̄(a) ≥ 0 ⇒ a ≥ 0;

(ii) for each � ∈ M , � → ��(�, v, t̄ , s̄) is (� , �, �̃�, �̃�, �)-quasisounivex at
y, �̃� is increasing, and �̃�(0) = 0;

(iii) �̄(x , y) + ∑M
�=1 �̃�(x , y) ≥ 0;
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(b) (i) � → �(�, y,u, v, t̄ , s̄) is prestrictly (� , �, �̄, �̄, �)-quasisounivex at y,

�̄(a) is strictly increasing, and �̄(0) = 0;
(ii) for each � ∈ M , � → ��(�, v, t̄ , s̄) is (� , �, �̃�, �̃�, �)-quasisounivex at

y, �̃� is increasing, and �̃�(0) = 0;
(iii) �̄(x , y) + ∑M

�=1 �̃�(x , y) > 0;
(c) (i) � → �(�, y,u, v, t̄ , s̄) is prestrictly (� , �, �̄, �̄, �)-quasisounivex at y,

�̄(a) is strictly increasing, and �̄(0) = 0;
(ii) for each � ∈ M , � → ��(�, v, t̄ , s̄) is strictly (� , �, �̃�, �̃�, �)-

pseudosounivex at y, �̃� is increasing, and �̃�(0) = 0;
(iii) �̄(x , y) + ∑M

�=1 �̃�(x , y) ≥ 0;
(d) (i) � → �(�, y,u, v, t̄ , s̄) is prestrictly (� , �, �̄, �̄, �)-quasisounivex at y,

�̄(a) is strictly increasing, and �̄(0) = 0;
(ii) for each � ∈ M1, � → ��(�, v, t̄ , s̄) is (� , �, �̃�, �̃�, �)-quasisounivex at

y, for each � ∈ M2 �= ∅, � → ��(�, v, t̄ , s̄) is strictly (� , �, �̃�, �̃�, �)-
pseudosounivex at y, and for each � ∈ M , �̃� is increasing and �̃�(0) =
0, where �M1,M2� is a partition of M ;

(iii) �̄(x , y) + ∑M
�=1 �̃�(x , y) ≥ 0.

Then �(x) ≥ �3(w), where �3 is the objective function of (DIII ).

Proof. (a): It is clear that (5.1) can be expressed as follows:

�
(
x , y; �(x , y)

{ p∑
i=1

ui

{

(y,u)

[
	 fi(y) +

∑
m∈J0

vm	Gjm (y, t
m) +

∑
m∈K0

vm	Hkm (y, s
m)

]

− [
(y,u) + �0(y, v, t̄ , s̄)]	gi(y)
}

+
{ p∑

i=1

ui

{

(y,u)

[
	2fi(y) +

∑
m∈J0

vm	2Gjm (y, t
m) +

∑
m∈K0

vm	2Hkm (y, s
m)

]

− [
(y,u) + �0(y, v, t̄ , s̄)]	2gi(y)
}
z
})

+ �
(
x , y; �(x , y)

M∑
�=1

{ ∑
m∈J�

vm	Gjm (y, t
m) +

∑
m∈K�

vm	Hkm (y, s
m)

+
[ ∑

m∈J�
vm	2Gjm (y, t

m) +
∑
m∈K�

vm	2Hkm (y, s
m)

]
z
})

≥ 0� (5.4)
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Since for each � ∈ M ,

��(x , v, t̄ , s̄) =
∑
m∈J�

vmGjm (x , t
m) +

∑
m∈K�

vmHkm (x , s
m)

≤ 0 (by the primal feasibility of x and positivity of vm ,m ∈ �0)

≤ ��(y, v, t̄ , s̄) − 1
2
〈z,	2��(y, v, t̄ , s̄)z〉 (by (5.3)),

and, hence,

�̃�(��(x , v, t̄ , s̄) − ��(y, v, t̄ , s̄) + 1
2
〈z,	2��(y, v, t̄ , s̄)z〉) ≤ 0,

it follows from (ii) that

�
(
x , y; �(x , y)

{ ∑
m∈J�

vm	Gjm (y, t
m) +

∑
m∈K�

vm	Hkm (y, s
m)

+
[ ∑

m∈J�
vm	2Gjm (y, t

m) +
∑
m∈K�

vm	2Hkm (y, s
m)

]
z
})

≤ −�̃�(x , y)‖�(x , y)‖2�

Summing over � ∈ M and using the sublinearity of � (x , y; ·), we obtain

�
(
x , y; �(x , y)

M∑
�=1

{ ∑
m∈J�

vm	Gjm (y, t
m) +

∑
m∈K�

vm	Hkm (y, s
m)

+
[∑
m∈J�

vm	2Gjm (y, t
m) +

∑
m∈K�

vm	2Hkm (y, s
m)

]
z
})

≤ −
M∑
�=1

�̃�(x , y)‖�(x , y)‖2�

Combining this inequality with (5.4), and using (iii), we get

�
(
x , y; �(x , y)

{ p∑
i=1

ui

{

(y,u)

[
	 fi(y) +

∑
m∈J0

vm	Gjm (y, t
m) +

∑
m∈K0

vm	Hkm (y, s
m)

]

− [
(y,u) + �0(y, v, t̄ , s̄)]	gi(y)
}

+
p∑

i=1

ui

{

(y,u)

[
	2fi(y) +

∑
m∈J0

vm	2Gjm (y, t
m) +

∑
m∈K0

vm	2Hkm (y, s
m)

]

− [
(y,u) + �0(y, v, t̄ , s̄)]	2gi(y)
}
z
})

≥
M∑
�=1

�̃�(x , y)‖�(x , y)‖2 ≥ −�̄(x , y)‖�(x , y)‖2,
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which by virtue of (i) implies that

�̄(�(x , y,u, v, t̄ , s̄) − �(y, y,u, v, �, t̄ , s̄) + 1
2
〈z,	2�(y, y,u, v, t̄ , s̄)z〉) ≥ 0�

But �̄(a) ≥ 0 ⇒ a ≥ 0, and hence this inequality becomes

�(x , y,u, v, t̄ , s̄) ≥ �(y, y,u, v, t̄ , s̄) − 1
2
〈z,	2�(y, y,u, v, t̄ , s̄)z〉 ≥ 0,

where the second inequality follows from the dual feasibility of w and
(5.2). In view of the primal feasibility of x , the above inequality reduces to
(4.8), which in turn leads to the desired conclusion that �(x) ≥ �3(w).

(b): The proof is similar to that of part (a).

(c): Suppose to the contrary that �(x) < �3(w). This implies that for
each i ∈ p,


(x , y)fi(x) − [
(x , y) + �0(y, v, t̄ , s̄)]gi(x) < 0� (5.5)

Keeping in mind that vm > 0 for each m ∈ �0, we have

�(x , y,u, v, t̄ , s̄)

=
p∑

i=1

ui

{

(y,u)

[
fi(x) +

∑
m∈J0

vmGjm (x , t
m) +

∑
m∈K0

vmHkm (x , s
m)

]

− [
(y,u) + �0(y, v, t̄ , s̄)]gi(x)
}
,

≤
p∑

i=1

ui�
(y,u)fi(x) − [
(y,u) + �0(y, v, t̄ , s̄)]gi(x)�
(by the primal feasibility of x) < 0 (by (5.5))

≤ �(y, y,u, v, t̄ , s̄) − 1
2
〈z,	2�(y, y,u, v, t̄ , s̄)z〉 (by (5.2))

and, hence,

�̄(�(x , y,u, v, t̄ , s̄) − �(y, y,u, v, t̄ , s̄) + 1
2
〈z,	2�(y, y,u, v, t̄ , s̄)z〉) < 0,

which, in view of (i), implies that

�
(
x , y; �(x , y)

{ p∑
i=1

ui

{

(y,u)

[
	 fi(y) +

∑
m∈J0

vm	Gjm (y, t
m) +

∑
m∈K0

vm	Hkm (y, s
m)

]

− [
(y,u) + �0(y, v, t̄ , s̄)]	gi(y)
}
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+
p∑

i=1

ui

{

(y,u)

[
	2fi(y) +

∑
m∈J0

vm	2Gjm (y, t
m) +

∑
m∈K0

vm	2Hkm (y, s
m)

]

− [
(y,u) + �0(y, v, t̄ , s̄)]	2gi(y)
}
z
})

≤ −�̄(x , y)‖�(x , y)‖2� (5.6)

Proceeding as in the proof of part (a), our assumptions in (ii) lead to

�
(
x , y; �(x , y)

{ M∑
�=1

{ ∑
m∈J�

vm	Gjm (y, t
m) +

∑
m∈K�

vm	Hkm (y, s
m)

+
[∑
m∈J�

vm	2Gjm (y, t
m) +

∑
m∈K�

vm	2Hkm (y, s
m)

]
z
})

< −
M∑
�=1

�̃�(x , y)‖�(x , y)‖2,

which, when combined with (5.4), gives the following strict inequality:

�
(
x , y; �(x , y)

{ p∑
i=1

ui

{

(y,u)

[
	 fi(y) +

∑
m∈J0

vm	Gjm (y, t
m) +

∑
m∈K0

vm	Hkm (y, s
m)

]

− [
(y,u) + �0(y, v, t̄ , s̄)]	gi(y)
}

+
p∑

i=1

ui

{

(y,u)

[
	2fi(y) +

∑
m∈J0

vm	2Gjm (y, t
m) +

∑
m∈K0

vm	2Hkm (y, s
m)

]

− [
(y,u) + �0(y, v, t̄ , s̄)]	2gi(y)
}
z
})

>

M∑
�=1

�̃�(x , y)‖�(x , y)‖2�

In view of (iii), this inequality contradicts (5.6). Hence, we conclude that
�(x) ≥ �3(w).

(d): The proof is similar to that of part (c). �

Theorem 5.2 (Strong Duality). Let x∗ be a normal optimal solution of
(P) and assume that any one of the four sets of conditions set forth
in Theorem 5.1 is satisfied for all feasible solutions of (DIII). Then there
exist u∗, v∗, �∗, �∗

0, J�∗0 ,K�∗\�∗0 , t̄
∗, and s̄∗ such that w∗ ≡ (x∗, z∗ = 0,u∗, v∗, �∗,

�∗
0, J�∗0 ,K�∗\�∗0 , t̄

∗, s̄∗) is an optimal solution of (DIII) and �(x∗) = �3(x∗).

Proof. Since x∗ is a normal optimal solution of (P ), by Theorem 2.1,
there exist u∗ ∈ U and integers �0 and �, with 0 ≤ �0 ≤ � ≤ n + 1, such
that there exist �0 indices jm , with 1 ≤ jm ≤ q , together with �0 points
tm ∈ T̂jm (x

∗),m ∈ �0, � − �0 indices km , with 1 ≤ km ≤ r , together with � − �0
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points sm ∈ Skm for m ∈ �\�0, and � real numbers v̄m with v̄m > 0 for m ∈ �0,
with the property that

p∑
i=1

u∗
i [
(x∗,u∗)	 fi(x∗) − 
(x∗,u∗)	gi(x∗)]

+
�0∑

m=1

v̄m	Gjm (x
∗, tm) +

�∑
m=�0+1

v̄m	Hkm (x
∗, sm) = 0, (5.7)

u∗
i [
(x∗,u∗)fi(x∗) − 
(x∗,u∗)gi(x∗)] = 0, i ∈ p, (5.8)

max
1≤i≤p

fi(x∗)
gi(x∗)

= 
(x∗,u∗)

(x∗,u∗)

� (5.9)

Since �(x∗, v̄, t̄ , s̄) = 0, (5.7) and (5.8) can be rewritten as follows:
p∑

i=1

u∗
i

{

(x∗,u∗)

[
	 fi(x∗) +

∑
m∈J0

v∗
m	Gjm (x

∗, tm) +
∑
m∈K0

v∗
m	Hkm (x

∗, sm)
]

− [
(x∗,u∗) + �0(x∗, v∗, t̄ , s̄)]	gi(x∗)
}

+
∑

m∈�∗0\J0
v∗
m	Gjm (x

∗, tm)

+
∑

m∈(�∗\�∗0)\K0
v∗
m	Hkm (x

∗, sm) = 0, (5.10)

u∗
i �
(x

∗,u∗)fi(x∗) − [
(x∗,u∗) + �0(x∗, v∗, t̄ , s̄)]gi(x∗)� = 0, i ∈ p, (5.11)

where v∗
m = v̄m/
(x∗,u∗) for each m ∈ J0, v∗

m = v̄m for each m ∈ �∗
0\J0,

v∗
m = v̄m/
(x∗,u∗) for each m ∈ K0, and v∗

m = v̄m for each m ∈ (�∗\�∗
0)\K0.

Inasmuch as x∗ ∈ � and, hence,
�0∑

m=1

v∗
mGjm (x

∗, tm) +
�∑

m=�0+1

v∗
mHkm (x

∗, sm) = 0,

from (5.9)–(5.11) it is clear that w∗ is a feasible solution of (DIII ) and
�(x∗) = �3(w∗). If w∗ were not optimal, then there would exist a feasible
solution w̃ ≡ (x̃ , z̃, ũ, ṽ, �̃, �̃, �̃0, J�̃0 ,K�̃\�̃0 ,

¯̃t , ¯̃s) of (DIII ) such that �3(w̃) >
�3(w∗) = �(x∗), contradicting Theorem 5.1. Therefore, w∗ is an optimal
solution of (DIII ). �

Theorem 5.3 (Strict Converse Duality). Let x∗ be a normal optimal solution
of (P), let w̃ ≡ (x̃ , z̃, ũ, ṽ, �̃, �̃0, J�̃0 , K�̃\�̃0 ,

¯̃t , ¯̃s) be an optimal solution of (DIII), and
assume that any one of the following four sets of conditions holds:

(a) The assumptions specified in part (a) of Theorem 5.1 are satisfied for the
feasible solution w̃ of (DIII), �̄(a) > 0 ⇒ a > 0, and the function � →
�(�, x̃ , ũ, ṽ, ¯̃t , ¯̃s) is strictly (� , �, �̄, �̄, �)-pseudosounivex at x̃.
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(b) The assumptions specified in part (b) of Theorem 5.1 are satisfied for the
feasible solution w̃ of (DIII), �̄(a) > 0 ⇒ a > 0, and the function � →
�(�, x̃ , ũ, ṽ, ¯̃t , ¯̃s) is (� , �, �̄, �̄, �)-quasisounivex at x̃.

(c) The assumptions specified in part (c) of Theorem 5.1 are satisfied for the
feasible solution w̃ of (DIII), �̄(a) > 0 ⇒ a > 0, and the function � →
�(�, x̃ , ũ, ṽ, ¯̃t , ¯̃s) is (� , �, �̄, �̄, �)-quasisounivex at x̃.

(d) The assumptions specified in part (d) of Theorem 5.1 are satisfied for the
feasible solution w̃ of (DIII), �̄(a) > 0 ⇒ a > 0, and the function � →
�(�, x̃ , ũ, ṽ, ¯̃t , ¯̃s) is (� , �, �̄, �̄, �)-quasisounivex at x̃.

Then x̃ = x∗ and �(x∗) = �3(ẽ).

Proof. Since x∗ is a normal optimal solution of (P ), by Theorem 2.1,
there exist u∗, v∗, �∗, �∗

0, J�∗0 ,K�∗\�∗0 , t̄
∗, and s̄∗ such that w∗ ≡ (x∗, z∗ =

0,u∗, v∗, �∗, �∗
0, J�∗0 , K�∗\�∗0 , t̄

∗, s̄∗) is a feasible solution of (DIII ) and
�(x∗) = �3(w∗).

(a): Suppose to the contrary that x̃ �= x∗. Now proceeding as in the
proof of part (a) of Theorem 5.1 (with x replaced by x∗ and w by w̃), we
arrive at the inequality

�
(
x∗, x̃ ; �(x∗, x̃)

{ p∑
i=1

ũi

{

(x̃ , ũ)

[
	 fi(x̃) +

∑
m∈J0

ṽm	Gjm (x̃ , t̃
m) +

∑
m∈K0

ṽm	Hkm (x̃ , s̃
m)

]

− [
(x̃ , ũ) + �0(x̃ , ṽ, ¯̃t , ¯̃s)]	gi(x̃)
}

+
p∑

i=1

ũi

{

(x̃ , ũ)

[
	2fi(x̃) +

∑
m∈J0

ṽm	2Gjm (x̃ , t̃
m) +

∑
m∈K0

ṽm	2Hkm (x̃ , s̃
m)

]

− [
(x̃ , ũ) + �0(x̃ , ṽ, ¯̃t , ¯̃s)]	2gi(x̃)
}
z̃
})

≥ −�̄(x∗, x̃)‖�(x∗, x̃)‖2,

which, in view of our strict (� , �, �̄, �̄, �)-pseudosounivexity hypothesis,
implies that

�̄

(
�(x∗, x̃ , ũ, ṽ, ¯̃t , ¯̃s) − �(x̃ , x̃ , ũ, ṽ, ¯̃t , ¯̃s) + 1

2
〈z̃,	2�(x̃ , x̃ , ũ, ṽ, ¯̃t , ¯̃s)z̃〉

)
> 0�

But �̄(a) > 0 ⇒ a > 0, and, hence, this inequality becomes

�(x∗, x̃ , ũ, ṽ, ¯̃t , ¯̃s) > �(x̃ , x̃ , ũ, ṽ, ¯̃t , ¯̃s) − 1
2
〈z̃,	2�(x̃ , x̃ , ũ, ṽ, ¯̃t , ¯̃s)z̃〉 ≥ 0,
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where the second inequality follows from the dual feasibility of w̃ and
(5.2). In view of the primal feasibility of x∗, the above inequality reduces to

p∑
i=1

ũi�
(x̃ , ũ)fi(x∗) − [
(x̃ , ũ) + �0(x̃ , ṽ, ¯̃t , ¯̃s)]gi(x∗)� > 0�

Using this inequality along with Lemma 3.1, as in the proof of
Theorem 4.1, we get �(x∗) > �3(w̃) which contradicts the fact that �(x∗) =
�3(w∗) ≤ �3(w̃).

(b)–(d): The proofs are similar to that of part (a). �

As pointed out earlier, the duality models (DIII ) and (D̃III ) can be
viewed as two families of dual problems for (P ) whose members can easily
be identified by appropriate choices of the partitioning sets J� and K�, � ∈
M ∪ �0�. These two families contain a vast number of interesting and
important dual problems for (P ), which include various dual problems
in conventional nonlinear programming, fractional programming, and
minmax programming problems. It appears that all these dual problems
and the corresponding duality theorems are new in the area of semi-
infinite programming.

6. CONCLUDING REMARKS

Using a direct nonparametric approach, in this article we have
formulated six second-order dual problems and proved appropriate
duality theorems under a variety of generalized (� , �,�, �, �)-sounivexity
conditions for a discrete minmax fractional programming problem. Since
each one of these six dual problems and the related duality results
can be modified and restated for each one of the seven special cases
of the prototype problem (P ) designated as (P1)–(P7) in Section 1,
evidently they provide a fairly large number of second-order duality
results for several classes of semi-infinite as well as conventional nonlinear
programming problems. Moreover, the methods used in this article can
be used as a guide to extend the results to other classes of mathematical
programming problems. For example, employing similar techniques, one
can investigate the second-order duality aspects of the following semi-
infinite multiobjective programming problem:

Minimize �(x) = (�1(x), � � � ,�p(x)) =
(
f1(x)
g1(x)

, � � � ,
fp(x)
gp(x)

)
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subject to

Gj(x , t) ≤ 0 for all t ∈ Tj , j ∈ q ,

Hk(x , s) = 0 for all s ∈ Sk , k ∈ r ,

x ∈ X �

We shall investigate this and some other related problems in the future.
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