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Abstract The main goal of this paper is to develop uniformly optimal first-order
methods for convex programming (CP). By uniform optimality we mean that the first-
order methods themselves do not require the input of any problem parameters, but can
still achieve the best possible iteration complexity bounds. By incorporating a multi-
step acceleration scheme into the well-known bundle-level method, we develop an
accelerated bundle-level method, and show that it can achieve the optimal complexity
for solving a general class of black-box CP problems without requiring the input of
any smoothness information, such as, whether the problem is smooth, nonsmooth or
weakly smooth, as well as the specific values of Lipschitz constant and smoothness
level. We then develop a more practical, restricted memory version of this method,
namely the accelerated prox-level (APL) method. We investigate the generalization
of the APL method for solving certain composite CP problems and an important class
of saddle-point problems recently studied by Nesterov (Math Program 103:127–152,
2005). We present promising numerical results for these new bundle-level methods
applied to solve certain classes of semidefinite programming and stochastic program-
ming problems.
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1 Introduction

Consider the convex programming (CP)

f ∗:= min
x∈X

f (x), (1.1)

where X is a convex compact set and f : X → R is a closed convex function. In the
classic black-box setting, f is represented by a first-order oracle which, given an input
point x ∈ X , returns f (x) and f ′(x) ∈ ∂ f (x), where ∂ f (x) denotes the subdifferential
of f at x ∈ X .

If f is a general nonsmooth Lipschitz continuous convex function, then, by the
classic complexity theory for CP [29], the number of calls to the first-order oracle
for finding an ε-solution of (1.1) (i.e., a point x̄ ∈ X s.t. f (x̄) − f ∗ ≤ ε), cannot
be smaller than O(1/ε2) when n is sufficiently large. This lower complexity bound
can be achieved, for example, by the simple subgradient descent or mirror descent
method [29]. If f is a smooth function with Lipschitz continuous gradient, Nesterov
in a seminal work [36] presented an algorithm with the iteration complexity bounded

by O(1/ε 1
2 ), which, by [29], is also optimal for smooth convex optimization if n is

sufficiently large. Moreover, if f is a weakly smooth function with Hölder continuous
gradient, i.e., ∃ constants ρ ∈ (0, 1) and M > 0 such that ‖∇ f (x) − ∇ f (y)‖∗ ≤
M‖x − y‖ρ,∀ x, y ∈ X, then the optimal iteration complexity bound is given by

O(1/ε 2
1+3ρ ) (see [8,33,37]).

To accelerate the solutions of large-scale CP problems, much effort has recently
been directed to exploiting the problem’s structure, in order to identify possibly some
new classes of CP problems with stronger convergence performance guarantee. One
such example is given by the composite CP problems with the objective function given
by f (x) = Ψ (φ(x)). Here Ψ is a relatively simple nonsmooth convex function such
as Ψ (·) = ‖ · ‖1 or Ψ (·) = max {y1, . . . , yk} (see Subsect. 4.1 for more examples)
and φ is a k-dimensional vector function, see [9,10,19,23,30,34,35,38]. In most of
these studies, the components of φ are assumed to be smooth convex functions. In this

case, the iteration complexity can be improved to O(1/ε 1
2 ) by properly modifying

Nesterov’s optimal smooth method, see for example, [30,35,38]. It should be noted
that these optimal first-order methods for general composite CP problems are in a sense
“conceptual” since they require the minimization of the summation of a prox-function
together with the composition of Ψ with an affine transformation [38]. More recently,
Nesterov [40] studied a class of nonsmooth convex-concave saddle point problems,
where the objective function f , in its basic form, is given by

f (x) = max
y∈Y

〈Ax, y〉.

Here Y ⊆ R
m is a convex compact set and A denotes a linear operator from R

n to
R

m . Nesterov shows that f can be closely approximated by a certain smooth convex
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Nonsmooth convex optimization 3

function and that the iteration complexity for solving this class of problems can be
improved to O(1/ε). It is noted in [13] that this bound is unimprovable, for example,
if Y is given by a Euclidean ball and the algorithm can only have access to A and A∗
(the adjoint operator of A). These problems were later studied in [2,18,31,39,41,43]
and found many interesting applications, for example, in [3,7,26].

The advantages of the aforementioned optimal first-order methods (e.g., subgra-
dient method or Nesterov’s method) mainly consist of their optimality, simplicity
and cheap iteration cost. However, these methods might have some shortcomings in
that each method is designed for solving a particular subclass of CP problems (e.g.,
smooth or nonsmooth). In particular, nonsmooth CP algorithms usually cannot make
use of local smoothness properties that a nonsmooth instance might have, while it is
well-known that Lipschitz continuous functions are differentiable almost everywhere
within its domain. On the other hand, although it has been shown recently in [19] that
Nesterov’s method, which was originally designed for solving smooth CP problems,
is also optimal for nonsmooth optimization when employed with a properly speci-
fied stepsize policy (see also [8] for a more recent generalization to weakly smooth
CP problems), one still needs to determine some smoothness properties of f (e.g.,
whether f is smooth or not, i.e., ρ = 1 or 0, and the specific value of M), as well as
some other global information (e.g., DX and in some cases, the number of iterations
N ), before actually applying these generalized algorithms. Since these parameters
describe the structure of CP problems over a global scope, these types of algorithms
are still inherently worst-case oriented.

To address these issues, we propose to study the so-called uniformly optimal first-
order methods. The key difference between uniformly optimal methods and existing
ones is that they can achieve the best possible complexity for solving different sub-
classes of CP problems, but require little (preferably no) structural information for
their implementation. To this end, we focus on a different type of first-order meth-
ods, namely: the bundle-level (BL) methods. Evolving from the well-known bundle
methods [15,16,21], the BL method was first proposed by Lemaréchal et al. [22] in
1995. In contrast to subgradient or mirror descent methods for nonsmooth CP, the
BL method can achieve the optimal O(1/ε2) iteration complexity for general non-
smooth CP without requiring the input of any problem parameters. Moreover, the
BL method and their certain “restricted-memory” variants [4,5,44] often exhibit sig-
nificantly superior practical performance to subgradient or mirror descent methods.
However, to the best of our knowledge, the study on BL methods has so far been
focused on general nonsmooth CP problems only.

Our contribution in this paper mainly consists of the following aspects. Firstly,
we consider a general class of black-box CP problems in the form of (1.1), where f
satisfies

f (y)− f (x)− 〈 f ′(x), y − x〉 ≤ M

1 + ρ
‖y − x‖1+ρ, ∀x, y ∈ X. (1.2)

for some M > 0, ρ ∈ [0, 1] and f ′(x) ∈ ∂ f (x). Clearly, this class of problems cover
nonsmooth (ρ = 0), smooth (ρ = 1) and weakly smooth (ρ ∈ (0, 1)) CP problems
(see for example, p.22 of [38] for the standard arguments used in smooth and weakly
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4 G. Lan

smooth case, and Lemma 2 of [19] for a related result in the nonsmooth case). By
incorporating into the BL method a multi-step acceleration scheme that was first used
by Nesterov [36] and later in [2,18,19,38,40] to accelerate gradient type methods
for solving smooth CP problems, we present a new BL-type algorithm, namely: the
accelerated bundle-level (ABL) method. We show that the iteration complexity of the
ABL method can be bounded by

O
⎧
⎨

⎩

(
MD1+ρ

X

ε

) 2
1+3ρ

⎫
⎬

⎭
.

Hence, the ABL method is optimal for solving not only nonsmooth, but also smooth
and weakly smooth CP problems. More importantly, this method does not require the
input of any smoothness information, such as whether a problem is smooth, nonsmooth
or weakly smooth, and the specific values of problem parameters M, ρ and DX . To
the best of our knowledge, this is the first time that uniformly optimal algorithms of
this type have been proposed in the literature.

Secondly, one problem for the ABL method is that, as the algorithm proceeds, its
subproblems become more difficult to solve. As a result, each iteration of the ABL
method becomes computationally more and more expensive. To remedy this issue,
we present a restricted memory version of this method, namely: the accelerated prox-
level (APL) method, and demonstrate that it can also uniformly achieve the optimal
complexity for solving any black-box CP problems. In particular, each iteration of the
APL method requires the projection onto the feasible set X coupled with a few extra
linear constraints, and the number of such linear constraints can be fully controlled
(as small as 1 or 2). The basic idea of this improvement is to incorporate a novel
rule due to Kiwiel [17] (later studied by Ben-tal and Nemirovski [4,5]) for updating
the lower bounds and prox-centers. In addition, non-Euclidean prox-functions can be
employed to make use of the geometry of the feasible set X in order to obtain (nearly)
dimension-independent iteration complexity.

Thirdly, we investigate the generalization of the APL method for solving certain
classes of composite and structured nonsmooth CP problems. In particular, we show
that with little modification, the APL method is optimal for solving a class of general-
ized composite CP problems with the objective given by f (x) = Ψ (φ(x)). Here
φi (x), i ≥ 1, can be a mixture of smooth, nonsmooth, weakly smooth or affine
components. Such a formulation covers a wide range of CP problems, including the
nonsmooth, weakly smooth, smooth, minimax, and regularized CP problems (see
Subsect. 4.1 for more discussions). The APL method can achieve the optimal itera-
tion complexity for solving this class of composite problems without requiring any
global information on the inner functions, such as the smoothness level and the size
of Lipschitz constant. In addition, based on the APL method, we develop a com-
pletely problem-parameter free smoothing scheme, namely: the uniform smoothing
level (USL) method, for solving the aforementioned class of structured CP problems
with a bilinear saddle point structure [40]. We show that this method can find an
ε-solution of these CP problems in at most O(1/ε) iterations.
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Nonsmooth convex optimization 5

Finally, we demonstrate through our preliminary numerical experiments that these
new BL type methods can be competitive and even significantly outperform existing
first-order methods for solving certain classes of CP problems. Observe that each
iteration of BL type methods involves the projection onto X coupled with a few linear
constraints, while gradient type methods only require the projection onto X . As a result,
the iteration cost of BL type methods can be higher than that of gradient type methods,
especially when the projection onto X has explicit solutions. Here we would like to
highlight a few interesting cases in which the application of BL type methods would
be preferred: (i) the major iteration cost does not exist in the projection onto X , but
the computation of first-order information (e.g., involving eigenvalue decomposition
or the solutions of another optimization problem); and (ii) the projection onto X is
as expensive as the projection onto X coupled with a few linear constraints, e.g.,
X is a general polyhedron. In particular, we show that the APL and USL methods,
when applied to solving certain important classes of semidefine programming (SDP)
and stochastic programming (SP) problems, can significantly outperform gradient type
algorithms, as well as some existing BL type methods. The problems we tested consist
of instances with up to 77, 213 decision variables.

The paper is organized as follows. In Sect. 2, we provide a brief review of the BL
method and present the ABL method for black-box CP problems. We then study a
restricted memory version of the ABL method, namely the APL method in Sect. 3. In
Sect. 4, we investigate how to generalize the APL method for solving certain compos-
ite and structured nonsmooth CP problems. Section 5 is dedicated to the numerical
experiments conducted on certain classes of SDP and SP problems. Finally, some
concluding remarks are made in Sect. 6.

2 The accelerated bundle-level method

We present a new BL type method, namely: the accelerated bundle-level (ABL)
method, which can uniformly achieve the optimal rate of convergence for smooth,
weakly smooth and nonsmooth CP problems. More specifically, we provide a brief
review of the BL method for nonsmooth minimization in Sect. 2.1, and then present
the ABL method and discuss its main convergence properties in Sect. 2.2. Section 2.3
is devoted to the proof of a major convergence result used in Sect. 2.2. Throughout
this section, we assume that the Euclidean space R

n is equipped with the standard
Euclidean norm ‖ · ‖ associated with the inner product 〈·, ·〉.

2.1 Review of the bundle-level method

Given a sequence of search points x1, x2, . . . , xk ∈ X , an important construct, namely,
the cutting plane model, of the objective function f of problem (1.1) is given by

mk(x) := max {h(xi , x) : 1 ≤ i ≤ k}, (2.1)

where

h(z, x) := f (z)+ 〈 f ′(z), x − z〉. (2.2)
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6 G. Lan

In the simplest cutting plane method [6,14], we approximate f by mk and update
the search points according to

xk+1 ∈ Argminx∈X mk(x). (2.3)

However, this scheme converges slowly, both theoretically and practically [29,38].
A significant progress [15,16,21] was made under the name of bundle methods (see,
e.g., [11,42] for some important applications of these methods). In these methods, a
prox-term is introduced into the objective function of (2.3) and the search points are
updated by

xk+1 ∈ Argminx∈X

{
mk(x)+ rk

2
‖x − x+

k ‖2
}
.

Here, the current prox-center x+
k is a certain point from {x1, . . . , xk} and rk denotes

the current penalty parameter. Moreover, the prox-center for the next iterate, i.e.,
x+

k+1, will be set to xk+1 if f (xk+1) is sufficiently smaller than f (xk). Otherwise,
x+

k+1 will be the same as x+
k . The penalty rk reduces the influence of the model mk’s

inaccuracy and hence the instability of the algorithm. Note, however, that the determi-
nation of rk usually requires certain on-line adjustments or line-search. In the closely
related trust-region technique [24,45], the prox-term is put into the constraints of the
subproblem instead of its objective function and the search points are then updated
according to

xk+1 ∈ Argminx∈X

{
mk(x) : ‖x − x+

k ‖2 ≤ Rk

}
.

This approach also encounters similar difficulties for determining the size of Rk .
In an important work [22], Lemaréchal et al. introduced the idea of incorporating

level sets into the bundle method. The basic scheme of their bundle-level (BL) methods
consists of:

a) Update f
k

to be the best objective value found so far and compute a lower bound
on f ∗ by f

k
= minx∈X mk(x);

b) Set lk = λ f
k + (1 − λ) f

k
for some λ ∈ (0, 1);

c) Set xk+1 = argminx∈X

{‖x − xk‖2 : mk(x) ≤ lk
}
.

Observe that step c) ensures that the new search point xk+1 falls within the level
set {x ∈ X : mk(x) ≤ lk}, while being as close as possible to xk . We refer to xk

as the prox-center, since it controls the proximity between xk+1 and the aforemen-
tioned level set. It is shown in [22] that, if f is a general nonsmooth convex func-
tion (i.e., ρ = 0 in (1.2)), then the above scheme can find an ε-solution of (1.1) in
at most

O
(

C(λ)
M2 D2

X

ε2

)

(2.4)
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Nonsmooth convex optimization 7

iterations, where C(λ) is a constant depending on λ and

DX := max
x,y∈X

‖x − y‖. (2.5)

In view of [29], the above complexity bound in (2.4) is unimprovable for nonsmooth
convex optimization. Moreover, it turns out that the level sets give a stable description
about the objective function f and, as a consequence, very good practical performance
has been observed for the BL methods, e.g., [4,20,22].

2.2 The ABL algorithm and its main convergence properties

Based on the bundle-level method, our goal in this subsection is to present a new bundle
type method, namely the ABL method, which can achieve the optimal complexity for
solving any CP problems satisfying (1.2).

We introduce the following two key improvements into the classical BL methods.
Firstly, rather than using a single sequence {xk}, we employ three related sequences,
i.e., {xl

k}, {xu
k } and {xk}, to build the cutting-plane models mk(x) (and hence the lower

bound f
k
), compute the upper bounds f k , and control the proximity, respectively.

Moreover, the relations among these sequences are defined carefully. In particular, we
define xl

k = (1 − αk)xu
k−1 + αk xk−1 and xu

k = (1 − αk)xu
k−1 + αk xk for a certain

αk ∈ (0, 1]. This type of multi-step scheme originated from the well-known Nesterov’s
accelerated gradient method for solving smooth CP problems [36]. Secondly, we group
the iterations performed by the ABL method into different phases, and in each phase,
the gap between the lower and upper bounds on f ∗ will be reduced by a certain
constant factor. It is worth noting that, although the convergence analysis of the BL
method also relies on the concept of phases (see, e.g., [4,5]), the description of this
method usually does not involve phases. However, we need to use phases explicitly in
the ABL method in order to define {αk} in an optimal way to achieve the best possible
complexity bounds for solving problem (1.1).

We start by describing the ABL gap reduction procedure, which, for a given search
point p and lower bound lb on f ∗, computes a new search point p+ and updated lower
bound lb+ satisfying f (p+)− lb+ ≤ λ [ f (p)− lb] for some λ ∈ (0, 1).
The ABL gap reduction procedure: (p+, lb+) = GABL(p, lb, λ)

0) Set xu
0 = p, f 0 = f (xu

0 ), and f
0

= lb. Also let x0 ∈ X and the cutting plane
m0(x) be arbitrarily chosen, say x0 = xu

0 and m0(x) = h(x0, x). Let k = 1.
1) Update lower bound: set xl

k = (1 − αk) xu
k−1 + αk xk−1, h(xl

k, x) = f (xl
k) +

〈 f ′(xl
k), x − xl

k〉,mk(x) = max
{
mk−1(x), h(xl

k, x)
}
,

h∗
k = min

x∈X
mk(x) and f

k
= max{ f

k−1
, h∗

k}; (2.6)

2) Update prox-center: set lk = λ f
k
+ (1 − λ) f k−1 and

xk = argmin
{
‖x − xk−1‖2 : mk(x) ≤ lk, x ∈ X

}
; (2.7)
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8 G. Lan

3) Update upper bound: set f k = min{ f k−1, f (αk xk + (1 − αk)xu
k−1)}, and choose

xu
k ∈ X such that f (xu

k ) = f k ;
4) If f k − f

k
≤ λ( f 0 − f

0
), terminate the procedure with p+ = xu

k and lb+ = f
k
;

5) Set k = k + 1 and go to Step 1.

We now add a few remarks about the above gap reduction procedure GABL . Firstly,
we say that an iteration of procedure GABL occurs whenever k increases by 1. Observe
that, if αk = 1 for all k ≥ 1, then an iteration of procedure GABL will be exactly the
same as that of the BL method. In fact, in this case procedure GABL will reduce to one
phase of the BL method as described in [4,5]. Secondly, with more general selections
of {αk}, the iteration cost of procedure GABL is still about the same as that of the
BL method. More specifically, each iteration of procedure GABL involves the solution
of two subproblems, i.e., (2.6) and (2.7), and the computation of f (xl

k), f ′(xl
k) and

f (αk xk + (1 − αk)xu
k−1), while the BL method requires the solution of two similar

subproblems and the computation of f (xk) and f ′(xk). Thirdly, it can be easily seen
that f

k
and f k, k ≥ 1, respectively, computed by procedure GABL are lower and upper

bounds on f ∗. Indeed, by the definition of mk(x), (2.2) and the convexity of f , we
have

m1(x) ≤ m2(x) ≤ . . .mk(x) ≤ f (x), ∀ x ∈ X, (2.8)

which, in view of (2.6), then implies that f
1

≤ f
2

≤ . . . f
k

≤ f ∗. Moreover, it

follows from the definition of f k that f 1 ≥ f 2 ≥ · · · ≥ f k ≥ f ∗. Hence, denoting

Δk := f k − f
k
, k ≥ 0, (2.9)

we have

Δ0 ≥ Δ1 ≥ Δ2 ≥ · · · ≥ Δk ≥ 0. (2.10)

By showing howΔk in (2.9) decreases with respect to k, we establish in Theorem 1
some important convergence properties of procedure GABL . The proof of this result is
more involved and hence provided separately in Sect. 2.3.

Theorem 1 Let λ ∈ (0, 1) and αk ∈ (0, 1], k = 1, 2, . . ., be given. Also let Δk =
f k − f

k
denote the optimality gap obtained at the k-th iteration of procedure GABL

before it terminates. Then for any k = 1, 2, . . ., we have

Δk ≤ γk(λ)

[

(1 − λα1)Δ0 + MD1+ρ
X

1 + ρ
‖Γk(λ, ρ)‖ 2

1−ρ

]

, (2.11)

where DX is defined in (2.5), ‖ · ‖p is the lp norm,

γk(λ) :=
{

1 k = 1,
(1 − λαk) γk−1(λ) k ≥ 2,

and (2.12)

Γk(λ, ρ) :=
{
γ1(λ)

−1α
1+ρ
1 , γ2(λ)

−1α
1+ρ
2 , . . . , γk(λ)

−1α
1+ρ
k

}
. (2.13)
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Nonsmooth convex optimization 9

In particular, if λ and αk ∈ (0, 1], k = 1, 2, . . ., are chosen such that for some
c1, c2 > 0,

γk(λ) ≤ c1k−2 and γk(λ)‖Γk(λ, ρ)‖ 2
1−ρ

≤ c2k− 1+3ρ
2 , (2.14)

then the number of iterations performed by procedure GABL can be bounded by

KABL(Δ0):=
⎡

⎢
⎢
⎢

√
2c1(1 − λα1)

λ
+
(

2c2 M D1+ρ
X

(1 + ρ)Δ0

) 2
1+3ρ

⎤

⎥
⎥
⎥
. (2.15)

Observe that, if αk = 1 for all k ≥ 1, then as mentioned before, procedure GABL

reduces to a single phase (or segment) of the BL method and hence its termination
follows by slightly modifying the standard analysis of the BL algorithm. However,
such a selection of {αk} does not satisfy the conditions stated in (2.14) and thus cannot
guarantee the termination of procedure GABL in at most KABL(Δ0) iterations. Below
we discuss a few possible selections of {αk} that satisfy (2.14), in order to obtain the
bound in (2.15). It should be pointed out that none of these selections rely on any
problem parameters, such as M, ρ and DX .

Proposition 1 Let γk(λ) and Γk(λ, ρ), respectively, be defined in (2.12) and (2.13)
for some λ ∈ (0, 1) and ρ ∈ [0, 1].
a) If λ ∈ (2/3, 1] and αk = 2/[λ(k +2)], k = 1, 2, . . ., then αk ∈ (0, 1) and relation

(2.14) holds with

c1 = 6 and c2 = 23−ρ

3
1−ρ

2 λ−(1+ρ)
.

b) If αk, k ≥ 1, are recursively defined by

α1 = γ1 = 1, γk = α2
k = (1 − λαk)γk−1, ∀ k ≥ 2, (2.16)

then we have αk ∈ (0, 1] for any k ≥ 1. Moreover, condition (2.14) is satisfied
with

c1 = 4λ−2 and c2 = 4

3
1−ρ

2

λ− 1+3ρ
2 .

Proof Denoting γk ≡ γk(λ) and Γk ≡ Γk(λ, ρ), we first show part a). Note that by
(2.12), the selection of {αk} and the fact that ρ ∈ [0, 1], we have

γk = 6

(k + 1)(k + 2)
and γ−1

k α
1+ρ
k ≤ 21+ρ

6 λ1+ρ (k + 2)1−ρ.
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10 G. Lan

Using these relations and the simple observation
∑k

i=1 i2 = k(k + 1)(2k + 1)/6 ≤
k(k + 1)2/3, we conclude that

γk‖Γk‖ 2
1−ρ

≤ γk
21+ρ

6 λ1+ρ

[
k∑

i=1

(i + 2)2
] 1−ρ

2

≤ γk
21+ρ

6 λ1+ρ

[
(k + 2)(k + 3)2

3

] 1−ρ
2

= 21+ρ

3
1−ρ

2 λ1+ρ
(k + 3)1−ρ

(k + 1)(k + 2)
1+ρ

2

≤ 21+ρ41−ρ

3
1−ρ

2 λ1+ρ
k− 1+3ρ

2 = 23−ρ

3
1−ρ

2 λ1+ρ
k− 1+3ρ

2 ,

where the last inequality follows from the facts k + 3 ≤ 4k and k + 2 ≥ k + 1 ≥ k
for any k ≥ 1.

We now show that part b) holds. Note that by (2.16), we have

αk = 1

2

(

−λγk−1 +
√

(λγk−1)2 + 4γk−1

)

, k ≥ 2, (2.17)

which clearly implies that αk > 0, k ≥ 2. We now show that αk ≤ 1 and γk ≤ 1 by
induction. Indeed, if γk−1 ≤ 1, then, by (2.17), we have

αk ≤ 1

2

(

−λγk−1 +
√

(λγk−1)2 + 4γk−1 + 4[1 − (1 − λ)γk−1]
)

= 1

2

(

−λγk−1 +
√

(λγk−1)2 + 4λγk−1 + 4

)

= 1.

The previous conclusion, together with the fact that α2
k = γk due to (2.16), then

also imply that γk ≤ 1. Now let us bound 1/
√
γk for any k ≥ 2. First observe that, by

(2.16), we have, for any k ≥ 2,

1√
γk

− 1√
γk−1

=
√
γk−1−√

γk√
γk−1γk

= γk−1−γk√
γk−1γk

(√
γk−1+√

γk
)= λαkγk−1

γk−1
√
γk +γk

√
γk−1

.

Using the above identity, (2.16) and the fact that γk ≤ γk−1 due to (2.16), we
conclude that

1√
γk

− 1√
γk−1

≥ λαk

2
√
γk

= λ

2
and

1√
γk

− 1√
γk−1

≤ λαk√
γk

= λ,

which, in view of the fact that γ1 = 1, then implies that 1 + λ(k − 1)/2 ≤ 1/
√
γk ≤

1 + λ(k − 1). Using the previous inequality and (2.16), we conclude that

γk ≤ 4

[2 + λ(k − 1)]2 ≤ 4

λ2k2 , γ−1
k α

1+ρ
k = (√γk

)−(1−ρ) ≤ [1 + λ(k − 1)]1−ρ,
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Nonsmooth convex optimization 11

and

γk‖Γk‖ 2
1−ρ

≤ γk

[
k∑

i=1

[1 + λ(i − 1)]2

] 1−ρ
2

≤ γk

⎛

⎝

2+λ(k−1)∫

0

u2 du

⎞

⎠

1−ρ
2

≤ 4

3
1−ρ

2

[2 + λ(k − 1)]− 1+3ρ
2 ≤ 4

3
1−ρ

2

(λk)−
1+3ρ

2 .

��
According to the termination criterion in step 4 of procedure GABL , each call to

this procedure will reduce the gap between a given upper and lower bound on f ∗
by a constant factor. In the ABL method described below, we will iteratively call
procedure GABL until a certain accurate solution of problem (1.1) is found.

The ABL method:
Input: initial point p0 ∈ X , tolerance ε > 0 and algorithmic parameter λ ∈ (0, 1).

0) Set p1 ∈ Argminx∈X h(p0, x), lb1 = h(p0, p1) and ub1 = f (p1). Let s = 1.
1) If ubs − lbs ≤ ε, terminate;
2) Set (ps+1, lbs+1) = GABL(ps, lbs, λ) and ubs+1 = f (ps+1);
3) Set s = s + 1 and go to step 1.

Whenever s increments by 1, we say that a phase of the ABL method occurs. Unless
explicitly mentioned otherwise, an iteration of procedure GABL is also referred to as
an iteration of the ABL method. The main convergence properties of the above ABL
method are summarized as follows.

Theorem 2 Suppose that λ ∈ (0, 1) and αk ∈ (0, 1], k = 1, 2, . . ., in procedure GABL

are chosen such that (2.14) holds for some c1, c2 > 0. Let DX ,M and ρ be given by
(2.5) and (1.2).

a) The number of phases performed by the ABL method does not exceed

S(ε) =
⌈

max

{

0, log 1
λ

MD1+ρ
X

(1 + ρ)ε

}⌉

. (2.18)

b) The total number of iterations performed by the ABL method can be bounded by

(

1 +
√

2c1

λ

)

S(ε)+ 1

1 − λ
2

1+3ρ

(
2c2MD1+ρ

X

(1 + ρ)ε

) 2
1+3ρ

. (2.19)

Proof Denote δs ≡ ubs − lbs, s ≥ 1. Without loss of generality, we assume that
δ1 > ε, since otherwise the statements are obviously true. Note that by the origin of
ubs and lbs , we have

δs+1 ≤ λδs, s ≥ 1. (2.20)
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12 G. Lan

Also note that, by (1.2), (2.5) and the definition of p1 in the ABL method, we have

δ1 = f (p1)− h(p0, p1) = f (p1)− [ f (p0)+ 〈 f ′(p0), p1 − p0〉
]

≤ M‖p1 − p0‖1+ρ

1 + ρ
≤ MD1+ρ

X

1 + ρ
. (2.21)

The previous two observations then clearly imply that the number of phases performed
by the ABL method is bounded by (2.18). We now bound the total number of iterations
performed by the ABL method. Suppose that procedure GABL has been called s̄ times
for some 1 ≤ s̄ ≤ S(ε). It then follows from (2.20) that δs > ελs−s̄, s = 1, . . . , s̄,
since δs̄ > ε due to the origin of s̄. Using this observation, we obtain

s̄∑

s=1

δ
− 2

1+3ρ
s <

s̄∑

s=1

λ
2

1+3ρ (s̄−s)

ε
2

1+3ρ

=
s̄−1∑

t=0

λ
2

1+3ρ t

ε
2

1+3ρ

≤ 1

(1 − λ
2

1+3ρ )ε
2

1+3ρ

.

Moreover, by Theorem 1, the total number of iterations performed by the ABL
method is bounded by

s̄∑

s=1

KABL(δs) ≤
(

1 +
√

2c1

λ

)

s̄ +
s̄∑

s=1

(
2c2MD1+ρ

X

(1 + ρ)δs

) 2
1+3ρ

Our result then immediately follows by combining the above two inequalities. ��

We now add a few remarks about Theorem 2. Firstly, by setting ρ = 0, ρ = 1
and ρ ∈ (0, 1) in (2.19), respectively, we obtain the optimal iteration complexity for
nonsmooth, smooth and weakly smooth convex optimization (see [8,19,33,37] for a
discussion about the lower complexity bounds for solving these CP problems). Sec-
ondly, the ABL method achieves these aforementioned optimal complexity bounds
without requiring the input of any smoothness information, such as whether the prob-
lem is smooth or not, and the specific values for ρ and M in (1.2). To the best of
our knowledge, the ABL method seems to be the first uniformly optimal method
for solving smooth, nonsmooth and weakly smooth CP problems in the literature.
Thirdly, observe that one potential problem for the ABL method is that, as the algo-
rithm proceeds, the model mk(x) accumulates cutting planes, and the subproblems in
procedure GABL become more difficult to solve. We will address this issue in Sect. 3
by developing a variant of the ABL method.

2.3 Convergence analysis of the ABL gap reduction procedure

Our goal in this subsection is to prove Theorem 1, which describes some important
convergence properties of procedure GABL . We will first establish three technical results
from which Theorem 1 immediately follows.
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Nonsmooth convex optimization 13

Lemma 1 below shows that the prox-centers {xk} for procedure GABL are “close”
to each other, in terms of

∑k
i=1 ‖xi−1 − xi‖2. It follows the standard analysis of the

BL method (see, e.g., [4,22]).

Lemma 1 Let mi (x) and li , i = 1, . . . , k, respectively, be computed in step 1
and step 2 of procedure GABL before it terminates. Then the level sets given by
Li := {x ∈ X : mi (x) ≤ li } , i = 1, 2, . . . , k, have a point in common. As a conse-
quence, we have

k∑

i=1

‖xi−1 − xi‖2 ≤ D2
X , (2.22)

where DX is defined in (2.5).

Proof Let Δk, k = 0, 1, . . ., be defined in (2.9). First, in view of (2.10) and the
termination criterion of procedure GABL , we have

Δ0 ≥ Δ1 ≥ · · · ≥ Δk > λΔ0. (2.23)

Now let u ∈ Argminx∈X mk(x). Observe that, by (2.6), (2.8) and (2.23), we have,
for any i = 1, 2, . . . , k,

mi (u) ≤ mk(u) = f
k

= f k −Δk < f k − λΔ0 ≤ f i − λΔ0

≤ f i − λΔi = (1 − λ) f i + λ f
i
≤ (1 − λ) f i−1 + λ f

i
= li .

We have thus shown that u ∈ Li for any i = 1, 2, . . . , k. Now by (2.7), we have

‖xi − u‖2 + ‖xi−1 − xi‖2 ≤ ‖xi−1 − u‖2, i = 1, 2, . . . , k.

Summing up the above inequalities and using (2.5), we obtain

‖xk − u‖2 +
k∑

i=1

‖xi−1 − xi‖2 ≤ ‖x0 − u‖2 ≤ D2
X ,

which clearly implies (2.22). ��
The following two technical results will be used in the convergence analysis for a

few accelerated bundle-level type methods, including ABL, APL and USL, developed
in this paper.

Lemma 2 Let (xk−1, xu
k−1) ∈ X × X be given at the k-th iteration, k ≥ 1, of an

iterative scheme and denote xl
k = αk xk−1 + (1 − αk)xu

k−1. Also let h(z, ·) be defined
in (2.2) and suppose that the pair of new search points (xk, x̃u

k ) ∈ X × X satisfy that,
for some l ∈ R and αk ∈ (0, 1],

123



14 G. Lan

h(xl
k, xk) ≤ l, (2.24)

x̃u
k = αt xk + (1 − αk)x

u
k−1. (2.25)

Then,

f (x̃u
k ) ≤ (1 − αk) f (xu

k−1)+ αkl + M

1 + ρ
‖αk(xk − xk−1)‖1+ρ. (2.26)

Proof It can be easily seen from (2.25) and the definition of xl
k that

x̃u
k − xl

k = αk(xk − xk−1). (2.27)

Using this observation, (1.2), (2.2), (2.24), (2.25) and the convexity of f, we have

f (x̃u
k ) ≤ h(xl

k , x̃u
k )+ M

1 + ρ
‖x̃u

k − xl
k‖1+ρ (by (1.2) and (2.2))

= (1 − αk)h(x
l
k , xu

k−1)+ αkh(xl
k , xk)+ M

1 + ρ
‖x̃u

k − xl
k‖1+ρ (by (2.25))

= (1 − αk)h(x
l
k , xu

k−1)+ αkh(xl
k , xk)+ M

1 + ρ
‖αk(xk − xk−1)‖1+ρ (by (2.27))

≤ (1 − αk) f (xu
k−1)+ αkh(xl

k , xk)+ M

1 + ρ
‖αk(xk − xk−1)‖1+ρ (by convexity of f )

≤ (1 − αk) f (xu
k−1)+ αkl + M

1 + ρ
‖αk(xk − xk−1)‖1+ρ. (by (2.24))

��
Lemma 3 Let wk ∈ (0, 1], k = 1, 2, . . ., be given. Also let us denote

Wk :=
{

1, k = 1,
(1 − wk)Wk−1, k ≥ 2.

(2.28)

Suppose that Wk > 0 for all k ≥ 2 and that the sequence {δk}k≥0 satisfies

δk ≤ (1 − wk)δk−1 + Bk, k = 1, 2, . . . . (2.29)

Then, we have δk ≤ Wk(1 − w1)δ0 + Wk
∑k

i=1(Bi/Wi ).

Proof Dividing both sides of (2.29) by Wk , we obtain

δ1

W1
≤ (1 − w1)δ0

W1
+ B1

W1

and

δk

Wk
≤ δk−1

Wk−1
+ Bk

Wk
, ∀k ≥ 2.

123



Nonsmooth convex optimization 15

The result then immediately follows by summing up the above inequalities and
rearranging the terms. ��

We are now ready to provide the proof of Theorem 1.

Proof of Theorem 1 We first establish an important recursion for procedure GABL . Let
Δk = f k − f

k
, k = 1, 2, . . ., be the optimality gap computed at the k-th iteration

of this procedure and denote x̃u
k ≡ αk xk + (1 − αk)xu

k−1. By the definitions of xu
k

and x̃u
k , we have f (xu

k ) ≤ f (x̃u
k ). Also by (2.7) and the definition of mk(x), we have

h(xl
k, xk) ≤ lk . Using these observations and Lemma 2 (with l = lk), we conclude

that, for any k ≥ 1,

f (xu
k ) ≤ f (x̃u

k ) ≤ (1 − αk) f (xu
k−1)+ αklk + M

1 + ρ
‖αk(xk − xk−1)‖1+ρ. (2.30)

Subtracting f
k

from both sides of the above inequality, and observing that f (xu
k )−

f
k

= f k − f
k

= Δk and f (xu
k−1) = f k−1, we obtain

Δk ≤ (1 − αk) f k−1 − f
k
+ αklk + M

1 + ρ
‖αk(xk − xk−1)‖1+ρ, ∀k ≥ 1.

Also note that

(1 − αk) f k−1 − f
k
+ αklk = (1 − αk) f k−1 − f

k
+ αk

[
λ f

k
+ (1 − λ) f k−1

]

= (1 − αk) f k−1 + αk(1 − λ) f k−1 − (1 − λαk) f
k

≤ (1 − αk) f k−1 + αk(1 − λ) f k−1 − (1 − λαk) f
k−1

= (1 − λαk)Δk−1,

where the inequality follows from the fact that f
k

≥ f
k−1

. Combining the above two
inequalities, we arrive at

Δk ≤ (1 − λαk)Δk−1 + M

1 + ρ
‖αk(xk − xk−1)‖1+ρ, ∀ k ≥ 1. (2.31)

Next, let γk ≡ γk(λ) and Γk ≡ Γk(λ, ρ) be defined in (2.12) and (2.13), respec-
tively. Using (2.31) and Lemma 3 (with δk = Δk, wk = 1 − λαk,Wk = γk and
Bk = M‖αk(xk − xk−1)‖1+ρ/(1 + ρ)), we obtain

Δk ≤ γk(1 − λα1)Δ0 + M

1 + ρ

k∑

i=1

[
γ−1

i ‖αi (xi − xi−1)‖1+ρ]

≤ γk(1 − λα1)Δ0 + M

1 + ρ
‖Γk‖ 2

1−ρ

[
k∑

i=1

‖xi − xi−1‖2

] 1+ρ
2

, (2.32)
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16 G. Lan

where the last relation follows from Hölder’s inequality. The previous conclusion, in
view of (2.22), then clearly implies (2.11).

Now let us denote K = K ABL(Δ0). It then follows from (2.11), (2.14) and (2.15)
that

ΔK ≤ c1(1 − λα1)K
−2Δ0 + c2 M D1+ρ

X

1 + ρ
K − 1+3ρ

2 ≤ λ

2
Δ0 + λ

2
Δ0 = λΔ0,

and hence that procedure GABL will terminate in at most K iterations.

3 The accelerated prox-level method

One critical issue for the ABL method is that, as the algorithm proceeds, its subprob-
lems, namely problem (2.6) and (2.7), accumulate constraints and thus become more
and more difficult to solve. Our goal in this section is to present a variant of the ABL
method, namely the accelerated prox-level method (APL), which can still uniformly
achieve the optimal iteration complexity for solving smooth, weakly smooth and non-
smooth CP problems, but has significantly reduced iteration cost than that of the ABL
method. In addition, throughout this section, we assume that R

n ⊇ X is equipped
with an arbitrary norm ‖ · ‖ (not necessarily associated with the inner product) and
‖ · ‖∗ denotes its conjugate. We will employ non-Euclidean prox-functions in the APL
algorithm to make use of the geometry of the feasible set X , similarly to the NERML
algorithm in [4,5].

We first need to introduce a new way to construct lower bounds on f ∗. Let E f (l)
denote the level set of f given by

E f (l):= {x ∈ X : f (x) ≤ l}. (3.1)

Also for some z ∈ X , let h(z, x) be the cutting plane defined in (2.2) and denote

h̄:= min
{
h(z, x) : x ∈ E f (l)

}
. (3.2)

Then, it is easy to verify that

min{l, h̄} ≤ f (x), ∀x ∈ X. (3.3)

Indeed, if l ≤ f ∗, then E f (l) = ∅, h̄ = +∞ and min{l, h̄} = l. Hence (3.3)
is obviously true. Now consider the case l > f ∗. Clearly, for an arbitrary optimal
solution x∗ of (1.1), we have x∗ ∈ E f (l). Moreover, by (2.2), (3.2) and the convexity
of f , we have h̄ ≤ h(z, x) ≤ f (x) for any x ∈ E f (l). Hence, h̄ ≤ f (x∗) = f ∗ and
thus (3.3) holds.

Note, however, that to solve problem (3.2) is usually as difficult as to solve the
original problem (1.1). To compute a convenient lower bound of f ∗, we replace E f (l)
in (3.2) with a convex and compact set X ′ satisfying

E f (l) ⊆ X ′ ⊆ X. (3.4)

123



Nonsmooth convex optimization 17

The set X ′ will be referred to as a localizer of the level set E f (l). The following
result shows the computation of a lower bound on f ∗ by solving such a relaxation of
(3.2).

Lemma 4 Let X ′ be a localizer of the level set E f (l) for some l ∈ R and h(z, x) be
defined in (2.2). Denote

h:= min
{
h(z, x) : x ∈ X ′}. (3.5)

We have

min{l, h} ≤ f (x), ∀x ∈ X. (3.6)

Proof Note that if X ′ = ∅ (i.e., (3.5) is infeasible), then h = +∞. In this case, we
have E f (l) = ∅ and f (x) ≥ l for any x ∈ X . Now assume that X ′ �= ∅. By (3.2), (3.4)
and (3.5), we have h ≤ h̄, which together with (3.3), then clearly imply (3.6). ��

The second new construct that we will employ in the APL method is the prox-
function that generalizes the Euclidean distance function ‖·‖2 used in the ABL method
(see (2.7)). More specifically, consider a convex compact set X ⊆ R

n . A function
ω : X → R is called a prox-function of X with modulus σω, if it is differentiable and
strongly convex with modulus σω, i.e.,

〈∇ω(x)− ∇ω(z), x − z〉 ≥ σω‖x − z‖2, ∀x, z ∈ X.

Moreover, we denote the size of X with respect to ω by

D2
ω,X := max

x,z∈X
{ω(x)− ω(z)− 〈∇ω(z), x − z〉}. (3.7)

Clearly, we have

‖x − z‖2 ≤ 2

σω
D2
ω,X =: Ωω,X , ∀x, z ∈ X. (3.8)

Similarly to Sect. 2.2, we start by describing a new gap reduction procedure, denoted
by GAPL , which, for a given search point p and a lower bound lb on f ∗, computes a new
search point p+ and a new lower bound lb+ satisfying f (p+)− lb+ ≤ q [ f (p)− lb]
for some q ∈ (0, 1). Note that the value of q will depend on the two algorithmic input
parameters: β, θ ∈ (0, 1).

The APL gap reduction procedure: (p+, lb+) = GAPL(p, lb, β, θ)

0) Set xu
0 = p, f 0 = f (xu

0 ), f
0

= lb and l = β f
0

+ (1 − β) f 0. Also let x0 ∈ X
and the initial localizer X ′

0 be arbitrarily chosen, say x0 = p and X ′
0 = X . Set the

prox-function dω(x) = ω(x)− [ω(x0)+ 〈ω′(x0), x − x0〉]. Also let k = 1.
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18 G. Lan

1) Update lower bound: set xl
k = (1 − αk)xu

k−1 + αk xk−1, h(xl
k, x) = f (xl

k) +
〈 f ′(xl

k), x − xl
k〉,

hk := min
x∈X ′

k−1

{
h(xl

k, x)
}
, and f

k
:= max

{
f

k−1
,min{l, hk}

}
. (3.9)

If f
k

≥ l − θ(l − f
0
), then terminate the procedure with p+ = xu

k−1 and
lb+ = f

k
;

2) Update prox-center: set

xk :=argminx∈X ′
k−1

{
dω(x) : h(xl

k, x) ≤ l
}

; (3.10)

3) Update upper bound: set f̄k = min{ f̄k−1, f (αk xk + (1 − αk)xu
k−1)}, and choose

xu
k such that f (xu

k ) = f̄k . If f k ≤ l + θ( f 0 − l), then terminate the procedure
with p+ = xu

k and lb+ = f
k
;

4) Update localizer: choose an arbitrary X ′
k such that Xk ⊆ X ′

k ⊆ Xk, where

Xk :=
{

x ∈ X ′
k−1 : h(xl

k, x) ≤ l
}

and Xk := {x ∈ X : 〈∇dω(xk), x−xk〉 ≥ 0} ;
(3.11)

6) Set k = k + 1 and go to step 1.

We now add a few comments about procedure GAPL described above. Firstly, note
that the level l used in (3.10) is fixed throughout the procedure. This is different
from the ABL gap reduction procedure where the level lk used in (2.7) changes at
each iteration. Moreover, instead of having one parameter λ as in the ABL method,
we need to use two parameters (i.e., β and θ ) whose values are fixed a priori, say,
β = θ = 0.5.

Secondly, procedure GAPL can be terminated in either step 1 or 3. If it terminates
in step 1, then we say that significant progress has been made on the lower bound f

k
.

Otherwise, if it terminates in step 3, then significant progress has been made on the
upper bound f k .

Thirdly, observe that in step 4 of procedure GAPL , we can choose any set X ′
k satis-

fying Xk ⊆ X ′
k ⊆ Xk (the simplest way is to set X ′

k = Xk or X ′
k = Xk). While the

number of constraints in Xk increases with k, the set Xk has only one more constraint
than X . By choosing X ′

k between these two extremes, we can control the number of
constraints in subproblems (3.9) and (3.10). Hence, the iteration cost of procedureGAPL

can be considerably smaller than that of procedure GABL .
We summarize below a few more observations regarding the execution of proce-

dure GAPL .

Lemma 5 The following statements hold for procedure GAPL.

a) {X ′
k}k≥0 is a sequence of localizers of the level set E f (l);

b) f
0

≤ f
1

≤ · · · ≤ f
k

≤ f ∗ and f 0 ≥ f 1 ≥ · · · ≥ f k ≥ f ∗ for any k ≥ 1;
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Nonsmooth convex optimization 19

c) Problem (3.10) is always feasible unless the procedure terminates;
d) ∅ �= Xk ⊆ Xk for any k ≥ 1 and hence Step 4 is always feasible unless the

procedure terminates;
e) Whenever the procedure terminates, we have f (p+)−lb+ ≤ q [ f (p)−lb],where

q ≡ q(β, θ) := 1 − (1 − θ)min{β, 1 − β}. (3.12)

Proof We first show part a). Firstly, noting that E f (l) ⊆ X ′
0, we can show that E f (l) ⊆

X ′
k, k ≥ 1, by using induction. Suppose that X ′

k−1 is a localizer of the level set E f (l).
Then, for any x ∈ E f (l), we have x ∈ X ′

k−1. Moreover, by the definition of h, we
have h(xl

k, x) ≤ f (x) ≤ l for any x ∈ E f (l). Using these two observations and
the definition of Xk in (3.11), we have E f (l) ⊆ Xk , which, in view of the fact that
Xk ⊆ X ′

k , implies E f (l) ⊆ X ′
k , i.e., X ′

k is a localizer of E f (l).
We now show part b). The first relation follows from Lemma 4, (3.9), and the fact

that X ′
k, k ≥ 0, are localizers of E f (l) due to part a). The second relation of part b)

follows immediately from the definition of f k, k ≥ 0.
To show part c), suppose that problem (3.10) is infeasible. Then, by the definition

of hk in (3.9), we have hk > l, which implies f
k

≥ l, which in turn implies that the
procedure should have terminated in step 1 at iteration k.

To show part d), note that by part c), the set Xk is nonempty. Moreover, by the
optimality condition of (3.10) and the definition of Xk in (3.11), we have 〈∇ω(xk), x−
xk〉 ≥ 0 for any x ∈ Xk , which then implies that Xk ⊆ Xk .

We now provide the proof of part e). Suppose first that the procedure terminates in
step 1 of the k-th iteration. We must have f

k
≥ l − θ(l − f

0
). By using this condition,

and the facts that f (p+) ≤ f 0 (see part b) and l = β f
0
+ (1 − β) f 0, we obtain

f (p+)− lb+ = f (p+)− f
k

≤ f 0 − [l − θ(l − f
0
)]

= [1 − (1 − β)(1 − θ)]( f 0 − f
0
). (3.13)

Now suppose that the procedure terminates in step 3 of the k-th iteration. We must
have f k ≤ l + θ( f 0 − l). By using this condition, and the facts that lb+ ≥ f

0
(see

Lemma 5.b) and l = β f
0
+ (1 − β) f 0, we have

f (p+)− lb+ = f k − lb+ ≤ l + θ( f 0 − l)− f
0

= [1 − (1 − θ)β]( f 0 − f
0
).

Part e) then follows by combining the above two relations. ��
By showing how the gap between the upper bound (i.e., f (xu

k )) and the level l
decreases with respect to k, we establish in Theorem 3 some important convergence
properties of procedure GAPL .

Theorem 3 Let αk ∈ (0, 1], k = 1, 2, . . ., be given. Also let (xl
k, xk, xu

k ) ∈ X ×
X × X, k ≥ 1, be the search points, l be the level and dω(·) be the prox-function in
procedure GAPL. Then, we have
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f (xu
k )− l ≤(1−α1)γk(1) [ f (xu

0 )−l] + M

1 + ρ

[
2dω(xk)

σω

] 1+ρ
2

γk(1) ‖Γk(1, ρ)‖ 2
1−ρ

(3.14)

for any k ≥ 1, where ‖ · ‖p denotes the lp norm, γk(·) and Γk(·, ·), respectively, are
defined in (2.12) and (2.13). In particular, if αk ∈ (0, 1], k = 1, 2, . . ., are chosen
such that for some c > 0,

α1 = 1 and γk(1) ‖Γk(1, ρ)‖ 2
1−ρ

≤ c k− 1+3ρ
2 , (3.15)

then the number of iterations performed by procedure GAPL can be bounded by

KAPL(Δ0):=

⎡

⎢
⎢
⎢
⎢
⎢

⎛

⎝
c MΩ

1+ρ
2

ω,X

βθ(1 + ρ)Δ0

⎞

⎠

2
1+3ρ

⎤

⎥
⎥
⎥
⎥
⎥

, (3.16)

where Δ0 = f 0 − f
0

and Ωω,X is defined in (3.8).

Proof We first show that the prox-centers {xk} in procedure GAPL are “close” to
each other in terms of

∑k
i=1 ‖xi−1 − xi‖2. This result slightly extends Lemma 1

for procedure GABL . Observe that, the function dω(x) is strongly convex with modulus
σω, x0 = arg minx∈X dω(x) and dω(x0) = 0. Hence, we have,

σω

2
‖x1 − x0‖2 ≤ dω(x1)− dω(x0) = dω(x1). (3.17)

Moreover, by (3.11), we have 〈∇dω(xk), x − xk〉 ≥ 0 for any x ∈ Xk , which,
together with the fact that X ′

k ⊆ Xk , then imply that 〈∇dω(xk), x − xk〉 ≥ 0 for any
x ∈ X ′

k . Using this observation, the fact that xk+1 ∈ X ′
k due to (3.10), and the strong

convexity of dω, we have

σω

2
‖xk+1 − xk‖2 ≤ dω(xk+1)− dω(xk)− 〈∇dω(xk), xk+1 − xk〉

≤ dω(xk+1)− dω(xk), ∀k ≥ 1.

Summing up the above inequalities with (3.17), we arrive at

σω

2

k∑

i=1

‖xi − xi−1‖2 ≤ dω(xk). (3.18)

Next, we establish a recursion for procedure GAPL . Let us denote x̃u
k ≡ αk xk + (1−

αk)xu
k−1, γk ≡ γk(1) and Γk ≡ Γk(1, ρ). By the definitions of xu

k and x̃u
k , we have

f (xu
k ) ≤ f (x̃u

k ). Also by (3.10), we have h(xl
k, x) ≤ l. Using these observations and

Lemma 2, we have
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f (xu
k ) ≤ f (x̃u

k ) ≤ (1 − αk) f (xu
k−1)+ αkl + M

1 + ρ
‖αk(xk − xk−1)‖1+ρ, ∀k ≥ 1.

Subtracting l from both sides of the above inequality, we obtain

f (xu
k )− l ≤ (1 − αk)[ f (xu

k−1)− l] + M

1 + ρ
‖αk(xk − xk−1)‖1+ρ, ∀k ≥ 1. (3.19)

Using the above inequality and Lemma 3 (with δk = f (xu
k )−l, wk = 1−αk,Wk =

γk and Bk = M‖αk(xk − xk−1)‖1+ρ/(1 + ρ)), we obtain

f (xu
k )− l ≤ (1 − α1)γk[ f (xu

0 )− l] + M

1 + ρ
γk

k∑

i=1

γ−1
i ‖αi (xi − xi−1)‖1+ρ

≤ (1−α1)γk[ f (xu
0 )− l]+ M

1+ρ ‖Γk‖ 2
1−ρ

[
k∑

i=1

‖xi −xi−1‖2

] 1+ρ
2

, ∀k ≥1

where the last inequality follows from Hölder’s inequality. The above conclusion
together with (3.18) then imply that (3.14) holds.

Now, denote K = K AP L(ε) and suppose that condition (3.15) holds. Then by
(3.14), (3.15), (3.7) and (3.8), we have

f (xu
K )− l ≤ cM

1 + ρ

[
2dω(xK )

σω

] 1+ρ
2

K − 1+3ρ
2 ≤ cM

1 + ρ
Ω

1+ρ
2

ω,X K − 1+3ρ
2

≤ θβΔ0 = θ( f 0 − l),

where the last equality from the fact that l = β f
0
+ (1 −β) f 0 = f 0 −βΔ0. Hence,

procedure GAPL must terminate in step 3 of the K -th iteration. ��
In view of Theorem 3, we discuss below a few possible selections of {αk}, which

satisfy condition (3.15) and thus guarantee the termination of procedure GAPL . It is
worth noting that these selections of {αk} do not rely on any problem parameters,
including M, ρ and Ωω,X , nor on any other algorithmic parameters, such as β and θ .

Proposition 2 Let γk(·) and Γk(·, ·), respectively, be defined in (2.12) and (2.13).

a) If αk = 2/(k + 1), k = 1, 2, . . ., then αk ∈ (0, 1] and relation (3.15) holds with

c = 21+ρ3− 1−ρ
2 .

b) If αk, k = 1, 2, . . ., are recursively defined by

α1 = γ1 = 1, γk = α2
k = (1 − αk)γk−1, ∀ k ≥ 2, (3.20)

then we have αk ∈ (0, 1] for any k ≥ 1. Moreover, condition (3.15) is satisfied
with c = 4

3
1−ρ

2
.

Proof We show part a) only since part b) follows directly from Proposition 1.b) with
λ = 1. Denoting γk ≡ γk(1) and Γk ≡ Γk(1, ρ), by (2.12) and (2.13), we have
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γk = 2

k(k + 1)
and γ−1

k α
1+ρ
k =

(
2

k + 1

)ρ

k ≤ 2ρk1−ρ. (3.21)

Using (3.21) and the simple observation that
∑k

i=1 i2 = k(k + 1)(2k + 1)/6 ≤
k(k + 1)2/3, we have

γk‖Γk‖ 2
1−ρ

≤ γk

[
k∑

i=1

(
2ρ i1−ρ)

2
1−ρ
] 1−ρ

2

= 2ργk

(
k∑

i=1

i2

) 1−ρ
2

≤ 2ργk

[
k(k + 1)2

3

] 1−ρ
2

=
(

21+ρ 3− 1−ρ
2

) [
k− 1+ρ

2 (k + 1)−ρ
]

≤
(

21+ρ 3− 1−ρ
2

)
k− 1+3ρ

2 .

��
In view of Lemma 5.e) and the termination criterion of procedure GAPL , each call

to this procedure can reduce the gap between a given upper and lower bound on f ∗
by a constant factor q (see (3.12)). In the following APL method, we will iteratively
call procedure GAPL until a certain accurate solution of problem (1.1) is found.

The APL method:
Input: initial point p0 ∈ X , tolerance ε > 0 and algorithmic parameters β, θ ∈

(0, 1).

0) Set p1 ∈ Argminx∈X h(p0, x), lb1 = h(p0, p1) and ub1 = f (p1). Let s = 1.
1) If ubs − lbs ≤ ε, terminate;
2) Set (ps+1, lbs+1) = GAPL(ps, lbs, β, θ) and ubs+1 = f (ps+1);
3) Set s = s + 1 and go to step 1.

Similarly to the ABL method, whenever s increments by 1, we say that a phase of
the APL method occurs. Unless explicitly mentioned otherwise, an iteration of proce-
dure GAPL is also referred to as an iteration of the APL method. The main convergence
properties of the above APL method are summarized as follows.

Theorem 4 Let M, ρ,Ωω,X and q be defined in (1.2), (3.8) and (3.12), respectively.
Suppose that αk ∈ (0, 1], k = 1, 2, . . ., in procedure GAPL are chosen such that
condition (3.15) holds for some c > 0.

a) The number of phases performed by the APL method does not exceed

S̄(ε):=
⎡

⎢
⎢
⎢

max

⎧
⎨

⎩
0, log 1

q

MΩ
1+ρ

2
ω,X

(1 + ρ)ε

⎫
⎬

⎭

⎤

⎥
⎥
⎥
. (3.22)

b) The total number of iterations performed by the APL method can be bounded by

S̄(ε)+ 1

1 − q
2

1+3ρ

⎛

⎝
cMΩ

1+ρ
2

ω,X

βθ(1 + ρ)ε

⎞

⎠

2
1+3ρ

. (3.23)
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Proof Denote δs ≡ ubs − lbs, s ≥ 1. Without loss of generality, we assume that
δ1 > ε, since otherwise the statements are obviously true. By Lemma 5.e) and the
origin of ubs and lbs , we have

δs+1 ≤ qδs, s ≥ 1. (3.24)

Also note that, by (2.21) and (3.8), we have

δ1 ≤ M‖p1 − p0‖1+ρ

1 + ρ
≤ MΩ

1+ρ
2

ω,X

1 + ρ
.

The previous two observations then clearly imply that the number of phases per-
formed by the APL method is bounded by (3.22).

We now bound the total number of iterations performed by the APL method. Sup-
pose that procedure GAPL has been called s̄ times for some 1 ≤ s̄ ≤ S̄(ε). It follows
from (3.24) that δs > εqs−s̄, s = 1, . . . , s̄, since δs̄ > ε due to the origin of s̄. Using
this observation, we obtain

s̄∑

s=1

δ
− 2

1+3ρ
s <

s̄∑

s=1

q
2

1+3ρ (s̄−s)

ε
2

1+3ρ

=
s̄−1∑

t=0

q
2

1+3ρ t

ε
2

1+3ρ

≤ 1

(1 − q
2

1+3ρ )ε
2

1+3ρ

.

Moreover, by Theorem 3, the total number of iterations performed by the APL
method is bounded by

s̄∑

s=1

K AP L(δs) ≤ s̄ +
s̄∑

s=1

⎛

⎝
cMΩ

1+ρ
2

ω,X

βθ(1 + ρ)δs

⎞

⎠

2
1+3ρ

Our result then immediately follows by combining the above two inequalities. ��
Clearly, in view of Theorem 4, the APL method also uniformly achieves the opti-

mal complexity for solving smooth, weakly smooth and nonsmooth CP problems. In
addition, its iteration cost can be significantly smaller than that of the APL method.

4 Level methods for solving composite and structured nonsmooth CP problems

In this subsection, we discuss two possible ways to generalize the APL method devel-
oped in Sect. 3. More specifically, we discuss a relatively easy extension of the APL
method for solving an important class of composite problems in Sect. 4.1, and present
a more involved generalization of this method for solving a certain class of saddle
point problems in Sect. 4.2. Throughout this section, we assume that ‖ · ‖ is an arbi-
trary norm in its embedded Euclidean space (not necessarily the one associated with
the inner product) and use ‖ · ‖2 to denote the l2 norm.
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4.1 Composite CP problems

In this subsection, we consider the CP problem (1.1) with f given by:

f (x) := Ψ (φ(x)), (4.1)

where the outer function Ψ : R
m → R is Lipschitz continuous and convex, and the

inner function, given by φ(x) = (φ1(x), . . . , φm(x)), is an m-dimensional vector-
function with Lipschitz continuous and convex components φi , i = 1, . . . ,m. For the
sake of notational convenience, we refer to this class of problems as problem (1.1)–
(4.1). We assume that the structure of Ψ is relatively simple in comparison with φ
(see Examples 1-4) and known to the iterative schemes for solving (4.1), while the
inner functions φi , i = 1, . . . ,m, are represented by the black-box first-order oracles.
These first-order oracles return, given an input point x ∈ X , the function values φi (x)
and (sub)gradients φ′

i (x). The following three additional assumptions are made about
φ and Ψ .

Assumption 1 ∃ρi ∈ [0, 1] and Mi ≥ 0 such that:

‖φ′
i (x)− φ′

i (y)‖∗ ≤ Mi‖x − y‖ρi , ∀ x, y ∈ X. (4.2)

Observe that relation (4.2) holds with ρi = 1, 0 and (0, 1), respectively, for smooth,
nonsmooth and weakly smooth components φi (c.f. [8,33,37]). Clearly, if Mi = 0
for some 1 ≤ i ≤ m, then the component φi must be affine. Otherwise, φi must
be nonlinear. To fix the notation, let us assume throughout this subsection that, for a
given 1 ≤ m0 ≤ m, the first m0 components of φ are nonlinear, i.e., Mi > 0 for any
1 ≤ i ≤ m0, while the remaining m − m0 components are affine, i.e., Mi = 0 for any
m0 + 1 ≤ i ≤ m. We make the following assumption regarding the monotonicity of
Ψ with respect to these nonlinear components.

Assumption 2 The map

yi �→ Ψ (y1, . . . , yi , . . . , ym)

is monotonically nondecreasing for any 1 ≤ i ≤ m0.

In addition, we make a certain “Lipschitz-continuity” assumption about Ψ .

Assumption 3 There exists M0 ∈ [0,∞) such that

M0:= sup
y∈Rm ,δ∈R

m+

{
Ψ (y + δ)− Ψ (y)

‖δ‖1
: δi = 0,∀ m0 + 1 ≤ i ≤ m.

}

. (4.3)

Many CP problems can be written in the form of problem (1.1)–(4.1). We give a
few interesting examples as follows.
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Example 1 Nonsmooth, weakly smooth and smooth problems. Let m = 1 andΨ (y) =
y. Then, problem (1.1)–(4.1) covers the usual nonsmooth, weakly smooth and smooth
CP problems, for which condition (4.2) is satisfied with ν = 0, ν ∈ (0, 1) and ν = 1,
respectively.

Example 2 Minimax problems. Let Ψ (y) = max{y1, . . . , ym}. With this outer func-
tion, problem (1.1)–(4.1) becomes the minimax problem to minimize the maximum
of a finite number of convex functions. It can be used, for example, to solve a system
of smooth convex inequalities φi (x) ≤ 0, i = 1, . . . ,m, where φi (x) are convex func-
tions satisfying (4.2) with ν1 = · · · = νm = 1. It can also be used to solve a system
of mixed smooth and nonsmooth convex inequalities if νi = 0 or 1, i = 1, . . . ,m.

Example 3 Composite smooth and nonsmooth problems. Consider minx∈X ψ(x) =
φ1(x)+ φ2(x), where φ1 is a smooth component and φ2 is a nonsmooth component.
Clearly, we can write the problem in the form of (4.1) by settingφ(x) = (φ1(x), φ2(x))
and Ψ (y1, y2) = y1 + y2. For this problem, we have ρ1 = 1 and ρ2 = 0. The
applications can be found, for example, in certain penalization approaches for solving
nonsmooth CP problems [19].

Example 4 Regularized problems. Consider the problem minx∈X φ1(x) + ρr(x),
where φ1 is a smooth convex function with Lipschitz continuous gradient and r(x)
is a continuous, nonnegative, usually nonsmooth convex function. Clearly, this prob-
lem is a special case of Example 3. However, sometimes we may want to keep the
regularization term ρr(x) in the definition of Ψ , so that this term will not be lin-
earized when defining the cutting plane model (c.f. (4.5)). For this purpose, we can
put this problem in the form of (1.1)–(4.1) by setting φ(x) = (φ1(x), x) ∈ R

n+1 and
Ψ (y, x) = y +ρr(x). Note that if r(x) = ‖x‖1 and φ1(x) = ‖Ax −b‖2

2, this problem
becomes the well-known l1 regularized least squares problem.

Since problem (1.1)–(4.1) covers nonsmooth, weakly smooth and smooth CP as
certain special cases and m0 is a given constant, in view of [8,29,33,37], a lower bound
on the iteration complexity for solving this class of generalized composite problems
is given by

max
i=1,...,m0

(
Mi

ε

) 2
1+3ρi

. (4.4)

The composite CP problem described above generalizes a few other composite CP
problems existing in the literature (see, for example, Nesterov [35,38], Tseng [48],
Lewis and Wright [23], Sagastizźbal [46] and Nemirovski [30]). Our goal in this sub-
section is to show that, by properly modifying the APL method, we can uniformly
achieve the optimal complexity for solving (4.1) without requiring any global informa-
tion about the inner functions φi , such as, the smoothness levels ρi and the Lipschitz
constants Mi , for all i = 1, . . . ,m0.

Observing that the structure of Ψ is known, we will replace the cutting plane h(·, ·)
used in procedure GAPL with the support function given by

hΨ (z, x) := Ψ (φ(z)+ φ′(z)(x − z)), (4.5)
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whereφ′(z)d:=(〈φ′
1(z), d〉; . . . ; 〈φ′

k(z), d〉) andφ′
i (z) ∈ ∂φi (z) for any i = 1, . . . ,m.

We will refer to the APL method using the above support function as the modified APL
method. Lemma 6 describes some basic properties of hΨ .

Lemma 6 Let hΨ (·, · · · ) be defined in (4.5). We have

hΨ (z, x) ≤ Ψ (φ(x)) ≤ hΨ (z, x)+ M0

m0∑

i=1

Mi

1 + ρi
‖x − z‖1+ρi , (4.6)

where Mi , ρi and M0 are given by (4.2) and (4.3), respectively.

Proof Let us denote oi ≡ Mi‖x − z‖1+ρi /(1 + ρi ), i = 1, . . . ,m0, and o =(
o1, o2, . . . , om0 , 0, . . . , 0

)
. Clearly, we have hΨ (z, z) = Ψ (φ(z)) = f (z) for any

z ∈ X . Moreover, it follows from (1.2) and (4.2) that

φi (z)+ 〈φi (z), x − z〉 ≤ φi (x) ≤ φi (z)+ 〈φ′
i (z), x − z〉 + oi ,

for any i = 1, . . . ,m0 and that φi (x) = φi (z) + 〈∇φi (z), x − z〉 for any i = m0 +
1, . . . ,m. Using these observations, Assumption 2 and the definition of M0 in (4.3),
we have

Ψ (φ(z)+ φ′(z)(x − z)) ≤ Ψ (φ(x)) ≤ Ψ (φ(z)+ φ′(z)(x − z)+ o)

≤ Ψ (φ(z)+ φ′(z)(x − z))+ M0

m0∑

i=1

oi .

��
Observe that the second relation in (4.6) depends on M0. In view of (4.3), it can

be easily seen that M0 = 1 for Examples 1, 2, 3 and 4 mentioned above. We are now
ready to describe the main convergence properties of the aforementioned modified
APL method.

Theorem 5 Consider the modified APL method applied to problem (1.1)–(4.1) where
we replace h(·, ·) by hΨ (·, ·). Suppose that {αk} in procedure GAPL are chosen such
that condition (3.15) for all ρ ∈ [0, 1] for some c > 0. Let Ωω,X , q,Mi , ρi and M0
be defined in (3.8), (3.12), (4.2) and (4.3) respectively.

a) The number of phases performed by the modified APL method does not exceed:

SΨ (ε):=
⌈

max

{

0, log 1
q

(
m0∑

i=1

M0 Mi

(1 + ρi ) ε
Ω

1+ρi
2

ω,X

)}⌉

. (4.7)

b) The total number iterations performed by the modified APL method can be bounded
by

SΨ (ε)+
m0∑

i=1

[
m0cM0 Mi

βθ (1 + ρi )(1 − q
2

1+3ρi ) ε

Ω
1+ρi

2
ω,X

] 2
1+3ρi

. (4.8)

123



Nonsmooth convex optimization 27

Proof The proof of the result is similar to that of Theorem 4 by noticing the difference
between relations (1.2) and (4.6), and hence the details are skipped. ��

We now add a few comments about the results obtained in Theorem 5. Firstly, if
there exists only one nonlinear component in the inner function φ(·), i.e., m0 = 1,
then the bound in (4.7) reduces to the bound established for the original APL method,
i.e., (3.23). Moreover, for a given m0 > 1, we can see from (4.4) and (4.8) that
the complexity bound in (4.8) is optimal, up to a constant factor depending on m0,
for solving the composite CP problems. Finally, as shown by the following result,
in certain special cases, one can improve the dependence of the iteration-complexity
bound on the number of components of φ.

Corollary 1 Suppose that ρ1 = ρ2 = · · · = ρm0 in Assumption 1. Let us denote

M̃ := sup
y∈Rm ,t>0

Ψ (y + tδM )− Ψ (y)

t
, δM := (M1, . . . ,Mm0 , 0, . . . , 0). (4.9)

Then, the total number of phases and iterations performed by the above modified
APL method applied to problem (1.1)–(4.1) can be bounded by (3.22) and (3.23),
respectively, with M = M̃ and ρ = ρ1.

Proof Similarly to Lemma 6, we can show that

hΨ (z, x) ≤ Ψ (φ(x)) ≤ hΨ (z, x)+ M̃

1 + ρ1
‖x − z‖1+ρ1 .

The rest of the proof is similar to that of Theorem 4 and hence the details are
skipped. ��

Consider a special case of problem (1.1)–(4.1) where m = m0, ρ1 = · · · = ρm

and Ψ (y) = max1≤i≤m yi (see Example 2). We can easily see from (4.9) that M̃ =
max1≤i≤m0 Mi and hence that, by Corollary (1), the iteration-complexity bound of the
APL method does not depend on the number of components in the inner function φ(·).

4.2 Structured nonsmooth CP problems

In this subsection, we present a new BL type method for solving a class of structured
nonsmooth CP problems that has recently been studied by Nesterov (c.f. [39,40]).
Consider problem (1.1) with f given by

f (x) := f̂ (x)+ F(x), (4.10)

where f̂ : X → R is a simple Lipschitz continuous convex function and

F(x) := max
y∈Y

{〈Ax, y〉 − ĝ(y)
}
. (4.11)
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Here, Y ⊆ R
m is a compact convex set, ĝ : Y → R is a continuous convex

function on Y and A denotes a linear operator from R
n to R

m . Observe also that
problem (1.1)–(4.10) can be written in an adjoint form:

max
y∈Y

{
g(y) := −ĝ(y)+ G(y)

}
, G(y) := min

x∈X

{
〈Ax, y〉 + f̂ (x)

}
. (4.12)

While the function F given by (4.11) is a nonsmooth convex function in general,
Nesterov in an important work [40] shows that it can be closely approximated by
a class of smooth convex functions. We now briefly describe Nesterov’s smoothing
scheme as follows. Let v(y) be a prox-function of Y with modulus σv and prox-center
cv = argminy∈Y v(y). Also let us denote

V (y) := v(y)− v(cv)− 〈∇v(cv), y − cv〉,

and, for some η > 0,

Fη(x) := max
y

{〈Ax, y〉 − ĝ(y)− η V (y) : y ∈ Y
}
, (4.13)

fη(x) := f̂ (x)+ Fη(x). (4.14)

It is shown in [40] that Fη(·) has Lipschitz-continuous gradient with constant

Lη ≡ L(Fη):=‖A‖2

ησv
, (4.15)

where ‖A‖ denote the operator norm of A. Moreover, the “closeness” of Fη(·) to F(·)
depends linearly on the parameter η. In particular, we have, for every x ∈ X ,

Fη(x) ≤ F(x) ≤ Fη(x)+ ηDv,Y , (4.16)

and, as a consequence,

fη(x) ≤ f (x) ≤ fη(x)+ ηDv,Y , (4.17)

where Dv,Y given by (3.7).
Nesterov shows in [40] that one can obtain an ε-solution of problem (1.1)–(4.10) in

at most O(1/ε) iterations, by applying a variant of his optimal smooth method [36,40]
to minx∈X fη(x), for a properly chosen η > 0. This result is significantly better than
the iteration-complexity for the black-box nonsmooth convex optimization techniques
applied to (4.10). However, to implement Nesterov’s approximation scheme, it is
necessary to know a number of problem parameters a priori, including ‖A‖, σv and
Dv,Y , and the total number of iterations N . To eliminate the requirement that N
should be given in advance, Nesterov in [39] presented an excessive gap procedure
where the above smoothing technique is applied to both the primal and dual problem
(4.12). However, to apply the excessive gap procedure, one needs to know a few more
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parameters, including ‖A‖, σv,Dv,Y , σω and Dω,X , whereσω is the modulus of a given
prox-function ω of X and Dω is defined in (3.7). In [31], Nemirovski proposed a prox-
method with O(1/ε) iteration-complexity bound for solving a slightly more general
class of CP problems than (4.10). To attain the best possible iteration complexity in
[31], it is still necessary to know the parameters ‖A‖, σv,Dv,Y , σω and Dω,X explicitly.
One possible approach for solving problem (1.1)–(4.10) would be to apply the APL
method, which is shown to be optimal for smooth convex optimization, to the smooth
approximation minx∈X fη(x) for some η > 0, similarly to Nesterov’s smoothing
scheme [40]. Note however, that this approach would require both the number of
iterations (or the target accuracy) and the problem parameter Dv (see (4.17)) given a
priori.

Our goal in this section is to present a completely problem parameter-free smoothing
technique, namely: the uniform smoothing level (USL) method, obtained by properly
modifying the APL method in Sect. 3. In the USL method, the smoothing parameter
η is adjusted dynamically during their execution rather than being fixed in advance.
Moreover, an estimate on the value of Dv can be provided automatically. We start by
describing the USL gap reduction procedure, denoted byGUSL , which will be iteratively
called by the USL method. Specifically, for a given search point p, a lower bound lb
on f ∗ and an initial estimate D̃ on Dv,Y , procedure GUSL will either compute a new
search point p+ and a new lower bound lb+ satisfying f (p+)− lb+ ≤ q [ f (p)− lb]
for some q ∈ (0, 1), or provide an updated estimate D̃+ on Dv,Y in case the current
estimate D̃ is not accurate enough.

The USL gap reduction procedure: (p+, lb+, D̃+) = GUSL(p, lb, D̃, β, θ)

0) Set xu
0 = p, f 0 = f (xu

0 ), f
0

= lb, l = β f
0
+ (1 − β) f 0, and

η := θ( f 0 − l)/(2D̃). (4.18)

Also let x0 ∈ X and the initial localizer X ′
0 be arbitrarily chosen, say x0 = p and

X ′
0 = X . Set the prox-function d(x) = ω(x)− [ω(x0)+ 〈ω′(x0), x − x0〉]. Also

let k = 1.
1) Update lower bound: set xl

k = (1 − αk)xu
k−1 + αk xk−1 and

h(xl
k, x) = hη(x

l
k, x) := f̂ (x)+ Fη(x

l
k)+ 〈∇Fη(x

l
k), x − xl

k〉. (4.19)

Compute f
k

according to (3.9). If f
k

≥ l−θ(l− f
0
), then terminate the procedure

with p+ = xu
k−1, lb+ = f

k
, and D̃+ = D̃;

2) Update prox-center: set xk according to (3.10);
3) Update upper bound: set f̄k = min{ f̄k−1, f (αk xk + (1 − αk)xu

k−1)}, and choose
xu

k such that f (xu
k ) = f̄k . Check the following two possible termination criterions:

3a) if f k ≤ l + θ( f 0 − l), terminate the procedure with p+ = xu
k , lb+ = f

k
and

D̃+ = D̃,
3b) Otherwise, if fη(xu

k ) ≤ l + θ
2 ( f 0 − l), terminate the procedure with p+ =

xu
k , lb+ = f

k
and D̃+ = 2D̃;
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4) Update localizer: choose an arbitrary X ′
k such that Xk ⊆ X ′

k ⊆ Xk, where Xk

and Xk are defined in (3.11);
6) Set k = k + 1 and go to Step 1.

We notice that there are a few essential differences between procedure GUSL

described above and procedure GAPL in Sect. 3. Firstly, in comparison with proce-
dure GAPL , procedure GUSL needs to use one additional input parameter, namely D̃, to
define η (see (4.18)) and hence the approximation function fη in (4.14).

Secondly, we use the support functions hη(xl
k, x) of fη(x) defined in (4.19) pro-

cedure GUSL rather than the cutting planes of f (x) in procedure GAPL . Notice that by
(4.19), the convexity of Fη and the first relation in (4.16), we have

hη(x
l
k, x) ≤ f̂ (x)+ Fη(x) ≤ f̂ (x)+ F(x) = f (x), (4.20)

which implies that the functions hη(xl
k, x) underestimate f everywhere on X . Hence,

f
k

computed in step 1 of this procedure are indeed lower bounds of f ∗.
Thirdly, there are three possibles ways to terminate procedure GUSL . Similarly to

procedure GAPL , if it terminates in step 1 and step 3a, then we say that significant
progress has been made on the lower and upper bounds on f ∗, respectively. The new
added termination criterion in step 3b will be used only if the value of D̃ is not properly
specified. We formalize these observations in the following simple result.

Lemma 7 The following statements hold for procedure GUSL.

a) If the procedure terminates in step 1 or step 3a, we have f (p+)− lb+ ≤ q[ f (p)−
lb], where q is defined in (3.12);

b) If the procedure terminates in step 3b, then D̃ < Dv,Y .

Proof The proof of part a) is the same as that of Lemma 5.e) and we only need to
show part b). Observe that whenever step 3b occurs, we have f k > l + θ( f 0 − l) and
fη(xu

k ) ≤ l + θ
2 ( f 0 − l). Hence,

f (xu
k )− fη(x

u
k ) = f k − fη(x

u
k ) >

θ

2
( f 0 − l),

which, in view of the second relation in (4.17), then implies that ηDv,Y > θ( f 0 −l)/2.
Using this observation and (4.18), we conclude that D̃ < Dv,Y . ��

We observe that all the results in Lemma 5a–d) regarding the execution of proce-
dure GAPL also hold for procedure GUSL . In addition, similar to Theorem 3, we establish
below some important convergence properties of procedure GUSL by showing how the
gap between f (xu

k ) and the level l decreases.

Theorem 6 Let αk ∈ (0, 1], k = 1, 2, . . ., be given. Also let (xl
k, xk, xu

k ) ∈ X × X ×
X, k ≥ 1, be the search points, l be the level and dω(·) be the prox-function, η be the
smoothing parameter (see (4.18)) in procedure GUSL. Then, we have

fη(x
u
k )− l ≤ (1 − α1)γk(1) [ fη(x

u
0 )− l] + ‖A‖2dω(xk)

ησωσv
γk(1) ‖Γk(1, ρ)‖∞,

(4.21)
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for any k ≥ 1, where ‖ · ‖∞ denotes the l∞ norm, γk(·) and Γk(·, ·), respectively, are
defined in (2.12) and (2.13). In particular, if αk ∈ (0, 1], k = 1, 2, . . ., are chosen such
that condition (3.15) holds with ρ = 1 for some c > 0, then the number of iterations
performed by procedure GAPL can be bounded by

KUSL(Δ0, D̃):=
⎡

⎢
⎢
⎢

2‖A‖
βθΔ0

√

cDω,X D̃

σωσv

⎤

⎥
⎥
⎥
, (4.22)

where Dω,X is defined in (3.7).

Proof Note that, by (4.20) and (4.14), we have hη(z, x) ≤ fη(x) for any z, x ∈ X .
Moreover, by (4.14), (4.19) and the fact that Fη has Lipschitz continuous gradients
with constant Lη, we obtain

fη(x)− hη(z, x) = Fη(x)− [Fη(z)+ 〈∇Fη(z), x − z〉]

≤ Lη
2

‖x − z‖2 = ‖A‖2

2ησv
‖x − z‖2,

for any z, x ∈ X , where the last inequality follows from (4.15). In view of these
observations, (4.21) follows from an argument similar to the one used in the proof of
(3.14) with f = fη,M = Lη and ρ = 1.

Now using (3.7), (3.15) (with ρ = 1), (4.18) and (4.21), we obtain

fη(x
u
k )− l ≤ ‖A‖2dω(xk)

ησωσv
γk(1) ‖Γk(1, ρ)‖∞ ≤ c‖A‖2dω(xk)

ησωσvk2

≤ c‖A‖2Dω,X

ησωσvk2 = 2c‖A‖2Dω,X D̃

θ( f 0 − l)σωσvk2
.

Denoting K = KU SL(Δ0, D̃) and noting that Δ0 = f 0 − f
0

= ( f 0 − l)/β, we

conclude from the previous inequality that fη(xu
K ) − l ≤ θ( f 0 − l)/2. This result

together with (4.17) imply that, if D̃ ≥ Dv,Y , then f (xu
K )−l ≤ fη(xu

K )−l +ηDv,Y ≤
θ( f 0 − l). In view of these two observations and the termination criterions used in
step 3, procedure GUSL must terminate in at most KAPL(Δ0, D̃) iterations. ��

In view of Lemma 7, each call to procedure GUSL can reduce the gap between a given
upper and lower bound on f ∗ by a constant factor q, or update the estimate on Dv,Y

by a factor of 2. In the following USL method, we will iteratively call procedure GUSL

until a certain accurate solution is found.

The USL method:
Input: p0 ∈ X , tolerance ε > 0, initial estimate Q1 ∈ (0,Dv] and algorithmic

parameters β, θ ∈ (0, 1).

1) Set

p1 ∈ Argminx∈X

{
h0(p0, x) := f̂ (x)+ F(p0)+ 〈F ′(p0), x − p0〉

}
, (4.23)
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lb1 = h0(p0, p1) and ub1:= min{ f (p1), f ( p̃1)}. Let s = 1.
2) If ubs − lbs ≤ ε, terminate;
3) Set (ps+1, lbs+1, Qs+1) = GUSL(ps, lbs, Qs, β, θ) and ubs+1 = f (ps+1);
4) Set s = s + 1 and go to step 1.

We now make a few remarks about the USL method described above. Firstly, each
phase s, s ≥ 1, of the USL method is associated with an estimation Qs on Dv,Y , and
Q1 ∈ (0,Dv,Y ] is a given input parameter. Note that such a Q1 can be easily obtained
by the definition of Dv,Y . Secondly, we differentiate two types of phases: a phase is
called significant if procedure GUSL terminates in step 1 or step 3a, otherwise, it is
called non-significant. Thirdly, In view of Lemma 7.b), if phase s is non-significant,
then we must have Qs ≤ Dv,Y . In addition, using the previous observation, and the
facts that Q1 ≤ Dv,Y and that Qs can be increased by a factor of 2 only in the
non-significant phases, we must have Qs ≤ 2Dv,Y for all significant phases.

Before establishing the complexity of the above USL method, we first present
a technical result which will be used to provide a convenient estimate on the gap
between the initial lower and upper bounds on f ∗. The proof of this result is given in
the Appendix.

Lemma 8 Let F be defined in (4.11) and v be a prox-function of Y with modulus σv .
We have

F(x0)− F(x1)− 〈F ′(x1), x0 − x1〉≤2

(
2‖A‖2Dv,Y

σv

) 1
2

‖x0 − x1‖, ∀x0, x1 ∈R
n,

(4.24)

where F ′(x1) ∈ ∂F(x1) and Dv,Y is defined in (3.7).

We are now ready to show the main convergence results for the USL method.

Theorem 7 Suppose that αk ∈ (0, 1], k = 1, 2, . . ., in procedure GUSL are chosen
such that condition (3.15) holds with ρ = 1 for some c > 0. The following statements
hold for the USL method applied to problem (1.1)–(4.10):

a) the number of non-significant phases is bounded by S̃F (Q1) := �log Dv/Q1�,
and the number of significant phases is bounded by SF (ε) ≡ S(4�̄F , ε, q), where
S(·, ·, ·) is defined in (4.7) and

Δ̄F := ‖A‖
√

Dω,XDv,Y

σωσv
. (4.25)

b) the total number of gap reduction iterations performed by the USL method does
not exceed

SF (ε)+ S̃F (Q1)+ c̃Δ̄F

ε
, (4.26)

where c̃ := 2[√2/(1 − q)+ √
2 + 1]√c/βθ .
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Proof Denote δs ≡ ubs − lbs, s ≥ 1. Without loss of generality, we assume that
δ1 > ε, since otherwise the statements are obviously true. The first claim in part
a) immediately follows from the facts that a non-significant phase can occur only if
Q1 ≤ Dv due to Lemma 7.b) and that Qs, s ≥ 1, is increased by a factor of 2 in each
non-significant phase. In order to show the second claim in part a), we first bound
the initial optimality gap ub1 − lb1. By the convexity of F , (4.14) and (4.23), we can
easily see that lb1 ≤ f ∗. Moreover, we conclude from (4.14), (4.24) and (4.23) that

ub1 − lb1 ≤ f (p1)− lb1 = F(p1)− F(p0)− 〈F ′(p0), p1 − p0〉

≤ 2

(
2‖A‖2Dv,Y

σv

) 1
2

‖p1 − p0‖ ≤ 4Δ̄F ,

where the last inequality follows from (3.8). Using this observation and Lemma 7.a),
we can easily see that the number of significant phases is bounded by SF (ε).

We now show that part b) holds. Let B = {b1, b2, . . . , bk} and N =
{n1, n2, . . . , nm}, respectively, denote the set of indices of the significant and non-
significant phases. Note that δbt+1 ≤ q δbt , t ≥ 1, and hence that δbt ≥ qt−kδbk >

εqt−k, 1 ≤ t ≤ k. Also observe that Qbt ≤ 2Dv,Y (see the remarks right after the
statement of the USL method). Using these observations and T heorem 6, we conclude
that the total number of iterations performed in the significant phases is bounded by

k∑

t=1

KUSL(δbt , Qbt ) ≤
k∑

t=1

KUSL(εq
t−k, 2Dv,Y )

≤ k + 2‖A‖
βθε

√
2C1Dω,XDv,Y

σωσv

k∑

t=1

qk−t

≤ SF + 2‖A‖
βθ(1 − q)ε

√
2C1Dω,XDv,Y

σωσv
, (4.27)

where the last inequality follows from part a) and the observation that
∑k

t=1 qk−t ≤
1/(1 − q). Moreover, note that Δnr > ε for any 1 ≤ r ≤ m and that Qnr+1 = 2Qnr

for any 1 ≤ r ≤ m. Using these observations and Theorem 6, we conclude that the
total number of iterations performed in the non-significant phases is bounded by

m∑

r=1

KUSL(δnr , Qnr ) ≤
m∑

r=1

KUSL(ε, Qnr ) ≤ m + 2‖A‖
βθ ε

√
C1Dω,X Q1

σωσv

m∑

r=1

2
r−1

2

≤ S̃F + 2‖A‖
βθ ε

√
C1Dω,X Q1

σωσv

S̃F∑

r=1

2
r−1

2 ≤ S̃F + 2‖A‖
(
√

2 − 1)βθ ε

√
C1Dω,XDv,Y

σωσv
.

(4.28)

Combining (4.27) and (4.28), we obtain (4.26). ��
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It is interesting to observe that, if Q1 = Dv,Y , then there are no non-significant
phases and the number of iterations performed by the USL method is simply bounded
optimally by (4.27). In this case, we do not need to compute the value of fη(xu

k ) in step
3b. We refer to such a special case of the USL method as the basic smoothing level
(BSL) method. It is interesting to note that, in view of Theorem 7, the USL method still
achieves the optimal complexity bound in (4.26) even without a good initial estimate
on Dv,Y .

5 Numerical results

Our objective in this section is to report some promising results obtained for the new
BL type algorithms developed in this paper. More specifically, we study in Sects. 5.1
and 5.2, respectively, the application of these methods to solve certain classes of
semidefinite programming (SDP) and stochastic programming (SP) problems.

5.1 A class of SDP problems

In this subsection, we consider the classic SDP problem of

min
x∈X

λ1 (A(x)), (5.1)

where X ⊆ R
n is a convex and compact set, λ1 : R

m×m → R denotes the maximal
eigenvalue of a symmetric matrix,

A(x) = A0 +
n∑

i=1

xi Ai ,

and Ai , i = 1, . . . , n, are given m × m symmetric matrices.
One can solve problem (5.1) by using interior-point methods. However, due to the

high iteration cost of interior-point methods, much effort has recently been directed to
the development of first-order methods for solving problem (5.1). Since problem (5.1)
is in general nonsmooth, one can use general nonsmooth convex optimization methods,
such as NERML (non-Euclidean restricted memory level) in [4,5] or APL in Sect. 3.
In particular, Let a symmetric matrix A ∈ R

m×m be given. It is well-known that the
subdifferential of λ1 at A is given by ∂λ1(A) = co

{
uuT : uT u = 1, Au = λ1(A)u

}
,

where co(·) denotes the convex hull. Hence, λ1 is smooth (i.e., ∂λ1(A) is a singleton)
if and only if the maximal eigenvalue of A has multiplicity 1. In comparison with
the NERML algorithm, a nice feature of the APL method is that it can automatically
explore the local smoothness structures of a particular problem instance, as the objec-
tive function of (5.1) may be differentiable along certain parts of the trajectory of
the algorithm. These methods, in the worst case, require O(1/ε2) iterations to find
an ε-solution of problem (5.1), and the major iteration costs of these methods consist
of finding a maximal eigenvector ux of A(x) for a given x ∈ X and assembling the
subgradient A∗ux , where A∗ denotes the adjoint operator of A. It should be noted
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that other bundle type methods, such as the spectral-bundle method by Helmberg and
Rendl [11], have also been developed for solving problem (5.1). The spectral-bundle
method is obtained by tailoring the well-known bundle method [15,16,21] to prob-
lem (5.1). By making use of the specific structure of problem (5.1), each iteration
of this method requires the solution of a quadratic semidefinite programming prob-
lem. It should also be noted that there are no complexity results available for the
aforementioned spectral bundle method.

Since problem (5.1) can also be written as a bilinear saddle point problem:

min
x∈X

{

λ1(A(x) = max
y∈Y

〈A(x), y〉
}

, (5.2)

where Y := {
y ∈ R

m×m |Tr(y) = 1, y � 0
}
, we can apply Nesterov’s smoothing

scheme (NEST-S) [40,41] and the USL method developed in Sect. 4.2 for solving
(5.2). These methods can find an ε-solution of (5.2) in at most O(1/ε) iterations.
It should be noted that the iteration costs of NEST-S and USL can slightly differ
from each other. More specifically, USL applied to (5.2) requires a full eigenvalue
decomposition and computation of the adjoint operator A∗ to define hη (see (4.19))
in step 1 of procedure GUSL . In addition, it requires to find a maximum eigenvalue
to compute f (xu

k ) in step 3a of procedure GUSL . On the other hand, each iteration of
NEST-S requires two (or one in some variants of Nesterov’s method, see, e.g., [19])
full eigenvalue decompositions and computations of the adjoint operator A∗.

Our goal is to compare the four different algorithms, namely: NERML, APL, USL
and NEST-S, applied to solve problems in the form of (5.1) or (5.2). More details
about the implementation of these algorithms are as follows.

– Prox-functions. If the feasible set X is a standard simplex given by
{

x ∈ R
n|∑n

i=1 xi = 1, xi ≥ 0,∀i
}
, the prox-function of X , as required by all these

four algorithms, is set to ω(x) = ∑n
i=1 xi log xi and the norm is set to ‖x‖1.

If X is a box, then we set ω(x) = ‖x‖2
2/2 and the norm is set to ‖x‖2.

The prox-function of Y , as required by the algorithms USL and NEST-S, is
set to v(y) = ∑n

i=1 λi (y) log λi (y), and the norm is set to
∑n

i=1 λi (y), where
λi (y), i = 1, . . . , n, denote the eigenvalues of y ∈ Y . Under this setting, the
value of Dv,Y can be bounded by ln m. Hence, we can set Q1 = ln m in our
implementation of the USL method.

– Localizers. For the APL, USL and NERML algorithms, we define the localizer X ′
k

as

X ′
k =

{
x ∈ X : 〈∇ω(xl

k), x − xk〉 ≥ 0
}⋂

Mk, k ≥ 1,

where Mk denotes the intersection of totally at most B half spaces of the form
{x : h(xl

k, x) ≤ l} which have been generated most recently. Note that the larger
the value of B is, the more difficult the subproblems of BL type methods (e.g.,
(3.9) and (3.10)) are. On the other hand, a larger B might help to compute a better
lower bound in (3.9). It is found from our initial experiments that different values
of B within [10, 30] perform almost equally well.
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– Subproblems for BL type methods. If the problem dimension n is relatively small,
say n ≤ 5000, we can solve the subproblems for BL type methods (e.g., (3.9) and
(3.10)) by Mosek [28]. In this case we set the bundle limit B to 30. If the size of n
is very big, it will be time-consuming to directly solve the subproblems of BL type
methods. However, observing that the number of constraints in these subproblems
is very small (at most B + 1), one can conveniently solve the Lagrangian duals of
these subproblems (see Ben-tal and Nemirovski [5]). In particular, if n is big, say
n ≥ 5000, we set B = 10 and solve the Lagrangian dual of these subproblems
by using the ABL method, which can solve efficiently small dimensional CP
problems, similarly to the BL method [5,22].

– Fine-tuning for NEST-S. For the NEST-S scheme, we compute the Lipschitz con-
stant Lη by (4.15), where the smoothing parameter η is set to

2‖A‖
N + 1

Dω,X
σωσvDv,Y

.

and the operator norm ‖A‖ is computed according to [41]. Note however, that
the resulting estimate of Lη can be rather conservative, which leads to the slow
convergence of the NEST-S scheme. We had also implemented a variant of Nes-
terov’s method which can adaptively search for the Lipschitz constant Lη ([35]).
However, our preliminary experiments indicate that the improvement from this
approach is not significant. In our final experiments, we run NEST-S four times,
and each time we multiply the Lipschitz constant Lη estimated above by a different
factor: 10−1, 10−2, 10−3, or 10−4. We then report the best solutions, in terms of
the objective value, obtained from these four runs of the NEST-S scheme.

– Others. We set β = θ = 1/2, and specify {αk} according to Proposition 2.a)
in the APL and USL methods. All the codes are implemented in MATLAB2007
under Windows Vista and the experiments were conducted on an INTEL 2.53 GHz
labtop.

Our first experiments were conducted on a set of randomly generated SDP instances,
each of which has various sizes of Ai ’s for i = 1, . . . , n. We also assume that the
feasible set X is given by a standard simplex. More details about these instances
are shown in Table 1, where n is the dimension of x, ub1 is the objective value at
p1 = (1/n, . . . , 1/n), and Δ1 = ub1 − lb1 denotes the initial gap with lb1 given by
(4.23). We run 200 iterations for the four algorithms mentioned above and report the
objective values obtained at the 100th and 200th iteration in column 2 and column 4,
respectively. For the APL, USL and NERML algorithms, we also report the optimality
gap Δs at the 100th and 200th iteration, respectively, in column 3 and 5 of Table 1.
The CPU time (in seconds) for running these algorithms is reported in column 6 of
Table 1. It should be noted that we only report the CPU time for one run of the NEST-S
algorithm, although we had run it for 4 times to find a good estimate of Lη.

We can draw a few conclusions from our experiments with these random SDP
instances. Firstly, among the two methods with O(1/ε) convergence, USL can sig-
nificantly outperform NEST-S: the former algorithm can reach 6 accuracy digits after
200 iterations while the latter algorithm reaches at most 2 accuracy digits for these

123



Nonsmooth convex optimization 37

Table 1 Experiments with random SDP problems

alg. ub100 Δ100 ub200 Δ200 Time

E1: n = 1,000,m = 400, d = 2 %, ub1 = 6.329960,Δ1 = 5.08e − 1

USL 6.026060 8.48e − 5 6.026045 1.28e − 6 174.10

NEST-S 6.077040 – 6.076351 – 190.51

APL 6.026048 4.23e − 5 6.026045 1.22e − 6 109.59

NERML 6.026323 7.97e − 4 6.026084 2.39e − 4 100.37

E2: n = 1,000,m = 600, d = 2 %, ub1 = 7.788735,Δ1 = 6.45e − 1

USL 7.458582 3.39e − 4 7.458538 5.07e − 6 364.93

NEST-S 7.539811 – 7.538583 – 552.12

APL 7.458561 8.96e − 5 7.458537 1.96e − 6 166.27

NERML 7.458801 1.07e − 3 7.458557 8.35e − 5 142.16

E3: n = 1,000,m = 800, d = 2 %, ub1 = 8.855385,Δ1 = 5.57e − 1

USL 8.555496 1.35e − 4 8.555475 4.08e − 6 799.30

NEST-S 8.635632 – 8.635473 – 1347.26

APL 8.555484 6.61e − 5 8.555475 2.05e − 6 275.22

NERML 8.555743 7.45e − 4 8.555494 1.24e − 4 213.25

instances. Secondly, for the two nonsmooth methods, APL consistently outperforms
NERML in solution quality while the computational time is comparable to the latter
one. Thirdly, while the solution quality of the USL method is significantly better than
the one of the NERML algorithm, it is interesting to notice that the solution quality
of the APL algorithm is comparable or better than that of the USL. One plausible
explanation is that the problems to be solved, due to the inherent randomness, are
smooth along most part of the trajectory of the APL algorithm.

Our second experiments were carried out for a class of more structured SDP
instances, namely a class of Lovasz capacity problems. Let (N , E) denote a graph
with m nodes in N and n edges in E . The Lovasz capacity ϑ of (N , E) is defined by

ϑ := min
x∈X

{Φ(x):=λ1 (d + x)}. (5.3)

Here X := {x ∈ Sm : xi j = 0 if (i, j) /∈ E
}
,Sm denotes the set of symmetric

matrices in R
m×m and d is a m × m constant matrix given by

di j :=
{

0, (i, j) ∈ E,
1, (i, j) /∈ E .

Note that for an optimal x of problem (5.3) the matrix ϑ I − (d + x) is positive
semidefinite, so that nonzero entries in x satisfy |xi j | ≤ ϑ − 1. It follows that if v is a
valid upper bound on ϑ , then problem (5.3) is equivalent to

ϑ = min
x∈Xv

Φ(x), (5.4)
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Table 2 Lovasz capacity
instances

Inst. m n Φ(0)

G41 400 11,503 342.62

G42 400 21,692 291.78

G51 500 23,076 407.88

G52 500 47,910 308.72

G61 600 51,429 428.87

G62 600 77,213 343.10

Table 3 Comparison of first-order methods for Lovasz capacity instances

Inst. NERML APL USL NEST-S

Iter. ub Time Iter. ub Time Iter. ub Time Iter. ub Time

G41 1,000 63.88 829.58 800 63.61 890.18 40 62.79 44.08 1,000 342.31 980.29

G42 1,000 41.26 963.82 1,000 41.33 1166.17 30 41.19 37.89 1,000 291.43 1078.53

G51 1,000 62.82 1292.38 1,000 63.21 1697.79 30 61.13 54.56 1,000 407.68 1964.73

G52 1,000 42.19 1724.29 70 41.50 166.54 20 38.72 45.30 1,000 308.46 2403.18

G61 1,000 68.53 2343.86 20 66.76 60.46 10 59.30 32.67 1,000 428.72 3948.19

G62 1,000 40.43 4062.83 110 40.36 455.54 20 39.47 96.89 1,000 342.91 4309.73

where Xv:={x ∈ X : |xi j | ≤ v − 1}. In view of this observation, we incorporate
following enhancement into the aforementioned first-order methods (NERML, APL,
USL and NEST-S) applied to (5.4): for all these methods, we update the upper bound
v in defining the feasible set Xv from time to time. In particular, we update the value of
v in each phase of BL type methods. For NEST-S, we update the value of v whenever
a new upper bound on ϑ becomes available (as noted by [48], the optimal convergence
of Nesterov’s method will be guaranteed with such a domain shrinking strategy).

We generate a set of random graph instances as follows. For a given number of
nodes m and a designed number of edges n̄, we first generate m − 1 edges, each
one connecting a new node with a randomly selected existing node. After that, we
create n̄ − m + 1 random edges and remove those redundant edges. Thus, the actual
number of edges n can be smaller than the designed number n̄. Totally 6 instances
have been generated in this manner and the number of edges n (and hence the number
of decision variables) ranges from 11, 503 to 77, 213 (see Table 2). We also report
the initial objective values of these instances at x0 = 0 in column 4 of Table 2.
In order to compare the aforementioned algorithms for computing Lovasz capacity,
we first run the NERML algorithm for 1, 000 iterations and record the quality of
the output solutions in terms of the generated upper bound. We then terminate the
remaining three algorithms, namely APL, USL and NEST-S, whenever similar solution
quality is achieved or the 1, 000 iteration limit is reached. We report the number of
iterations, the computed upper bound and CPU time in columns 2 − 4, 5 − 7, 8 − 9
and 10−12, respectively, for NERML, APL, USL and NEST-S in Table 3. From these
results, we can safely draw the following conclusions. Firstly, all the BL type methods
significantly outperform NEST-S for these Lovasz capacity instances. Secondly, while
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APL significantly outperforms NERML for the bigger instances G52, G61 and G62,
the USL method, which combines the advantages of both APL and NEST-S, can
significantly outperform NEST-S, NERML and APL for all these Lovasz capacity
instances.

5.2 A class of two-stage stochastic programming problems

In this subsection, we consider the classic two-stage stochastic linear programming
given by

min
x∈X

{
f (x) = cT x + E[V (x, ξ)]

}
, (5.5)

with

V (x, ξ) = min
{

qTπ : Wπ = h + T x, π ≥ 0
}
. (5.6)

Here, x ∈ R
n1 and π ∈ R

n2 , respectively, are the first and second-stage decision
variables, X ⊆ R

n1 is a nonempty convex compact set, and ξ ≡ (q, h, T ) is a random
vector with a known distribution supported on � ⊆ R

n2+m2+m2×n1 . We assume that
problem (5.6) is feasible for every possible realization of ξ , i.e., problem (5.5) has a
complete recourse. Moreover, for the purpose of illustrating the effectiveness of the
algorithms developed in this paper, we assume that ξ is a discrete random vector and
the number of possible realizations of ξ (or the sample space) is not too big.

It should be noted that if ξ is a continuous random vector or the number of possible
realizations of ξ is astronomically large, to solve problem (5.5) is highly challenging,
due to the fundamental difficulty of computing the expectation to a high accuracy when
the dimension of ξ is high, see [20,32] for a discussion on some recent advancements
in this area. However, if the number of possible realizations of ξ is not astronomically
large, it is possible to solve problem (5.5) to high accuracy in a reasonable amount of
time by using more powerful algorithms. This is indeed what we intend to demonstrate
in this subsection.

Since problem (5.5) is nonsmooth in general, one can apply the NERML or APL
methods. These methods, in the worst case, require O(1/ε2) iterations to find an
ε-solution of problem (5.5). Recently, Ahmed [1] noted that one can improve the
complexity bound for solving (5.5) to O(1/ε), by applying Nesterov’s smoothing
scheme to (5.5). The basic idea is as follows. Let Y(q) := {W T y ≤ q} and Bm2 be
the Euclidean ball in R

m2 . Note that by strong duality, we have

V (x, ξ) = max
{
(h + T x)T y : y ∈ Y(q)

}
. (5.7)

Moreover, by Hoffman’s Lemma [12], there exists a constant RW > 0 depending
on W such that

Y(q) ⊆ Y(0)+ RW ‖q‖Bm2 = RW ‖q‖Bm2 ,
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Table 4 Dimension of the SP
instances

n1 m1 n2 m2

SSN 89 1 796 175

20-term 63 3 764 124

where the last identity follows from the fact that Y(0) = {0} due to the complete
recourse assumption. In other words, the feasible region of (5.7) is bounded. We can
then uniformly approximate f (x) in (5.5) by fη(x) := cT x + E[Vη(x, ξ)] for some
η > 0, where

Vη(x, ξ) = max
{
(h + T x)T y − η‖y‖2/2 : y ∈ Y(q)

}
. (5.8)

However, the implementation of Nesterov’s smoothing scheme is difficult, since it
is necessary to fine-tune a large number of problem parameters, including RW , ‖q‖
and ‖T ‖, as well as Dω,X . Due to the lack of good estimations for these parameters,
especially, RW , no computational results have been reported in [1].

In our experiments, we have implemented three methods, namely: APL and
NERML and USL, applied to problem (5.5). All these methods do not require the
input of any problem parameters and the implementation details are similar to those
in Subsect. 5.1. We conduct our experiments on a few SP instances which have been
studied by a few authors, namely: a telecommunication design (SSN) problem of Sen,
Doverspike, and Cosares [47] and the motor freight carrier routing problem (20-term)
of Mak, Morton, and Wood [27]. The dimensions of these instances are shown in
Table 4, please see [25] for more details about these instances.

It is worth noting that here we assume that the number of possible realizations are
fixed (N = 50 or 100) and hence obtain four different instances, namely: SSN(50),
SSN(100), 20-term(50) and 20-term(100). Noting that the initial optimality gap for
these instances are rather high (in order of 103 or 107), we run each algorithm for 400
iterations and the results are reported in Table 5. The structure of the table is similar
to Table 1 (see Subsect. 5.1). We also run NERML for 1, 000 iterations first and then
check whether APL and USL can achieve similar gap reduction. The latter results are
reported in Table 6.

We can make a few observations from the numerical results in Tables 5 and 6. Firstly,
the iteration cost of the USL method is larger than that of the APL method, which,
in turn, is larger than that of the NERML algorithm. In particular, the major iteration
cost of the NERML and APL algorithm consists of solving N and 2N second-stage
LP problems respectively, while the one of the USL algorithm involves the solutions
of N smoothed quadratic programming problems (see (5.8)). Secondly, both the APL
and USL methods can significantly outperform the the NERML algorithm in terms
of the solution quality. As we can see from Tables 5 and 6, the NERML algorithm
makes little progresses after 200 iterations for these SP instances. Thirdly, the solution
quality of the APL method is worse than that of the USL method for solving the first
two instances: SSN(50) and SSN(100), but it significantly outperforms the latter one
for solving the last two instances: 20-term(50) and 20-term(100). One possible reason
is that the sizes of Dv,Y (≈ R2

W ‖q‖2) for the last two instances are significantly larger
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Table 5 Experiments with the SP instances

alg. ub200 Δ200 ub400 Δ400 Time

SSN(50): ub1 = 2.352586e + 2,Δ1 = 3.923265e + 3

APL 4.839075 2.437395e − 3 4.838074 5.053628e − 7 366.30

USL 4.838125 1.837968e − 4 4.838073 6.599449e − 7 754.31

NERML 5.550903 5.012402e + 0 5.086603 1.303485e + 0 193.47

SSN(100): ub1 = 2.407279e + 2,Δ1 = 4.023982e + 3

APL 7.354770 9.148243e − 3 7.352610 4.198017e − 6 730.15

USL 7.354090 2.683424e − 3 7.352610 6.804606e − 7 1471.62

NERML 8.323381 4.771295e + 0 7.578802 1.079491e + 0 383.27

20-term(50): ub1 = 7.718543e + 5,Δ1 = 1.804693e + 7

APL 2.549453e + 5 1.229655e − 3 2.549453e + 5 2.405432e − 7 1056.82

USL 2.551031e + 5 1.896133e + 3 2.549602e + 5 3.310795e + 2 1209.53

NERML 2.587140e + 5 1.473815e + 4 2.576649e + 5 1.368899e + 4 301.03

20-term(100): ub1 = 7.664067e + 5,Δ1 = 1.801832e + 7

APL 2.532875e + 5 3.679608e − 3 2.532875e + 5 2.463930e − 7 1895.63

USL 2.533441e + 5 5.119095e + 2 2.532923e + 5 7.614912e + 1 2517.26

NERML 2.581546e + 5 2.171689e + 4 2.540804e + 5 3.754735e + 3 602.60

Table 6 Comparison of level methods for the SP instances

Inst. NERML APL USL

Iter gap Time Iter gap Time Iter gap Time

SSN(50) 1,000 4.689592e − 1 497.45 90 4.379673e − 1 85.67 90 2.935656e − 1 177.16

SSN(100) 1,000 1.001421e + 0 1037.11 60 9.142773e − 1 114.92 60 8.150025e − 1 226.91

20-term(50) 1,000 1.058791e − 1 794.87 140 4.959911e − 2 301.40 590 4.277621e − 2 1632.86

20-term(100) 1,000 3.754735e + 3 1437.31 70 1.730272e + 3 197.45 110 1.740399e + 3 638.86

Table 7 Estimates on Dv,Y SSN(50) SSN(100) 20-term(50) 20-term(100)

Q 64 128 1.68e + 7 1.68e + 7

than those for the first two instances, see Table 7 for the estimates on Dv,Y reported
by the USL method (with Q1 = 1).

6 Concluding remarks

In this paper, we present new bundle-level type methods for convex programming. In
particular, we show that both the ABL and APL methods are uniformly optimal for
solving smooth, nonsmooth and weakly smooth problems without requiring the input
of any smoothness information. We also demonstrate that, with little modification,
the APL method is optimal for solving a class of composite CP problems. Based on
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the APL method, we develop a new smoothing technique, namely the USL method,
which can achieve the optimal complexity for solving a class of saddle point problems
without requiring the input of any problem parameters. We demonstrate the significant
advantages of the APL and USL methods over some existing first-order methods
for solving certain classes of semidefinite programing and stochastic programming
problems.

Acknowledgments The author is very grateful to the co-editor Professor Adrian Lewis, the associate
editor and two anonymous referees for their very useful suggestions for improving the quality and exposition
of the paper.

7 Appendix

In this section, we provide the proof of Lemma 8.
Let F and Fη be defined in (4.11) and (4.13), respectively. Also let us denote, for

any η > 0 and x ∈ X ,

ψx (z) := Fη(x)+ 〈∇Fη(x), z − x〉 + Lη
2

‖z − x‖2 + ηDv, (7.1)

where Dv and Lη are defined in (3.7) and (4.15), respectively. Clearly, in view of (1.2)
and (4.16), ψx is a majorant of both Fη and f . Also let us define

Zx :=
{

z ∈ R
n : ‖z − x‖2 = 2

Lη
[
ηDv + Fη(x)− F(x)

]
}

. (7.2)

Clearly, by the first relation in (4.16), we have

‖z − x‖2 ≤ 2ηDv

Lη , ∀ z ∈ Zx . (7.3)

Moreover, we can easily check that, for any z ∈ Zx ,

ψx (z)+ 〈∇ψx (z), x − z〉 = F(x), (7.4)

where ∇ψx (z) = ∇Fη(x)+ Lη(z − x).
The following results provides the characterization of a subgradient direction of F .

Lemma 9 Let x ∈ R
n and p ∈ R

n be given. Then, ∃z ∈ Zx such that

〈F ′(x), p〉 ≤ 〈∇ψx (z), p〉 = 〈∇Fη(x)+ Lη(z − x), p〉.

where F ′(x) ∈ ∂F(x).

Proof Let us denote

t = 1

‖p‖
{

2

Lη
[
ηDv + Fη(x)− F(x)

]
} 1

2
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and z0 = x + tp. Clearly, in view of (7.2), we have z0 ∈ Zx . By convexity of F and
(7.4), we have

F(x)+ 〈F ′(x), tp〉 ≤ F(x + tp) = ψx (z0) = F(x)+ 〈∇ψx (z0), z0 − x〉
= F(x)+ t〈∇ψx (z0), p〉,

which clearly implies the result. ��
We are now ready to prove Lemma 8.

Proof of Lemma 8 First note that by the convexity of F , we have

F(x0)− [F(x1)+ 〈F ′(x1), x0 − x1
]〉 ≤ 〈F ′(x0), x0 − x1〉 + 〈F ′(x1), x1 − x0〉.

Moreover, by Lemma 9, ∃z0 ∈ Zx0 and z1 ∈ Zx1 s.t.

〈F ′(x0), x0 − x1〉 + 〈F ′(x1), x1 − x0〉
≤ 〈∇Fη(x0)− ∇Fη(x1), x0 − x1〉 + Lη〈z0 − x0 − (z1 − x1), x0 − x1〉
≤ Lη‖x0 − x1‖2 + Lη(‖z0 − x0‖ + ‖z1 − x1‖)‖x0 − x1‖

≤ Lη‖x0 − x1‖2 + 2Lη
(

2ηDv

Lη

) 1
2 ‖x0 − x1‖

= ‖A‖2

σvη
‖x0 − x1‖2 + 2

(
2‖A‖2Dv

σv

) 1
2

‖x0 − x1‖,

where the last inequality and equality follow from (7.3) and (4.15), respectively. Com-
bining the above two relations, we have

F(x0) − [F(x1)+ 〈F ′(x1), x0 − x1〉
] ≤ ‖A‖2

σvη
‖x0 − x1‖2

+ 2

(
2‖A‖2Dv

σv

) 1
2

‖x0 − x1‖.

The result now follows by tending η to +∞ in the above relation. ��
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