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254 E. de Klerk et al.

1 Introduction

A k-section (or k-equipartition) of a (weighted) graph is a partition of the vertex set of
the graph into k sets of equal cardinality. The weight (or cost) of a k-section is the sum
of the weights of all edges that connect vertices in different sets of the partition. Thus
the maximum (resp. minimum) k-section problem is to find a k-section of maximum
(resp. minimum) weight in a given weighted graph.

An equivalent formulation that will be useful to us is as follows. Let

Km, . . . , m
︸ ︷︷ ︸

ktimes

denote a complete multipartite graph with k color classes all of size m. The maximum
(resp. minimum) k-section problem is to find a Km,...,m subgraph of maximum (resp.
minimum) weight in a given weighted, complete graph on |V | = mk vertices.

The maximum k-section problem is NP-hard for k ≥ 2 [8]. For maximum bisection
(k = 2), a polynomial-time approximation ratio of 0.7016 is known [14] (see also [7]
and [26]). In other words, the randomized algorithm in [14] generates a bisection of
the graph of expected weight at least 0.7016 times that of a maximum bisection.

Andersson [3] proposed an 1 − 1/k + ck3-approximation algorithm for maximum
k-section (see also [18]), where c is some (unknown) absolute constant.

We also mention that the maximum and minimum k-section problems are different
in terms of approximability (although both are NP-hard).

All the above mentioned approximation results involve semidefinite programming
(SDP) relaxations. In this paper we therefore revisit SDP relaxations for max k-section,
and establish relationships between several SDP bounds from the literature.

In particular we propose a new SDP bound for the maximum (or minimum)
k-section problem, obtained from an SDP bound of the more general quadratic assign-
ment problem as proposed by De Klerk and Sotirov [4]. We show that the new relax-
ation is at least as good as the relaxation due to Poljak and Rendl [20] for k = 2
(maximum bisection). For k ≥ 3, we prove it is at least as good as a bound introduced
by Karisch and Rendl [18]. Moreover, the computation of the new SDP bound may
be done much more efficiently than that of the general bound of De Klerk and Sotirov
in [4], since it only requires the solution of a much smaller semidefinite program.

1.1 Outline

This paper is structured as follows. After a summary of notation we review some
known SDP relaxations of max k-section (Sect. 2). Subsequently, we review how max
k-section may be reformulated as a quadratic assignment problem (QAP), and review
some SDP relaxations of QAP problems in Sect. 3. The SDP relaxations of QAP lead
to large relaxations of max k-section, and to reduce the size of these SDP problems
one has to exploit algebraic symmetry. The necessary algebraic background for this is
given in Sect. 4. In Sect. 5 we derive the new SDP bound for max k-section from the
QAP relaxation, by performing symmetry reduction. Theoretical comparisons with
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On semidefinite programming relaxations 255

existing bounds are carried out in Sect. 6, and in Sect. 7 we show how certain SDP
bounds simplify for strongly regular graphs. Finally, numerical examples are presented
in Sect. 8.

1.2 Notation

The space of p×q matrices is denoted by R
p×q , the space of k×k symmetric matrices

is denoted by S
k×k . For index sets α, β ⊂ {1, . . . , n}, we denote the submatrix that

contains the rows of A indexed by α and the columns indexed by β as A(α, β). If
α = β, the principal submatrix A(α, α) of A is abbreviated as A(α). The i th row of a
matrix C we denote by C(i, :).

We use In to denote the identity matrix of order n, and Jn the n ×n all-ones matrix.
We omit the subscript if the order is clear from the context. Also, Ei j = ei eT

j where
ei is the i-th standard basis vector. The all ones vector will be denoted by e.

The vec operator stacks the columns of a matrix, while the Diag operator maps an
n-vector to an n × n diagonal matrix in the obvious way. Similarly, diag(A) denotes
the vector obtained by extracting the diagonal of a square matrix A. The set of n × n
permutations matrices is denoted by �n .

The Kronecker product A ⊗ B of matrices A ∈ R
p×q and B ∈ R

r×s is defined as
the pr × qs matrix composed of pq blocks of size r × s, with block i j given by ai j B
where i = 1, . . . , p and j = 1, . . . , q.

The following properties of the Kronecker product will be used in the paper, see
e.g. [12] (we assume that the dimensions of the matrices appearing in these identities
are such that all expressions are well defined):

(A ⊗ B)(C ⊗ D) = AC ⊗ B D (1)

trace(A ⊗ B) = trace(A)trace(B). (2)

Moreover, following the notation we just introduced, it can be easily verified that
for any column vectors v,w ∈ R

n :

Diag(vec(vwT )) = Diag(w) ⊗ Diag(v). (3)

2 Some known SDP relaxations of maximum k-section

The following SDP relaxation of the maximum bisection problem on a graph on
|V | = 2m vertices and with edge weight matrix W is due to Poljak and Rendl [20]
(see also Frieze and Jerrum [7] and Ye [26]):

max

{

1

4
trace(W (J2m − X)) | diag(X) = e, Xe = 0, X � 0

}

. (4)

To see that this is a relaxation of the maximum bisection problem, set X = vvT , where
v ∈ {−1, 1}2m gives the optimal bisection of the vertex set.
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256 E. de Klerk et al.

An SDP relaxation of the max k-section problem (here |V | = km) due to Karisch
and Rendl [18] (see also Wolkowicz and Zhao [27]) is the following:

max

{

1

2
trace(W (Jkm − X)) | diag(X) = e, Xe = me, X � 0, X ≥ 0

}

. (5)

Throughout the paper we will refer to the SDP relaxation in (5) as k − G PR2, the
name given in [18].

The two relaxations (4) and (5) give the same bound if k = 2 (for maximum
bisection). We include a proof for completeness.

Theorem 1 If k = 2, the relaxation 2 − G PR2 is equivalent to the Frieze-Jerrum
relaxation from (4).

Proof Given an optimal solution X of (4), set X := 1
2 (J2m + X). Note that X ≥ 0,

since X ≥ −J2m as implied by the constraints in (4). Also, diag(X) = e and X � 0.
Moreover, since Xe = 0 we have Xe = 1

2 J2me + Xe = me. It is straightforward (by
construction) to see that the two objective values are equal.

Conversely, assume that X is feasible for (5) and set X := 2X − J2m . We have
diag(X) = e and Xe = 2Xe − J2me = 2me − 2me = 0.

Since X � 0 we have λmin(X) ≥ 0. Moreover e is an eigenvector of X with
corresponding eigenvalue m. From the eigenvalue decomposition of X one has:

X = 1

2
J2m +

n
∑

i=2

λi qi q
T
i ,

where λi ≥ 0 and qi are the eigenvalues and eigenvectors of X respectively. It follows
that X ≡ 2X − J2m � 0. It is also easy to see that the two objectives coincide, by
construction. �	

2.1 Additional inequalities and stronger relaxations

The so-called MET inequalities model the fact that, if vertices i and j belong to the
same cluster in an equipartition, and a vertex k belongs to the same cluster as i , then
j and k should also belong to the same cluster. It is useful to note that the entry Xi j in
the matrix variable in (5) is the relaxation of a binary variable that is one if vertices i
and j belong to the same partition of the k-section, and zero otherwise.

Defining the MET polyhedron as

MET = {

X ∈ S
n×n : Xi j + Xi j ≤ 1 + X jk ∀i, j, k ∈ {1, . . . , n}} ,

one may therefore add the constraint X ∈ MET to problem k − G PR2. We will refer
to the resulting SDP relaxation as SDP-MET, the name used by Lisser and Rendl [19].

The authors of [19] also studied the weaker linear programming relaxation, where
the constraint X � 0 is dropped from SDP-MET, and the constraint X ≤ J is added.
(The latter constraint is redundant in SDP-MET.)
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Another set of valid inequalities are the so-called independent set inequalities, that
model the fact that, in every vertex set of size k + 1, at least two of the vertices belong
to the same partition in a k-section. The corresponding polyhedron is:

INDEP =
⎧

⎨

⎩

X ∈ S
n×n :

∑

i< j, i, j∈I
Xi j ≥ 1 ∀I ⊂ {1, . . . , n}, |I| = k + 1

⎫

⎬

⎭

.

The SDP relaxation where the constraint X ∈ INDEP is added to SDP-MET is called
k − G PR3 in [18], and we will use the same name.

These (and other) valid inequalities have been used in branch-and-cut schemes for
various graph partitioning problems; see Ambruster et al. [2], Ghaddar et al. [10] and
Lisser and Rendl [19].

3 Max-k section as a quadratic assignment problem

The maximum k-section problem is a special case of the more general quadratic
assignment problem (QAP):

min
X∈�n

trace(AX T B X), (6)

where A and B are given symmetric n × n matrices, and �n is the set of n × n
permutation matrices.

To see this, consider the adjacency matrix of Km,...,m (with any fixed labeling of
the vertices), e.g.

A := (Jk − Ik) ⊗ Jm ≡

⎛

⎜

⎜

⎜

⎜

⎝

0m Jm · · · Jm

Jm 0m
. . .

...
...

. . .
. . . Jm

Jm · · · Jm 0m

⎞

⎟

⎟

⎟

⎟

⎠

∈ S
km×km . (7)

If X is a permutation matrix that defines a re-labeling of the vertices, then the adjacency
matrix after re-labeling is X T AX .

The QAP reformulation of max k-section on a complete graph with vertex set V
(|V | = km) and matrix of edge weights W is therefore given by:

1

2
max

X∈�|V |
trace(W X T AX). (8)

3.1 SDP relaxations of QAP

We distinguish between two SDP relaxations of QAP. One of them was studied by
Povh and Rendl [21], and the second one by De Klerk and Sotirov [4].
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The Povh-Rendl relaxation is as follows:

min trace(B ⊗ A)Y
s.t. trace(I ⊗ E j j )Y = 1, trace(E j j ⊗ I )Y = 1 j = 1, . . . , n

trace(I ⊗ (J − I ) + (J − I ) ⊗ I )Y = 0
trace(Jn2 Y ) = n2

Y ≥ 0, Y ∈ S
n2×n2

+ ,

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

(9)

where I, J, E j j ∈ R
n×n . One may easily verify that (9) is indeed a relaxation of the

QAP (6) by noting that a feasible point of (9) is given by

˜Y := vec(X)vec(X)T if X ∈ �n,

and that the objective value of (9) at this point ˜Y is precisely trace(AX B X T ).
The next relaxation for QAP that we discuss is due to De Klerk and Sotirov [4].

For the max k-section QAP (8), the underlying idea of this relaxation is that any given
vertex may be assigned to any given partition, without loss of generality.

Formally, let X ∈ �n , and r, s ∈ {1, . . . , n} such that Xr,s = 1. Then let us denote
α = {1, . . . , n} \ r and β = {1, . . . , n} \ s.

It was proven in [4] that the following SDP problem provides a lower bound for
the QAP whenever the automorphism group of one of the data matrices (A or B) is
transitive:

min trace(B(β) ⊗ A(α) + Diag(c̄))Y
s.t. trace(I ⊗ E j j )Y = 1, trace(E j j ⊗ I )Y = 1 j = 1, . . . , n − 1

trace(I ⊗ (J − I ) + (J − I ) ⊗ I )Y = 0
trace(J(n−1)2 Y ) = (n − 1)2

Y ≥ 0, Y ∈ S
(n−1)2×(n−1)2

+ ,

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

(10)

where I, J, E j j ∈ R
(n−1)×(n−1), and

c̄ := 2vec(A(α, {r})B({s}, β)). (11)

Note that this relaxation depends on the choice of r and s. If the automorphism group
of A is transitive, then every choice of r yields the same bound. Moreover, the number
of possible choices of s depends on the automorphism group of B: there are as many
different bounds, as there are orbits of the automorphism group of B; see [4].

Let us now consider a matrix Y with the type of block structure that appears in (9)
and (10):

Y :=
⎛

⎜

⎝

Y 11 . . . Y 1p

...
. . .

...

Y p1 . . . Y pp

⎞

⎟

⎠ , (12)

where p is a given integer and Y i j ∈ R
p×p for i, j = 1, . . . , p.
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Lemma 1 ([21]) A matrix Y of the form (12) that is feasible for (9) (resp. (10))
satisfies:

trace(Y ii ) = 1 i = 1, . . . , p, (13)
p
∑

i=1

diag(Y ii ) = e, (14)

eT Y i j = diag(Y j j )T i, j = 1, . . . , p, (15)
p
∑

i=1

Y i j = ediag(Y j j )T j = 1, . . . , p, (16)

for p = n (resp. p = n − 1). Moreover, Y j j is a diagonal matrix for all j = 1, . . . , p,
and Y i j has a zero diagonal if for all i, j ∈ {1, . . . , p} and i �= j .

In what follows, we will reduce the size of the SDP relaxation (10) for the QAP
formulation of max k-section. In doing so, we will exploit the algebraic symmetry of
the data matrices, i.e. the symmetry of the graph Km−1,m,...,m . To this end, we will
require some results from algebraic combinatorics. The necessary background is given
in the next section.

4 Coherent configurations

Coherent configurations were introduced in [15], and are defined as follows.

Definition 1 (Coherent configuration) Assume that a given set of zero-one n × n
matrices {A1, . . . , Ad} has the following properties:

(1)
∑

i∈I Ai = I for some index set I ⊂ {1, . . . , d} and
∑d

i=1 Ai = J .
(2) AT

i ∈ {A1, . . . , Ad} for each i ;
(3) Ai A j ∈ span{A1, . . . , Ad} for all i, j .

Then {A1, . . . , Ad} is called a coherent configuration.

Thus, a coherent configuration is a basis of zero-one matrices of a (possibly non-
commutative) matrix ∗-algebra. Moreover, in general, any matrix ∗-algebra has a
canonical block-diagonal structure. This is a consequence of the structural theorem
for matrix ∗-algebras. In stating the theorem, we require the following notation for the
direct sum of two matrix algebras A1 and A2:

A1 ⊕ A2 :=
{(

A1 0
0 A2

)

, A1 ∈ A1, A2 ∈ A2

}

.

Theorem 2 (Wedderburn [25]; see also §2.2 in [11]) If A ⊂ C
n×n is a matrix

∗-algebra, then there exist a unitary matrix U and positive integers p and ni , ti
(i = 1, . . . , p) such that

U∗AU = ⊕p
i=1ti � C

ni ×ni
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260 E. de Klerk et al.

where

ti � C
ni ×ni := {

Iti ⊗ M | M ∈ C
ni ×ni

}

(i = 1, . . . , p).

Based on the theorem, we define the ∗-isomorphism:

φ : A �→ ⊕p
i=1C

ni ×ni

for later use. We now give two examples of coherent configurations that we will use
later for the k-section problem.

Example 1 Consider the coherent configuration associated with the complete bipartite
graph Kk,�, where k and � are given integers.

The coherent configuration has dimension 6 and consists of the following matrices:

A1 =
(

Ik 0k×�

0�×k 0�×�

)

, A2 =
(

Jk − Ik 0k×�

0�×k 0�×�

)

, A3 =
(

0k×k Jk×�

0�×k 0�×�

)

,

A4 =
(

0k×k 0k×�

J�×k 0�×�

)

, A5 =
(

0k×k 0k×�

0�×k I�×�

)

, A6 =
(

0k×k 0k×�

0�×k J� − I�.

)

,

and its complex span is isomorphic (as a ∗-algebra) to C ⊕ C ⊕ C
2×2. The associated

∗-isomorphism φ satisfies:

φ(A1) =

⎛

⎜

⎜

⎝

1
0

1 0
0 0

⎞

⎟

⎟

⎠

, φ(A2) =

⎛

⎜

⎜

⎝

−1
0

k − 1 0
0 0

⎞

⎟

⎟

⎠

,

φ(A3) = √
k�

⎛

⎜

⎜

⎝

0
0

0 1
0 0

⎞

⎟

⎟

⎠

, φ(A4) = √
k�

⎛

⎜

⎜

⎝

0
0

0 0
1 0

⎞

⎟

⎟

⎠

,

φ(A5) =

⎛

⎜

⎜

⎝

0
1

0 0
0 1

⎞

⎟

⎟

⎠

, φ(A6) =

⎛

⎜

⎜

⎝

0
−1

0 0
0 � − 1

⎞

⎟

⎟

⎠

.

One may verify that φ is indeed a ∗-isomorphism, by showing that the multiplication
tables of {A1, . . . , A6} and {φ(A1), . . . , φ(A6)} are the same, and that φ(AT

i ) =
φ(Ai )

T for all i = 1, . . . , 6.

Example 2 Consider the following coherent configuration associated with the com-
plete graph Km−1,m,...,m (i.e. k-partition of cardinality given by indices); where each
matrix contains k2 blocks (dimensions of the blocks are given only for the first matrix,
they can be further deduced from the context):
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A1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Im−1 0m−1×m 0m−1×m · · · 0m−1×m

0m×m−1 0m×m 0m×m · · · 0m×m

0m×m−1 0m×m 0m×m · · · 0m×m
...

...
...

. . .
...

0m×m−1 0m×m 0m×m · · · 0m×m

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

A2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

J − I 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, A3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 J J · · · J
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

A4 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 · · · 0
J 0 0 · · · 0
J 0 0 · · · 0
...

...
...

. . .
...

J 0 0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, A5 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 · · · 0
0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

A6 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 · · · 0
0 J − I 0 · · · 0
0 0 J − I · · · 0
...

...
...

. . .
...

0 0 0 · · · J − I

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, A7 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 · · · 0
0 0 J · · · J
0 J 0 · · · J
...

...
...

. . .
...

0 J J · · · 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

and its complex span is isomorphic to C⊕C⊕C⊕C
2×2. The associated ∗-isomorphism

φ satisfies:

φ(A1) =

⎛

⎜

⎜

⎜

⎜

⎝

1
0

0
1 0
0 0

⎞

⎟

⎟

⎟

⎟

⎠

, φ(A2) =

⎛

⎜

⎜

⎜

⎜

⎝

−1
0

0
m − 2 0

0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

φ(A3) = √

(k − 1)m(m − 1)

⎛

⎜

⎜

⎜

⎜

⎝

0
0

0
0 1
0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

φ(A4) = √

(k − 1)m(m − 1)

⎛

⎜

⎜

⎜

⎜

⎝

0
0

0
0 0
1 0

⎞

⎟

⎟

⎟

⎟

⎠

,
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φ(A5) =

⎛

⎜

⎜

⎜

⎜

⎝

0
1

1
0 0
0 1

⎞

⎟

⎟

⎟

⎟

⎠

, φ(A6) =

⎛

⎜

⎜

⎜

⎜

⎝

0
−1

m − 1
0 0
0 m − 1

⎞

⎟

⎟

⎟

⎟

⎠

,

φ(A7) = m

⎛

⎜

⎜

⎜

⎜

⎝

0
0

−1
0 0
0 k − 2

⎞

⎟

⎟

⎟

⎟

⎠

.

5 The new SDP bound for max k-section

The new SDP bound will be derived from the more general SDP relaxation for QAP
that is given in (10). Due to the different structures of the coherent configurations of
Km−1,m and Km−1,m,...,m , we treat the maximum bisection problem separately from
maximum k-section (k > 2) problem.

5.1 New SDP relaxation for maximum bisection

We now describe the new SDP relaxation of max bisection where the variables in
the relaxation X1, . . . , X6 correspond to the matrices A1, . . . , A6 respectively from
Example 1.

Letting n = |V | = 2m,

w = [W12 . . . W1n]T

and

W̄ =
⎛

⎜

⎝

W22 . . . W2n
...

...

Wn2 Wnn

⎞

⎟

⎠ , (17)

the new relaxation takes the following form.

SD Pnew := max trace (diag(w)X5) + 1

2
trace

(

W̄ (X3 + X4)
)

(18)

subject to

X1 + X5 = In−1

6
∑

t=1

trace(J Xt ) = (n − 1)2
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trace(X1) = m − 1

trace(X5) = m

trace(X2 + X3 + X4 + X6) = 0

X3 = X T
4

⎛

⎝

1
m−1 (X1 + X2)

1√
m(m−1)

X3

1√
m(m−1)

X4
1
m (X5 + X6)

⎞

⎠ � 0

X1 − 1

m − 2
X2 � 0

X5 − 1

m − 1
X6 � 0

Xi ≥ 0 (i = 1, . . . , 6).

Note that the matrix variables Xi are all of order n − 1.
With reference to Example 1, the reader may verify that a feasible point of the new

relaxation is given by Xi = Ai (i = 1, . . . , 6) if k = m − 1 and l = m in Example 1.
In what follows we show that the bound SD Pnew in (18) coincides with the SDP

bound for QAP from (10). The proof is via symmetry reduction, in the spirit of work
by Schrijver [22,23] (see also Gatermann and Parrilo [9]). It was proven in [4] that we
may restrict the variable Y from (10) to lie in the matrix ∗-algebra:

Aaut(B(β)) ⊗ Aaut(A(α)), (19)

where

AG := {X ∈ R
n×n : X P = P X, ∀P ∈ G},

and G is the automorphism group of the corresponding matrix. If a matrix, say B,
is the adjacency matrix of a graph, then Aaut(B) is a coherent configuration that
contains B.

For our purpose, recall that B is the usual adjacency matrix of Km,m , namely

B =
(

0 Jm

Jm 0

)

,

and A := 1
2 W . We fix r = s = 1. Hence α = {2, . . . , n}, β = {2, . . . , n} and

subsequently:

B(β) =
(

0m−1×m−1 Jm−1×m

Jm×m−1 0m×m

)

, A(α) = 1

2
W̄ , c̄ = awT ,

where aT = [01×m−1 eT ] with e ∈ Rm the all-ones vector as before.
Therefore, we can assume Y ∈ Aaut(Km−1,m ) ⊗ Aaut(W̄ ) and since there is no sym-

metry assumption on the weight matrix W̄ we have Y ∈ Aaut(Km−1,m ) ⊗ R
n−1×n−1.
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Revisiting Example 1 one can see that {At : t = 1, . . . , 6} form a basis of
Aaut(Km−1,m ). Let {Ei j : i, j = 1, . . . , n − 1} denote the standard basis of R

n−1×n−1.
One can recover the basis of Aaut(Km−1,m ) ⊗ R

n−1×n−1 as {At ⊗ Ei j : i, j =
1, . . . , n − 1 and t = 1, . . . , 6} (for details see [4]). Thus,

Y =
6
∑

t=1

n−1
∑

i, j=1

yt
i j At ⊗ Ei j ,

for some real numbers yt
i j . Further, if we denote Yt := ∑n−1

i, j=1 yt
i j Ei j , we can write:

Y =
6
∑

t=1

At ⊗ Yt . (20)

Notice that since Y is symmetric and At , t = 1, . . . , 6 have distinct support, Yt∗ =
Y T

t whenever At∗ = AT
t , for t, t∗ ∈ {1, . . . , 6}.

We now substitute (20) in (10).
Since the At are 0-1 matrices with distinct support, Y ≥ 0 is equivalent to Yt ≥ 0

for t = 1, . . . , 6.
The positive semidefinite constraint from (10) becomes:

6
∑

t=1

At ⊗ Yt � 0. (21)

If U is the unitary matrix from Theorem 2, then (21) is equivalent to:

(U∗ ⊗ In−1)

(

6
∑

t=1

At ⊗ Yt

)

(U ⊗ In−1) � 0,

and using (1) one obtains

6
∑

t=1

U∗ AtU ⊗ Yt � 0.

After eliminating identical blocks from U∗ AtU , we reduce the matrix size of the SDP
constraint in (10) from (n − 1)2 to 4(n − 1), and write it in the form:

6
∑

t=1

φ(At ) ⊗ Yt � 0,

where φ is the *-isomorphism from Example 1. Defining

Xt := ‖At‖2Yt , t = 1, . . . , 6, (22)
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where ‖A‖ is the Frobenius norm of matrix A, we have

6
∑

t=1

φ(At )

‖At‖2 ⊗ Xt � 0.

Thus:

1

m − 1

⎛

⎜

⎜

⎝

X1
0

X1 0
0 0

⎞

⎟

⎟

⎠

+ 1

(m − 1)(m − 2)

⎛

⎜

⎜

⎝

−X2
0

(m − 2)X2 0
0 0

⎞

⎟

⎟

⎠

+
√

m(m − 1)

m(m − 1)

⎛

⎜

⎜

⎝

0
0

0 X3
0 0

⎞

⎟

⎟

⎠

+
√

m(m − 1)

m(m − 1)

⎛

⎜

⎜

⎝

0
0

0 0
X4 0

⎞

⎟

⎟

⎠

+ 1

m

⎛

⎜

⎜

⎝

0
X5

0 0
0 X5

⎞

⎟

⎟

⎠

+ 1

m(m − 1)

⎛

⎜

⎜

⎝

0
−X6

0 0
0 (m − 1)X6

⎞

⎟

⎟

⎠

� 0.

Simplifying the last expression yields:

⎛

⎜

⎜

⎜

⎜

⎝

1
m−1 (X1 − 1

m−2 X2)
1
m (X5 − 1

m−1 X6)
1

m−1 (X1 + X2)
1√

m(m−1)
X3

1√
m(m−1)

X4
1
m (X5 + X6)

⎞

⎟

⎟

⎟

⎟

⎠

� 0.

We now consider the linear constraints. Using (20), the properties of the Kronecker
product (1) and (2), and the fact that only A1 and A5 have nonzero traces, one has:

trace(I ⊗ E j j )Y = trace

(

(I ⊗ E j j )

(

6
∑

t=1

At ⊗ Yt

))

=
6
∑

t=1

trace(At ⊗ E j j Yt ) =
6
∑

t=1

trace(At )trace(E j j Yt )

= trace(E j j‖A1‖2Y1) + trace(E j j‖A5‖2Y5)

= trace(E j j (X1 + X5)).

This yields:

trace(E j j (X1 + X5)) = 1, j = 1, . . . , n − 1,
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hence X1 + X5 = In−1. Indeed, the diagonal blocks of the matrix Y are diagonal
matrices (see Lemma 1), and therefore X1 and X5 are diagonal matrices too, by (20)
and (22).

Continuing in the same vein,

trace(E j j ⊗ I )Y = 1, j = 1, . . . , n − 1

reduces to

6
∑

t=1

trace(E j j At )trace(Yt ) = 1, j = 1, . . . , n − 1.

If we note that only trace(E j j A1) or trace(E j j A5) can be nonzero — and this can not
happen for the same fixed value of j — we obtain:

trace(Y1) = 1 and trace(Y5) = 1.

Multiplying these two equations with the squared norms of A1 and A5 respectively
one obtains two more linear equalities from (18), namely

trace(X1) = m − 1 and trace(X5) = m.

Furthermore:

trace(J(n−1)2 Y) = trace(Jn−1 ⊗ Jn−1)(

6
∑

t=1

At ⊗ Yt )

=
6
∑

t=1

trace(Jn−1 At )trace(Jn−1Yt ) =
6
∑

t=1

trace(Jn−1‖At‖2Yt )

=
6
∑

t=1

trace(Jn−1 Xt ).

This yields the following equality constraint from (18):

6
∑

t=1

trace(J Xt ) = (n − 1)2.

There is only one equality constraint left to verify. To this end let us denote by S =
{2, 3, 4, 6} and notice the following:

trace(J − I )At =
{

0 if t ∈ {1, 5}
‖At‖2 if t ∈ S.
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We get:

trace((J − I ) ⊗ I )Y = trace((J − I ) ⊗ I
6
∑

t=1

At ⊗ Yt )

=
6
∑

t=1

trace((J − I ) ⊗ I )(At ⊗ Yt )

=
6
∑

t=1

trace(J − I )At trace(Yt ) =
∑

t∈S

trace(‖At‖2Yt )

=
∑

t∈S

trace(Xt ).

Also trace(At ) = 0 if t ∈ S, and X1 + X5 = I , hence:

trace(I ⊗ (J − I ))Y = trace(I ⊗ (J − I )
6
∑

t=1

At ⊗ Yt )

=
6
∑

t=1

trace(I ⊗ (J − I ))(At ⊗ Yt )

=
6
∑

t=1

trace(At )trace((J − I )Yt )

= trace(J − I )‖A1‖2Y1 + trace(J − I )‖A5‖2Y5

= trace(J − I )X1 + trace(J − I )X5

= trace(J − I )I = 0.

We can now derive the last constraint in (18) immediately, since

trace(I ⊗ (J − I ) + (J − I ) ⊗ I )Y = 0

is equivalent to

∑

t∈S

trace(Xt ) = 0.

The last step is to obtain the objective function. Recalling the vectors and matrices
from (20) and the equality (3), we may write:

trace(Diag(c̄))Y = trace(Diag(a) ⊗ Diag(w))Y

=
6
∑

t=1

trace(Diag(a)At )trace(Diag(w)Yt )

= trace(Diag(w)X5),
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where, for the last step, we used the fact that

trace(Diag(a)At ) =
{

0 if t ∈ {1, 2, 3, 4, 6}
‖A5‖2 if t = 5.

The first term of the objective function becomes

trace(B(β) ⊗ A(α))Y = 1

2
trace(B(β) ⊗ W̄ )Y

= 1

2

6
∑

t=1

trace(B(β)At )trace(W̄ Yt )

= 1

2
trace(W̄ (X3 + X4)),

where, for the last step, we used the fact that

trace(B(β)At ) =
{

0 if t ∈ {1, 2, 5, 6}
‖At‖2 if t ∈ {3, 4}.

Therefore we have proved the following.

Theorem 3 The bound SD Pnew from (18) coincides with the SDP bound (10) for the
QAP formulation of maximum bisection.

5.2 SDP relaxation for max k-section

We now describe a new SDP relaxation of max k − equiparti tion, k ≥ 3, where
the variables in the relaxation X1, . . . , X7 correspond to the matrices A1, . . . , A7
respectively in Example 2.

Letting n = |V | = km, the new relaxation takes the following form.

SD Pnew := max trace (diag(w)X5) + 1

2
traceW̄ (X3 + X4 + X7) (23)

subject to

X1 + X5 = In−1

7
∑

t=1

trace(J Xt ) = (n − 1)2

trace(X1) = m − 1

trace(X5) = (k − 1)m

trace(X2 + X3 + X4 + X6 + X7) = 0

X3 = X T
4
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( 1
m−1 (X1 + X2)

1√
(k−1)m(m−1)

X3

1√
(k−1)m(m−1)

X4
1

(k−1)m (X5 + X6 + X7)

)

� 0

X1 − 1

m − 2
X2 � 0

X5 − 1

m − 1
X6 � 0

X5 + X6 − 1

k − 2
X7 � 0

Xi ≥ 0 (i = 1, . . . , 7).

Note that the matrix variables Xi are all of order n − 1.
With reference to Example 2, the reader may verify that a feasible point of the new

relaxation is given by Xi = Ai (i = 1, . . . , 7).
The bound in (23) coincides with the SDP bound for QAP in (10). The derivation

is similar to the max bisection case, by using the isomorphism in Example 2, and we
therefore omit the proof, and only state the result.

Theorem 4 For any given integer k > 2, the upper bound in (23) on the weight of a
maximum k-section for a given graph coincides with the SDP bound (10) when applied
to the QAP formulation (8) of maximum k-section.

6 Comparison between SDP bounds of max k-equipartition

In this section we aim to prove that the new SDP relaxation defined in (18) and (23)
dominates the relaxation k −G PR2 in (5), for any k ≥ 2. The proof is slightly different
for k = 2 and k ≥ 3. We will only deal with the proof for k ≥ 3, the proof for k = 2
being similar, but simpler. To this end, one needs some valid implied equalities for the
feasible region of (23). This result will follow as a consequence of Lemma 1.

Let us consider the following structure of the matrix variable Y of (10):

Y :=
⎛

⎜

⎝

Y 11 . . . Y 1(n−1)

...
. . .

...

Y (n−1)(1) . . . Y (n−1)(n−1)

⎞

⎟

⎠ , (24)

where Y i j ∈ R
(n−1)×(n−1). Following the same argument as for the case k = 2 and

using Example 2, one can verify that

Y =
7
∑

t=1

At ⊗ Yt .
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Therefore,

Y i j =
7
∑

t=1

(At )i j Yt , (25)

where At are the matrices from Example 2.
From Lemma 1 one has:

eT Y i j = diag(Y j j )T , i, j = 1, . . . , n − 1. (26)

Multiplying this relation with the all ones vector to the right, one obtains:

trace(JY i j ) = trace(Y j j ), i, j = 1, . . . , n − 1,

and furthermore

trace(JY i j ) = 1, i, j = 1, . . . , n − 1.

If we substitute i = 1 and j = m in (25), then Y 1m = Y3; or if i = m and j = 1 then
Y m1 = Y4. Continuing in the same vein, for suitable choices of i and j , one obtains

trace(JYt ) = 1, t = 1, . . . , 7,

which is equivalent to

trace(J Xt ) = ‖At‖2, t = 1, . . . , 7,

and furthermore

trace(J Xt ) = trace(J At ), t = 1, . . . , 7. (27)

Lemma 2 Assume the matrices X1, . . . , X7 are feasible for the new SDP relaxation
(23). Then:

7
∑

t=1

Xt = J, (28)

X1 + X2 + X4 = ediag(X1)
T ,

X3 + X5 + X6 + X7 = ediag(X5)
T , (29)

eT X2 = (m − 2)diag(X1)
T ,

eT X3 = (m − 1)diag(X5)
T , (30)

eT X4 = m(k − 1)diag(X1)
T , (31)

eT X6 = (m − 1)diag(X5)
T ,

eT X7 = (k − 2)mdiag(X5)
T . (32)
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Proof We will give the proof of (28), (29) and (30). The rest of the equalities can be
derived in a similar way.

From
∑n−1

i=1 diag(Y ii ) = e and
∑n−1

i=1 Y i j = ediag(Y j j )T ( j = 1, . . . , n − 1)

(see 14 and 16), one obtains
∑n−1

i, j=1 Y i j = J , and further using (25) and the fact that
At , t = 1, . . . , 7 form a coherent configuration, we get:

7
∑

t=1

‖At‖2Yt = J,

which yields:
∑7

t=1 Xt = J , and (28) is proved. In order to prove (29) we again use
∑n−1

i=1 Y i j = ediag(Y j j )T , j = 1, . . . , n − 1. If we let j = m then:

(m − 1)Y3 + Y5 + (m − 1)Y6 + (k − 2)mY7 = ediag(Y5)
T ,

and using the norms of At , t ∈ {3, 5, 6, 7}

X3 + X5 + X6 + X7 = ediag(X5)
T .

For the proof of (30) we use (25) and (26). If we let i = 1 and j = m

eT Y3 = diag(Y5)
T .

Again using the norms of A3 and A5 one obtains the desired equality. �	

We can now prove the main theorem of this section.

Theorem 5 For any fixed integer k ≥ 2, the new SDP relaxation (23) dominates the
relaxation k − G PR2 from (5).

Proof We will show that for any feasible point of the new SDP relaxation one can
construct a feasible point of k − G PR2 with the same objective value.

Assume X1, . . . , X7 form a feasible point for (23). The dimension of the all one
vector, denoted e, can be deduced from the context and is either n − 1 or n.

Define:

˜X :=
(

1 eT − diag(X5)
T

e − diag(X5) J − (X3 + X4 + X7)

)

. (33)

The traces of X3, X4 and X7 are zero therefore diag(˜X) = e.
We have Xi ≥ 0, i = 1, . . . , 7 and

∑7
t=1 Xt = J (from (28)), therefore J − (X3 +

X4 + X7) ≥ 0 and further ˜X ≥ 0.
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Recall that n = km; using also (30), (31) and (32) one has:

˜Xe =
(

1 eT − diag(X5)
T

e − diag(X5) J − (X3 + X4 + X7)

)(

1
e

)

=
(

1 + eT e − trace(X5)

e − diag(X5) + Je − (X T
4 + X T

3 + X T
7 )e

)

=
(

1 + (n − 1) − (k − 1)m
ne − (k − 1)m(diag(X1) + diag(X5))

)

=
(

m
kme − (k − 1)me

)

= me.

To prove that˜X � 0 we make use of (29) and write X3 = ediag(X5)
T −(X5+X6+X7).

Since also X3 = X T
4 we have:

˜X =
(

1 eT − diag(X5)
T

e − diag(X5) J − ediag(X5)
T − diag(X5)eT + 2(X5 + X6) + X7

)

.

This matrix is positive semidefinite (psd) whenever the Schur complement (denoted
further by S) of J − ediag(X5)

T − diag(X5)eT + 2(X5 + X6) + X7 is psd.
We have

S = 2(X5 + X6) + X7 − diag(X5)diag(X5)
T

= (X5 + X6) + (X5 + X6 + X7) − diag(X5)diag(X5)
T .

S is psd as the sum of two psd matrices. To see this first notice that X5 + X6 + X7 � 0
because:

( 1
m−1 (X1 + X2)

1√
(k−1)m(m−1)

X3

1√
(k−1)m(m−1)

X4
1

(k−1)m (X5 + X6 + X7)

)

� 0.

Further, summing 1
k−2 (X5 + X6 + X7) � 0 and X5 + X6 − 1

k−2 X7 � 0 one obtains
that X5 + X6 � 0.

Then (X5 + X6 + X7)− diag(X5)diag(X5)
T can be seen as the Schur complement

of X5 + X6 + X7, which is a submatrix of:

M =
(

1 diag(X5)
T

diag(X5) X5 + X6 + X7

)

.

To conclude that ˜X � 0 we only have to prove that M � 0. To this end, notice that
since diag(X6) = diag(X7) = 0 the matrix M has a special structure:

M =
(

1 diag(N )T

diag(N ) N

)

.
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It was proven in [11], §2.3 that such a matrix is positive semidefinite if and only if
N � 0 and trace(J N ) ≥ trace(N )2.

In our case we saw earlier that N � 0; and using (27):

trace(J N ) = trace(J (X5 + X6 + X7)) = trace(J (A5 + A6 + A7))

= (k − 1)m + (k − 1)m(m − 1) + (k − 1)(k − 2)m2 = (k − 1)2m2

= trace(X5)
2 = trace(N )2.

Therefore M � 0 and eventually ˜X � 0.
To end the proof we still have to show that the objective values coincide.
Recall from (17) that:

W =
(

0 wT

w W

)

.

Then:

1

2
trace(W (J − ˜X)) = 1

2
wT (e − e + diag(X5)) + 1

2
trace(w(eT − eT + diag(X5)

T )

+W (J − J + X3 + X4 + X7))

= 1

2
(wT diag(X5) + trace(wdiag(X5)

T ))

+1

2
trace(W (X3 + X4 + X7))

= wT diag(X5) + 1

2
trace(W (X3 + X4 + X7))

= trace(diag(w)X5) + 1

2
trace(W (X3 + X4 + X7)).

�	
Using similar techniques, for k = 2 (i.e. bisection), and defining:

˜X :=
(

1 eT − diag(X5)
T

e − diag(X5) J − (X3 + X4)

)

,

one can prove the following.

Theorem 6 The new SDP relaxation from (18) dominates the relaxation 2 − G PR2
from (5).

7 The SDP bounds for symmetric graphs

The computation of the SDP bounds k − G PR2 in (5), as well as that of the new SDP
bounds (18) and (23), may be simplified for max-k-section in graphs that have suitable
algebraic symmetry, by performing a further symmetry reduction; for details, see [4].

123



274 E. de Klerk et al.

To illustrate this point, and for later use in the numerical examples in Sect. 8, we
consider a special class of graphs with suitable symmetry, namely strongly regular
graphs. The maximum k-section problem in strongly regular graphs is of some interest,
since it is related to so-called Hoffman colorings of these graphs; see [13] for details
and definitions.

For our purposes, a κ-regular graph G = (V, E) with adjacency matrix A is called
strongly regular, if the three matrices {I, A, J − A − I } form a commutative coherent
configuration (called an association scheme). In other words, the three matrices span
a commutative 3-dimensional matrix algebra. The matrix A has exactly two distinct
eigenvalues associated with eigenvectors orthogonal to e. These eigenvalues are called
the restricted eigenvalues, and are usually denoted by r and s. A strongly regular graph
is completely characterized by the values (n = |V |, κ, r, s).

The following theorem shows that, for strongly regular graphs, the SDP bound
k − G PR2 in (5) has a closed form expression.

Theorem 7 Let G = (V, E) be a strongly regular graph with parameters (n =
|V |, κ, r, s) where r and s are the restricted eigenvalues, and κ is the valency. Let an
integer k > 0 be given such that m = n/k is integer. Define the value

xr =
{

(r+1)m−r−n+κ
r(n−1)+κ

if r(n − 1) + κ > 0
0 else

and define xs similarly by replacing r by s in the last expression.
The bound k − G PR2 in (5) on the maximum k-section of G is now given by:

|E |(1 − max{xr , xs}).

Proof (sketch) The first observation is that there exists an optimal solution X to prob-
lem (5) in the algebra spanned by {I, A, J − A − I }. Thus we may assume that

X = I + x1 A + x2(J − A − I )

for some nonnegative scalar variables x1 and x2. Since the matrices {I, A, J − A − I }
may be simultaneously diagonalized, the constraint X � 0 becomes a system of linear
inequalities in the two variables x1 and x2:

1 + κx1 + (n − κ − 1)x2 ≥ 0

1 + r x1 − (r + 1)x2 ≥ 0

1 + sx1 − (s + 1)x2 ≥ 0.

Proceeding along these lines, the SDP problem (5) is reduced to an LP problem in the
two variables x1 and x2, and the closed form solution of this LP problem is readily
obtained. �	

Note that, for strongly regular graphs, the bound k − G PR2 in (5) is completely
determined by the eigenvalues of the graph. The new SDP bound (23) does not have
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a closed form expression in general for strongly regular graphs, but it is still possible
to reduce its size, by using the symmetry reduction methodology described in [4].

8 Numerical comparison of bounds

In this section we present numerical results comparing the new SDP bounds (18) and
(23) to the bound k − G PR2 in (5), as well as the bounds LP-MET, SDP-MET and
k − G PR3 (see Sect. 2.1).

The matrices in our test problems have dimensions between 9 and 30 in order to be
tractable for all the approaches that we are interested in. Computation was done on a
dual core Pentium IV with 2 GB RAM, and we used the SDP solver SeDuMi 1.1R3
[24].

Note that the times reported for the new SDP bounds (18) and (23) include the time
to solve several SDP relaxations: as explained in Sect. 3.1 there are as many bounds
as there are orbits of the automorphism group of W , e.g. for random W this number
is n.

In Tables we deal with minimization (to compare with existing results for min
bisection), and Table presents computational results and times for max 3-equipartition.

The instances denoted by R and a number are randomly generated, up to dimension
21, so that we could also solve them to optimality by exact enumeration. The instances
cb.30.47 and cb.30.56 were taken from the PhD thesis of Ambruster [1]. The optimal
value of this problem was reported in table C.50 of Appendix A on page 203 of the
thesis.

The instances from Tables 1 and 3 are available on line at: http://lyrawww.uvt.nl/
~cdobre/equipart_instances.rar.

Some observation on the results in Tables 1, 2, 3 and 4:

– The bounds LP-MET, SDP-MET and k − G PR3 were computed using cutting
plane schemes where the violated valid inequalities were added in a simple man-
ner: we did not implement a sophisticated scheme where certain inequalities are
subsequently removed as in [19]. As a result, the computational times should be
seen in this light.

– The bound 2 − G PR3 is the strongest in all the examples.

Table 1 Bounds on optimal values of min bisection

Problem n New SDP 2 − G PR2 2 − G PR3 SDP-MET LP-MET OPT

R1 14 4,375.1 4,316.3 4,387 4, 387 4,387 4,387

R2 12 3,300 3,267.9 3,300 3,300 3,300 3,300

R3 16 538 531.4 538 538 538 538

R4 18 701.9 694.6 709 707.5 703 709

R5 20 773 767.3 773 773 773 773

cb.30.47 30 213 201.22 213 213 213 266

cb.30.56 30 302 291.82 302 302 302 379
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Table 2 Computational times(s) for min bisection

Problem n New SDP 2 − G PR2 2 − G PR3 SDP-MET LP-MET

R1 14 88 0.24 2.11 1.88 1.58

R2 12 33 0.20 1.69 1.67 1.60

R3 16 185 0.27 3.48 3.03 2.09

R4 18 356 0.31 4.60 4.56 3.21

R5 20 715 0.49 5.98 5.91 4.76

cb.30.47 30 10,447 2.57 35.88 146.71 22.96

cb.30.56 30 10,139 2.62 36.78 90.26 20.36

Table 3 Bounds on optimal values of max 3-section

Problem n New SDP 3 − G PR2 3 − G PR3 SDP-MET LP-MET OPT

R6 9 2,773 2,774.54 2,773 2,773 2,773 2,773

R7 12 5,255 5,265.58 5,255 5,255 5,255 5,255

R8 15 8,029.87 8,095.34 8,013.5 8,036 8,074 8,000

R9 18 11,460.04 11,526.20 11,459 11,459 11,489 11,459

R10 21 16,238.74 16,316.74 16,219.5 16,239.44 16,302.5 16,175

Table 4 Computational times(s) for max 3-section

Problem n New SDP 3 − G PR2 3 − G PR3 SDP-MET LP-MET

R6 9 5.47 0.24 0.72 0.7 0.54

R7 12 39.28 0.23 1.45 1.29 0.74

R8 15 179.37 0.36 2.67 1.8 1.65

R9 18 676.49 0.45 4.1 2.8 2.78

R10 21 1,743.1 0.67 6.95 4.32 3.66

– There the bounds SD-MET and LP-MET do not dominate the new SDP bound,
nor vice versa.

Since it is clear from these examples that the new SDP bounds are not cost effective
for random instances, we also present results for more structured instances, namely
strongly regular graphs.

8.1 Numerical results for strongly regular graphs

We consider the max k-section problem on a strongly regular graph, called the Higman-
Sims graph [16], where (n, κ, r, s) = (100, 22, 2,−8). Recall from Theorem 7, that
the bound k−G PR2 has a closed form expression in this case. The size of the new SDP
problem (23) may also be reduced here by performing symmetry reduction. On the
other hand, the bounds LP-MET, SDP-MET and k − G PR3 involve valid inequalities
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Table 5 Bounds on optimal values of max k-section on the Higman-Sims graph

k n New SDP 2 − G PR2 k − G PR3 SDP-MET LP-MET

2 100 750 750 750 750 909.09

4 100 1,098 1,100 1,100 1,100 1,100

5 100 1,100 1,100 1,100 1,100 1,100

Table 6 Computational times
(s) for max k-section on the
Higman-Sims graph

k n New SDP k − G PR3 SDP-MET LP-MET

2 100 0.5 1,293 1,226 2,828

4 100 0.9 4,351 1,449 4.64

5 100 0.9 47,376 1,287 4.55

that destroy the symmetry (see Sect. 2.1), and are therefore more expensive to compute
here.

In Table 5, we show the different bounds for max k-section on the Higman-Sims
graph, for k = 2, 4, 5. Note that, for k = 4, the new SDP bound (23) is the best.

Moreover, in Table 6 one may see that the time required to compute the new SDP
bound is small here compared to the bounds LP-MET, SDP-MET and k − G PR3, due
to the possibility of symmetry reduction. Note that we do not give the time to compute
the bound k − G PR2 since here it is given by the expression in Theorem 7.

9 Conclusion

We have introduced a new SDP bound for the maximum k-section problem that is at
least as good as an earlier bound (called k − G PR2) due to Karisch and Rendl [18].
The new bound comes at a higher computational cost, but we demonstrated that it may
still be computed for larger graphs that have suitable algebraic symmetry.

Acknowledgments The authors would like to thank Edwin van Dam, Willem Haemers, and René Peters
for useful discussions on strongly regular graphs, and for providing several maximum-k-section instances
on these graphs.
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