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Abstract The hypergraph matching problem is to find a largest collection of dis-
joint hyperedges in a hypergraph. This is a well-studied problem in combinatorial
optimization and graph theory with various applications. The best known approxi-
mation algorithms for this problem are all local search algorithms. In this paper we
analyze different linear and semidefinite programming relaxations for the hypergraph
matching problem, and study their connections to the local search method. Our main
results are the following:

– We consider the standard linear programming relaxation of the problem. We pro-
vide an algorithmic proof of a result of Füredi, Kahn and Seymour, showing that
the integrality gap is exactly k − 1 + 1

k for k-uniform hypergraphs, and is exactly
k − 1 for k-partite hypergraphs. This yields an improved approximation algorithm
for the weighted 3-dimensional matching problem. Our algorithm combines the
use of the iterative rounding method and the fractional local ratio method, showing
a new way to round linear programming solutions for packing problems.

– We study the strengthening of the standard LP relaxation by local constraints.
We show that, even after linear number of rounds of the Sherali-Adams lift-and-
project procedure on the standard LP relaxation, there are k-uniform hypergraphs
with integrality gap at least k − 2. On the other hand, we prove that for every con-
stant k, there is a strengthening of the standard LP relaxation by only a polynomial
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number of constraints, with integrality gap at most k+1
2 for k-uniform hypergraphs.

The construction uses a result in extremal combinatorics.
– We consider the standard semidefinite programming relaxation of the problem.

We prove that the Lovász ϑ-function provides an SDP relaxation with integrality
gap at most k+1

2 . The proof gives an indirect way (not by a rounding algorithm) to
bound the ratio between any local optimal solution and any optimal SDP solution.
This shows a new connection between local search and linear and semidefinite
programming relaxations.

Keywords Linear programming · Semidefinite programming ·
Hypergraph matching · Rounding algorithm

Mathematics Subject Classification (2000) 90C05 · 90C22 · 90C27 · 68W25 ·
05C65

1 Introduction

The hypergraph matching problem, also known as the set packing problem, is a fun-
damental problem in combinatorial optimization with various applications. In general
this problem is equivalent to the maximum independent set problem, and is thus hard
to approximate [34]. In this paper we study the hypergraph matching problem in k-
uniform hypergraphs, in which every hyperedge has exactly k vertices; this is also
known as the k-set packing problem. This is a generalization of some classical combi-
natorial optimization problems, e.g. the k-dimensional matching problem [36,39], the
maximum independent set problem in bounded degree graphs [11,31,49], and some
graph packing problems [19,33]. This is also an important problem in graph theory
[1,2], and has interesting connections to the Santa Claus problem [6,9] and the partial
Latin square problem [26,32]. All the best known approximation algorithms for the
hypergraph matching problem in k-uniform hypergraphs are based on local search
methods [10,13,16,30,37].

Mathematical programming relaxations and local search methods are two important
techniques in approximation algorithms, but they appear to be separate techniques with
no known direct connections. A topic of recent research is to study the strengthening
of linear and semidefinite programming relaxations by local constraints, e.g. Lovász-
Schrijver hierarchy, Sherali-Adams hierarchy, Lasserre hierarchy (see [5,18,45,48,50]
and the references therein). These lift-and-project hierarchies are considered to be a
strong computational model which captures many known algorithms. For example,
some algorithms obtained by dynamic programming can be captured by the Sheral-
i-Adams hierarchy [14,44]. Given that the linear programs generated by the Sherali-
Adams procedure include all the valid local constraints (see [17] for related work),
a natural question is whether they also capture the local search algorithms obtained
by changing a few variables (as in [10,13,16,30,37]). We study this question in the
hypergraph matching problem.

In this paper we analyze the integrality gaps of different linear and semidefi-
nite programming relaxations for the hypergraph matching problem, and study their
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connections to the local search method. For the standard LP relaxation, we provide
an algorithmic proof to obtain a tight analysis for the hypergraph matching prob-
lem in k-uniform hypergraphs, giving an improved approximation algorithm for the
3-dimensional matching problem. We then analyze stronger linear and semidefinite
programming relaxations, and find some interesting connections to the local search
method. On one hand, we show that the local search algorithm is not captured by
the Sherali-Adams hierarchy, even after linear number of rounds. On the other hand,
extending the analysis of a local search algorithm, we construct a polynomial size
linear program with integrality gap a constant factor smaller than the linear program-
ming relaxations generated by the Sherali-Adams hierarchy. Furthermore, the results
developed can be used to bound the integrality gap of a semidefinite programming
relaxation (the Lovász ϑ-function) for the hypergraph matching problem. This pro-
vides a way to bound the ϑ-function indirectly (although we do not know how to round
the solutions). by using a connection between the local search method and linear and
semidefinite programming relaxations.

We remark that our results (except for 3-dimensional matching) do not improve
the approximation guarantees obtained by the local search algorithms, but we believe
that they give new insights into the strengths of linear and semidefinite programming
relaxations, and also provide new tools and ideas for analysis.

1.1 Our results

Recall that a hypergraph H = (V, E) consists of a set of vertices V and a set of
hyperedges E where each hyperedge e ∈ E is a subset of vertices. A hypergraph is
called k-uniform if every hyperedge has exactly k vertices. A hypergraph is called
k-partite if the set of vertices can be partitioned into k disjoint sets V1, V2, . . . , Vk ,
and each hyperedge intersects every set of the partition in exactly one vertex.

We begin with the standard linear programming formulation for the hypergraph
matching problem. In the following we use the notation x(F) to denote

∑
e∈F xe for

a subset of hyperedges F ⊆ E , and δ(v) to denote the set of hyperedges incident on
a vertex v.

maximize x(E)

subject to x(δ(v)) ≤ 1 ∀ v ∈ V
xe ≥ 0 ∀ e ∈ E

(LP)

We provide an algorithmic proof of a result of Füredi, Kahn and Seymour [25],
showing that the integrality gap is exactly k − 1 + 1

k for k-uniform hypergraphs, and
is exactly k − 1 for k-partite hypergraphs (see Sect. 2 for definition). The results also
hold for weighted problems as in [25]. This yields an improved approximation algo-
rithm for the weighted k-dimensional matching problem (see Sect. 2 for definition)
for k = 3. The previous best known approximation for the 3-dimensional matching
problem is a (2 + ε)-approximation algorithm for any ε > 0 by Arkin and Hassin [4]
and Berman [10].

Theorem 1.1 There is a polynomial time (k − 1)-approximation algorithm for the
weighted k-dimensional matching problem.
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We then study whether adding local constraints would yield stronger linear pro-
gramming relaxations. For 3-uniform hypergraphs, the Fano plane as shown in Fig. 5a
in Sect. 3 is an example with integrality gap 7

3 . We show that by adding the local
constraint x(P) ≤ 2 to (LP) for every Fano plane P ,1 the resulting Fano LP has an
improved integrality gap for the hypergraph matching problem in 3-uniform hyper-
graphs.

Theorem 1.2 The Fano LP for unweighted 3-uniform hypergraphs has integrality
gap exactly 2.

Motivated by Theorem 1.2 and the question stated earlier, we study Sherali-Adams
relaxations for the hypergraph matching problem, which can generate all valid local
constraints on r hyperedges after r rounds of the lift-and-project procedure [18,41].
In the hypergraph matching problem, after r rounds of the Sherali-Adams lift-and-
project procedure, given any subset S of r hyperedges, we will have the constraint
x(S) ≤ OptS , where OptS is the maximum number of disjoint hyperedges in S. For
example, in the hypergraph matching problem in 3-uniform hypergraphs, all the Fano
plane constraints will be generated in at most 7 rounds. For the case k = 2, Mathieu
and Sinclair [45] have shown that the Sherali-Adams hierarchy provides a linear pro-
gramming relaxation with integrality gap at most 1 + 1

r after r rounds, and their result
coincides with the approximation guarantee obtained by an r -local optimal solution for
the graph matching problem [4]. For the hypergraph matching problem in k-uniform
hypergraphs, Hurkens and Schrijver [37] gave a local search

( k
2 + ε

)
-approximation

algorithm for any ε > 0. In contrast to the result of Mathieu and Sinclair [45], we show
that the local search algorithm is not captured by the linear programming relaxations
generated by the Sherali-Adams hierarchy, even after a linear number of rounds.

Theorem 1.3 There are k-uniform hypergraphs in which the integrality gap for the
Sherali-Adams hierarchy on (LP) is at least k − 2, even after �(n/k3) rounds where
n denotes the number of vertices.

On the other hand, for every constant k, we can construct a polynomial size lin-
ear program for the hypergraph matching problem in k-uniform hypergraphs, with
integrality gap smaller than those generated by the Sherali-Adams hierarchy (up to a
linear number of rounds) by a constant factor.2 The proof extends the analysis of the
local search algorithm in [37], and uses a result in extremal combinatorics.

Theorem 1.4 For every constant k, there is a polynomial size linear program for
k-uniform hypergraphs with integrality gap at most k+1

2 in the unweighted problem.

Using the results developed, we can show that there is a simple semidefinite pro-
gram (the Lovász ϑ-function [40,42]) that achieves the same integrality gap for all k,
not just for constant k as in Theorem 1.4.

1 Although 1 is the obvious constant to write, we use the weaker constraint x(P) ≤ 2 in our analysis to
show the integrality gap of the linear program to be 2.
2 It was known that the Sherali-Adams relaxations may not provide the best linear programming relax-
ations. In the graph matching problem, the linear programs generated by the Sherali-Adams hierarchy are
weaker than the Edmonds’ linear program. But the Edmonds’ linear program is of exponential size (while
Theorem 1.4 gives a polynomial size linear program) and also the Sherali-Adams relaxations provide an
approximation scheme (while there is a constant factor separation for hypergraph matching).
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Theorem 1.5 There is a polynomial size semidefinite program for the hypergraph
matching problem, with integrality gap at most k+1

2 for k-uniform hypergraphs in the
unweighted problem.

We are not aware of any examples with integrality gap larger than �
(

k
log k

)
implied

by the hardness result in [36], for both the LP relaxation in Theorem 1.4 and the SDP
relaxation in Theorem 1.5.

1.2 Techniques

The proof of Theorem 1.1 is based on a combination of the iterative rounding method
and the fractional local ratio method, showing a new way to round linear program-
ming solutions for packing problems. The standard iterative rounding method [38] is
designed for covering problems: if there is a variable with large fractional value, then
we can round up the value of this variable to one. By doing so, the covering constraints
are still satisfied and thus the process can be iterated. However, for packing problems,
even if there is a variable with large fractional value, we could not simply round up
the value of this variable to one, because many packing constraints may be violated.
Instead of using the fractional values to decide which hyperedges to round up, the idea
is to iteratively use the fractional values to define a “good ordering” of the hyperedges
(a similar idea is also used in [25]). By using the properties of extreme point solutions,
we can define an ordering {e1, e2, . . . , em} of the hyperedges, so that the total frac-
tional value of the hyperedges in N [ei ] ∩ {ei , ei+1, . . . , em} is at most k − 1, where
N [ei ] denotes the set of hyperedges that intersect ei . Then we can use the fractional
local ratio method as in [8] to obtain an efficient approximation algorithm.

The proofs of Theorems 1.4 and 1.5 are based on a new connection between the
analysis of the local search method, linear programming relaxations, and semidefinite
programming relaxations. First we extend the analysis of the local search algorithm
in [37] to construct an exponential size linear program with integrality gap at most
k+1

2 . The proof shows a direct connection between the local search algorithm in [37]
and the LP relaxation—the ratio between any 2-local optimal solution (see Sect. 4
for definition) and any optimal solution to the exponential size linear program is at
most k+1

2 . To prove Theorem 1.4, we use a result in extremal combinatorics to rewrite
the exponential size linear program as a polynomial size linear program, as long as k
is a constant. To prove Theorem 1.5, we use known results on Lovász ϑ-function to
show that a polynomial size semidefinite program is stronger than the exponential size
linear program, and thus has integrality gap at most k+1

2 . This gives an indirect way to
bound the integrality gap of the ϑ-function, without providing a rounding algorithm.
Previously either the Sandwich theorem or a rounding algorithm is used to bound the
ϑ-function (see below), our results show another way to bound the integrality gap of
the ϑ-function.

1.3 Related work

The hypergraph matching problem in k-uniform hypergraphs is a well-studied problem
in combinatorial optimization. For the unweighted problem, Hurkens and Schrijver
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[37] gave a
( k

2 + ε
)
-approximation algorithm. For the weighted problem, Arkin and

Hassin [4] gave a (k −1+ε)-approximation algorithm, Chandra and Halldórsson [16]

gave a
(

2(k+1)
3 + ε

)
-approximation algorithm, and Berman [10] gave a

( k+1
2 + ε

)
-

approximation algorithm. All the above algorithms are based on local search, and run
in polynomial time for any ε > 0. On the other hand, Hazan, Safra and Schwartz [36]

proved that the problem is hard to approximate within a factor of O
(

k
log k

)
. For small

value of k, Berman and Karpinski [12] obtained a 98
97 − ε hardness for 3-dimensional

matching (which implies the same hardness for 3-set packing), while Hazan, Safra and
Schwartz [35] obtained 54

53 − ε, 30
29 − ε and 23

22 − ε hardness for 4, 5 and 6-dimensional
matching respectively.

The hypergraph matching problem in k-uniform hypergraphs is also a well-
studied problem in graph theory. Ryser conjectured that in a k-partite hypergraph,
the ratio between the minimum vertex cover and the maximum matching is at most
k − 1. For k = 2, this is the classical result that the size of a maximum matching
is equal to the size of a minimum vertex cover in a bipartite graph. For k = 3, it
has been proved by Aharoni [1] using a topological method [2]. A fractional version
is proved by Füredi [24]: he shows that the integrality gap of (LP) is at most k − 1
whenever the hypergraph does not contain a projective plane of order k − 1 (see
Sect. 3 for definition) as a subhypergraph, and is at most k − 1 + 1

k for k-uniform
hypergraphs. Füredi, Kahn and Seymour [25] extended these results to the weighted
case. We remark that the proofs in [24,25] are non-algorithmic, and do not imply
Theorem 1.1.

Using lift-and-project methods in approximation algorithms was first studied in the
work of Arora, Bollobás and Lovász [5], and since then it has been studied exten-
sively in recent years. The Sherali-Adams hierarchy is known to be stronger than
the Lovász-Schrijver linear programming hierarchy, and Lasserre semidefinite pro-
gramming hierarchy is known to be stronger than the Sherali-Adams hierarchy [41].
Recently strong lower bounds have been obtained for the Sherali-Adams and Lasserre
hierarchies for different problems [17,18,48,50]. For the graph matching problem,
Mathieu and Sinclair have shown that the integrality gap is at most 1 + 1

r after r
rounds of Sherali-Adams relaxations [45]. Charikar, Makarychev and Makarychev
have shown a connection between integrality gaps for Sherali-Adams relaxations for
cut problems to local-global properties in metric spaces [17].

The Lovász ϑ-function is an important technique in estimating the independence
number of a graph. It was first introduced by Lovász to bound the Shannon capacity of
a graph [42]. In general the integrality gap of the ϑ-function could be very large [22].
It is an interesting open problem whether the ϑ-function provides a better bound for
special classes of graphs, and it has been studied for graphs with large independent sets
[3] and random graphs [20,23]. The Sandwich theorem [27,29] shows that the ϑ-func-
tion is sandwiched between the independence number and the clique cover number;
it can be used to bound the integrality gap of ϑ-function if this ratio is bounded for a
certain class of graphs. It is remarkable that this is the only known efficient method to
compute the maximum independent set size for perfect graphs [28,29].
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2 Integrality gaps of the standard linear programming relaxation

Our goal in this section is to prove Theorem 1.1. In the weighted hypergraph matching
problem, we are also given a weight we on each hyperedge, and the objective is to find
a maximum weighted matching. The weighted k-dimensional matching problem is to
find a maximum weighted matching in a k-partite hypergraph. When k = 2 this is the
bipartite matching problem. For the analysis of the iterative algorithm, we consider
the following more general linear program, denoted by L P(G,B), where B denotes
the vector of all degree bounds 0 ≤ Bv ≤ 1 for each vertex v ∈ V . Initially Bv = 1
for each v ∈ V .

maximize
∑

e∈E

we xe

subject to x(δ(v)) ≤ Bv ∀ v ∈ V
xe ≥ 0 ∀ e ∈ E

Our rounding algorithm for weighted k-dimensional matching is based on the
following properties of the extreme point solutions to L P(G,B). Each constraint
x(δ(v)) ≤ Bv defines a vector in R

|E |: the vector has a 1 corresponding to each hy-
peredge e ∈ δ(v) and 0 otherwise. We call this vector the characteristic vector of δ(v),
and denote it by χδ(v).

Lemma 2.1 Given any extreme point solution x to linear program L P(G,B) such
that xe > 0 for each e ∈ E there exists W ⊆ V such that

1. x(δ(v)) = Bv > 0 for each v ∈ W .
2. The characteristic vectors {χδ(v) : v ∈ W } are linearly independent.
3. |W | = |E |.
Proof In an extreme point solution x of an LP, it is known that the number of non-zero
variables is at most the number of linearly independent tight constraints (constraints
that achieve equality); this holds for any LP. Since we assume that xe > 0 for every
hyperedge e, there will be no tight constraints of the form xe ≥ 0. And so the only tight
constraints come from the degree constraints x(δ(v)) = Bv . Let W be the set of verti-
ces where the degree constraints are tight and linearly independent, i.e. x(δ(v)) = Bv

for every v ∈ W and no constraint in W can be written as a linear combination of
other constraints in W . Then conclusion 1 holds by the definition of W , and the condi-
tion that every hyperedge has fractional value xe > 0. Conclusion 2 follows from the
definition of W . Conclusion 3 follows from the above property of an extreme point
solution, and the condition that every hyperedge has a non-zero fractional value. �	

Our algorithm for weighted k-dimensional matching consists of two phases. In the
first phase we use an iterative algorithm to provide a “good” ordering of the hyper-
edges. In the second phase we apply the local ratio method to this good ordering to
obtain a matching with weight at least 1

k−1 the optimal. In the following let N [e] be
the set of hyperedges that intersect the hyperedge e; note that e ∈ N [e].

To prove the correctness of the algorithm, we show that the iterative algorithm
always succeed in finding an ordering with a good property. Then, using the property
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Fig. 1 k-Dimensional matching algorithm

of the ordering, we prove that the local ratio method will return a matching with cost at
least 1

k−1 the optimum. First we prove that the iterative algorithm will always succeed
in finding a good ordering.

Theorem 2.2 In the k-dimensional matching problem, the iterative algorithm in Fig. 1
will always succeed in Step 2(a) in finding an ordering of the hyperedges with x(N [ei ]∩
{ei , ei+1, . . . , em}) ≤ k − 1 for all 1 ≤ i ≤ m, where m is the number of hyperedges
in x with positive fractional value.

The proof of Theorem 2.2 consists of two steps. First, in Lemma 2.3, we prove that
there is a hyperedge e with x(N [e]) ≤ k −1 in an extreme point solution to L P(G,B).
Since the initial solution x is an extreme point solution, this implies that the first iter-
ation of Step 2 of the iterative algorithm will succeed. Then we prove in Lemma 2.4
that the remaining solution (after removing e and updating Bv) is still an extreme
point solution to L P(G,B). Therefore, by applying Lemma 2.3 inductively, the iter-
ative algorithm will succeed in finding an ordering of hyperedges {e1, . . . , em} with
x(N [ei ] ∩ {ei , ei+1, . . . , em}) ≤ k − 1 for all 1 ≤ i ≤ m. Now we prove Lemma 2.3.

Lemma 2.3 Let x be an extreme point solution to L P(G,B) for the k-dimensional
matching problem. If xe > 0 for all e ∈ E, then there is a hyperedge e with x(N [e]) ≤
k − 1.

Proof Let W be the set of vertices with tight degree constraints as described in
Lemma 2.1. To show that there is a hyperedge with the required property, we first
prove that in any extreme point solution of L P(G,B) there is a vertex in W of degree
at most k − 1. Suppose, by way of contradiction, that every vertex in W is of degree
at least k. This implies that

|W | = |E | =
∑

v∈V |δ(v)|
k

≥
∑

v∈W |δ(v)|
k

≥ |W |,

where the first equality follows from Lemma 2.1, the second equality follows because
every hyperedge contains exactly k vertices, and the last inequality follows because
every vertex in W is of degree at least k. Hence equality must hold everywhere. Thus
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the first inequality implies that every hyperedge is contained in W . Let V1, V2, . . . , Vk

be the k-partition of V , and Wi = W ∩ Vi for 1 ≤ i ≤ k. Since each hyperedge
intersects Wi exactly once, we have

∑

v∈W1

χδ(v) =
∑

v∈W2

χδ(v).

This implies that the characteristic vectors in W are not linearly independent, con-
tradicting to Lemma 2.1. Therefore there is a vertex v1 ∈ W of degree at most k − 1.
Let e = {v1, v2, . . . , vk} be the hyperedge in δ(v1) with the largest fractional value.
Since v1 is of degree at most k − 1, this implies that (k − 1)xe ≥ x(δ(v1)). Therefore,

x(N [e]) ≤
k∑

i=1

x(δ(vi )) − (k − 1)xe

≤
k∑

i=2

x(δ(vi ))

≤
k∑

i=2

Bi

≤ k − 1.

�	
The following lemma allows Lemma 2.3 to be applied inductively to complete the

proof of Theorem 2.2.

Lemma 2.4 In any iteration of Step 2 of the algorithm in Fig. 1, the fractional solution
is an extreme point solution to L P(G,B).

Proof Suppose the graph in the current iteration is G = (V, E). Let xE be the restric-
tion of the initial extreme point solution x to E . We prove by induction on the number
of iterations that xE is an extreme point feasible solution to L P(G,B). This holds in
the first iteration by Step 1 of the algorithm. Let e = {v1, v2, . . . , vk} be the hyperedge
found in Step 2(a) of the algorithm. Let E ′ = E − e and G ′ = (V, E ′). Let B′ be the
updated degree bound vector. We prove that xE ′ is an extreme point feasible solution
to L P(G ′,B′). Since the degree bounds of v1, v2, . . . , vk are decreased by exactly xe,
it follows that xE ′ is still a feasible solution. Suppose, to the contrary, that xE ′ is not an
extreme point solution to L P(G ′,B′). This means that xE ′ can be written as a convex
combination of two different feasible solutions y1 and y2 to L P(G ′,B′). Extending
y1 and y2 by setting the fractional value on e to be xe, this implies that xE can be
written as a convex combination of two different feasible solutions to L P(G,B), con-
tradicting that xE is an extreme point solution. Hence xE ′ is an extreme point solution
to L P(G ′,B′). �	

To provide an efficient rounding algorithm, we use the fractional local ratio method
as in [8]. The following is the basic result of the local ratio method.
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Fig. 2 The local ratio subroutine

Theorem 2.5 ([7]) Consider a linear program: min wT x s.t. Ax ≤ b, and let its opti-
mum value be opt (w). Call a feasible solution x r-approximate with respect to w if
wT x ≤ r · opt (w). Suppose w = w1 + w2 and x is r-approximate with respect to w1
and x is r-approximate with respect to w2. Then x is r-approximate with respect to w.

Using the ordering in Theorem 2.2, we prove the performance guarantee of the
approximation algorithm in Fig. 2. Note that by construction the local ratio routine
returns a matching. It remains to prove that the cost of the returned matching is at least

1
k−1 of the optimum. The following result implies Theorem 1.1.

Theorem 2.6 Let x be an optimal solution to L P(G,B) for the k-dimensional match-
ing problem. The matching M returned by the algorithm in Fig. 2 satisfies w(M) ≥

1
k−1 · w · x.

Proof The proof is by induction on the number of hyperedges having positive weights.
The theorem holds in the base case when there are no hyperedges with positive weights.
Let e be the hyperedge e chosen in Step 3 of the algorithm in Fig. 2. Since e has the
smallest index in the ordering, by Theorem 2.2, we have x(N [e]) ≤ k − 1. Let
w, w1, w2 be the weight vectors computed in Step 3 of the algorithm. Let M ′ and
M be the matchings obtained in Step 4 and Step 5 respectively. Since w(e) > 0 and
w2(e) = 0, w2 has fewer hyperedges with positive weights than w. By induction,
w2(M ′) ≥ 1

k−1 · w2 · x. Since w2(e) = 0, this implies that w2(M) ≥ 1
k−1 · w2 · x. By

Step 5 of the algorithm, at least one hyperedge in N [e] is in M . Since x(N [e]) ≤ k −1
and w1(e′) = w(e) for all e′ ∈ N [e] (i.e. the weight vector w1 is uniform over N [e]),
it follows that w1(M) ≥ 1

k−1 ·w1 ·x as the hyperedges in N [e] are the only hyperedges

with nonzero weights in w1. Therefore, by Theorem 2.5, we have w(M) ≥ 1
k−1 ·w ·x.

This shows that M is a (k − 1)-approximate solution to the k-dimensional matching
problem. �	

This completes the proof of Theorem 1.1. The same techniques can be used to
prove that the integrality gap of (LP) is exactly k − 1 + 1

k for k-uniform hypergraphs.
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Specifically, for non-k-partite hypergraphs, it is not necessarily true that there is a
vertex with degree k − 1 as in Lemma 2.3 for k-partite hypergraphs. Just using the
fact that there is a vertex with degree k, we can prove the following weaker statement
as in Lemma 2.3.

Lemma 2.7 Let x be an extreme point solution to L P(G,B) for the weighted hyper-
graph matching problem in k-uniform hypergraphs. If xe > 0 for all e ∈ E, then there
is a hyperedge e with x(N [e]) ≤ k − 1 + 1

k .

With Lemma 2.7 the same local ratio method would work to give a k −1+ 1
k -approxi-

mation algorithm for the weighted hypergraph matching problem in k-uniform hyper-
graphs. The analysis is tight, as there are examples of k-uniform hypergraphs having
this integrality gap; see Sect. 3.

3 Linear programming relaxations with local constraints

In this section we study the strengthenings of (LP) by local constraints. Before
that we first see the integrality gap example for (LP) [24]. Consider a projective
plane of order k − 1, which is a hypergraph H with the following properties: (1)
it is k-uniform (every hyperedge is of size k), (2) it is k-regular (every vertex is
of degree k), (3) it is intersecting (every pair of hyperedges intersect), (4) it has
k2 − k + 1 hyperedges. It is known that a projective plane of order q exists if q
is a prime power (see e.g. [46]); see Fig. 5a for the projective plane of order 2. Since
H is intersecting, the maximum matching size is one. On the other hand, since H
is k-regular, by setting xe = 1

k for each hyperedge e, this is a feasible solution
to (LP). Since it has k2 − k + 1 hyperedges, the integrality gap for (LP) is thus
k − 1 + 1

k .

3.1 Fano plane constraint for 3-uniform hypergraphs

In this section, we show that by adding additional constraints for the Fano planes to
(LP), we can improve the integrality gap for the hypergraph matching problem in 3-
uniform hypergraphs from 7

3 to 2, proving Theorem 1.2. For every seven hyperedges
that form a Fano plane P , the Fano plane constraint states that the sum of fractional
values in this seven hyperedges must not exceed two.

x(P) ≤ 2 ∀ Fano plane P.

We call the resulting linear program the Fano linear program, denoted by Fano-LP.
Actually we can write the stronger and more obvious constraint x(P) ≤ 1 for each
Fano plane, but for our analysis we need to use the weaker constraints. Nevertheless,
this implies an integrality gap of 2 for the stronger constraint x(P) ≤ 1.

We consider a counterexample H to Theorem 1.2 with the minimum number of
hyperedges. The major step is to prove that there is no Fano plane contained as a sub-
hypergraph in H . Then the following result of Füredi [24] shows that such a minimal
counterexample does not exist, and thus Theorem 1.2 follows.
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Theorem 3.1 ([24]) If H is a 3-uniform hypergraph which does not contain a Fano
plane, then the integrality gap of (LP) for the hypergraph matching problem is at most
two.

The proof that a minimal counterexample H = (V, E) to Theorem 1.2 does not
contain a Fano plane consists of several steps. The key step is in Lemma 3.4 where
we show that there are no tight Fano plane constraints in any extreme point solution
to the Fano LP.

Let M(H) be a maximum matching in H . Since H is a counterexample to The-
orem 1.2, there exists an extreme point solution x to Fano-LP of H such that the
integrality gap is greater than two, i.e. x(E(H)) > 2|M(H)|. First we argue that in x ,
every hyperedge e has fractional value 0 < xe < 1

2 .

Claim Let H be a minimal counterexample to Theorem 1.2 and x is a fractional solu-
tion to Fano-LP of H with integrality gap greater than two. Then 0 < xe < 1

2 for
every hyperedge e in H .

Proof Suppose xe = 0. Consider H − e, in which we remove the hyperedge e from
H . Since H is a minimal counterexample, we have x(E(H)) = x(E(H − e)) ≤
2|M(H − e)| ≤ 2|M(H)|, contradicting H is a counterexample. Therefore xe > 0
for every hyperedge e in H . Suppose xe ≥ 1

2 . Let e = {v1, v2, v3}. Consider H ′ =
H − v1 − v2 − v3 in which we remove v1, v2, v3 and the hyperedges in N [e] from
H . Since xe ≥ 1

2 , we have x(N [e]) = ∑3
i=1 x(δ(vi )) − 2xe ≤ 2. Therefore we

have x(E(H)) ≤ x(E(H ′)) + 2 ≤ 2|M(H ′)| + 2 ≤ 2|M(H)|, contradicting H is a
counterexample. The first inequality follows from that x(N [e]) ≤ 2, while the second
inequality follows because H is a minimal counterexample, and the final inequality
follows because M(H ′) + e is a matching in H . �	

Similarly, we can argue that every vertex in H is of degree at least 3 and x(N [e]) > 2
for every hyperedge e.

Claim Every vertex in H is of degree at least 3, and x(N [e]) > 2 for every hyperedge
e in H .

Proof Assume there is a vertex v1 in H with degree 2 and let e, f be edges incident to
it with x(e) ≥ x( f ). Let e = {v1, v2, v3}. Then x(N [e]) = ∑3

i=1 x(δ(vi )) − 2xe ≤ 2
and the rest of the proof of Claim 3.1 follows. The case when there is a vertex with
degree 1 proceeds in a similar manner. �	

From now on, x is a given extreme point solution of the Fano-LP and that the goal
is to show that there is no tight Fano constraint. This will in turn imply that there is no
Fano plane in H and complete the proof. An extreme point solution is characterized
by a set of tight inequalities. Let D be the set of tight degree constraints of the form
x(δ(v)) = 1 and let P be the set of tight Fano constraints of the form x(P) = 2. In an
extreme point solution the number of nonzero variables is at most the number of tight
constraints, i.e. |E(H)| ≤ |D| + |P|. We will prove that if H has a Fano plane, then
any extreme point solution will have a hyperedge e with xe ≥ 1

2 , contradicting that H
is a minimal counterexample by Claim 3.1.
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Suppose H has some Fano planes. In the following lemma we show that two tight
Fano planes cannot share more than one vertex; otherwise there will be a hyperedge e
with xe ≥ 1

2 . Note that this proof uses crucially the weaker constraints x(P) ≤ 2,
instead of the stronger constraints x(P) ≤ 1. We are not able to argue that the tight
Fano planes share at most one vertex if we use the stronger constraints, so the structure
formed by the tight Fano planes could be more complicated.

Lemma 3.2 Two tight Fano planes in H share at most one vertex.

Proof Let the two tight Fano planes be P and P ′. We divide it into cases by the number
of vertices shared:

1. 2 vertices: in this case the 2 Fano planes do not share any hyperedge. The sum of
degree constraints in P ∪ P ′ gives

12 ≥
∑

v∈P∪P ′

∑

e∈δ(v)

xe ≥ 3 ·
∑

e∈P∪P ′
xe = 12.

So equality must hold throughout. The first inequality thus implies that all vertices
have to be tight, while the second inequality implies that there cannot be any other
hyperedges incident to vertices in P ∪ P ′. By the Fano plane constraint, the sum
of values of all 14 hyperedges is 4. The two shared vertices will intersect 5 hyper-
edges in each Fano plane and the sum of values of the 10 hyperedges is strictly
less than 2, by the degree constraints on the shared vertices. Therefore there must
exist a hyperedge of value at least 1

2 in the remaining four hyperedges, which is a
contradiction.

2. 3+ vertices, not sharing any hyperedges: the sum of degree constraints (≤ 11)
would force at least one Fano plane constraint to be non-tight, a contradiction.

3. 3+ vertices, sharing at most 3 hyperedges: if they share 3 hyperedges, let them be
a, b and c. The sum of xa, xb and degree constraints on the vertices of c gives

4 > xa + xb + 3

≥ xa + xb +
∑

v∈c

∑

e∈δ(v)

xe

= xa + xb +
∑

e∈P∪P ′
xe + 2 · xc

>
∑

e∈P

xe +
∑

e∈P ′
xe

so the Fano plane constraints cannot be both tight, a contradiction. The case for 1
or 2 hyperedges shared is similar (leave out xa or both xa and xb in the inequality
above).

4. 3+ vertices, sharing 4 hyperedges: in this case at least 6 vertices are shared. How-
ever, they cannot share 7 vertices because two distinct Fano planes on the same set
of vertices share at most 3 hyperedges. Let a, b, c and d be the shared hyperedges
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and u be the vertex in P that is not shared. The sum of degree constraints on the
shared vertices gives

6 ≥
∑

v∈P\{u}

∑

e∈δ(v)

xe

≥ 2 ·
∑

e∈P∪P ′
xe + (xa + xb + xc + xd).

Adding xa + xb + xc + xd to both sides gives

8 > 2 ·
∑

e∈P∪P ′
xe + 2 · (xa + xb + xc + xd)

= 2 ·
∑

e∈P

xe + 2 ·
∑

e∈P ′
xe

(since xa + xb + xc + xd < 2) so the Fano plane constraints cannot be both tight,
a contradiction.

5. 3+ vertices, sharing 5+ hyperedges: it is easy to see that they are the same Fano
plane.

�	
By Claim 3.1 every vertex is of degree at least 3. To show a contradiction it suffices

to show that

∑

v∈H

|δ(v)| > 3(|D| + |P|) (A)

since total degree is 3 times the number of non-zero hyperedges and in an extreme
point solution, we have |E(H)| ≤ |D| + |P|. A vertex v in a Fano plane P is an
outgoing vertex of P if v intersects hyperedge(s) not belonging to P; note that an
outgoing vertex is of degree at least 4. The following lemma shows that if there are
many tight degree constraints in a Fano plane, the total degree of the vertices in this
Fano plane must also be higher.

Lemma 3.3 In a tight Fano plane in H, there are at least 4 outgoing vertices if all
degree constraints are tight, and at least 3 outgoing vertices if 6 of the degree con-
straints are tight.

Proof If all 7 degree constraints are tight:

1. The tight Fano plane cannot be isolated (no outgoing vertices) because the sum of
degree constraints would include every hyperedge in the Fano plane thrice. This
sum is 7 which means

∑
e∈P xe = 7

3 so the Fano plane constraint is violated.
2. If there is a hyperedge e in the Fano plane that does not intersect any outgoing

vertices and all vertices of e are tight, we can derive a contradiction as follows.
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(b)(a)

Fig. 3 Lemma 3.3: a (Case 3) The sum of degree constraint on the round vertices includes every bold hy-
peredge twice. b (Case 5, 6) To cover the hyperedges that consist of only tight vertices (bold hyperedges),
at least 2 outgoing vertices are required

The sum of degree constraints on the vertices of e includes e thrice and all other
hyperedges once:

3 =
∑

v∈e

∑

e′∈δ(v)

xe′ =
∑

e′∈P

xe′ + 2xe

Since xe < 1
2 , the sum of values of the 7 hyperedges would be strictly larger than

2 so the Fano plane constraint is violated. Since the smallest vertex cover for the
Fano plane is three vertices on the same hyperedge, this rules out the possibility of
only 1 or 2 outgoing vertices, and if there are only 3 outgoing vertices, they must
be on the same hyperedge.

3. If there are 3 outgoing vertices on the same hyperedge e, then we consider the
tight constraint on the remaining 4 vertices: the sum of them (which is 4) includes
every remaining hyperedge in the Fano plane twice (Fig. 3a). By the Fano plane
constraint this means xe = 0 contradicting xe > 0.

If 6 of the degree constraints are tight:

4. The tight Fano plane cannot be isolated. The reason is similar to Case 1 above,
with the sum replaced by 6 + z where 0 < z < 1 is the sum of values at the
non-tight vertex.

5. When there is one non-tight vertex, there are 4 hyperedges in the Fano plane that
consist only of tight vertices (Fig. 3b). If there is a hyperedge e in the Fano plane
that does not intersect any outgoing vertices and all vertices of e are tight, we can
derive a contradiction as in Case 2 above. So we need at least two outgoing vertices
to cover the 4 hyperedges that consist only of tight vertices.

6. The case of two outgoing vertices is not possible either. Let the hyperedges in the
Fano plane be a, b, …, g and the non-tight vertex be v0. Let e, f and g be the three
hyperedges incident to v0. Case 2 above mandates that the two outgoing vertices
must intersect the remaining four hyperedges (a, b, c and d) so v0 must be on the
same hyperedge (say, g) with the two outgoing vertices. Let the sum of values of
hyperedges outside the Fano plane that intersect the outgoing vertices be z1 and
z2 respectively (Fig. 3b).
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Fig. 4 Construction of the graph G′

The sum of values incident to all vertices in the Fano plane give (6+xe +x f +xg);
this is equal to 3 times the Fano plane constraint plus z1 and z2. Therefore z1+z2 =
xe + x f + xg .
The sum of constraints on the two outgoing vertices give xa + xb + xc + xd + 2xg

+ z1 + z2 = 2. Using the above substitution we have xa + xb + xc + xd + xe + x f

+ 3xg = 2. Subtracting this by the Fano plane constraint, we get xg = 0 which is
a contradiction.

�	
With Lemmas 3.2 and 3.3, we prove in the following lemma that there is no tight

Fano plane in any extreme point solution. The main step is to consider a “connected
component” of the tight Fano planes, and use Lemma 3.3 to argue that the total degree
in this component is larger than thrice the number of tight constraints.

Lemma 3.4 There is no tight Fano plane.

Proof Construct a graph G ′ in which the vertex set is the set of tight Fano planes.
Two vertices in G ′ have an edge if the corresponding Fano planes share a vertex. By
Lemma 3.2, two tight Fano planes can share at most one vertex, so the graph G ′ is
simple (Fig. 4).

Consider any connected component C of G ′. Let there be m′ edges and n′ vertices
in C , and that C = {P1, P2, . . . , Pn′ }. We want to show that

∑

v∈P1∪P2∪···∪Pn′
|δ(v)| > 3(n′ + |DC |), (B)

where DC is the set of vertices v ∈ P1 ∪ P2 ∪· · · Pn′ with tight inequality x(δ(v)) = 1.
If (B) holds for all connected components C then this would imply (A) because by
summing (B) over all connected components, every vertex in H covered by tight Fano
planes would be included on the left hand side, and the right hand side would be
3(P + ∑

C |DC |). For any vertex in H that is not covered by any tight Fano planes,
its contribution to the left hand side is at least as much as the right hand side, since if
it is tight then by Claim 3.1 it has degree at least 3, and if it is not tight then there is
no contribution to the right hand side.

For |C | = 1 this is implied by Lemma 3.3. Since every vertex in H is of degree at
least 3 (by Claim 3.1), this would imply that 3|E | = ∑

v∈H |δ(v)| > 3(|D| + |P|),
contradicting that x is an extreme point solution, completing the proof of the lemma.

It remains to prove the claim for a connected component C with |C | ≥ 2. The
number of vertices represented by C in the original hypergraph H is 7n′ − m′. So

123



On linear and semidefinite programming relaxations 139

thrice the number of tight constraints in H is at most 3(|P|+ |D|) ≤ 3(n′ +7n′ −m′).
On the other hand, the total degree contributed by the hyperedges contained in the
Fano planes in C is at least 3 · 7 · n′ since by Lemma 3.2 tight Fano planes do not
share hyperedges. Therefore the claim holds if m′ ≥ n′ + 1. Since C is connected, we
have m′ ≥ n′ − 1. Therefore it remains to consider the case when C is either a tree
(m′ = n′ − 1) or a unicyclic graph (m′ = n′).

Note that if there are at least two non-tight degree constraints, then |D| ≤ 7n′−m′−2
and thus 3(|P| + |D|) ≤ 3(n′ + 7n′ − m′ − 2) ≤ 3(7n′ − 1), which is less than the
total degree contributed by the Fano planes, and so the claim holds. Henceforth we
assume that there is at most one non-tight degree constraint, and thus each Fano plane
has at least 6 tight degree constraints.

We need to show that total degree is strictly larger than 3(|P| + |D|). Total degree
contributed by hyperedges in the Fano planes is 3 ·7n′, and if there are too many “extra
degree” from hyperedges outside the Fano planes, we get the desired contradiction.
First we argue that a Fano plane receives at least 2 extra degrees if the degree of the
corresponding vertex in G ′ is 1. Let the Fano plane be P . Since every Fano plane has
at least 6 tight degree constraints, by Lemma 3.3, there are at least 3 outgoing vertices
in P . Since P intersects with other Fano plane only at one vertex, there would be at
least two other outgoing vertices. Therefore P receives at least 2 extra degrees from
hyperedges outside the Fano planes.

If m′ = n′−1, thrice the number of tight constraints is at most 3(7n′+1). Therefore
to obtain a contradiction it suffices to have 4 extra degrees. Since |C | ≥ 2, there are at
least two degree 1 vertices in a tree, and thus there are enough extra degrees to obtain
the desired contradiction.

If m′ = n′, thrice the number of tight constraints is at most 3(7n′). So any extra
degree would lead to a contradiction. If in G ′ there is a degree 1 vertex, then we get 2
extra degrees; otherwise, G ′ must be a cycle. So every Fano plane shares exactly two
vertices with other Fano planes. Therefore, by Lemma 3.3, each Fano plane receives
at least one extra degree. This completes the proof of the claim. �	

Hence there are no tight Fano planes. Then the number of tight (degree) constraints
in x is at most n, the number of vertices. By Claim 3.1 the number of hyperedges in
H is at least n. Therefore every vertex is of degree 3. If there is a Fano plane P in H ,
there P has no outgoing vertices, and thus x(N [e]) ≤ x(P) < 2 for any hyperedge
e in P , but this contradicts Claim 3.1. Hence there are no Fano planes in H . In this
case the result of Füredi shows that x(E(H)) ≤ 2|M(H)| for any fractional solution
to the Fano linear program for the hypergraph matching problem.

3.2 Sherali-Adams relaxations

In this section we study the integrality gap of Sherali-Adams relaxations on (LP) and
prove Theorem 1.3. Sherali-Adams relaxations can generate all valid local constraints
on r hyperedges after r rounds of lift-and-project procedure [18,41]. To write the l-
round Sherali-Adams relaxation for (LP), for each original constraint

∑
e∈δ(v) xe−1 ≤

0, we have the following constraint for each pair of disjoint subsets I, J of E with
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Fig. 5 a The Fano plane is an
intersecting hypergraph with 7
hyperedges of size 3. b The
integrality gap example with
k = 4 and q = 2

(a) Fano plane. (b) Gap example.

|I ∪ J | ≤ l:

⎛

⎝
∑

e∈δ(v)

xe − 1

⎞

⎠
∏

i∈I

xi

∏

j∈J

(1 − x j ) ≤ 0. (1)

Also we have the constraint

∏

i∈I

xi

∏

j∈J

(1 − x j ) ≥ 0

for each pair of disjoint subsets I, J of E with |I ∪ J | ≤ l. We then expand these
polynomial constraints, replace each square term x2

e by xe, and replace each monomial∏
i∈S xi by a variable yS for each subset S ⊆ E , to obtain a linear program in the y

variables. The objective function of this linear program is to maximize
∑

e∈E y{e}.
We construct the integrality gap example for a k-uniform hypergraph as follows.

Take a projective plane P of order k − 2, we construct a hypergraph H as follows: for
each hyperedge e of size k −1 in P , we have q hyperedges {e ∪ve

1, e ∪ve
2, . . . , e ∪ve

q}
of size k in H , where ve

1, v
e
2, . . . , v

e
q are new vertices of degree 1. Since P is (k − 1)-

uniform and has k2 − 3k + 3 vertices and k2 − 3k + 3 hyperedges of size k − 1, the
hypergraph H is k-uniform and has (k2 − 3k + 3)(q + 1) vertices and (k2 − 3k + 3)q
hyperedges. The degree of each vertex in P is exactly (k − 1)q. See Fig. 5b for an
example with k = 4 and q = 2. From the construction, since P is intersecting, H is
also intersecting, and thus the maximum matching size for H is one. Using the special
structure of H , the following lemma follows from the results of Mathieu and Sinclair
[45].

Lemma 3.5 In the l-round Sherali-Adams relaxation for the hypergraph matching
problem in H, any feasible solution must have yS = 0 for all S with 2 ≤ |S| ≤ l + 1.

Proof This proof is essentially the same as the proof of Lemma 3.2 in Mathieu and
Sinclair [45]. Let S = {e1, e2, . . . , e j } for some j ≥ 2. First we show that yS ≥ 0.

Take the constraint xe1 ≥ 0 and multiply it by
∏ j

i=2 xei ≥ 0, this will give yS =
∏ j

i=1 xei ≥ 0. In fact it is true that yT ≥ 0 for every non-empty subset T ⊆ E .
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Now we show that yS = 0. Since H is intersecting and |S| ≥ 2, there are two
distinct hyperedges e1, e2 ∈ S having a common vertex u. Consider the following
constraint in the Sherali-Adams relaxation:

⎛

⎝
∑

e∈δ(u)

xe − 1

⎞

⎠
j∏

i=2

xei ≤ 0.

Expanding it and replacing x2
e by xe, the term −∏ j

i=2 xei is cancelled by the term

xe2

∏ j
i=2 xei since xe2 xe2 = xe2 . Therefore the constraint becomes a summation of

monomials, all of them having coefficient +1. Since yT ≥ 0 for all T , all the remaining
monomial yT in this constraint must have yT = 0. In particular, the term yS = ∏ j

i=1 xei

appears in this constraint, and thus yS = 0. �	
Now we show that the l-round Sherali-Adams relaxation for H still has a large

fractional solution. With the lemma the constraints for the Sherali-Adams relaxation
become very simple. For each constraint with |I | ≥ 2, all the terms on the left hand
side of (1) are equal to zero, and thus the constraint becomes trivial. For each constraint
with |I | = 1, the constraint reduces to the constraint that y{e} ≥ 0 for some e ∈ E . If
|I | = 0, then the constraint will become

∑

e∈δ(v)

y{e} +
∑

j∈J

y{ j} ≤ 1.

Similarly constraints of the form
∏

i∈I xi
∏

j∈J (1 − x j ) ≥ 0 will become∑
e∈δ(v)∪J xe ≤ 1. Since |J | ≤ l, by setting the fractional value of each hyperedge to

be 1
(k−1)q+l , all the constraints in the Sherali-Adams relaxation will be satisfied. The

objective value of this fractional solution is equal to

(k2 − 3k + 3)q

(k − 1)q + l
.

For the l-round Sherali-Adams relaxation, the integrality gap is smaller than k − 2
only when l >

q
k−2 . Consider the case when k is a constant and q is much larger

than k. Then the Sherali-Adams hierarchy will require �(|V (H)|) number of rounds
to generate a linear programming relaxation with integrality gap smaller than k − 2
for H . This proves Theorem 1.3. Finally, we remark that Theorem 1.3 also holds for
k-partite hypergraphs (without projective plane as a subhypergraph), by replacing the
projective plane by a truncated projective plane (see e.g. [46]); we skip the details
(Fig. 6).

4 Stronger linear and semidefinite programming relaxations

In this section we first show that an exponential size linear program has integrality gap
at most k+1

2 . Then we show how to construct a polynomial size linear program with the

123



142 Y. H. Chan, L. C. Lau

Fig. 6 Relations between various solutions to the k-set packing problem

same integrality gap (Theorem 1.4), and a semidefinite program with probably smaller
integrality gap (Theorem 1.5). We remark that the linear program is of polynomial
size only when k is a constant, but the semidefinite program is of polynomial size for
all k.

We note that the integrality gap example for the Sherali-Adams relaxations in Sect. 3
actually have matching size only one. Call a set K of hyperedges an intersecting family
if every two hyperedges in K have a non-empty intersection. We consider a strength-
ening of (LP) by adding the following constraint for each intersecting family K :

x(K ) ≤ 1.

Call the resulting linear program the intersecting family linear program. In general this
linear program has exponentially many constraints, and is NP-hard to check whether a
fractional solution is a feasible solution to this linear program (i.e. no polynomial time
separation oracle). Nevertheless, extending the analysis of a local search algorithm in
[37], we can show that the integrality gap of the intersecting family linear program is
at most k+1

2 . In particular, the proof directly compares an optimal fractional solution
to a 2-local optimal integral solution, where a 2-local optimal solution is an integral
solution where we cannot increase the size of the matching by removing at most one
hyperedge and adding at most two hyperedges (an optimal integral solution is clearly
a 2-local optimal solution). However the proof does not provide a rounding algorithm.

Theorem 4.1 The ratio between any LP solution to the intersecting family LP and
any 2-local optimal solution is at most k+1

2 . Thus the integrality gap of the intersecting
family LP is at most k+1

2 .

Proof Let M be a 2-local optimal matching. Let x be a feasible solution to the inter-
secting family LP, and let F be the set of hyperedges with xe > 0. To prove the
theorem we prove that x(F) ≤ (k + 1)|M |/2. We let F1 to be the subset of F in
which every hyperedge in F1 intersect at most one hyperedge in M , and let F2 to
be the subset of F in which every hyperedge in F2 intersect at least two hyperedges
in M . Note that each hyperedge e in F must intersect at least one hyperedge in M ;
otherwise M is not a 2-local optimal matching because M + e is a larger matching.
Consider a hyperedge e in M . We claim that F1(e) := { f | f ∈ F1 and f ∩ e �= ∅}
is an intersecting family. Suppose otherwise, then there are two disjoint hyperedges
f1, f2 in F1. Since f1, f2 ∈ F1, they do not intersect other hyperedges in M . Hence
M −e+ f1 + f2 is a larger matching than M , contradicting that M is a 2-local optimal
matching. Therefore F1(e) is an intersecting family. So, by the intersecting family
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constraint, x(F1(e)) ≤ 1, and hence x(F1) ≤ |M |. There are k|M | vertices in M since
each hyperedge is of size k. By the degree constraints (a special case of intersecting
family constraints), we have x(F2) ≤ k|M | − x(F1). In fact, since each hyperedge
in F2 intersects at least two hyperedges in M , we have x(F2) ≤ (k|M | − x(F1))/2.
Therefore the lemma follows:

x(F) = x(F1) + x(F2)

≤ x(F1) + k|M | − x(F1)

2

= k|M | + x(F1)

2

≤ (k + 1)|M |
2

.

�	

4.1 Linear programming relaxation

In the following we show how to rewrite the intersecting family linear program by
using only a polynomial number of constraints, as long as k is a constant (the polyno-
mial grows exponentially in k), proving Theorem 1.4. Observe that in the example in
Sect. 3, although the number of vertices and hyperedges in the intersecting family is
large, all the intersections take place in a small number of vertices (in the projective
plane). We will define the concept of kernel as follows. Let S ⊆ V be a subset of ver-
tices. For each hyperedge e, we define eS := e ∩ S, and for a subset K of hyperedges,
we define KS = {eS | e ∈ K }. Given an intersecting family K , we say S is a kernel
of K , if KS is an intersecting family. In the example in Sect. 3, the projective plane
of order k − 2 is a kernel with a small number of vertices. The following result from
extremal combinatorics states that every intersecting family has a small kernel [15].
The point is that the size of the kernel is a function of k independent on the number

of vertices; the current best bounds [21,51,52] show that f (k) = Θ
((2k

k

))
.

Theorem 4.2 ([15]) For every k there exists an f (k) such that for every k-uniform
intersecting family K there is a kernel S of cardinality at most f (k).

Now we show how to use this result to add only a polynomial number of constraints
so that each intersecting family has total fractional value at most one. For each subset
S ⊆ V , we create a new variable xS if S is a subset of a hyperedge e ∈ E(H). We
add the constraint xS = ∑

e:S⊆e xe so that xS represents the total fractional value of
the number of hyperedges containing S. To enforce that the intersecting family con-
straints hold, we enumerate all possible subsets of vertices S of size up to f (k). For
each such subset S, we enumerate all possible intersecting families KS formed by the
new variables contained in S (each new variable T is a subset of some hyperedges in
H , and a new variable T is contained in S if T ⊆ S). Then for each such intersecting
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family KS we write the following kernel constraint:

∑

T ∈KS

xT ≤ 1.

There are
∑ f (k)

i=1

(n
i

) ≤ n f (k)+1 possible kernels. For each kernel S of size l, there are
at most 2l new variables (the number of all possible subsets of S) containing in S,
and thus there are at most 22l

intersecting families KS (the number of all possible
hypergraphs in S) induced in S. There is one constraint for each such intersecting
family, and so there are at most n f (k)+1 ·22 f (k)

kernel constraints. Therefore, for every
constant k, there are at most a polynomial number of kernel constraints. It follows
from Theorem 4.2 that each intersecting family constraint has a corresponding kernel
constraint, and thus each intersecting family has total fractional value at most one.
Therefore, the intersecting family linear program can be rewritten as a polynomial
size kernel linear program for any constant k. This proves Theorem 1.4.

4.2 Semidefinite programming relaxation

In the following we show that the Lovász ϑ-function captures all the intersecting
family constraints, and thus provides a polynomial size semidefinite program with
integrality gap at most k+1

2 , proving Theorem 1.5. We remark that the proof follows
directly from known results about the ϑ-function [29,40], but it seems that it is the first
use of these results to give a nontrivial bound on the integrality gap of the ϑ-function.

To see the connection it is more convenient to view the hypergraph matching prob-
lem as an independent set problem. For any hypergraph H , we construct a graph G
where each vertex in G represents a hyperedge in H and two vertices in G have an
edge if and only if the corresponding hyperedges in H intersect. It follows that H has
a matching size of size l if and only if G has an independent set of size l. Also, the
intersecting family linear program for hypergraph matchings in H becomes the clique
linear program for independent sets in G, in which there is a constraint

∑
v∈C xv ≤ 1

for each clique C in G. The clique linear program is known as QSTAB(G) in the
literature [29,40], and Padberg has shown that the clique constraints define facets for
the hypergraph matching problem [47]. The Lovász ϑ-function is defined as follows:

θ(G) = max
∑

i∈V

xi

s.t.
∑

i∈V

(cT ui )
2xi ≤ 1, ∀c,∀ ONR{ui }

xi ≥ 0, ∀i ∈ V

(TH)

where c ranges over all possible unit vectors, and {ui } ranges over all possible ortho-
normal representations3 (ONR) of G. TH(G) is defined to be the set of x that satisfy

3 An orthonormal representation (ONR) of a graph G is a system (v1, v2, . . . , vn) of unit vectors in an
Euclidean space such that if (i, j) �∈ E(G) then vi and v j are orthogonal.
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(TH). It is known that TH(G) ⊆ QSTAB(G) [29,40]; that is, the ϑ-function is a
stronger relaxation than the clique linear program.

Lemma 4.3 ([29]) Any feasible solution to the ϑ-LP (TH) is a feasible solution to the
clique linear program.

Proof This proof is from [29]. To prove this lemma, we prove that every constraint of
the clique linear program is a constraint in the ϑ-LP (TH). For any clique C of G, we
define the following orthonormal representation of G. Let I j be the j-th row of the
n × n identity matrix I . Then

ui =
{

I1, if i ∈ C,

Ii , otherwise.

Note that this is indeed an orthonormal representation of G, because if (i, j) /∈ E ,
then ui · u j = 0, and thus orthogonal. We set c = I1. Hence if i �∈ C , then cT ui = 0,
and if i ∈ C , then cT ui = 1. Thus

∑

i∈V

(cT ui )
2xi =

∑

i∈C

xi .

Therefore the clique constraint is present in the ϑ-LP (TH), and so the lemma follows.
�	

It is also known that the ϑ-function is equivalent to the following semidefinite
program, which is called the “third” face of the ϑ-function in [29,40,43].

θ3(G) = max
∑

i, j∈V

wi · w j

s.t. wi · w j = 0, ∀(i, j) ∈ E(G)

n∑

i=1

w2
i = 1,

wi ∈ R
n, ∀i ∈ V (TH3)

Therefore, by Theorem 4.1 and the above known results in ϑ-function, it follows
that there is a polynomial size semidefinite program for hypergraph matching with
integrality gap at most k+1

2 for k-uniform hypergraphs. This proves Theorem 1.5.

5 Concluding remarks

In this paper we analyze different linear and semidefinite programming relaxations
for the hypergraph matching problem. Our results show a new connection between the
local search method and linear and semidefinite programming relaxations. Also they
show that the SDP relaxation is strictly stronger than the LP relaxations. We believe
that further investigations of the SDP relaxation is a promising avenue to improve
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the approximation guarantees obtained by the local search algorithms. As mentioned
earlier, we are not aware of any example with integrality gap at least �(k/ log k) as
implied by the hardness result in [36]. It would be interesting to obtain a rounding
algorithm for the SDP relaxation.
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