
J Supercomput (2013) 65:1125–1136
DOI 10.1007/s11227-013-0895-x

Skeletal based programming for dynamic programming
on MultiGPU systems

Alejandro Acosta · Francisco Almeida

Published online: 7 March 2013
© Springer Science+Business Media New York 2013

Abstract Current parallel systems composed of mixed multi/manycore systems
and/with GPUs become more complex due to their heterogeneous nature. The pro-
grammability barrier inherent to parallel systems increases almost with each new ar-
chitecture delivery. The development of libraries, languages, and tools that allow an
easy and efficient use in this new scenario is mandatory. Among the proposals found
to broach this problem, skeletal programming appeared as a natural alternative to easy
the programmability of parallel systems in general, but also the GPU programming in
particular. In this paper, we develop a programming skeleton for Dynamic Program-
ming on MultiGPU systems. The skeleton, implemented in CUDA, allows the user to
execute parallel codes for MultiGPU just by providing sequential C++ specifications
of her problems. The performance and easy of use of this skeleton has been tested
on several optimization problems. The experimental results obtained over a cluster of
Nvidia Fermi prove the advantages of the approach.

Keywords Skeleton · MultiGPU · Dynamic programming

1 Introduction

Today’s generation of computers is based on an architecture with identical multiple
processing units consisting of several cores (multicores). The number of cores per
processor is expected to increase every year. It is also well known that the current
generation of compilers is incapable of automatically exploiting the ability this archi-
tecture affords applications.

A. Acosta (�) · F. Almeida
Department Statistics and Computer Science, La Laguna University, La Laguna, Spain
e-mail: aacostad@ull.com

F. Almeida
e-mail: falmeida@ull.com

mailto:aacostad@ull.com
mailto:falmeida@ull.com

1126 A. Acosta, F. Almeida

The situation is further complicated by the fact that current architectures are het-
erogeneous by nature, which offers the possibility of combining these multicore with
GPU-based systems, for example, in a general purpose architecture. The programma-
bility of these systems, however, poses a barrier that hampers efficient access to its
exploitation.

Many proposals exist to address this problem. Some are based on carrying out a
source-to-source transformation from sequential to parallel code, or on transforming
parallel code designed for one architecture into parallel code designed for another
[1–6]. Many of these are oriented toward different application domains. Yet another
approach is based on skeletons, in which a set of parallel standards is available that
allows the developer to write sequential code and obtain parallel code [7–13]. Worth
noting as well the development of frameworks devoted to building source-to-source
translators [14–17].

Skeletal programming for GPUs on domain specific applications have been pro-
vided by several authors, Patus [18] for stencil computations or Delite [19] for ma-
chine learning problems among others. More general approaches have been presented
by SkelCL [20] or SkePU [21] to make easier the programming of GPU architectures.

In this paper, also we propose the use of skeletal based programming to exploit
GPUs. An advantage of the paradigm is that the user provides sequential specifica-
tions of her problem and the skeleton implements the parallelization of the algorithm
to solve it. We instantiate the method over the dynamic programming technique, one
that is frequently applied to many areas of research such as control theory, biology,
and so forth [22–25].

In [26], we proposed the use of DPSKEL skeletons to offset the dearth of gen-
eral software dynamic programming (sequential and parallel) tools. Our aim was to
bridge the obvious gap existing between general methods and DP applications. The
goal of DPSKEL is to minimize the user effort required to work with the tool by con-
forming as much as possible to the use of standard methodologies. In this paper, we
have expanded the original version of DPSKEL to adapt it to new architectures. On
this occasion, we developed the solution engine for GPU architectures using CUDA.
The proposed implementation shows several advantages; it allows the easy develop-
ment and fast prototyping of dynamic programming problems on GPUs since it hides
the parallel traversing of the dynamic programming table and also hides the difficulty
of CUDA programming. Another advantage is that the skeleton can be adapted to
changes in the architecture and to the programming interface without altering the dy-
namic programming code for the specific problem provided by the user. As a proof
of the easy of use of our tool, four combinatorial optimization problems have been
instantiated: the 0/1 Knapsack problem, the resource allocation problem, the triangu-
lation of convex polygons problem and the guillotine cutting stock problem. Compu-
tational results have been provided for all test problems and a comparative analysis
of the performance in a cluster of GPUs.

The paper is structured as follows. We present the MultiGPU skeleton developed
and its software architecture in Sect. 2, and Sect. 3 describes the expansive compu-
tational experiment undertaken as a result of applying the method developed. The
ease of development and the increase in productivity are substantial. We conclude the
paper with Sect. 4, in which we outline the key findings and propose futures lines of
research.

Skeletal based programming for dynamic programming on MultiGPU systems 1127

Table 1 Functional recurrence equations of dynamic programming problems

Problem Recurrence

0/1 Knapsack
(KP)

fi,j = max{fi−1,j , fi−1,j−wi
+ pi }

Resource Allocation
(RAP)

fi,j = p1,j if i = 1 and j > 0
fi,j = max0≤k<j {fi−1,j−k + pi,k} if (i > 1) and (j > 0)

Triangulation
Convex Polygons
(TCP)

fi,j = cos ti · cos ti+1· cos ti+2 if (i = (j − 2))

fi,j = mini<k<j {fi,k + fk,j + (cos ti · cos tk · cos tj)}

Guillotine Cut
(GCP)

fi,j = max

⎧
⎨

⎩

max0≤k<object{profitk}
max0≤z≤i/2{fz,j + fi−z,j }
max0≤y≤j/2{fi,y + fi,j−y }

2 A MultiGPU skeleton for dynamic programming

Dynamic Programming (DP) is an important technique that has been widely used to
solve problems in various fields like control theory, operations research, economy, bi-
ology and computer science [22–25]. DP arrives at the optimal solution to a problem
by means of an optimal sequence of decisions that rely on the principle of optimality
(“given an optimal sequence of decisions, each subsequence must also be optimal”)
[27–30]. The principle of optimality is formally expressed as a functional recurrence
equation that is established for each problem. Table 1 shows the functional recurrence
equations of some dynamic programming problems. The functional equation usually
imposes the evaluation of values in a space of solutions that are stored in a table (the
dynamic programming table), where the optimal values and the decisions associated
with those values are stored. The main obstacle to the parallelization of this technique
stems from the dependencies imposed by the functional equation, which varies with
each problem and imposes a certain structure in the evaluation progress.

Most of the parallelizations presented for DP correspond to specific problems (see,
for example, [31, 32]). A general parallel approach was presented in [33] as an exten-
sion of the work in [29], but the considerable theoretical effort that must be overcome
in certain cases complicates its use as a model for developing parallel tools. In this re-
gard, we conclude that generic parallel approaches to DP are limited to certain classes
of problem.

Analyzing the software approaches to DP, we find a group of general libraries for
combinatory optimization problems [34, 35]. These are used to provide interfaces
for sequential and parallel executions, but in most cases, dynamic programming is
not considered at all. There are specific sequential dynamic programming libraries
in [36]. There are also interesting software approaches derived from laboratories that
apply tools such as LINGO [37] to dynamic programming problems using specific
methods. DPSKEL is presented in [26]. This is a parallel skeleton where a large
variety of optimal specifications are defined for dynamic programming problems in
various architectures. The end user implements the empty sections in sequential C++
code, and the parallelism is provided automatically.

The goal of DPSKEL is to minimize the user effort required to work with the
tool by conforming as much as possible to the use of standard methodologies. In

1128 A. Acosta, F. Almeida

Fig. 1 DPSkel classes model

this paper, we have expanded the original version of DPSKEL to adapt it to new
architectures. On this occasion, we developed the solution engines for single-GPU
and MultiGPU architectures. For the MultiGPUs case, we considered systems based
on distributed memory architectures where each GPU is managed by a MPI process.
This approach is designed for systems composed of multiples nodes in distribute
memory, where each node has one GPU. Distribute memory systems with more than
one GPU per node or shared memory systems with MultiGPUs will be considered in
future skeleton implementations.

Developing software skeletons for DP implies analyzing the technique and deter-
mining those elements that can be extracted from a specific case and whose elements
depend on the application. Assuming that the user is capable of obtaining the func-
tional equations herself, in DPSKEL the user provides the structure of a state and
its evaluation through the functional equations, and the DP table is abstracted as a
state table. DPSKEL provides the table and several methods for accessing it during
the state evaluation process. These methods allow for different traversing (by rows,
columns, diagonally), with the user choosing the best one based on the dependencies
of the functional equations. In the sequential case, the traversing chosen for the table
indicates that the states of the row (column or diagonal, respectively) will be pro-
cessed sequentially, while in the single-GPU case, a set of rows (columns or diago-
nals, respectively) will be assigned to a set of threads to be processed simultaneously.
For the MultiGPU execution, we use MPI to distribute workload among processes.
Each process is responsible for one GPU. This approach allows us to introduce any
of the algorithm parallelization strategies devised for DP.

DPSKEL adheres to the classes model described in Fig. 1. The concepts of State
and Decision are abstracted to the user in C++ classes (Required). The user describes
the problem, solution, and methods for evaluating the state (the functional equation)
and for obtaining the optimal solution. DPSKEL provides the classes (Provided) for
assigning and evaluating the DP table, making available the methods needed to yield
the solution. The solver class provides solution engines for different platforms. This
class is responsible for traversing the DP table and evaluate all states defined by the
user. The parallel traversing implementation or architectures details are hidden to
the user. The initial versions featured solution engines for managing the sequential
and parallel executions on shared and distributed platforms. In this paper, we have

Skeletal based programming for dynamic programming on MultiGPU systems 1129

developed the engines for MultiGPU systems based in CUDA and MPI. We will now
present some basic classes in DPSKEL and its adaptation to GPU architecture.

2.1 The State class

The State class holds the information associated with a DP state. This class stores and
calculates the optimal value in the state and the decision associated with the optimal
evaluation. The evaluation of a state implies accessing information on other states in
the DP table. DPSKEL provides an object of the Table class hidden in each instance
of the Solver class.

Listing 1 Definition of the State class. Implementation of the Evalua method of the State class for the
0/1 knapsack problem

1 void State : : Evalua (i n t stage , i n t index) {
2 Decision dec ;
3 i n t val ;
4 i f (index < w [stage]) {
5 val = 0 ;
6 dec .setDecision (0) ;
7 }
8 e l s e i f (stage == 0) {
9 val = (p [stage]) ;

10 dec .setDecision (1) ;
11 }
12 e l s e {
13 val = max (table−>getState ((stage−1) ,index) , 0 ,
14 (table−>getState (stage−1,index−w [stage]) +p [stage]) , 1 ,dec) ;
15 }
16 setValue (val) ;
17 setDecision (dec) ;
18 i f ((stage == sol−>getRowSol ()) && (index == sol−>getColSol ()))
19 sol−>setSolucion (t h i s) ;
20 }

The code shown in Listing 1 defines the state class for the knapsack problem.
A problem (pbm), a solution (sol), a decision (d), and the DP table (table) are
defined. These variables can be regarded as generic variables, since they must be
present in any problem to be solved. The value variable stores the optimal profit.
We should mention a particular method in this class, the Evalua method, which
implements the functional equation. The Evalua function receives the indices for a
state from the DP table. Any of the recurrences in Table 1 can be expressed with this
prototype. If the functional equation for a specific problem requires a different pro-
totype, the skeleton is open to method overloading using the polymorphism present
in C++.

For implementation in GPU, the attribute __host__ __device__ is added in
the header to allow the methods of this class to be executed both in the GPU and in
the host system (Listing 2).

2.2 The Table class

The Table class holds the set of States that configure the problem. Each entry
in the DP table stores all of the information associated with a state. It holds methods

1130 A. Acosta, F. Almeida

to get (getState(i,j)) and put (putState(i,j)) states from the table. The
class Solver takes charge of building the table at the beginning of the execution.
Listing 3 shows the method to allocate the memory for the dynamic programming
table and to initialize the states involved in it. For implementation in GPU we used
pinned memory to create the table, which provides page-locked memory that provides
higher transfer throughput between CPU and GPU memory. For access to states in
the table, we used the Unified Virtual Addressing (UVA) provided by CUDA that is
automating active when using pinned memory.

Listing 2 Header of the State class

1 requires c l a s s State{
2 i n t _value ;
3 Decision decision ;
4 Problem∗ pbm ;
5 Solution∗ sol ;
6 Table∗ table ;
7 p u b l i c :
8 __host__ __device__ void init (Problem∗ pbm ,Solution∗ sol ,Table∗ table) ;
9 __host__ __device__ void Evalua (i n t stage , i n t index) ;

10 . . .
11 } ;

2.3 The Solver class

The solver class provides solution engines for different platforms. This class con-
tains the data structures and methods needed to carry out a DP execution in keeping
with the specifications. In practice, this is a virtual class, with the solver classes pro-
vided being defined as a sub-class of this main class. To the already known solution
algorithms in DPSKEL:

Listing 3 Header of the State class

1 void Table : : init (c o n s t Setup &setup , Problem∗ pbm , Solution∗ sol) {
2 NumStages = setup .getNumStages () ;
3 NumStates = setup .getNumStates () ;
4 cudaMallocHost(&cTABLE , Num_Stages∗Num_States∗sizeof (State)) ;
5 f o r (i n t i=0; i<Num_Stages∗Num_States ; i++)
6 cTABLE [i] . init (pbm ,sol , t h i s) ;
7 }

– Solver_Seq. A sequential solver.
– Solver_OpenMP. A solver for shared-memory systems.
– Solver_MPI. A solver for distributed-memory systems.
– Solver_Hybrid. A solver for hybrid distributed and shared memory systems.
– Solver_Heterogen. A solver for heterogeneous environments.

in the current design, we added two new solvers for the GPU:

– Solver_GPU. A solver for single GPU systems.
– Solver_MultiGPU_MPI. A solver for MultiGPU in distributed-memory systems.

Skeletal based programming for dynamic programming on MultiGPU systems 1131

The Solver class contains the CUDA kernels definitions and the methods for
traversing the DP table. Listing 4 shows how the DP table is accessed by the run-
ByRows method of the Solver_cuda class. First, we distribute the workload to be
allocated on each MPI process. Next, the parallel traversing of the table is per-
formed calling the method (kernelRunByRows, see Listing 5). This method ob-
tains the number of GPU threads to solve the problem and calls the CUDA kernel
(kernelRunByRows see Listing 6). Note that we use a one-dimensional kernel;
this is due to most of the dynamic programming recurrences involve data dependen-
cies that impose traversing of the dynamic programming table. This fact prevents the
use of bidimensional grids where threads should be synchronized to avoid race condi-
tions. The kernel kernelRunByRows takes care of calling the methods to evaluate
a row that has been provided by the end user. Each one of the threads evaluates a
state using the Evalua method supplied by the user. Several kernels implementing
different traversing modes have been implemented:

– KernelrunByRows. Traverses the DP table by rows, one thread per column.
– KernelrunByDiag. Traverses the DP table by diagonally, starting from the main

diagonal upward.
– KernelrunByDiag2. Traverses the DP table by diagonally, downward until the sec-

ondary diagonal.

Listing 4 Header of the State class

1 void Solver_MultiGPU_MPI : : runByRows () {
2 / / I n i t i a l i z e d f i e l d
3 / / D i s t r i b u t e work load a c r o s s m u l t i p l e GPUs
4 f o r (i = 0 ; i < setup .get_Num_Stages () ; i++) {
5 / / C a l l K e r n e l
6 kernelRunByRows (i , vec_pos [myid] / tam_cas , vec_pos [myid+ 1] /tam_cas ,
7 table , numBlock [myid]) ;
8 / / Pack S t a t e s
9 f o r (j = vec_pos [myid] ; j < vec_pos [myid+ 1] ; j+=tam_cas)

10 op << ∗ (table−>GET_STATE (i , j /tam_cas)) ;
11 / / D i s t r i b u t e S t a t e s
12 MPI_Allgatherv(&op .tabla [vec_pos [myid]] , vec_tam [myid] , MPI_CHAR ,
13 ip .tabla , vec_tam , vec_pos , MPI_CHAR , MPI_COMM_WORLD) ;
14 / / Unpack S t a t e s
15 f o r (j = 0 ; j < last_state ; j++)
16 ip >> ∗ (table−>GET_STATE (i , j)) ;
17 }
18 }

To distribute the results to all MPI processes, each process packs the states cal-
culated. Next, we use a collective operation to share the results among all processes.
Finally, we unpack the states (see Listing 4).

As usual in skeletons, the proposed implementation shows several advantages, the
parallelism is hidden, and allows the end user to express her problem as a sequential
code, moreover it also hides the complexity of the CUDA programming. The user just
implements her problem using sequential C++ and adds the headers that enable the
methods to be used by the GPU. Another important advantage is that new changes
in the architecture and in the programming interface, can be faces by adapting the
skeleton without introducing any change in the code provided by the end user.

1132 A. Acosta, F. Almeida

Listing 5 Header of the State class

1 void Solver_MultiGPU_MPI : : kernelRunByRows (i n t i , i n t init , i n t end ,
2 Table ∗table , i n t numBlock) {
3 dim3 dimGrid (numBlock , 1 , 1) ;
4 dim3 dimBlock (NTHREAD , 1 , 1) ;
5 kernelDefRun<<<dimGrid ,dimBlock>>>(i ,init ,end ,table) ;
6 cudaThreadSynchronize () ;
7 }

Listing 6 Header of the State class

1 __global__ void kernelDefRunByRows (i n t i , i n t init , i n t end ,Table ∗table) {
2 i n t myid = (blockIdx .x∗blockDim .x+threadIdx .x) + init ;
3 i f (myid < end)
4 table−>GET_STATE (i , myid)−>Evalua (i , myid) ;
5 }

3 Computational results

In order to validate the skeleton developed, we tested them on several dynamic pro-
gramming problems (Table 1). We must remember that the data dependencies are
different in most of the formulas considered. This means that we have to use different
parallel traversing in the DP table. RAP and KP access the table by rows, while TCP
and CGP access it diagonally, TCP starts from the main diagonal upward, and GCP
moves diagonally downward traversing all diagonals of the table.

The parallel platform used to execute the MultiGPU skeleton is a distributed-
memory system with three different nodes in message passing. One of them has four
Intel Xeon E5-2660 processors with a Nvidia C2090 (512 CUDA cores) attached.
The other nodes have two Intel Xeon E5649 and a Nvidia C2075 (448 CUDA cores)
each one. All nodes are interconnected using a gigabit ethernet network. We compare
the MultiGPU skeleton with the single-GPU skeleton. To simplify the experiment, the
tests were carried out using square matrices of order 1000, 2000, 5000, and 10000.

Table 2 shows the time in seconds for all the problems when using only one GPU.
The problems were executed to compare the performance of GPUs. We can see how
the KP and RAP problems have the finest granularity, while the TCP and GCP prob-
lems exhibits the coarsest granularity. In the first column (GPU 1), you can see the
execution time using the fastest GPU (Nvidia C2090), the GPU 2 (Nvidia C2075) and
GPU 3 (Nvidia C2075) have a similar execution times. We observe as the granularity
of the problem affects the performance of the GPU, for the fine grain problems (KP
and RAP), the ratio obtained for GPU 2 and GPU 3 is lower than the obtained for
the coarse grain problems, while the GPU 4 provides better ratios for the fine grain
problems.

Figure 2 shows the execution time for all problems proposed using single-GPU
(label 1 GPU) and MultiGPU (labels 2 GPUs and 3 GPUs) skeletons. We can see
how the finest granularity problems (KP and RAP in Figs. 2(a) and 2(b)) obtains their
best execution time using the single-GPU skeleton. This is because the computational
cost of the fine-grained problems is small and most of the time is devoted to commu-
nications, what penalizes the MultiGPU skeleton that is based on message passing.
When the problems size increases, MultiGPU skeleton improves the execution time,

Skeletal based programming for dynamic programming on MultiGPU systems 1133

Table 2 Time of the problems analyzed using single-GPU skeleton

Problem Size GPU 1 GPU 2 GPU 3

time time speedup time speedup

KP 1000 0.11511 0.17526 0.66 0.17546 0.66

2000 0.45534 0.70893 0.64 0.70407 0.65

5000 2.05729 4.42721 0.46 4.44475 0.46

10,000 8.55532 17.3642 0.49 17.3581 0.49

RAP 1000 0.62865 0.76991 0.82 0.77072 0.82

2000 2.76128 3.74270 0.74 3.74270 0.74

5000 19.5798 27.0547 0.72 27.0496 0.72

10,000 175.488 239.343 0.73 239.981 0.73

TCP 1000 6.93643 7.64279 0.91 7.64870 0.91

2000 55.6100 58.5435 0.95 58.6373 0.95

5000 882.879 915.102 0.96 916.097 0.96

10,000 7258.47 7807.39 0.93 7823.39 0.93

GCP 1000 27.6493 29.9156 0.92 29.9262 0.92

2000 221.562 231.082 0.96 231.282 0.96

5000 3561.29 3684.03 0.97 3732.61 0.95

10,000 30327.1 33741.3 0.90 33686.5 0.90

as shown in Fig. 2(b) for a problem size of 10000. For the coarsest granularity prob-
lems (TCP and GCP in Figs. 2(c) and 2(d)), the best results are obtained with the
MultiGPU skeleton. For all problems, the executions time using 3 GPUs is faster
than using 2 GPUs.

Figures 3 show the speedup of all problems. For MultiGPU executions, we used
the fastest GPUs configuration, i.e., when using configurations with two GPUs, we
used GPU 1, GPU 2. To compute the speedup, we compare the running time of the
MultiGPU code with the running time obtained when using the fastest GPU (GPU 1
in Table 2).

In Figs. 3(a) and 3(b), we show the speedup of the MultiGPU skeleton compared
with the single-GPU skeleton. In this case, the fine-grain problems (KP and RAP)
behave differently than coarse-grain problems (TCP and GCP). KP and RAP need
a larger problem size to get good performance. As discussed above, this is because
the communications cost, and what penalizes the skeleton based on message passing.
TCP and GCP presented good speedups in all cases. For GCP, the speedup is greater
than expected presenting superlinear speedups, we assume that a better memory man-
agement is achieved when more that one GPU is used.

4 Conclusion

We developed a dynamic programming skeleton for systems equipped with one or
more GPUs. The skeleton developed shows the known advantages of skeletal pro-

1134 A. Acosta, F. Almeida

Fig. 2 Execution time of all problems using single-GPU and MultiGPU skeletons

Fig. 3 Speedups of the MultiGPU skeleton

gramming of ease of use, programmability and efficiency while hiding the parallelism
at the same time. The use of the DP skeleton avoids to the end user the learning of a
new API like CUDA while keeps the code portable for many different architectures.
The high productivity of the approach is tested by using four combinatorial optimiza-

Skeletal based programming for dynamic programming on MultiGPU systems 1135

tion problems. We analyze the performance of the MultiGPU skeleton by computing
the speedup comparing executions that use only one GPU against MultiGPU sys-
tems. The multiple GPU system presents a good scalability in the cluster of GPUs
that we have used as testing platform.We conclude that, in general, the skeletal ap-
proach can be a good alternative to broach multiple GPU systems and, in particular,
its application to the dynamic programming domain has been successful. As a future
line of research, we will explore the convenience of using clusters of GPUs in shared
memory systems or even considering then in hybrid systems.

Acknowledgements This work has been supported by the EC (FEDER) and the Spanish MEC with the
I + D + I contract number: TIN2011-24598.

References

1. Schordan M, Quinlan DJ (2003) A source-to-source architecture for user-defined optimizations. In:
JMLC, pp 214–223

2. Blume W, Doallo R, Eigenmann R, Grout J, Hoeflinger J, Lawrence T, Lee J, Padua D, Paek Y,
Pottenger B, Rauchwerger L, Tu P (1996) Parallel programming with Polaris. Computer 29:78–82

3. Dooley I (2006) Automated source-to-source translations to assist parallel programmers.
Master’s thesis, Dept of Computer Science, University of Illinois http://charm.cs.uiuc.edu/
papers/DooleyMSThesis06.shtml

4. Ueng Sz, Lathara M, Baghsorkhi SS, Hwu WmW (2008) Cuda-lite: reducing CPU programming
complexity. In: LCPC’08. Lecture notes in computer science, vol 5335. Springer, Berlin, pp 1–15

5. Lionetti FV, McCulloch AD, Baden SB (2010) Source-to-source optimization of cuda C for GPU
accelerated cardiac cell modeling. In: Proceedings of the 16th international Euro-Par conference on
parallel processing: part I (EuroPar’10). Springer, Berlin, pp 38–49

6. Par4All. www.par4all.org
7. Cole MI (1988) Algorithmic skeletons: a structured approach to the management of parallel compu-

tation. PhD thesis. AAID-85022
8. Bischof H, Gorlatch S (2002) Double-scan: introducing and implementing a new data-parallel skele-

ton. In: Proceedings of the 8th international Euro-Par conference on parallel processing (Euro-Par
’02). Springer, London, pp 640–647

9. Darlington J, Field AJ, Harrison PG, Kelly PHJ, Sharp DWN, Wu Q, While RL (1993) Parallel pro-
gramming using skeleton functions. Springer, Berlin

10. Cole M (2004) Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel pro-
gramming. Parallel Comput 30:389–406

11. Benoit A, Cole M (2005) Two fundamental concepts in skeletal parallel programming. In: The inter-
national conference on computational science (ICCS 2005), part II. Lecture notes in computer science,
vol 3515. Springer, Berlin, pp 764–771

12. Buono D, Danelutto M, Lametti S (2010) Map, reduce and mapreduce, the skeleton way. Proc Comput
Sci 1(1):2095–2103

13. González-Vélez H, Leyton M (2010) A survey of algorithmic skeleton frameworks: high-level struc-
tured parallel programming enablers. Softw Pract Exp 40:1135–1160

14. ROSE. www.rosecompiler.org
15. Pai S, Govindarajan R, Thazhuthaveetil MJ (2010) Plasma: portable programming for SIMD hetero-

geneous accelerators
16. Benkner S, Mehofer E, Pllana S (2008) Towards an intelligent environment for programming multi-

core computing systems. In: Proceedings of the 2nd workshop on highly parallel processing on a chip
(HPPC 2008), in conjunction with Euro-Par 2008, August 2008

17. Dave C, Bae H, Min S-J, Lee S, Eigenmann R, Midkiff SP (2009) Cetus: a source-to-source compiler
infrastructure for multicores. Computer 42(11):36–42

18. Christen M, Schenk O, Burkhart H (2011) Automatic code generation and tuning for stencil kernels
on modern shared memory architectures. Comput Sci 26(3-4):205–210

http://charm.cs.uiuc.edu/papers/DooleyMSThesis06.shtml
http://charm.cs.uiuc.edu/papers/DooleyMSThesis06.shtml
http://www.par4all.org
http://www.rosecompiler.org

1136 A. Acosta, F. Almeida

19. Brown KJ, Sujeeth AK, Lee HJ, Rompf T, Chafi H, Odersky M, Olukotun K (2011) A heterogeneous
parallel framework for domain-specific languages. In: Proceedings of the 2011 international con-
ference on parallel architectures and compilation techniques (PACT ’11). IEEE Computer Society,
Washington, pp 89–100

20. Steuwer M, Kegel P, Gorlatch S (2011) Skelcl—a portable skeleton library for high-level CPU pro-
gramming. In: Proceedings of the 2011 IEEE international symposium on parallel and distributed
processing workshops and PhD forum (IPDPSW ’11). IEEE Computer Society, Washington, pp 1176–
1182

21. Enmyren J, Kessler CW (2010) Skepu: a multi-backend skeleton programming library for multi-CPU
systems. In: Proceedings of the fourth international workshop on high-level parallel programming and
applications (HLPP ’10). ACM, New York, pp 5–14

22. Nascimento J, Powell W (2010) Dynamic programming models and algorithms for the mutual fund
cash balance problem. Manage Sci 56:801–815

23. Erdelyi A, Topaloglu H (2010) A dynamic programming decomposition method for making over-
booking decisions over an airline network. INFORMS J Comput 22:443–456

24. Huang K, Liang Y-T (2011) A dynamic programming algorithm based on expected revenue approx-
imation for the network revenue management problem. Transp Res Part E, Logist Transp Rev 47(3),
333-341

25. Shachter R, Bhattacharjya D (2010) Dynamic programming in influence diagrams with decision cir-
cuits. In: Twenty-sixth conference on uncertainty in artificial intelligence, pp 509–516

26. Peláez I, Almeida F, Suárez F (2007) Dpskel: a skeleton based tool for parallel dynamic programming.
In: Seventh international conference on parallel processing and applied mathematics (PPAM2007)

27. Helman P (1989) A common schema for dynamic programming and branch and bound algorithms.
J ACM 36:97–128

28. Karp RM, Held M (1967) Finite state process and dynamic programming. SIAM J Appl Math 15:693–
718

29. Ibaraki T (1988) Enumerative approaches to combinatorial optimization, part II. Ann Oper Res 11:1–
4

30. de Moor O (1999) Dynamic programming as a software component. In: Mastorakis N (ed) Proc 3rd
WSEAS int conf circuits, systems, communications and computers

31. Andonov R, Balev S, Rajopadhye S, Yanev N (2001) Otimal semi-oblique tiling and its application to
sequence comparison. In: 13th ACM symposium on parallel algorithms and architectures (SPAA)

32. Andonov R, Rajopadhye S (1997) Optimal orthogonal tiling of 2-d iterations. J Parallel Distrib Com-
put 45:159–165

33. Morales D, ALmeida F, Rodríguez C, Roda J, Delgado CAI (2000) Parallel dynamic programming
and automata theory. Parallel Computing 26(1), 113–134

34. Eckstein J, Phillips CA, Hart WE (2000) PICO: an object-oriented framework for parallel branch and
bound. Technical report, RUTCOR

35. Le Cun B (2001) Bob++ library illustrated by VRP. In: European operational research conference
(EURO’2001), Rotterdam, p 157

36. Lubow BC (1997) SDP: generalized software for solving stochastic dynamic optimization problems.
Wildl Soc Bull 23:738–742

37. Lohmander P Deterministic and stochastic dynamic programming. www.sekon.slu.se/PLO/
diskreto/dynp.htm

http://www.sekon.slu.se/PLO/diskreto/dynp.htm
http://www.sekon.slu.se/PLO/diskreto/dynp.htm

Copyright of Journal of Supercomputing is the property of Springer Science & Business
Media B.V. and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

	Skeletal based programming for dynamic programming on MultiGPU systems
	Abstract
	Introduction
	A MultiGPU skeleton for dynamic programming
	The State class
	The Table class
	The Solver class

	Computational results
	Conclusion
	Acknowledgements
	References

