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In this paper, we present a new second-order Mehrotra-type predictor–corrector algorithm for semi-definite
programming (SDP). The proposed algorithm is based on a new wide neighbourhood. We are particularly
concerned with an important inequality. Based on the inequality, the convergence is shown for a specific
class of search directions. In particular, the complexity bound is O(

√
n log ε−1) for the Nesterov–Todd

search direction and O(n log ε−1) for the Helmberg-Kojima-Monteiro search direction. The derived com-
plexity bounds coincide with the currently best known theoretical complexity bounds obtained so far for
SDP. We provide some preliminary numerical results as well.
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1. Introduction

Semi-definite programming (SDP) is a generalization of linear programming (LP), which arises in
many scientific and engineering fields. SDP has various applications in combinatorial optimization
[3] and system and control theory [5]. Moreover, many problems in SDP come from eigenvalue
optimization [23,24]. Therefore, SDP has received considerable attention and has been one of the
most active research areas in mathematical programming.

With the success of interior-point methods (IPMs) in solving LP, the most IPMs were extended
to SDP. The landmark work in this direction is introduced independently by Alizadeh [2]
and Nesterov and Nemirovsky [20]. Alizadeh [3] extended Ye’s projective potential reduction
algorithm [29] from LP to SDP and argued that many known interior-point algorithms for LP
could be transformed into algorithms for SDP. In addition, Nesterov and Nemirovsky [20] and
Nesterov and Todd [21] presented a deep and unified theory of IPMs for solving the more general
conic optimization problems using the notation of self-concordant barriers. There are other IPMs
of solving SDP [4,6,8,12,17,25,27,28]. Most of these works are concentrated on primal–dual
methods. The first proposed Mehrotra(M)-type predictor–corrector algorithm by Mehrotra [16]
is typical representative of primal–dual IPMs and has a number of remarkable properties. Zhang
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and Zhang [31] first established convergence theory and complexity bounds for two M-type’s
second-order algorithms. Recently, Koulaei and Terlaky [11], Liu et al. [13,14] and Feng and
Fang [6] present an extension of the variant of M-type predictor–corrector algorithm for SDP.
Motivated by their work, we also present a new M-type predictor–corrector algorithm for SDP.
Moreover, Ai and Zhang [1] introduced a new wide neighbourhood for linear complementarity
problem. Later, Li and Terlaky [12] extend it to SDP and Liu et al. [15] extend it to symmetric
cone programming. After learning those proposed neighbourhoods carefully, we find that these
proposed neighbourhoods are defined by using the Frobenius norm. However, there has been no
literature to define a neighbourhood using the Schatten 1-norm. This motivated us to propose a
new wide neighbourhood using the Schatten 1-norm.

In this paper, based on the proposed wide neighbourhood, we propose a new second-order
M-type predictor–corrector algorithm for SDP. In order to establish the iteration complexity for a
specific class of search directions, which are called Monteiro-Zhang-search direction in [30], we
prove an important relationship ‖UV + VU‖1 ≤ 2‖U‖F‖V‖F . In particular, the complexity bound
is O(

√
n log ε−1) for the Nesterov–Todd (NT) search direction and O(n log ε−1) for the Helmberg-

Kojima-Monteiro (HKM) search direction. To our knowledge, we establish the complexity bound
of the wide neighbourhood algorithm that coincides with the currently best complexity result
for the small neighbourhood M-type predictor–corrector algorithm. Moreover, we present some
numerical experiments illustrating the efficient properties of our algorithm.

This paper is organized as follows. In Section 2, we provide some properties of Schatten
1-norm. In Section 3, we give the definition of 1-norm neighbourhood and some properties. In
Section 4, we introduce the SDP and give algorithmic framework. In Section 5, we establish
the iteration complexity for the proposed algorithm. In Section 6, we present some numerical
experiments illustrating the efficient properties of our algorithm. Finally, we close the paper by
some conclusions.

1.1 Notations

R
n the n-dimensional Euclidean space

R
m×n the set of all m × n matrices

Sn the set of all n × n symmetric matrices
Sn+ the set of all n × n symmetric positive semi-definite matrices
Sn++ the set of all n × n symmetric positive definite matrices
Q � 0 Q is positive semi-definite, where Q ∈ Sn

Q � 0 Q is positive definite, where Q ∈ Sn

Tr(Q) the trace of a matrix, i.e. Tr(Q) = ∑n
i=1 Qii. Moreover, G • H =

Tr(GTH)

λi(Q) the eigenvalues of Q ∈ Sn, i = 1, 2, . . . , n
λmin(Q) and λmax(Q) the smallest and the largest eigenvalue of Q ∈ Sn

�(Q) the diagonal matrix with all the eigenvalues of Q as diagonal elements
cond(Q) the condition number of Q, defined as cond(Q) = λmax(Q)/λmin(Q)

||Q||F the Frobenius norm (F-norm) of Q ∈ Rn×n, i.e. ||Q||F = √
Tr(QTQ)

2. Some properties of the Schatten 1-norm

In order to introduce a new neighbourhood and the search direction, we need to present some
notations. For any x ∈ R, we define x+ = max{x, 0} and x− = min{x, 0}. Let M = Q�(M)QT =∑n

i=1 λiqiqT
i be the eigenvalue decomposition of M ∈ Sn, where λ1, λ2, . . . , λn are all the
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eigenvalues of M and Q is an orthonormal matrix. Then, we define the positive part M+ and
the negative part M− of M as

M− =
∑

λ−
i qiq

T
i and M+ =

∑
λ+

i qiq
T
i .

Similarly, if M ∈ Sn is a diagonal matrix, M+ and M− could be constructed by simply separating
the non-negative and non-positive entries. Apparently, M = M+ + M−, where M+, −M− � 0.

Let σi(M), i = 1, . . . , n, be the singular values of M ∈ Sn. The Schatten 1-norm (1-norm) is
defined by ‖M‖1 = ∑n

i=1 σi(M) = ∑n
i=1 |λi|. We give some useful properties of the 1-norm.

Similar to Proposition 3.1 in [12], we obtain the following lemma.

Lemma 2.1 Let U, V ∈ Sn. Then ‖(U + V)+‖1 ≤ ‖U+‖1 + ‖V+‖1.

Proof For U, V ∈ Sn, we have

U = U+ + U− = U+ +
∑

λi(U)≤0

λi(U)qi(U)qi(U)T

and

V = V+ + V− = V+ +
∑

λi(V)≤0

λi(V)qi(V)qi(V)T.

Using Theorem 8.1.5 in Gulub and Van Loan [7], we have

λi(U + V) ≤ λi(U
+ + V+) for i = 1, . . . , n. (1)

Hence using Equation (1), one has

‖(U + V)+‖1 =
∑

λi(U+V)≥0

λi(U + V) ≤
∑

λi(U+V)≥0

λi(U
+ + V+)

= ‖U+ + V+‖1 ≤ ‖U+‖1 + ‖V+‖1,

which completes the proof. �

In the following, we prove the important inequality in this paper.

Lemma 2.2 Let U, V ∈ Sn. Then ‖UV + VU‖1 ≤ 2‖U‖F‖V‖F .

Proof Using the definition of F-norm, we have

‖U‖F =
[

n∑
i=1

σ 2
i (U)

]1/2

and ‖V‖F =
[

n∑
i=1

σ 2
i (V)

]1/2

,

where σi(U) and σi(V) are singular values of U and V .
Using the Corollary 3.4.3 and Theorem 3.3.14 in [9], we have

1

2
‖UV + VU‖1 = 1

2

n∑
i=1

σi(UV + VU) ≤ 1

2

[
n∑

i=1

σi(UV) +
n∑

i=1

σi(VU)

]

=
n∑

i=1

σi(U)σi(V) ≤
[

n∑
i=1

σ 2
i (U)

n∑
i=1

σ 2
i (V)

]1/2

= ‖U‖F‖V‖F ,

which completes the proof. �
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Using the proof techniques of Lemma 3.3 in [12], it is easy to obtain the next lemma.

Lemma 2.3 Let W ∈ R
n×n be a nonsingular matrix. Then for any M ∈ Sn

‖M+‖1 ≤ 1
2‖[WMW−1 + (WMW−1)T]+‖1.

3. 1-Norm neighbourhood

The so-called negative infinity neighbourhood, i.e. a wide neighbourhood, is defined as

N −
∞(1 − τ) := {(X , y, S) ∈ F0 : λmin(XS) ≥ τμ}, (2)

where τ ∈ (0, 1) and μ = X • S/n.
The neighbourhood introduced by Li and Terlaky [12] is as follows:

N (τ1, τ2) := {(X , y, S) ∈ F0 : ‖[τ1μI − X1/2SX1/2]+‖F ≤ (τ1 − τ2)μ},

where 0 < τ2 < τ1 < 1 and μ = X • S/n. N (τ1, τ2) is a wide neighbourhood and the following
relationship holds [6,12]:

N −
∞(1 − τ1) ⊆ N (τ1, τ2) ⊆ N −

∞(1 − τ2), ∀ 0 < τ2 < τ1 < 1.

In this paper, we define a new wide neighbourhood as follows:

N1(τ , β) := {(X , y, S) ∈ F0 : ‖(τμI − X1/2SX1/2)+‖1 ≤ βτμ}, (3)

where β, τ ∈ (0, 1) and μ = X • S/n.
For N1(τ , β), we give the following propositions.

Proposition 3.1 Let β, τ ∈ (0, 1). Then N −∞(1 − τ) ⊆ N1(τ , β).

Proof For (X, S) ∈ N −∞(1 − τ), we have

τμ − λi(X
1/2SX1/2) ≤ 0, i = 1, . . . , n,

which is equivalent to τμI − X1/2SX1/2  0, which implies

(τμI − X1/2SX1/2)+ = 0,

leading to the claimed relationship. �

Proposition 3.2 Let (X , y, S) ∈ N1(τ , β). Then

(i) ‖(τμI − X1/2SX1/2)+‖1 ≤ βτμ implies λmin(X1/2SX1/2) ≥ (1 − β)τμ.
(ii) The matrices XS, SX , X1/2SX1/2 and S1/2XS1/2 have the same eigenvalues, since they are all

similar to each other.
(iii) N1(τ , β) are symmetric with respect to X and S.
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4. SDP problem and algorithm

4.1 SDP problem

We consider the SDP given the following standard form:

(P) min C • X , s.t. Ai • X = bi, i = 1, 2, . . . , m, X � 0, (4)

where C, X ∈ Sn, b ∈ R
m and Ai ∈ Sn is linearly independent. The dual problem associated with

Equation (4) is

(D) max bTy, s.t.
m∑

i=1

yiAi + S = C, S � 0, (5)

where y ∈ R
m and S ∈ Sn.

For convenience of reference, we define the following two sets:

F : =
{

(X , y, S) : Ai • X = bi,
m∑

i=1

yiAi + S = C, X, S � 0

}
,

F0 : = {(X , y, S) ∈ F : X , S � 0}.
We call F and F0, respectively, the (primal–dual) feasibility set and strictly feasibility set of (P)
and (D). (X, y, S) is said to be feasible if (X , y, S) ∈ F and strictly feasible if (X, y, S) ∈ F0. In this
paper, we assume that Ai is linearly independent and F0 �= ∅.

It is well known that under the assumptions that F0 is nonempty and Ai is linearly independent,
X∗ and (y∗, S∗) are Equations (4) and (5) optimal solutions if and only if they satisfy the following
system (see [10], P33):

Ai • X = bi, X � 0,
m∑

i=1

yiAi + S = C, S � 0, XS = 0. (6)

Applying Newton method for the perturbed system of equations (6), it leads to the following
Newton equations:

Ai • �X = 0,
m∑

i=1

Ai�yi + �S = 0, X�S + �XS = τμI − XS. (7)

Although the second equality guarantees us a symmetric�S, system (7) does not allow a symmetric
solution matrix �X. To overcome this difficulty, we use the approach proposed by Zhang [30],
who suggested to replace the equation XS = τμI by

HP(XS) = τμI , (8)

where HP(·) is a symmetrization transformation defined as

HP(M) = 1
2 [PMP−1 + (PMP−1)T], ∀ M ∈ R

n×n,

for a given matrix M and a given nonsingular matrix P. In particular, if P = I then for any
symmetric matrix M, HI(M) = H(M) = M. In [30], Zhang observed that if P is nonsingular,
then

HP(M) = τμI ⇐⇒ M = τμI .
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In this paper, the scaling matrix P is selected from the specific class

C(X, S) := {P ∈ Sn
++ : PXSP−1 ∈ Sn} = {P ∈ Sn

++ : PXSP−1 = P−1SXP}.
In particular, choosing P = S1/2 and P = X−1/2 we get the HKM search directions, respectively.
For the choice of P = W1/2, we obtain the NT search direction [19,21,22,26], where

W = S1/2(S1/2XS1/2)−1/2S1/2 = X−1/2(X1/2SX1/2)1/2X−1/2.

We compute the predictor direction and the corrector direction by solving the systems:

Ai • �Xa = 0,
m∑

i=1

Ai�ya
i + �Sa = 0,

HP(X�Sa + S�Xa) = R−
c + √

nR+
c ,

(9)

and

Ai • �Xc = 0,
m∑

i=1

Ai�yc
i + �Sc = 0,

HP(X�Sc + S�Xc) = −HP(�Xa�Sa),

(10)

where Rc = τμI − HP(XS).
Let α be the step sizes taken along the predictor direction (�Xa, �ya, �Sa) and the corrector

direction (�Xc, �yc, �Sc), then the new iterate is given by

(X(α), y(α), S(α)) := (X , y, S) + α(�Xa, �ya, �Sa) + α2(�Xc, �yc, �Sc).

We require that the largest step size ᾱ satisfy the following two conditions:

A.1 For all α ∈ [0, ᾱ] such that μ(ᾱ) ≤ μ(α).
A.2 For all α ∈ [0, ᾱ] satisfies (X(α), y(α), S(α)) ∈ N1(τ , β).

4.2 Algorithm

In the following, we state the generic framework of our algorithm.

Algorithm 1 M-type predictor–corrector algorithm

Input: A threshold parameter τ ≤ 1/4, β ≤ 1/2. An accuracy parameter ε > 0.
An initial point (X0, y0, S0) such that (X0, y0, S0) ∈ N1(τ , β). Set μ0 = X0 • S0/n, k := 0.

Step 1. If μk ≤ εμ0, then stop.
Step 2. Choose a scaling matrix P ∈ C(Xk , Sk).
Step 3. (Predictor step) Compute the predictor direction by solving Equation (9).
Step 4. (Corrector step) Compute the corrector direction by solving Equation (10) and the largest

step size ᾱk ∈ (0, 1] such that A.1 and A.2.
Step 5. Let (Xk+1, yk+1, Sk+1) = (X(αk), y(αk), S(αk)), μk+1 = Xk+1 • Sk+1/n. Set k := k + 1

and go to Step 1.
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5. Complexity analysis

In this section, we are going to establish the iteration complexity for Algorithm 4.2. In order to
achieve the purpose, we have to make preparation work in advance.

5.1 Scaling procedure

In order to analyse the proposed algorithm in a unified way for the scaling matrix P ∈ C(X, S),
we scale the primal and dual variables as follows:

(X̃, ỹ, S̃) = (PXP, y, P−1SP−1) and (C̃, Ãi, b̃i) = (P−1CP−1, P−1AiP
−1, bi).

We scale Newton systems (9) and (10) and obtain the following systems:

Ãi • �X̃a = 0,
m∑

i=1

Ãi�ỹa
i + �S̃a = 0,

H(X̃�S̃a + S̃�X̃a) = R̃−
c + √

nR̃+
c ,

(11)

and

Ãi • �X̃c = 0,
m∑

i=1

Ãi�ỹc
i + �S̃c = 0,

H(X̃�S̃c + S̃�X̃c) = −H(�X̃a�S̃a),

(12)

where R̃c = μI − X̃S̃, H(X̃S̃) = X̃S̃, �X̃a = P�XaP, �S̃a = P−1�SaP−1, �ỹa = �ya and
�X̃c = P�XcP, �S̃c = P−1�ScP−1, �ỹc = �yc.

After scaled direction, the iterates are rewritten as

(X̃(α), ỹ(α), S̃(α)) = (X̃ , ỹ, S̃) + α(�X̃a, �ỹa, �S̃a) + α2(�X̃c, �ỹc, �S̃c). (13)

In order to illustrate the relationship between the original and the scaled problems, we give the
next results.

(i) (X, y, S) ∈ F if and only if (X̃ , ỹ, S̃) is feasible for scaled primal and dual problems.
(ii) X̃(α) = PX(α)P, ỹ(α) = y(α), S̃(α) = P−1S(α)P−1 and μ(α) = μ̃(α), where μ̃(α) =

X̃(α) • S̃(α)/n.

Due to X̃1/2S̃X̃1/2 and X1/2SX1/2 having the same eigenvalues, one has the following lemma:

Lemma 5.1 The neighbourhood N (τ , β) is a scaling invariant, that is (X, y, S) is in the
neighbourhood if and only if (X̃ , y, S̃) is.
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5.2 Lyapunov-like operator

Let A ∈ Rn×n be given, and define a linear operator LA : Sn → Sn as

LA(X) = AX + XAT, (14)

which is called the Lyapunov operator [10, Theorem E.2]. For convenience, we define a Lyapunov-
like operator L̃A : Sn → Sn as follows:

L̃A(X) = 1
2 (AX + XAT). (15)

It is clear that the operator L̃A has all the properties of LA. In what follows, we list some properties
of L̃A, which play a key role in the following analysis.

Proposition 5.2 Let L̃A be defined in Equation (15). Then

(i) Let A ∈ Sn++, then the L̃A is guaranteed to be invertible.
(ii) For A ∈ Sn, we have L̃−1

A (A2) = A, L̃−1
A (A) = I and L̃−1

A (I) = A−1.
(iii) L̃A is symmetric with respect to 〈·, ·〉, that is 〈L̃A(X), S〉 = 〈X, L̃A(S)〉.
(iv) Let A � 0, B � 0, then L̃−1

A (B) � 0.

Moreover, using the Lyapunov-like operator, the third equality of Equations (11) and (12) can
be rewritten as

L̃X̃(�S̃a) + L̃S̃(�X̃a) = R̃−
c + √

nR̃+
c , (16)

L̃X̃(�S̃c) + L̃S̃(�X̃c) = −H(�X̃a�S̃a). (17)

5.3 Step size calculation

In this section, we discuss how to calculate the largest step size ᾱ. For simplicity, we will often
write X̃, ỹ, S̃ and ᾱ for X̃k , ỹk , S̃k and ᾱk , respectively.

By using Lemma 2.3 and the fact −Tr[τμI − X̃S̃]− ≥ (1 − τ)μn, we immediately obtain the
following result.

Lemma 5.3 Let (X̃, ỹ, S̃) ∈ N1(τ , β) and τ ≤ 1
4 , β ≤ 1

2 . Then

(τ − 1)μn ≤ Tr([τμI − X̃S̃]− + √
n[τμI − X̃S̃]+) ≤

(
τ + βτ√

n
− 1

)
μn < 0.

In the next lemma, we deduce immediately that α = 1 satisfies A.1.

Lemma 5.4 Let (X̃ , ỹ, S̃) ∈ N1(τ , β). Then μ(α) is strictly monotonically decreasing in α ∈
[0, 1].

Proof By computing μ(α) directly, we have

μ(α) = μ̃(α) = 1

n
X̃(α) • S̃(α) = μ + α

[
(τ − 1)μ +

√
n − 1

n
Tr(R̃+

c )

]
. (18)
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Taking the derivative with respect to α, we have

μ(α)′ = (τ − 1)μ +
√

n − 1

n
Tr(R̃+

c )

≤ (τ − 1)μ +
√

n − 1

n
βτμ

≤ (τ + βτ − 1)μ < 0,

which implies μ(α) is strictly monotonically decreasing in α ∈ [0, 1]. �

Thus, the largest step size ᾱ will be calculated as follows:

ᾱ = max{α : (X̃(α), ỹ(α), S̃(α)) ∈ N1(τ , β), ∀α ∈ [0, 1]}. (19)

Indeed, we calculate ᾱ by replacing Equation (19) with the following method. Let

ᾱ = max{α : g(α) ≤ 0, α ∈ [0, 1]}, (20)

where Da = �X̃a�S̃c + �S̃a�X̃c, Dc = �X̃c�S̃c and

g(α) =

⎧⎪⎪⎨
⎪⎪⎩

α3‖[Da]−‖1 + α4‖[Dc]−‖1 − βτμ(α) if α ≥ 1√
n

,

α2

√
n
‖[Da]−‖1 + α3

√
n
‖[Dc]−‖1 − βτμ(α) if α <

1√
n

.
(21)

In the following, we explain the reasons why we define g(α) in Equation (21).
First, let us define 	(α) as follows:

	(α) : = X̃S̃ + α[[τμI − X̃S̃]− + √
n[τμI − X̃S̃]+]

= (1 − α)X̃S̃ + ατμI + α(
√

n − 1)[τμI − X̃S̃]+,

which implies 	(α) � 0.

Lemma 5.5 Let (X̃, ỹ, S̃) ∈ N1(τ , β). Then
If 1/

√
n ≤ α, we have

‖[τμ(α)I − 	(α)]+‖F = 0. (22)

If α < 1/
√

n, we have

‖[τμ(α)I − 	(α)]+‖F ≤ (1 − α
√

n)βτμ(α). (23)

Proof Due to μ(α) ≤ μ and 	(α) � 0 for all α ∈ [0, 1], we have

[τμ(α)I − 	(α)]+ 
[
τμ(α)I − μ(α)

μ
	(α)

]+

= μ(α)

μ
[τμI − 	(α)]+
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= μ(α)

μ
[(1 − α)[τμI − X̃S̃]− + (1 − α

√
n)[τμI − X̃S̃]+]+

= μ(α)

μ
(1 − α

√
n)+[τμI − X̃S̃]+. (24)

For α < 1/
√

n, using Equation (24) and 1 − α
√

n > 0, one has

‖[τμ(α)I − 	(α)]+‖1 ≤ μ(α)

μ
(1 − α

√
n)‖[τμI − X̃S̃]+‖1 ≤ (1 − α

√
n)βτμ(α),

where the last inequality follows from (X̃ , ỹ, S̃) ∈ N1(τ , β).
For 1/

√
n ≤ α, using Equation (24) and 1 − α

√
n ≤ 0, one has

‖[τμ(α)I − 	(α)]+‖1 = 0.

The proof is completed. �

‖[τμ(α)I − X̃(α)S̃(α)]+‖1 ≤ βτμ(α) holds if

‖[τμ(α)I − 	(α)]+‖1 + α3‖[Da]−‖1 + α4‖[Dc]−‖1 ≤ βτμ(α).

Therefore, using Lemma 5.5, we well define g(α) as Equation (21).
The next lemma shows that (X̃(α), ỹ(α), S̃(α)) ∈ N1(τ , β), for α ∈ [0, ᾱ].

Lemma 5.6 Let ᾱ be defined in Equation (20). Then for all α ∈ [0, ᾱ]
(X̃(α), ỹ(α), S̃(α)) ∈ N1(τ , β).

Proof From Lemma 5.5, we have

‖[τμ(α)I − X1/2(α)S(α)X1/2(α)]+‖1 ≤ ‖[HX1/2(α)(τμ(α)I − X1/2(α)S(α)X1/2(α))]+‖1

= ‖[τμ(α)I − X̃(α)S̃(α)]+‖1 ≤ βτμ(α),

where the first inequality follows from Lemma 2.3.
Moreover, for all α ∈ [0, ᾱ], ‖[τμ(α)I − X̃(α)S̃(α)]+‖1 ≤ βτμ(α) implies X̃(α)S̃(α) ∈ Sn++.

Thus, we have det(X̃(α)) �= 0, det(S̃(α)) �= 0 for all α ∈ [0, ᾱ]. Then, since X̃ ∈ Sn++, S̃ ∈ Sn++,
by the continuity, it follows that in this interval both X̃(α) ∈ Sn++, S̃(α) ∈ Sn++.

From Lemma 2.3 and the definition of N1(τ , β) in (13), the proof is completed. �

5.4 Technical results

We begin with several lemmas that are frequently used in this section.

Lemma 5.7 [18, Lemma 4.6] Let U, V ∈ Sn and G ∈ Sn++. Then

‖U‖F‖V‖F ≤ √
cond (G)‖G−1/2U‖F‖G1/2V‖F

≤
√

cond(G)

2
(‖G−1/2U‖2 + ‖G1/2V‖2).
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Lemma 5.8 Let G = L̃−1
S̃

L̃X̃ , (X̃ , S̃) ∈ N1(τ , β) and β ≤ 1
2 , τ ≤ 1

4 . Then

‖(L̃X̃ L̃S̃)
−1/2[τμI − X̃S̃]+‖2

F ≤ βτμ and ‖(L̃X̃ L̃S̃)
−1/2[τμI − X̃S̃]−‖2

F ≤ μn.

Proof Some straightforward computations yield

‖(L̃X̃ L̃S̃)
−1/2[τμI − X̃S̃]+‖2

F ≤ ‖(L̃X̃ L̃S̃)
−1/2‖2‖[τ1μI − X̃S̃]+‖2

F

≤ 1

λmin(X̃S̃)
‖[τμI − X̃S̃]+‖2

1 ≤ (βτμ)2

(1 − β)τμ
≤ βτμ,

where the third inequality follows from λmin(X̃S̃) ≥ (1 − β)τμ, ‖[τμI − X̃S̃]+‖1 ≤ βτμ and the
last inequality follows from β ≤ 1

2 .
In what follows, we prove the second inequality.

‖(L̃X̃ L̃S̃)
−1/2[τμI − X̃S̃]−‖2

F ≤ ‖(L̃X̃ L̃S̃)
−1/2[τμI − X̃S̃]‖2

F

= 〈τμI − X̃S̃, (L̃X̃ L̃S̃)
−1(τμI − X̃S̃)〉

= 〈τμI , (LX̃LS̃)
−1τμI〉 − 2〈τμI , I〉 + 〈X̃S̃, I〉

≤ ‖(LX̃LS̃)
−1‖〈τμI , τμI〉 − 2〈τμI , I〉 + 〈X̃S̃, I〉

≤ τ 2μ2n/λmin(X̃S̃) − 2τμn + μn

≤ μn,

which completes the proof. �

Lemma 5.9 Let G = L̃−1
S̃

L̃X̃ . Then ‖�X̃a‖F‖�S̃a‖F ≤ 9
√

cond(G)μn/16.

Proof Multiplying the equation of (16) by (L̃S̃ L̃X̃)−1/2 and taking norm-squared on both sides,
we have

‖G−1/2�X̃a + G1/2�S̃a‖2
F = ‖(L̃X̃ L̃S̃)

−1/2[[τμI − X̃S̃]− + √
n[τμI − X̃S̃]+]‖2

F

≤ ‖(L̃X̃ L̃S̃)
−1/2[τμI − X̃S̃]−‖2

F + n‖(L̃X̃ L̃S̃)
−1/2[τμI − X̃S̃]+‖2

F

≤ μn + βτμn = (1 + βτ)μn. (25)

Using the second inequality in Lemma 5.7, we have

‖�X̃a‖F‖�S̃a‖F ≤
√

cond(G)

2
(‖G−1/2�X̃a‖2

F + ‖G1/2�S̃a‖2
F)

=
√

cond(G)

2
(‖G−1/2�X̃a + G1/2�S̃a‖2

F)

≤
√

cond(G)

2
(1 + βτ)μn ≤ 9

16

√
cond(G)μn.

The proof is completed. �

The following lemma will play a key role in our analysis.

Lemma 5.10 Let G = L̃−1
S̃

L̃X̃ . Then ‖�X̃c‖F‖�S̃c‖F ≤ 21cond(G)3/2n2μ/(64τ).
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Proof Multiplying the last equation of (17) by (L̃S̃ L̃X̃)−1/2 and taking norm-squared on both
sides, we have

‖G−1/2�X̃c + G1/2�S̃c‖2
F = ‖(LX̃LS̃)

−1/2(−�X̃a�S̃a)‖2
F

≤ 1

λmin(X̃S̃)
‖�X̃a�S̃a‖2

F ≤ 1

(1 − β)τμ
(‖�X̃a‖F‖�S̃a‖F)2

≤ 1

(1 − β)τμ

(
9

16

√
cond(G)nμ

)2

≤ 21

32τ
cond(G)n2μ. (26)

where the second inequality follows from λmin(ω̃) ≥ (1 − β)τμ and the third inequality follows
from Lemma 5.9.

Using the second inequality in Lemma 5.7 and (26), we have

‖�X̃c‖F‖�S̃c‖F ≤
√

cond(G)

2
(‖G−1/2�X̃c‖2 + ‖G1/2�S̃c‖2

F)

=
√

cond(G)

2
(‖G−1/2�X̃c + G1/2�S̃c‖2

F)

≤
√

cond(G)

2
· 21

32τ
cond(G)n2μ

= 21

64τ
cond(G)3/2n2μ,

which shows that the proof of the lemma is completed. �

Using the fact G−1/2�X̃a • G−1/2�S̃a = 0, G−1/2�X̃c • G−1/2�S̃c = 0 and (25), (26) and the
first inequality in Lemma 5.7, we easily obtain the following corollary.

Corollary 5.11 Let G = L̃−1
S̃

L̃X̃ and β ≤ 1
2 . Then

(i) ‖�X̃a‖F‖�S̃c‖F ≤ 15cond(G)n3/2μ/(16
√

τ).
(ii) ‖�S̃a‖F‖�X̃c‖F ≤ 15cond(G)n3/2μ/(16

√
τ).

Lemma 5.12 Let ᾱ be defined in (20). Then ᾱ ≥ 4βτ 2/(5
√

cond(G)
√

n).

Proof From Equation (21), we obtain 1/
√

n ≤ ᾱ or ᾱ < 1/
√

n. If 1/
√

n ≤ ᾱ, we imme-
diately obtain the lower bound on ᾱ. Thus, we only mainly consider ᾱ < 1/

√
n. Let α =

4βτ 2/(5
√

cond(G)
√

n), we have

α2

√
n
‖[�X̃a�S̃c + �S̃a�X̃c]−‖1 + α3

√
n
‖[�X̃c�S̃c]−‖1 − βτμ(α)

≤ α2 15

8
√

τ
cond(G)μn + α3 21

64τ
cond(G)3/2μn3/2 − βτ 2μ

= 6β2τ 7/2

5
μ + 21β3τ 5

125
μ − βτ 2μ = βτ 2μ

[
6βτ 3/2

5
+ 21β2τ 3

125
− 1

]

≤ βτ 2μ

[
1

10
+ 1

1000
− 1

]
≤ 0,

where the first inequality follows from Corollary 5.11, Lemma 5.10 and the fact μ(α) = μ +
α[(τ − 1)μ + (

√
n − 1)/n Tr(R̃+

c )] ≥ μ + α(τ − 1)μ ≥ μ + τμ − μ = τμ.
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Thus, from the definition of ᾱ in (20), we have ᾱ ≥ 4βτ 2/(
√

cond(G)
√

n). �

The following theorem gives an upper bound for the number of iterations in whichAlgorithm 4.2
stops with an ε-approximate solution.

Theorem 5.13 Let
√

cond(G) be bounded from above by κ < ∞ for all iterations. Then
Algorithm 4.2 will terminate with (Xk , yk , Sk) such that 〈Xk , Sk〉 ≤ ε〈X0, S0〉 in O(κ

√
n log ε−1)

iterations.

Proof Let ᾱ0 = 4βτ 2/(5
√

cond(G)
√

n). By the definition of ᾱ in (20), we have

μ(ᾱ) ≤ μ(ᾱ0) = μ + ᾱ0

n
Tr[[τμI − X̃S̃]− + √

n[τμI − X̃S̃]+]
≤ μ + ᾱ0(τμ − μ + βτμ) = [1 − (1 − τ − βτ)ᾱ0]μ
= (1 − ξ ᾱ0)μ,

where ξ = 1 − τ − βτ , the inequality follows from Lemma 5.3 and Corollary 5.11.
Because we need to have μ(ᾱ) ≤ εμ0, it suffices to have

[
1 − 4βτ 2ξ

5
√

cond(G)
√

n

]k

μ0 ≤
[

1 − 4βτ 2ξ

5κ
√

n

]k

μ0 =
[

1 − ξ0

κ
√

n

]k

μ0 ≤ εμ0,

where ξ0 = 4βτ 2ξ/5.
Substitution gives k ≥ (κ

√
n log ε−1)/ξ0. �

In order to obtain polynomial complexity for our Algorithm 4.2, we give the next lemma,
which is the bound on cond(G).

Lemma 5.14 [19, Lemma 3.1] If the NT search direction is used, then cond(G) = 1. If the HKM
search directions are used, then cond(G) ≤ n/(1 − β)τ .

By using Lemma 5.14, we have the following iteration complexities.

Corollary 5.15 If the NT search direction is used, then the iteration complexity of Algorithm 4.2
is O(

√
n log ε−1). If the HKM search directions are used, then the iteration complexities of

Algorithm 4.2 are O(n log ε−1).

6. Computational results

We compare the proposed Algorithm 4.2 with the Algorithm 2 in [12] for some semi-definite
problems which are generated randomly. These test problems are random SDP (Random), Max-
Cut problem (Max-Cut), educational testing problem (ETP), norm minimization problem (Norm
Minim), see [26] for details.

We only implemented the NT scaling for the test problems. All of our tests are run on an
Intel Core i5 PC (3.10 GHz) under Windows 7 and MATLAB R2011(b). We select the optimiza-
tion parameter τ = 0.05, β = 0.01 for the Algorithm 4.2 and τ1 = 0.1, τ2 = 0.05, η = 100 for
the Algorithm 2. The proposed algorithm terminates after the normalized duality gap satisfies
〈Xk , Sk〉/n ≤ 10−10 × 〈X0, S0〉/n. We list the names of the test problems, the number of iterations
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Table 1. Computational results.

Algorithm 1 Algorithm 2

Problem m n Iter Gap Time Iter Gap Time

Random 100 100 21.5 6.2517e−007 4.50 23.5 1.3363e−006 4.33
200 100 23.7 7.0592e−007 8.69 26.2 7.6678e−007 9.02
200 300 25.7 5.6228e−006 120.96 27.0 9.8993e−006 121.03

Max-Cut 50 50 11.4 4.5436e−010 0.28 23.9 7.4568e−010 0.51
100 100 11.7 1.0879e−009 1.81 26.2 2.1322e−009 3.74
200 200 13.4 1.4075e−009 13.85 27.6 3.6584e−009 26.81

ETP 25 50 25.3 1.6004e−009 0.50 33.2 2.5040e−009 0.52
50 100 35.3 2.6207e−009 3.60 39.5 3.2204e−009 3.42

100 200 46.9 5.1276e−009 29.04 50.8 7.4809e−009 28.44

Norm Minim 100 100 12.1 2.0761e−011 2.69 25.9 4.6584e−011 5.42
100 200 12.3 3.2084e−011 10.82 28.2 5.2465e−011 23.34
200 200 12.4 1.9209e−011 19.53 27.3 5.3120e−011 41.40

(iter), the duality gap (gap) when the algorithms terminate and the CPU time (time) in seconds.
Moreover, m represents the number of the constraint equations and n stands for the dimension
of the block Ai ∈ Sn×n. We run 10 times for the same m and n and show the results below. From
the results in Table 1 we find that, on the average, the number of iterations is about 32.36%, less
than the Algorithm 2. Although our implementations are very coarse, the proposed algorithm is
comparable to Algorithm 2 as a whole.

7. Conclusion

In this paper, we proved the relationship ‖UV + VU‖1 ≤ 2‖U‖F‖V‖F . Using the relationship,
we showed the convergence of our algorithm for a specific class of search directions. Moreover,
our numerical experiments also provide us an encouraging evidence that our new algorithm may
also perform well in practice.
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