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Abstract In this paper, we present a novel sequential convex bilevel programming
algorithm for the numerical solution of structured nonlinear min–max problems which
arise in the context of semi-infinite programming. Here, our main motivation are non-
linear inequality constrained robust optimization problems. In the first part of the
paper, we propose a conservative approximation strategy for such nonlinear and non-
convex robust optimization problems: under the assumption that an upper bound for
the curvature of the inequality constraints with respect to the uncertainty is given, we
show how to formulate a lower-level concave min–max problem which approximates
the robust counterpart in a conservative way. This approximation turns out to be exact
in some relevant special cases and can be proven to be less conservative than existing
approximation techniques that are based on linearization with respect to the uncertain-
ties. In the second part of the paper, we review existing theory on optimality conditions
for nonlinear lower-level concave min–max problems which arise in the context of
semi-infinite programming. Regarding the optimality conditions for the concave lower
level maximization problems as a constraint of the upper level minimization problem,
we end up with a structured mathematical program with complementarity constraints
(MPCC). The special hierarchical structure of this MPCC can be exploited in a novel
sequential convex bilevel programming algorithm. We discuss the surprisingly strong
global and locally quadratic convergence properties of this method, which can in this
form neither be obtained with existing SQP methods nor with interior point relax-
ation techniques for general MPCCs. Finally, we discuss the application fields and
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implementation details of the new method and demonstrate the performance with a
numerical example.

Keywords Robust optimization · Mathematical programming with complementarity
constraints · Bilevel optimization · Semi-infinite optimization · Sequential convex
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1 Introduction

In this paper, we consider inequality constrained optimization problems of the form

min
x∈Rnx

F0(x, w)

subject to Fi (x, w) ≤ 0 for all i ∈ {1, . . . , n} (1)

with an uncertaintyw ∈ R
nw entering both the continuous objective function F0 as well

as the continuous constraint functions F1,..., Fn . The robust counterpart methodology,
developed by Ben-Tal and Nemirovski [5–7] and El-Ghaoui et al. [17], assumes that
we have additional knowledge about the uncertainty w, namely that it lies in a given
compact uncertainty set W (x) ⊂ R

nw . We are interested in the following worst-case
formulation which incorporates our knowledge about the uncertainty:

min
x∈Rnx

max
w∈W (x)

F0(x, w)

subject to max
w∈W (x)

Fi (x, w) ≤ 0 for all i ∈ {1, . . . , n}.

In general it is hard to solve such min–max problems. Most existing algorithms address
special cases in the context of convex optimization: in [6], Ben-Tal and Nemirovski
observe that an important point in the formulation of robust counterpart problems
is their computational tractability. Under the assumption that the uncertainty set is
ellipsoidal they were able to show that the robust counterpart of a linear program-
ming problem (LP) with uncertain data can be formulated as a second order code
programming problem (SOCP). Similarly, the robustification of quadratic- or second
order cone programs (QPs or SOCPs) leads to semi-definite programming problems
(SDP). The robust counterpart of an SDP is NP-hard to solve. These achievements
show that, even if we are able to reformulate the robust counterpart problem, the robus-
tification increases the difficulty of the problem in the sense that SDPs are harder to
solve than SOCPs which are in turn more difficult to treat than LPs. Note that the
field of research addressing robust convex optimization problems has expanded fast
during the last years [4,8]. Although these developments tend more and more towards
approximation techniques, where the robust counterpart problem is replaced by more
tractable formulations, they also cover an increasing amount of applications.

For the non-convex case exist approaches in literature [15,27,29,35] which suggest
approximation techniques based on the assumption that w lies in a “small” set W (x) or
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equivalently that the curvatures of the objective function F0 as well as the constraint
functions F1, . . . , Fn are bounded by given constants such that the dependence of
F0, F1, . . . , Fn can be described by a Taylor expansion where the second order term
is over-estimated such that a conservative approximation is obtained. This lineariza-
tion allows in some cases to compute the maxima in an explicit way. As in the convex
case, these approaches usually assume that the uncertainty sets are ellipsoidal (while
the ellipsoids might however be nonlinearly parameterized in x) such that the sub
maximization problems can easily be eliminated while the conservatively robustified
minimization problem is solved with existing NLP algorithms. Note that in [35,36]
this approach has also been considered for more general polynomial chaos expan-
sions, i.e., higher order Taylor expansions with respect to the unknowns are regarded.
However, in practice it is often already quite expensive to compute linearizations of
the functions F0, F1, . . . , Fn with respect to the uncertainty—especially if we think of
optimal control problems where such an evaluation requires to solve possibly nonlin-
ear differential along with their associated variational differential equations. This cost
might increase dramatically, if higher order expansions have to be computed while
the polynomial sub-maximization problems can itself only approximately be solved
which requires again a level of conservatism.

For the case that polynomial approximations of the problem functions with respect
to the uncertainties are not acceptable, the completely nonlinear robust optimization
problem must be regarded. This completely nonlinear case has been studied in the
context of semi-infinite programming [25]. Here, the term semi-infinite arises from
the observation that the constraints of an uncertainty have to be satisfied for all possible
realizations of the variables w in the given uncertainty set W (x), i.e., an infinite number
of constraints must be regarded. Here, the problems in which the set W may depend
on x are usually called generalized semi-infinite programming (GSIP) problems while
the name semi-infinite programming (SIP) is reserved for the case that the uncertainty
set W is constant. The growing interest of semi-infinite optimization problems over
the last decades has resulted in various contributions about the feasible set of these
problems [30,49,54]. Moreover, first and second order optimality conditions for SIP
and GSIP problems have been studied intensively [26,30,61]. However, when it comes
to numerical algorithms semi-infinite optimization problems turn out to be in their
general form rather expensive to solve. Some authors have discussed discretization
strategies for the uncertainty set in order to replace the infinite number of constraints
by a finite approximation [25,58,59]. Although this approach works acceptably for
very small dimensions nw, the curse of dimensionality hurts for nw � 1 such that
discretization strategies are in this case rather conceptual. Note that the situation is very
different if additional concavity assumptions are available. Indeed, as semi-infinite
optimization problems can under mild assumptions [55] be regarded as a Stackelberg
game [53], the lower level maximization problems can—in the case of concavity—
equivalently be replaced by their first order optimality conditions, which leads to an
mathematical program with complementarity constraints (MPCC). In this context,
we also note that semi-infinite optimization problems can be regarded as a special
bilevel optimization problem [3]. However, as we shall argue in this paper, semi-
infinite programming problems should not be treated as if they were a general bilevel
optimization problem as important structure is lost otherwise.
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Being at this point, semi-infinite optimization problems give rise to convexifica-
tion methods with the aim to equivalently replace or to conservatively approximate
the lower level maximization problems with a concave optimization problem. As dis-
cussed above, one way to obtain a convexification is linearization. However, in the
field of global optimization more general Lagrangian underestimation (or, for max-
imization problems, overestimation) techniques are well-known tools [51,52,60] for
convexification which are often used as a starting point for the development of branch-
and-bound algorithms. In the context of generalized semi-infinite programming such a
concave overestimation technique has been suggested in [22] to deal with the problem
of finding the global solution of the lower level maximization problems discussing
the case where the uncertainty is assumed to be in a given one-dimensional interval.
The corresponding technique is called α-relaxation and works in principle also for
uncertainties with dimension nw > 1 which are bounded by a box. For nw � 1 the
α-relaxation can be used as a conservative approximation while the authors in [22]
suggest for the case of small nw to combine this α-overestimation with a branch-and-
bound technique (α-BB method) which converges to the exact solution.

Concerning algorithms for nonlinear min–max optimization problems there exist
some approaches which use recursive quadratic programming [34,43]. Most of these
approaches concentrate either on the case of one-dimensional uncertainty intervals or
finite approximations of the semi-infinite constraint. In this context, we also highlight
the superlinearly convergent min–max algorithms [40,42] as well as the first order
min-max algorithms which have been proposed in [41]. Note that these algorithmic
developments work with finite but adaptive discretizations of semi-infinite optimiza-
tion problems.

In this paper, we employ convexification methods for the semi-infinite or robust
optimization problems of our interest, which will be discussed within Sect. 2. In
contrast to the considerations in [22], we directly concentrate on the case nw � 1, i.e.,
on the case that the dimension of the uncertainty is much larger than one. This means in
particular that branch-and-bound methods are out of scope and we are rather interested
in conservative approximations. The contribution of Sect. 2.2 is that we show for the
case of ellipsoidal uncertainty sets that Lagrangian based overestimation techniques
are always less conservative than linear approximations. Moreover, we discuss some
non-concave cases for which a particular Lagrangian based concave overestimation
is exact. In Sect. 3 we review the existing achievements for generalized semi-infinite
programming in terms of first and second order optimality conditions.

The main contribution of this paper is presented in Sect. 4, where a new method
for structured mathematical programming problems with complementarity constraints
(MPCCs) is developed. Here, the particular structure of the MPCCs arises from the
nature of semi-infinite programming problems. As the presented method solves in
each step a convex bilevel optimization problem, we suggest the name sequential
convex bilevel programming which can be interpreted as a generalization of sequential
quadratic programming (SQP) methods [39]. Here, we discuss the local and global
convergence properties of the presented method which can—as far as the authors are
aware—in this form not easily be obtained with any existing method for MPCCs.

In Sect. 5, we discuss application fields and implementation details of the pre-
sented sequential convex bilevel programming method. Moreover, we demonstrate
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the applicability of the method by testing it with a numerical example which arises
from the field of robust optimal control. Finally, we conclude the paper in Sect. 6.

2 Nonlinear robust counterpart problems

In this section we introduce the standard notation for nonlinear min–max optimiza-
tion problems that arise in the context of robust optimization problems. We regard
problem (1) with twice continuously differentiable functions

F0, F1, . . . , Fn : R
nx × R

nw → R

depending on an optimization variable x ∈ R
nx and on an uncertain parameter w,

which is known to be in a compact and non-empty set

w ∈ W (x) ⊆ R
nw

which additionally satisfies 0 ∈ W (x). We assume that whatever x the optimizer
chooses, the adverse player “nature” chooses the worst possible value Vi (x) defined
by

Vi (x) := max
w∈W (x)

Fi (x, w). (2)

Our aim is now to solve the associated worst-case minimization or robust counterpart
problem

min
x∈Rnx

V0(x)

subject to Vi (x) ≤ 0 for all i ∈ {1, . . . , n}. (3)

Following the naming conventions for semi-infinite programming problems, we sug-
gest to call the above problem (3) a generalized robust counterpart problem in the
case that W depends on x , while we speak of a standard robust counterpart problem
otherwise. Note that the above “min–max” optimization problem (3) requires in each
evaluation of the functions V0, . . . , Vn the solution of the associated sub maximiza-
tion problem of the form (2). Thus, if the functions F0, F1, . . . , Fn are non-convex
there is in general no numerically efficient algorithm possible: every time we need to
evaluate the functions V0, . . . , Vn we have to apply expensive global search routines
(e.g., branch-and-bound) for solving the maximization problems (2)—even if we are
only interested in conservative approximations. As this will be limited to small nw we
introduce the following assumption:

Assumption 1 Let us assume that we have for each i ∈ {0, . . . , n} a twice contin-
uously differentiable and non-negative function λi : R

nx → R
+ which satisfies the

inequality

∀w ∈ W (x) : λmax

(
∂2

∂w2 Fi (x, w)

)
≤ 2 λi (x), (4)

123



544 B. Houska, M. Diehl

i.e., the maximum eigenvalue of the Hessian of Fi with respect to w is for all w ∈ W (x)

bounded by the function 2 λi .

Note that there exist numerical techniques from the field of global optimization [10,
21,38] which are able to provide interval bounds on the eigenvalues of the Hessian
matrix of a given function as required in the above assumption. Nevertheless, the
above assumption is still questionable, as it is in practice often not clear how we can
obtain such functions λi if the suggested global numerical interval methods are too
expensive to be applied. However, once we accept this assumption, we are able to
develop efficient, derivative based algorithms for approximate robust optimization in
the case nw � 1. This is the aim of the present paper.

2.1 Approximate robust counterpart formulations based on linearization

Note that the Assumption 1 enables us to construct a conservative approximation for
the maximization problems (2) based on linearization: by Taylor expansion we find

Vi (x) = max
w∈W (x)

Fi (x, w)

≤ max
v,w∈W (x)

{
Fi (x, 0) + ∂ Fi (x, 0)

∂w
w + 1

2
wT

(
∂2

∂w2 Fi (x, v)

)
w

}

≤ max
w∈W (x)

{
Fi (x, 0) + ∂ Fi (x, 0)

∂w
w + λi (x) wT w

}
(5)

Note that the uncertainty set can in practice often be modeled as an ellipsoidal set B.
In order to briefly discuss this case, we assume here for simplicity that B is a unit ball:

w ∈ B :=
{
v ∈ R

nw | vT v ≤ 1
}

.

In this case, we can explicitly solve the concave problem (5) finding the overestimate:

Vi (x) ≤ Fi (x, 0) +
∥∥∥∥∂ Fi (x, 0)

∂w

∥∥∥∥
2
+ λi (x). (6)

Here and in the following ‖ · ‖2 : R
nw → R denotes the Euclidean norm. Note

that this linear overestimate has in the context of robust optimization been introduced
in [15,35].

Definition 1 We define the best conservative first order approximation �i : R
nx → R

associated with the i th maximization problem of the form (2) by

∀x ∈ R
nx : �i (x) := Fi (x, 0) +

∥∥∥∥∂ Fi (x, 0)

∂w

∥∥∥∥
2
+ λi (x). (7)

The above definition is motivated by the observation that once we linearize the
function Fi at w = 0 allowing neither to compute the gradient of Fi at any other point
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nor to compute any second order term, �i is the smallest conservative approximation
that we can obtain by using Assumption 1 only without having any further information
on the function Fi .

Note that, e.g., in [15,27,29,35] it was suggested to solve the approximate robust
counterpart problem

min
x∈Rnx

�0(x)

subject to �i (x) ≤ 0 for all i ∈ {1, . . . , n}. (8)

instead of the original problem (3). In this paper we are interested in the question
whether we can find an alternative to the linear approximation approach which leads
to a less conservative approximation of the worst case.

2.2 A worst case approximation based on the dual Lagrange function

In this section, we pick any i ∈ {0, . . . , n} and ask once more the question how we can
compute an upper bound on the function Vi (x) which is needed in robust counterpart
formulations. As in the previous consideration, we assume that W (x) = B is the unit
ball. Recall that our only information about the function Fi is that Assumption 1 holds.

Let us consider the Lagrange dual function di : R
nx ×R

+ → R, which is associated
with the maximization problem (2):

di (x, λi ) := max
wi

Gi (x, λi , wi ) with

Gi (x, λi , wi ) := Fi (x, wi ) − λiw
T
i wi + λi . (9)

Note that di is an upper bound on Vi (x), i.e., we have

∀x ∈ R
nx : Vi (x) ≤ min

λi ≥0
di (x, λi ). (10)

For the case that the above inequality holds with equality we say that the strong duality
condition is satisfied. This is for example the case if Fi is strictly concave in w.

So far, we have not solved the problem: we still need to solve the optimization
problem (9) globally. However, an interesting observation is that we have

∀x ∈ R
nx : Mi (x) := min

λi ≥λi (x)

di (x, λi ) ≥ min
λi ≥0

di (x, λi ), (11)

since we assume that λi is a non-negative function. Note that di (x, λi ) is for λi ≥ λi (x)

easier to evaluate in the sense that the function Gi (x, λi , ·) is concave, i.e., every local
maximum of the function Gi (x, λi , ·) is also a global maximum if λi ≥ λi (x) is
satisfied.

Lemma 1 The function Mi is an upper bound on Vi which can never be more con-
servative than the best linear approximation �i , i.e., we have
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∀x ∈ R
nx : Vi (x) ≤ Mi (x) ≤ �i (x). (12)

Proof Note that by using the Taylor expansion of the function Gi with respect to wi

there exists a v ∈ R
nw such that

Gi (x, λi , wi )= Fi (x, 0)+ ∂

∂w
Fi (x, 0)wi + 1

2
wT

i

(
∂2

∂w2 Fi (x, v)−2λi 1
)

wi +λi .

(13)

For the case λi > λ(x) the right-hand side expression of the above equation is for any
fixed v concave and we can maximize over wi finding

max
wi

{
Fi (x, 0) + ∂

∂w
Fi (x, 0)wi + 1

2wT
i

(
∂2

∂w2 Fi (x, v) − 2λi 1
)

wi + λi

}

= Fi (x, 0) + 1
2

∂ Fi (x,0)
∂w

(
2λi 1 − ∂2 Fi (x,v)

∂w2

)−1
∂ Fi (x,0)

∂w

T + λi .

In the next step, we maximize over all v by using Assumption 1 in order to obtain for
all x ∈ R

nx and all λi > λ(x) the estimate

di (x, λi ) = max
wi

Gi (x, λi , wi )

≤ Fi (x, 0) + 1

4

1(
λi − λ(x)

)
∥∥∥∥∂ Fi (x, 0)

∂w

∥∥∥∥
2

2
+ λi . (14)

Now, it follows that

Mi (x) = inf
λi >λi (x)

di (x, λi )

(14)≤ inf
λi >λi (x)

{
Fi (x, 0) + 1

4

1(
λi − λ(x)

)
∥∥∥∥∂ Fi (x, 0)

∂w

∥∥∥∥
2

2
+ λi

}

= Fi (x, 0) +
∥∥∥∥∂ Fi (x, 0)

∂w

∥∥∥∥
2
+ λi (x)

= �i (x). (15)

As the above consideration holds for all x ∈ R
nx it follows with (11) that we have

∀x ∈ R
nx : Vi (x) ≤ Mi (x) ≤ �i (x), (16)

which is the statement of the Lemma. ��
Note that for the case that Fi is already concave, we have Mi = Vi , i.e, there is no

conservatism introduced. However, we might even in the non-concave case encounter
the situation that the conservative approximation function Mi is exact. This happens for
example in the non-concave quadratic case. As every function Fi is locally quadratic,
this is an important observation:
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Lemma 2 Let the function Fi be a quadratic form in w such that

Fi (x, w) = 1

2
wT Q(x)w + q(x)T w + r(x), (17)

where Q(x) is a symmetric matrix. If we use the eigenvalue bound

λi (x) := max {0 , λmax(Q(x))},

then the approximation function Mi is exact, i.e., we have

∀x ∈ R
nx : Vi (x) = Mi (x). (18)

Proof We start with an analysis of the following quadratically constrained quadratic
program (QCQP):

max
w

{
1

2
wT Q(x)w + q(x)T w + r(x)

}
s.t. wT w ≤ 1. (19)

If (w∗, λ∗) is a primal dual solution of the above maximization problem then (v∗, λ∗)
is a primal dual solution of the problem

max
v

{
1

2
vT D(x)v + p(x)T v + r(x)

}
s.t. vT v ≤ 1, (20)

where p(x) := T (x)q(x) and v∗ := T (x)w∗. Here, T (x) denotes an orthonormal
matrix and

D(x) := T (x)T Q(x)T (x)

is a diagonal matrix which consists of the eigenvalues of Q(x). Assume that the mth
component of v∗ satisfies the inequality pm(x) v∗

m < 0 . Then we can modify the
vector v∗ by exchanging the component v∗

m with −v∗
m obtaining a contradiction to the

assumption that v∗ is a maximum of the problem (20). Thus, we have pm(x) v∗
m ≥ 0

for all components m ∈ {1, . . . , nw} and consequently

(
Dmm(x) − λ∗) v∗

m = −pm(x) ⇒ (
Dmm(x) − λ∗) (v∗

m)2 ≤ 0. (21)

Here, it should be noted that the LICQ condition for the problem (20) is always satisfied
such that the above first order necessary conditions may indeed be applied. Now, the
inequality (21) shows already that we have either Dmm(x) ≤ λ∗ or v∗

m = 0 . Let us
assume that we have a component m for which v∗

m = 0 and Dmm(x) > λ∗ holds. As,
the LICQ condition implies not only the first order but also the second order necessary
condition

∀ y ∈ {z | zT v∗ = 0} : yT (
D(x) − λ∗ I

)
y ≤ 0 (22)
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this case can directly be excluded. Thus, we have Dmm(x) ≤ λ∗ for all
m ∈ {1, . . . , nw}, i.e., the considered quadratic form is either concave or we have
λ∗ ≥ λi (x) which implies the statement of the Lemma. ��
Remark 1 The above Lemma is in a different version known in the context of trust
region methods for exact Hessian SQP methods [14] as well as in the field of robust
control [63].

Corollary 1 Let Q(x), q(x) and r(x) be given such that the associated QCQP (19)
has a primal dual solution (w∗, λ∗). We assume that for all x either Q(x) is negative
definite or λ∗ satisfies the regularity condition

λ∗ > max {0, λmax(Q(x))} .

Moreover, let g : R
nx × R

nw → R be a twice continuously differentiable function. If
the function Fi can be written as

Fi (x, w) = 1

2
wT Q(x)w + q(x)T w + r(x) + ε g(x, w) (23)

with λi (x) := max
{

0 , max‖v‖≤1 λmax(
∂2

∂w2 Fi (x, v))
}

and ε > 0 sufficiently small,

then the approximation function Mi is still exact.

Proof The statement of the corollary follows immediately from Lemma 2 combined
with the regularity of the solution under small data perturbations. However, in this
argumentation we use the assumption that ε is sufficiently small. ��

Summarizing our results so far, the functions Mi can be expected to yield a better
conservative approximation than the linear approximations �i . In particular, if Fi is
quadratic in w or almost quadratic in the sense of Corollary 1, then the approximation
function Mi is even exact. Thus, we are interested in solving an approximate robust
counterpart problem of the form

min
x∈Rnx

M0(x)

subject to Mi (x) ≤ 0 for all i ∈ {1, . . . , n}. (24)

However, solving the above problem with a standard NLP solver can not be recom-
mended as each evaluation of the functions Mi is expensive and requires to solve
a min–max problem. Moreover, the functions Mi are in general not differentiable.
Rather, we plan to develop an algorithm to solve the problem (24) by taking the min–
max structure explicitly into account. For this aim, we write the functions Mi for all
i ∈ {0, . . . , n} in the form

Mi (x) = max
wi

Hi (x, wi ) s.t. ‖wi‖2
2 ≤ 1, (25)

where the functions Hi : R
nx × Rnw are defined as

Hi (x, wi ) := Gi (x, λi (x), wi ). (26)
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Note that Eq. (25) is equivalent to the definition (11) of Mi . In order to prove this, we
recall that the function Hi is concave in wi such that we have

Mi (x) = min
κi ≥0

max
wi

Hi (x, wi ) − κiw
T
i wi + κi

= min
κi ≥0

max
wi

Fi (x, wi ) − λi (x)wT
i wi + λi (x) − κiw

T
i wi + κi

= min
λi ≥λi (x)

max
wi

Fi (x, wi ) − λiw
T
i wi + λi

= min
λi ≥λi (x)

di (x, λi ).

Here, we denote with κi > 0 the multiplier of problem (25). This multiplier satisfies
the equation λi (x) + κi = λi .

The above consideration works with a quite natural set-up as uncertainty sets are
often ellipsoidal [7] and can thus be rescaled as a unit ball. As we have discussed
in this section, the associated Lagrangian overestimate functions Mi are for this case
sometimes even exact. Another practically relevant case is when the uncertainty set
is a box. As this case has been discussed in the literature within the context of the
α-BB method we refer to [22], where concave overestimates for box constrained
uncertainties are discussed. Note that in [22] the convexification method is combined
with a branch-and-bound strategy and applied in the context of generalized semi-
infinite programming for the case nw = 1, i.e., for the case that the box is a one
dimensional interval.

3 Optimality conditions for generalized robust counterpart problems

In this section we are interested in both necessary and sufficient optimality conditions
for local minimizers of min–max optimization problems of the form

min
x∈Rnx

max
w0∈B(x)

H0(x, w0)

subject to max
wi ∈B(x)

Hi (x, wi ) ≤ 0 for all i ∈ {1, . . . , n}. (27)

This problem has the same form as the generalized robust counterpart problem (3),
but we have switched notation to make entirely clear that we will from now on work
with the following assumptions:

Assumption 2 We assume that the functions H0, . . . , Hn are not only twice contin-
uously differentiable but also (for all x ∈ R

nx ) concave in w.

Assumption 3 Similarly, we assume from now on that the set B(x) is not only (for
all x ∈ R

nx ) compact but also convex. Moreover, we assume that we can write the set
B(x) in the form

B(x) := {
w ∈ R

nw | B(x, w) ≤ 0
}
,
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where the function B : R
nx × R

nw → R
nB is twice continuously differentiable and

(for all x ∈ R
nx ) component-wise convex in w.

Recall from the last section that such a convex set B(x) might in a conservative
approximation setting be obtained by taking the convex hull of W (x) while the func-
tions H0, . . . , Hn are concave over-estimators of the original functions F0, . . . , Fn .
However, note that Lemma 2 does only apply to the case of special nonconvex min–
max problems with ball constraints on the uncertainty. The above assumptions are
on the one hand more restrictive as convexity is required but on the other hand less
restrictive as they include a more general class of uncertainty sets. Nevertheless, our
main motivation are the examples

Bball (x, w) = ‖w‖2
2 − 1 and Bbox (x, w) =

(
w − u(x)

l(x) − w

)
(28)

from the previous section. Here, l, u : R
nx → R

nw denote twice continously differen-
tiable functions representing the upper and lower bounds of a parametric uncertainty
box.

Definition 2 A point (x∗, w∗) is said to be a local min–max point if the components
of the variable w∗ := (

w∗
0, . . . , w∗

n

)
are global maximizers of the functions

H0(x∗, ·), . . . , Hn(x∗, ·)

while x∗ is a local minimizer of the problem (27).

Assuming that the lower level maximizers in (27) are KKT-points the Assump-
tions 2 and 3 enable us to equivalently replace the condition “w ∈ B(x∗) maximizes
H(x∗, w)“ (with x∗ being a local minimizer of (27)) by the first order KKT conditions
of the form

0 = ∇w L j (x∗, w∗
j , λ

∗
j )

0 ≥ B(x∗, w∗
j ) (29)

0 ≤ λ∗
j

0 =
nB∑

k=0

λT
k Bk(x∗, w∗

k )

for all j ∈ {0, . . . , n}. Here, we have used the notation

L j (x, w, λ) := Hj (x, w) − λT B(x, w)

to denote the Lagrangian L j : R
nx × R

nw × R
nB → R which is associated with the

j th lower level concave maximization problem.
We make the assumption that at least the Mangasarian-Fromovitz constraint qualifi-

cation (MFCQ) for the lower level maximization problems holds such that the existence
of the multipliers λ∗

j can be guaranteed. In this case the KKT conditions (29) are both
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necessary and sufficient to guarantee that w∗ denotes the maximizers of the concave
lower level problems. Under the stronger linear independence constraint qualification
(LICQ) λ∗ is also unique. Following the classical framework [56,57], we introduce
two other assumptions on the maximizers w∗

j of the lower level problems: first we
assume that the strict complementarity condition (SCC) is satisfied, i.e., we assume
(i ∈ {0, . . . , n})

B(x∗, w∗
i ) − λ∗

i < 0 (30)

at the local min–max point (x∗, w∗) of our interest. And second, we assume that the
second order sufficient condition (SOSC)

∀pi ∈ Ti \{0} : pT
i

(
∂2

∂w2
i

Hi (x∗, w∗) − 2λ∗
i

)
pi < 0 (31)

is satisfied, where the set Ti is defined as

Ti :=
{

p ∈ Rnw | ∂

∂w
Bi,act(x∗, w∗)p = 0

}
, (32)

where Bi,act denotes the constraint components of the function B which are active for
the i th lower level maximization problem.

Now, we use the language from the semi-infinite programming literature:

Definition 3 A point w∗ is nondegenerate if it satisfies the LICQ, SCC, and SOSC
condition for all lower level maximization problems in (27).

The corresponding assumption that a point w∗ is nondegenerate is in the context of
generalized semi-infinite programming (GSIP) also known under the name reduction
ansatz [57,24]. It can be used to guarantee that the primal and dual solution ŵ j (x)

and λ̂ j (x) of the j th parameterized lower level problems of the form

min
w j ∈B(x)

Hj (x, w j ) (33)

can be regarded as differentiable functions in x . In fact, if w∗
j = ŵ j (x∗) is a non-

degenerate maximizer, the functions ŵ j and λ̂ j exist in an open neighborhood
Dx ⊂ Rnx of x∗ and are differentiable in this neighborhood Dx —this is a well-known
result [47,48] which follows immediately from the implicit function theorem.

Definition 4 We say that a point (x, w, λ) satisfies the extended Mangasarian Fro-
movitz constraint qualification (EMFCQ) if there exists a vector ξ ∈ R

nx with

∂

∂x
Li (x, w, λ) ξ < 0 ∀i ∈ A. (34)
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Here, A := { k | H(x, w) = 0} denotes the active set of the higher level minimiza-
tion problem. Moreover, we say that (x, w, λ) satisfies the extended linear indepen-
dence constraint qualification (ELICQ) if the vectors

∂

∂x
Li (x, w, λ) ∀i ∈ A (35)

are linearly independent.

The result of the following theorem has in a more general form (without even using
any reduction ansatz) for the first time been proven in [30], where first order optimality
conditions for generalized semi-infinite programming problems are discussed. In this
paper, we summarize this result being on the one hand less general, as we require the
reduction ansatz, but on the other hand we can give a shorter proof:

Theorem 1 Let (x∗, w∗, λ∗) be a local min–max solution of the problem (27) with w∗
being a nondegenerate maximizer of the lower level concave maximization problems
at x∗ and λ∗ the associated dual solution. Now, the following statements hold:

1. If (x∗, w∗, λ∗) satisfies the EMFCQ condition, then there exists a multiplier χ∗ ∈
R

n such that the KKT-type conditions

0 = ∂
∂x K (x∗, χ∗, w∗, λ∗) 0 = ∂

∂w
L j (x∗, w∗

j , λ
∗
j )

0 ≥ Li (x∗, w∗
i , λ∗

i ) 0 ≥ B(x∗, w∗
j )

0 ≥ χ∗
i 0 ≤ λ∗

j

0 =
n∑

k=1

χ∗
k Lk(x∗, w∗

k , λ∗
k) 0 =

n∑
k=0

λ∗
k

T B(x∗, w∗
k )

(36)

are satisfied for all i ∈ {1, . . . , n} and all j ∈ {0, . . . , n}. Here, we use the notation

K (x, χ,w∗, λ∗) := L0(x, w∗
0, λ∗

0) −
n∑

k=1

χk Lk(x, w∗
k , λ∗

k). (37)

2. If (x∗, w∗, λ∗) satisfies also the ELICQ condition, then the multiplier χ in the
necessary conditions (36) is unique.

Proof Due to the complementarity relation for the lower level maximization problems
we have

∀x ∈ Dx : Hj (x, ŵ j (x)) = L j (x, ŵ j (x), λ̂ j (x)),

where ŵ j and λ̂ j denote the parameterized primal-dual solution of the lower level
maximization problems as a function of x ∈ Dx as introduced above. Thus, the min–
max problem (27) is locally equivalent to the following auxiliary problem

min
x∈Dx

L0(x, ŵ0(x), λ̂0(x)) s.t. Li (x, ŵi (x), λ̂i (x)) ≤ 0 for all i ∈{1, . . . , n}.
(38)
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Using the optimality and feasibility condition for the lower level maximizer ŵ j (x∗)
we find

d

dx
L j (x∗, ŵ j (x∗), λ̂ j (x∗)) = ∂

∂x
L j (x∗, w∗

j , λ
∗
j )

+ ∂

∂w
L j (x∗, w∗

j , λ
∗
j )

∂ŵ j (x∗)
∂x

−B j,act(x∗, w∗
j )

∂λ̂ j (x∗)
∂x

= ∂

∂x
L j (x∗, w∗

j , λ
∗
j ). (39)

for all j ∈ {0, . . . , n}. Thus, the EMFCQ (or ELICQ) condition from Definition 4
boils down to the MFCQ (or LICQ) condition for the auxiliary problem (38). The
statements of the Theorem are now equivalent to the standard KKT theorem for the
problem (38) under the MFCQ and LICQ condition respectively. ��
Remark 2 The proof for the above theorem can be modified in the sense that the
optimization problem (38) can also be considered without any constraint qualification.
In this case, we can only consider Fritz John optimality conditions for the auxiliary
problem (38), as discussed in [57].

Remark 3 The above proof can be generalized for the case that the lower level prob-
lems comprise not only convex inequalities but also linear equalities. Furthermore, we
could consider the case that the problem (27) has additional equality and/or inequality
constraints which only depend on x etc.. Please note that such generalizations are
straightforward and omitted here for the ease of notation.

In order to complete our review of optimality conditions for min–max problems, we
note that it is also possible to write the KKT conditions for the lower level maximization
problems into the constraints of the higher-level problem, considering a mathematical
program with complementarity constraints (MPCC) of the form

minimize
x,w,λ

H0(x, w0)

subject to 0 ≥ Hi (x, wi )

0 = ∇w L j (x, w j , λ j )

0 ≥ B(x, w j ) (40)

0 ≤ λ j

0 =
n∑

k=0

λT
k Bk(x, wk)

for all i ∈ {1, . . . , n} and all j ∈ {0, . . . , n}. Note that this MPCC formulation is
known and discussed in the literature [57].

Unfortunately, it is without further precaution not trivial to discuss KKT points of an
MPCC. In order to understand the problem, we note that the Mangasarian Fromovitz
constraint qualification (MFCQ) for the minimization problem (40) is violated at all
feasible points of an MPCC. This can directly be seen by looking at the complementar-
ity conditions but we also refer to [50] for a discussion of the details of this statement.
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As the LICQ condition implies the MFCQ condition, both constraint qualifications
are rendered useless for mathematical programs with complementarity constraints.

The degeneracy of the MPCC (40) seems to be the main motivation for the devel-
opment of smoothing techniques for numerical approaches. In [57] and also in [18]
such smoothing techniques for MPCCs have been discussed. In this paper, we will
discuss a very different and new approach to numerically deal with min–max prob-
lems. While in [57] the MPCC (40) was the starting point for the development of
numerical algorithms that find Fritz John points based on smoothing techniques, we
are in the following section interested in numerical algorithms which use the necessary
KKT-type conditions (36) directly as a starting point.

4 Sequential convex bilevel programming

The aim of this section is to develop an algorithm which globally converges to local
minimizers of the problem (27). The question of how such an algorithm should be
designed depends heavily on the functions Hi and B. For example the dimensions of
these functions, the costs for an evaluation as well as the cost of computing derivatives
will mainly influence our choice of numerical techniques. If the function evaluation
is cheap while the difficulty is in determining the active sets, an application of interior
point techniques might come to our mind. However, in this paper, we are interested
in the opposite situation, i.e., in the case that the evaluation of the functions and their
derivatives is the most expensive part. Recall that for standard nonlinear programs
SQP methods have turned out to perform very well in such situations.

In the following, we will constrain ourself to the semi-infinite case, i.e., we assume
that the function B is independent of x . The aim of the algorithm is to find a point
z∗ := (x∗, χ∗, w∗, λ∗) which satisfies the necessary KKT-type conditions (36) with
x∗ being a minimizer of the problem (27). In order to apply the idea of SQP methods
to our situation, we assume that we have an initial guess z0 for the point z∗ and plan
to perform iterates of the form

z+ = z + α Δz := (x + αΔx, χ + αΔχ,w + αΔw, λ + α Δλ)

with α ∈ (0, 1] being a damping parameter while the steps Δx , Δχ , and Δw and Δλ

are assumed to be the primal dual local min–max point of the following convex bilevel
quadratic program (min–max QCQP):

min
Δx

max
Δw0∈Blin

0

{
H0+L0

xΔx+
(

ΔwT
0 L0

ww

2
+ΔxT L0

xw+H0
w

)
Δw0+ ΔxT KxxΔx

2

}

s.t. max
Δwi ∈Blin

i

{
Hi + Li

xΔx +
(

ΔwT
i Li

ww

2
+ ΔxT Li

xw + Hi
w

)
Δwi

}
≤ 0 (41)

with i ∈ {1, . . . , n} and

Blin
j :=

{
Δw j | Bi

wΔwi + Bi ≤ 0
}

(42)
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for all j ∈ {0, . . . , n}. Here, it should be explained that we use the notation Δλ j :=
λ

†
j −λ j to denote the steps to be taken in the multipliers of the lower level maximization

problems, while Δχ := χ† −χ depends on the dual solution χ† which is associated
with the inequality constraints in the minimization problem (41). Moreover, we use
the following short hands:

L j
ww := ∂2

∂w2 L j (x, w j , λ j ), L j
wx := ∂2

∂w∂x L j (x, w j , λ j ), L j
xw :=

(
L j

wx

)T
,

L j
w := ∂

∂w
L j (x, w j , λ j ), L j

x := ∂
∂x L j (x, w j , λ j ), L j := L j (x, w j , λ j ),

H j
w := ∂

∂w
Hj (x, w j ), H j

x := ∂
∂x Hj (x, w j ), H j := Hj (x, w j ),

B j
w := ∂

∂w
B(x, w j ), B j := B(x, w j ).

At this point we have to remark that the iteration index is suppressed for ease of
notation, i.e., once a step has been performed we set the variable z to z+ in order to
continue with the next step. In particular, the symmetric and positive definite matrix

Kxx ∈ R
nx ×nx

may change from iteration to iteration although this is in our notation not indicated
by an iteration index. Possible choices of this matrix Kxx will be discussed later, but
we mention already at this point that Kxx should be a suitable approximation of the
Hessian matrix

L0
xx −

n∑
k=1

χk Lk
xx ,

where we use the short hand L j
xx := ∂2

∂x2 L j (x, w j , λ j ).
Note that the sub-maximization problems within the min–max problem (41) can

be regarded as concave quadratic programs (QPs) of the form

Vi (Δx) := max
Δwi

{
1

2
ΔwT

i Li
wwΔwi +

(
ΔxT Li

xw + Hi
w

)
Δwi

}

s.t. Bi
wΔwi + Bi ≤ 0, (43)

as Li
ww is assumed to be negative semi-definite (cf. Assumption 2 and 3). Moreover,

the upper level minimization problem takes the form

min
Δx

{
H0 + L0

xΔx + V0(Δx) + 1

2
ΔxT KxxΔx

}

s.t. Hi + Li
xΔx + Vi (Δx) ≤ 0, (44)

which is a strictly convex optimization problem if Kxx is positive definite. Here, we
have used the fact that the functions Vj are convex in Δx as the maximum over linear
functions is convex. As for SQP methods, the existence of Δz is not guaranteed as
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the sub-problems might be infeasible. However, assuming that the sub-problems are
feasible and that the concave quadratic programs (43) have unique solutions, we have a
guarantee that the step Δz is unique. Moreover, the convexity has the practical advan-
tage that the sub-problem can efficiently be solved with existing convex optimization
tools.

In the case that Li
ww is strictly negative definite, we can analyze the dual mini-

mization problem which is associated with the concave maximization problem (43).
Provided that the QPs (43) admit strictly feasible points (Slater’s condition) the prob-
lem (44) is equivalent to a convex QCQP of the form

min
Δx,λ†

{
H0+L0

xΔx− 1
2 g0(Δx, λ†)

(
L0

ww

)−1
g0(Δx, λ†)T −BT

0 λ†+ 1
2ΔxT KxxΔx

}

s.t. Hi + Li
xΔx − 1

2 gi (Δx, λ†)
(
Li

ww

)−1
gi (Δx, λ†)T − BT

i λ† ≤ 0.

where we have used the short hand

g j (Δx, λ†) := 1

2

(
ΔxT L j

xw −
(
λ

†
j

)T
B j

w + H j
w

)
.

Note that this problem can solved with any suitable convex QCQP solver.

Definition 5 We define for each j ∈ {0, . . . , n} the lower level working set A j (λ
†)

by

A j (λ
†) :=

{
k ∈ {0, . . . , n} |

(
λ

†
j

)
k

> 0
}

. (45)

Moreover, we denote the number of elements in A j (λ
†) by m j := ∣∣A j (λ

†)
∣∣ .

We use the above notation to introduce the lower level KKT matrices

Ω j :=
⎛
⎝ L j

ww

(
B j,act

w

)T

B j,act
w 0

⎞
⎠ , (46)

where B j,act
w ∈ R

m j ×nw is a matrix which consists of the rows of B j
w, whose index is

in the working set A j (λ
†).

Assumption 4 We assume that the matrix Ω j is invertible for all j ∈ {0, . . . , n}.
Note that the above assumption seems reasonable in our context as we are inter-

ested in the case that the lower level optimization problems are convex while a non-
degeneracy assumption (or reduction ansatz) holds in the optimal solution. In this
sense, the above assumption is not excessively restrictive requiring a kind of regular-
ity condition to be satisfied during the iterations.

Proposition 1 If the Assumption 4 holds, the bilevel optimization problem (41) can
equivalently be regarded as an MPCC, i.e., the condition that the pairs (Δw j , λ

†
j ) are
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primal-dual maximizers can for all j ∈ {0, . . . , n} equivalently be replaced by the
corresponding KKT conditions

0 = ΔxT L j
xw + ΔwT

j L j
ww − ΔλT

j B j
w + L j

w (47)

0 ≥ B j
wΔw j + B j (48)

0 ≤ λ j + Δλ j = λ
†
j (49)

0 =
(

B j
wΔw j + B j

)T
λ

†
j (50)

using the notation L j
w := H j

w − λT
j B j

w.

Proof The above Proposition should be self-explaining: the conditions (47)–(50) are
simply the necessary KKT optimality conditions for the lower-level QPs (43). Here,
Assumption 4 guarantees that the linear independence constraint qualification is sat-
isfied justifying an application of the KKT theorem. ��
Remark 4 The above Proposition shows that the bilevel optimization problem (41)
can be regarded as a mathematical program with linear complementarity constraints
(MPLCC), which are in their general form rather expensive and difficult to solve [12,
31]. Note that the special structure arising from the semi-infinite programming context
as well as the convexity of the bilevel problem (41) are the foundation of the presented
sequential convex bilevel programming method, which make it efficient. This aspect
is also the main difference of the presented method in comparison to techniques like
piecewise sequential quadratic programming methods for general MPCCs [32,46,64],
where a quadratic program with linear complementarity constraints (QPLCC) must
be solved in each step of the sequential method.

In the next step we work out the optimality conditions for the bilevel QP (41).
For this aim, we introduce the matrices R j ∈ R

nx ×(nw+m j ) as well as the vectors
s j ∈ R

nw+m j (with j ∈ {0, . . . , n}) which are defined as

R j :=
(

L j
w,x
0

)
and s j :=

((
H j

w

)T

B j,act

)
, (51)

respectively. Here, the matrix B j,act consists of all components of B j , whose index is
in the working set A j (λ

†). Moreover, we use the notation Tj := RT
j Ω−1

j R j .

Definition 6 Requiring that Assumption 4 is satisfied, we say that the QP (43) is
nondegenerate for a given Δx if the strict complementarity condition (SCC)

B j
wΔw j + B j − λ

†
j < 0. (52)

holds at the primal dual solution (Δw j , λ
†
j ) of the QP (43).

Assumption 5 We assume that all lower level QPs of the form (43) are non-degenerate
at the solution (Δx,Δw, λ†) of the problem (41), i.e., the strict inequality (52) is for
all indices j ∈ {0, . . . , n} satisfied at this point.
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Note that the non-degeneracy of the j th lower level QP at a given Δx implies that
the variables Δw j and λ

†
j can in a neighborhood of Δx be regarded as a locally linear

function. This is due to the fact that Assumption 4 is equivalent to the LICQ and SOSC
condition for the lower level QPs while the SCC condition is required by the above
definition.

Definition 7 Let the point (Δx,Δw, λ†) be a feasible point of the bilevel prob-
lem (41). Providing that Assumption 4 is satisfied, we say that the extended LICQ
condition is satisfied at (Δx,Δw, λ†) if the vectors

Lk
x − sT

k Ω−1
k Rk + ΔxT T T

k ∀k ∈ W (53)

are linearly independent. Here,

W :=
{

k |
(

Li
xΔx + Li

wΔwi − ΔλT
i Bi + Li

)
k

= 0
}

denotes the active set which is associated with the upper level constraints.

Lemma 3 Let the Assumptions 4 and 5 be satisfied. Furthermore, let (Δx,Δw, λ†)

be a minimizer of problem (41) for which the extended LICQ-condition holds. Now,
we have necessarily

0 =
(

Kxx − T0 +
n∑

k=1

χ
†
k Tk

)
Δx +

(
L0

x − sT
0 Ω−1

0 R0

)T

−
n∑

k=1

χ
†
k

(
Lk

x − sT
k Ω−1

k Rk

)T
(54)

0 ≥ Hi + Li
xΔx − 1

2
(RiΔx + si )

T Ω−1
i (RiΔx + si ) (55)

0 ≥ χ + Δχ := χ† (56)

0 =
(

Hi + Li
xΔx − 1

2
(RiΔx + si )

T Ω−1
i (RiΔx + si )

)
χ

†
i (57)

for all i ∈ {1, . . . , n}. Here, the multiplier χ† is unique.

Proof Due to the non-degeneracy Assumption 5 for the lower level QPs (43) the bilevel
problem (41) is locally equivalent to an auxiliary quadratically constrained quadratic
program of the form

min
Δx

{
1
2ΔxT KxxΔx + L0

xΔx − 1
2 (R0Δx + s0)

T Ω−1
0 (R0Δx + s0)

}
s.t. Hi + Li

xΔx − 1
2 (RiΔx + si )

T Ω−1
i (RiΔx + si ) ≤ 0

. (58)

This follows immediately from a local elimination of the variable Δw on dependence
on Δx , i.e., we know that the active set of the lower level QPs remains locally constant
in Δx such that we can exploit the relation
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R jΔx + Ω j

(
Δw j

−λ
†,act
j

)
+ s j = 0, (59)

which summarizes the parameterized stationarity as well as the primal feasibility
condition of the active constraints associated with the j th sub-QP (43). In this notation,
λ

†,act
j is the vector which consists of the non-zero components of λ

†
j . Now, the extended

LICQ condition for the bilevel problem (41) reduces to a standard LICQ condition for
the auxiliary problem (58). Consequently, an application of the KKT theorem yields
the statement of the Lemma. ��

4.1 Global convergence analysis

A crucial point in the discussion of global convergence of any SQP type method
is the availability of a merit function which measures the progress of the iterations
z+ = z + αΔz towards a local minimum. This can for example be achieved via
line search techniques [39] adjusting the damping parameter α if necessary but also
trust region methods [14] make use of merit functions. In standard SQP methods with
suitable regularity assumptions Han’s exact l1-penalty function [23] is a traditional
choice but there are also other choices [39].

Note that for general MPCCs it is not straightforward to apply the idea of penalty
functions as most of the techniques, as, e.g., discussed in [39], are based on the assump-
tion that a suitable constraint qualification holds. As MPCCs do often not satisfy these
constraint qualifications, standard proof techniques typically fail. Global convergence
of SQP methods for general MPCCs is an active field of research and we refer to [1,9]
for further reading on global convergence of methods and a discussion of penalty
functions for general MPCCs.

Fortunately, as the MPCC (40) arises from the context of semi-infinite programming
it has a special structure which is exploited in the method presented in this paper and
which helps us also to construct a suitable merit function for our needs. Let us start
by defining an upper level merit function ΦU : R

nx × R
(n+1)nw × R

(n+1)nB → R

planning to measure the progress in terms of upper level feasibility and optimality in
the form

ΦU (x, w, λ) := L0(x, w0, λ0) +
n∑

k=1

χ̂k πk(Lk(x, wk, λk)), (60)

where χ̂ ∈ R
n++ is a constant vector. Here, it should be explained that the positive

projection π : R
d → R

d+ is defined for arbitrary dimensions d while the components
of π satisfy

∀s ∈ R
d ,∀k ∈ {1, . . . , d} : πk(s) := max { 0, sk }.

Similarly, |·| : R
d → R

d+ is also defined for arbitrary d where |s| denotes the
component-wise absolute value of a vector s ∈ R

d .
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Besides the upper-level feasibility, we also need to measure the violation of the
stationarity and primal feasibility condition for the lower level optimization problems.
In this context, we observe that the dual feasibility condition λ+ ≥ 0 is automatically
satisfied for the iterates, since λ+ satisfies by construction the optimality conditions
of the lower level maximization problems in problem (41). Thus, a violation of dual
feasibility in the lower level problems does not need to be detected motivating the
introduction of primal lower level merit functions of the formΦ

j
L : R

nx ×R
nw×R

nB →
R which are defined as

Φ
j
L(x, w j , λ j ) :=

∣∣∣∣∂L j (x, w j , λ j )

∂w

∣∣∣∣ ρ̂ j + λ̂T
j π(B(x, w j ))

for all j ∈ {0, . . . , n}. Here, ρ̂ j ∈ R
nw++ and λ̂ j ∈ R

nB++ are positive constants. The
final step is to compose a merit function Φ : R

nx × R
(n+1)nw × R

(n+1)nB → R as

Φ(x, w, λ) := ΦU (x, w, λ) + Φ0
L(x, w0, λ0) +

n∑
k=1

χ̂kΦ
k
L(x, wk, λk). (61)

In the following, we prepare the proof of Theorem 2 where a condition for a descent
direction of the merit function Φ will be discussed. In this context we make use of the
following assumption:

Assumption 6 The matrix Lww is negative definite.

Let us introduce the short-hand “∂α” to denote one sided directional derivatives in
the step direction, i.e., we define for example

∂α L0(x, w0, λ0) := lim
α → 0+

L0(x+αΔx, w0+αΔw0, λ0+αΔλ0)−L0(x, w0, λ0)

α
.

(62)

This abstract notation for one sided derivatives can analogously be transferred for the
other terms in the merit function. Let us summarize the following technical result:

Proposition 2 Transferring the notation (62) to denote one-sided directional deriva-
tives, the following expressions exist (i.e., the corresponding limits for α → 0+ exist)
and satisfy

∂α L0(x, w0, λ0) = L0
xΔx + L0

wΔw0 − ΔλT
0 B0 (63)

∂απ(Li (x, wi , λi )) ≤ −π(Li ) − 1

2
Li

w

(
Li

ww

)−1
Li

w

T
(64)

∂απ(B(x, w j )) ≤ −π(B j ) (65)

∂α

∣∣∣∣ ∂

∂w
L j (x, w j , λ j )

∣∣∣∣ = −
∣∣∣L j

w

∣∣∣ (66)

for all i ∈ {1, . . . , n} and all j ∈ {0, . . . , n}. Here, the formula (64) requires the
Assumption 6 to be satisfied.
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Proof The first formula (63) follows immediately from the definition (62). In order
to derive the remaining formulas, we first recall that we have for any differentiable
function ϕ : R

r → R with derivative function ϕ′ := ∂ξϕ the following rules

∂α |ϕ(ξ + αΔξ)| =
⎧⎨
⎩

ϕ′(ξ)Δξ if ϕ(ξ) > 0∣∣ϕ′(ξ)Δξ
∣∣ if ϕ(ξ) = 0

−ϕ′(ξ)Δξ if ϕ(ξ) < 0
(67)

and ∂απ (ϕ(ξ + αΔξ)) =
⎧⎨
⎩

ϕ′(ξ)Δξ if ϕ(ξ) > 0
π

(
ϕ′(ξ)Δξ

)
if ϕ(ξ) = 0

0 if ϕ(ξ) < 0
(68)

for all ξ ∈ R
r , as long as ϕ′(ξ)Δξ �= 0 whenever ϕ(ξ) = 0. Moreover, the conditions

from the lower level QP optimality

B j
wΔw j ≤ −B j , (69)

and ΔxT L j
xw + ΔwT

j L j
ww − ΔλT

j B j
w = −L j

w (70)

can be combined with Eqs. (67) and (68) to estimate the directional derivatives (65)
and (66) respectively. It remains to verify the estimate (64). For this aim, we first
compute for all i ∈ {1, . . . , n} the term

∂α Li = Li
xΔx + Li

wΔwi − ΔλT
i Bi

≤ −Hi −
(

1

2
ΔwT

i Li
ww + ΔxT Li

xw + Hi
w

)
Δwi + Li

wΔwi − ΔλT
i Bi

= −Li −
(

1

2
ΔwT

i Li
ww + ΔxT Li

xw + Hi
w

)
Δwi + Li

wΔwi − (Δλ
†
i )

T Bi

(50)= −Li −
(

1

2
ΔwT

i Li
ww + ΔxT Li

xw + Hi
w − (Δλ

†
i )

T Bi
w

)
Δwi + Li

wΔwi

(47)= −Li + 1

2
ΔwT

i Li
wwΔwi + Li

wΔwi

= −Li + 1

2

(
Li

wwΔwi + (Li
w)T

)T (
Li

ww

)−1 (
Li

wwΔwi + (Li
w)T

)

−1

2
Lw

(
Li

ww

)−1
Li

w

T

≤ −Li − 1

2
Li

w

(
Li

ww

)−1
Li

w

T
. (71)

In the last step, we have used that Li
ww is negative definite. Estimate (64) is now a

direct consequence, as we can use the above estimate in combination with Eq. (68).
��

Definition 8 Provided Assumption 6 is satisfied, we introduce the notation

ρ j :=
(

L j
ww

)−1
L j

w

T

for all j ∈ {0, . . . , n}.
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Assumption 7 We assume that the matrix Kxx is symmetric and positive definite.

In the following Theorem we discuss that the presented sequential convex bilevel
programming method generates descent directions of the function Φ:

Theorem 2 Let us assume that z is a given iterate of the above sequential bilinear
programming method for which the bilevel quadratic optimization problem (41) admits
a feasible solution Δz while the Assumptions 4, 5, 6 and 7 are satisfied. Furthermore,
we assume that the weights in the merit function Φ are sufficiently large such that we
have

∀ j ∈ {0, . . . , n} : χ̂ >

∣∣∣χ†
∣∣∣ , ρ̂k >

3

2
|ρk | , λ̂ j > 0. (72)

Then, we have either

Δx = 0, π(B j ) = 0, π(Li ) = 0,

∣∣∣L j
w

∣∣∣ = 0,

ρ j = 0, Δw j = 0, and λT
j B j = 0 (73)

for all i ∈ {1, . . . , n} and all j ∈ {0, . . . , n} or Δz is a descent direction of the merit
function Φ, i.e., we have

∂αΦ := lim
α → 0+

Φ( x + αΔx, w + αΔw, λ + αΔλ ) − Φ(x, w, λ)

α
< 0.

(74)

Proof In the first step of this proof, we use the formula (63) in combination with the
linearized stationarity conditions (54) to compute

∂α L0(x, w0, λ0) = L0
xΔx + L0

wΔw0 − ΔλT
0 B0

(54)= −ΔxT KxxΔx+ΔxT T0Δx+sT
0 Ω−1

0 R0Δx+L0
wΔw0−ΔλT

0 B0

−
n∑

k=1

χ
†
k

(
−Lk

xΔx + ΔxT TkΔx + sT
k Ω−1

k RkΔx
)

(75)

By collecting terms, the above equation can also be summarized in the form

∂α L0(x, w0, λ0) = −ΔxT KxxΔx + X0 −
n∑

k=1

χ
†
k Xk −

n∑
k=1

χ
†
k Lk, (76)

where we use the short hands

X0 := ΔxT T0ΔxT + sT
0 Ω−1

0 R0Δx + L0
wΔw0 − ΔλT

0 B0 (77)

and

Xk := −Lk − Lk
xΔx + ΔxT TkΔxT + sT

k Ω−1
k RkΔx . (78)
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for k ∈ {1, . . . , n}. Now, the basic strategy is to use the necessary optimality conditions
to transform the expressions for X0 and Xk and completing squares in such a way that
we can find suitable estimates for them. We start with the term for X0:

X0 := ΔxT T0Δx + sT
0 Ω−1

0 R0Δx + L0
wΔw0 − ΔλT

0 B0

= −ΔxT L0
xwΔw0 + L0

wΔw0 − ΔλT
0 B0. (79)

The latter equality can be verified by multiplying Eq. (59) with ΔxT RT
0 Ω−1

0 from
the left. In the next step we use the stationarity condition for the lower QP to further
transform to

X0 = Δw0L0
wwΔw0 + 2L0

wΔwo − ΔλT
0 B0

wΔw − ΔλT
0 B0

=
(

L0
wwΔw0 + L0

w

) (
L0

ww

)−1 (
L0

wwΔw0 + L0
w

)

−L0
w

(
L0

ww

)−1
L0

w

T + λT
0

(
B0

wΔw0 + B0
)

. (80)

The first term in the right side of the above transformation is negative as L0
ww is negative

definite. Similarly, we have λT
0

(
B0

wΔw + B0
) ≤ 0 as λ0 ≥ 0 and B0

wΔw + B0 ≤ 0.
Thus, we find

X0 ≤ −L0
w

(
L0

ww

)−1
L0

w

T
. (81)

In order to obtain a similar estimate for Xk with k ∈ {1, . . . , n} we use the comple-
mentarity relation (57) to find

Xk = −Lk − Lk
xΔx + ΔxT TkΔxT + sT

k Ω−1
k RkΔx

(57)= −1

2
ΔwT

k Lk
wwΔwk + ΔwT

k Bk
w

T
λ† + λT

k Bk − ΔxT LxwΔw

= 1

2
ΔwT

k Lk
wwΔwk + Lk

wΔwk − Δλk Bk
wΔwk + λ†T

Bk
wΔwk + λT

k Bk

= 1

2

(
Lk

wwΔwk + Lk
w

) (
Lk

ww

)−1 (
Lk

wwΔwk + Lk
w

)

−1

2
Lk

w

(
Lk

ww

)−1
Lk

w

T + λT
k

(
Bk

wΔwk + Bk
)

(82)

Thus, we have

Xk ≤ −1

2
Lk

w

(
Lk

ww

)−1
Lk

w

T
. (83)

In the next step, we are interested in computing the directional derivative of the upper-
level merit function ΦU . For this aim, we use Eq. (76) to find
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∂αΦU ≤ −ΔxT KxxΔx + X0 −
n∑

k=1

χ
†
k Xk −

n∑
k=1

(
χ̂ + χ

†
k

)
πk(Lk)

−
n∑

k=1

χ̂ Lk
w

(
Lk

ww

)−1
Lk

w

T

≤ X0 −
n∑

k=1

χ
†
k Xk −

n∑
k=1

χ̂k Lk
w

(
Lk

ww

)−1
Lk

w

T
, (84)

where the last inequality holds strictly if Δx �= 0 as Kxx is assumed to be positive
definite and 0 ≤ ∣∣χ†

∣∣ < χ̂ . Similarly, we compute the directional derivative of the
lower level merit functions using the formulas from Proposition 2 to find

X0 + ∂αΦ0
L (81) ≤ −

∣∣∣L0
w

∣∣∣ (ρ̂0 − |ρ0|
) − λ̂0π(B0) ≤ 0 (85)

as well as

Xk + 1

3
∂αΦk

L (83) ≤ −
∣∣∣Lk

w

∣∣∣
(

1

3
ρ̂k − 1

2
|ρk |

)
− 1

3
λ̂kπ(Bk) ≤ 0. (86)

as we assume ρ̂k > 3
2 |ρk |. Both estimates together yield

∂αΦ ≤
n∑

k=1

(
−2

3
χ̂k

∣∣∣Lk
w

∣∣∣ ρ̂k + χ̂k

∣∣∣Lk
w

∣∣∣ |ρk |
)

≤ 0, (87)

where we use again the assumption ρ̂k > 3
2 |ρk |. For the case that we have ∂αΦ = 0

all the above inequalities must be tight. Collecting the corresponding conditions, we
find that this can only be the case if we have

Δx = 0, π(B j ) = 0, π(Li ) = 0,

∣∣∣L j
w

∣∣∣ = 0 (88)

Δw j = 0, λT
j B j = 0, and ρ j = 0. (89)

for all i ∈ {1, . . . , n} and all j ∈ {0, . . . , n}. Thus, we conclude the statement of the
Theorem. ��

Note that the above Theorem shows that we get either a descent direction of the
merit function Φ or λT

j B j = 0 is implied. This is surprising in the sense that we did
not penalize the complementarity condition in the function Φ. Indeed, this observation
leads to the following corollary:

Corollary 2 Let us assume that the penalty weights in the merit function Φ are suffi-
ciently large. Then every local solution of the unconstrained optimization problem

min
x,w,λ

Φ(x, w, λ) (90)
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at which the regularity Assumptions 4, 5, and 6 are satisfied, is either an infeasible
stationary point or a KKT-point of the MPCC (40). Moreover, if there exists a solu-
tion (x̂, ŵ, λ̂) of the unconstrained optimization problem (90) at which the regularity
Assumptions 4, 5, and 6 hold, then every solution of the MPCC (40) is also a solution
of the unconstrained optimization problem (90), i.e., the merit function Φ is an exact
penalty function.

Proof Let us assume that we have a solution (x∗, w∗, λ∗) of the unconstrained penalty
problem (90) which is not a KKT point of the MPCC (40). Provided that (x∗, w∗, λ∗)
not an infeasible point, an application of the above sequential convex bilevel pro-
gramming method is well defined in the sense that a feasible step Δz must exist—
independent on how we choose the positive definite matrix Kxx . As (x∗, w∗, λ∗) is
assumed to be not a KKT point it can easily be seen that we can not possibly satisfy
all the conditions (73), i.e., we get a descent direction of Φ, which is obviously a con-
tradiction to our assumption that (x∗, w∗, λ∗) is a local solution of the unconstrained
penalty problem (90). Thus, every local solution of the unconstrained optimization
problem (90) must either be an infeasible stationary point or a KKT point of the
MPCC (40).

The other way round, let us assume that (x∗, w∗, λ∗) is a solution of the MPCC (40)
achieving the minimum objective value H0(x∗, w∗

0). If this point is not a solution of
the unconstrained optimization problem (90) and not an infeasible stationary point,
then the solution (x̂, ŵ, λ̂) of (90) satisfies H0(x̂, ŵ0) < H0(x∗, w∗

0), i.e., we can
use the above argumentation to show that (x̂, ŵ, λ̂) is a feasible KKT point of the
MPCC (40) with a lower objective value than the assumed solution (x∗, w∗, λ∗). This
is a contradiction to the assumption that (x∗, w∗, λ∗) is a solution of the MPCC (40).
Consequently, Φ is an exact penalty function. ��

Note that the Theorem 2 and the corresponding Corollary 2 enable us to transfer
the traditional argumentation for the globalization of SQP methods [23,39], i.e., we
can require an Armijo-Goldstein condition of the form

Φ̃(α) ≤ Φ̃(0) + ε α ∂αΦ̃(0) with Φ(α) := Φ(x + αΔx, w + αΔw, λ + αΔλ)

(91)

to be satisfied with some ε > 0, adjusting α via a line search such that a descent of
the iterations is guaranteed. Under some additional assumptions, i.e., feasibility of the
sub-problems, uniform boundedness of the multipliers χ, ρ, and λ, and the uniform
boundedness of Kxx and K −1

xx , the traditional global convergence statements from the
SQP theory transfer [23].

4.2 Local convergence analysis

The local convergence properties of the presented sequential convex bilevel program-
ming method are much easier to discuss than the global convergence. Basically, we
can transfer the classical concepts for the local analysis of standard SQP theory. Thus,
we will in this section present the local convergence theory on an adequate advanced
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level aiming at remarks on the details which are specific for sequential convex bilevel
programming methods.

Let us directly constrain ourselves to the assumption that the active set during the
local phase of the algorithm is already correctly detected and stable. Here, the stability
of the active set can in our context be guaranteed as follows:

Assumption 8 We assume that at the local MPCC minimizer (x∗, w∗, λ∗) of our
interest the following strong regularity conditions are satisfied:

1. The solution w∗ of the lower level maximization problems is nondegenerate.
2. The ELICQ (or equivalently the MPCC-LICQ) condition is satisfied at

(x∗, w∗, λ∗).
3. The second order sufficient condition for the auxiliary problem (38) is satisfied.
4. The upper level strict complementarity condition

Li (x∗, w∗
i , λ∗

i ) − χ∗
i < 0 (92)

holds for all i ∈ {1, . . . , n}.
Lemma 4 Let (x∗, w∗, λ∗) be a local minimizer of the MPCC (40) at which the
regularity Assumption 8 is satisfied. Then there exists a neighborhood of (x∗, w∗, λ∗)
in which the bilevel optimization admits a feasible solution Δz which has the same
active set as the local minimizer (x∗, w∗, λ∗), i.e., we have A j (λ

†) = A∗
j for all

j ∈ {0, . . . , n} as well as A(χ†) := { k | χk > 0 } = A∗ for all iterates in this
neighborhood.

Proof The feasibility as well as the stability of the active set for the lower level
QPs follows immediately from Robinson’s theorem [47,48]. Similarly, we can also
apply Robinson’s theorem to the upper level auxiliary problem (38), i.e., we obtain
the feasibility and active set stability of the local QP-type necessary conditions from
Lemma 3. Here, we use that the ELICQ condition boils down to an LICQ condition
for the problem (38). As the fourth requirement of Assumption 8 guarantees the SCC
condition for the problem (38), we have all the necessary regularity conditions for the
problem (38) such that an application of Robinson’s theorem is justified. Thus, we
conclude the statement of the theorem. ��

A question which we have not discussed so far is how we should choose the matrix
Kxx . In the previous section we have assumed that Kxx is positive definite as this
was needed to guarantee a descent in the merit function during the global phase.
This assumption is in principle not necessary for the discussion of local convergence
properties, although it is still desirable in the sense that it guarantees the convexity
of the sub-problems. However, in the context of local convergence, we are rather
interested in a Dennis-Moré condition of the form
∥∥∥∥∥
(

K m
xx − ∂2

∂x2 L0(x∗, w∗
0, λ∗

0) +
n∑

k=1

χ∗
k

∂2

∂x2 Lk(x∗, w∗
k , λ∗

k)

)
Δxm

∥∥∥∥∥ ≤ cm ‖Δxm‖

(93)
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where (cm)m∈N is a non-negative real valued sequence. Note that—with quite some
abuse of notation—the iteration index m has been recovered in this formulation recall-
ing that the Hessian approximation Kxx = K m

xx may change from iteration to iteration.

Theorem 3 Let the Assumption (8) be satisfied while the Hessian approximation
sequence K m

xx satisfies the Dennis-Moré estimate (93) for a sequence (cm)m∈N. More-
over, we assume that the sequential convex bilevel programming method takes—at least
close to the solution—always full-steps while the functions Hi and B have Lipschitz
continuous Hessians. Now, the following statements hold:

– If the sequence (cm)m∈N satisfies limm→∞ cm = 0, then the local convergence of
the sequential convex bilevel programming method is r-superlinear.

– If the sequence (cm)m∈N satisfies cm+1 ≤ κ cm for some κ < 1, then the local
convergence of the sequential convex bilevel programming method is r-quadratic.

Proof Using the Lemma 4 our aim is to show that the sequential convex bilevel pro-
gramming method is locally equivalent to a Newton type method applied to the neces-
sary conditions (36) from Theorem 1 under the assumption that the active set is fixed.
As the Proposition 1 show already that the sequential convex bilevel programming
method linearizes the primal feasibility condition of the lower level problem in every
step exactly, we discuss directly the linearization of the active upper level constraint:

Li + ∂

∂z
Li Δz = Li + Li

xΔx + Li
wΔw − ΔλT

i Bi

= Hi + Li
xΔx +

(
1

2
ΔwT

i Li
ww + ΔxT Li

xw + Hi
w

)
Δwi

+1

2
Δwi Li

wwΔwi + Li
wΔwi

= Hi + Li
xΔx +

(
1

2
ΔwT

i Li
ww + ΔxT Li

xw + Hi
w

)
Δwi

−1

2
Δwi Li

wwΔwi − Δx Li
xwΔwi + ΔλT

i Bi
wΔw, (94)

which leads to
∥∥∥∥Li + ∂

∂z
Li Δz

∥∥∥∥ ≤ O(‖Δz‖2) (95)

for all i in the active set, i.e., for all i with

Hi + Li
xΔx +

(
1

2
ΔwT

i Li
ww + ΔxT Li

xw + Hi
w

)
Δwi = 0.

It remains to discuss the Newton step with regard to the stationarity equation

0 = ∂

∂x
K̂ (x, w, λ) = ∂

∂x
L0(x, w0, λ0) −

n∑
k=1

χk
∂

∂x
Lk(x, wk, λk). (96)
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A linearization of the above expression for ∂
∂x K̂ leads to

∂

∂x
K̂ + ∂

∂z

[
∂

∂x
K̂

]
Δz =

(
L0

xxΔx + L0
xwΔw0 + L0

x

)

−
n∑

k=1

χk

(
Lk

xxΔx + Lk
xwΔwk + Lk

x

)
−

n∑
k=1

Δχk Lk
x .

(97)

Note that we may assume Δλinact
j = 0 during the local phase as we consider the

case that the correct active set has already settled. Combining this knowledge with the
relation

R jΔx + Ω j

(
Δw j

−λ
†, act
j

)
+ s j = 0

we can further transform to

∂

∂x
K̂ + ∂

∂z

[
∂

∂x
K̂

]
Δz =

(
L0

xx −
n∑

k=1

χk Lk
xx

)
Δx − T0Δx +

n∑
k=1

χk TkΔx

−RT
0 Ω−1

0 s0 +
n∑

k=1

χk RT
0 Ω−1

0 s0 + L0
x −

n∑
k=1

χ
†
k Lk

x .

(98)

Using the result of Lemma 3 in combination with the Lipschitz continuity of the
Hessians terms as well as the Dennis-Moré estimate (93) we obtain

∥∥∥∥ ∂

∂x
K̂ + ∂

∂z

[
∂

∂x
K̂

]
Δz

∥∥∥∥ ≤ (
cm + O(‖z − z∗‖)) ‖Δx‖

+
∥∥∥∥∥−

∑
k

Δχk TkΔx −
∑

k

Δχk RkΩ
−1
k sk

∥∥∥∥∥
(99)

Now, we use that

∥∥∥RkΩ
−1
k sk

∥∥∥ = ‖−TkΔx − LxwΔw‖ ≤ O(‖Δz‖) (100)

to finally conclude

∥∥∥∥ ∂

∂x
K̂ + ∂

∂z

[
∂

∂x
K̂

]
Δz

∥∥∥∥ ≤ (
cm + O(‖z − z∗‖)) ‖Δx‖ + O(‖Δz‖2).

(101)
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Note that this last estimate (101) together with the estimate (95) boil down to a standard
Dennis-Moré convergence criterion for the Newton method applied to the optimality
conditions with respect to the fixed active set. Both statements of the Theorem are a
direct consequence. ��
Remark 5 If we use, e.g., a line-search globalization routine based on the proposed
exact non-smooth penalty, the Maratos effect [33,45] might prevent the method from
taking full-steps. Note that there exists mature literature on how to avoid the Maratos
effect in standard SQP algorithms [11,13,19,34]. These techniques can also be used
for modifying the proposed sequential convex bilevel programming algorithm.

Remark 6 Note that the above Theorem covers the case that K m
xx is generated by BFGS

updates, for which superlinear convergence is obtained. In the case of exact Hessian
approximations we have even quadratic convergence. This is in analogy to standard
SQP methods.

Remark 7 Note that for a direct application of a general purpose SQP method to the
MPCC (40) local convergence is much more difficult to analyze [20], as the KKT
points of the MPCC (40) do not satisfy the MFCQ condition. Moreover, globalization
results for general purpose SQP methods applied to MPCCs are—due to the unbounded
multiplier solution set of an MPCC—difficult to obtain [20], but they are subject of
current research [2,62]. From this perspective, the presented sequential convex bilevel
programming method is a mathematically sound alternative to standard SQP methods
for structured MPCCs.

Remark 8 Note that the above local convergence result could be generalized to the
case that the second order matrices Lww, Lwx , and Lxw do not exactly coincide with
their associated second order terms as long as they are suitable approximations. How-
ever, for such an ”inexact“ sequential convex bilevel programming method, the global
convergence argumentation from the previous section would fail, as an approximation
of these second order terms would amount to an inexact linearization of the lower level
stationarity conditions, which are in the MPCC (40) formulated as equality constraints.

4.2.1 A stopping criterion

Note that within an implementation of the proposed method, we need a stopping
criterion to decide numerically when convergence is achieved. For this aim, we define
the KKT-tolerance ε of the sequential convex bilevel programming method analogous
to SQP methods as

ε
j
L := Φ

j
L(x, w j , λ j ) =

∣∣∣∣∂L j (x, w j , λ j )

∂w

∣∣∣∣ ρ̂ j + λ̂T
j π(B(x, w j )),

εU := |∂α L0(x, w0, λ0)| +
n∑

k=1

χ̂k πk(Lk(x, wk, λk)),

and ε := εU + ε0
L +

n∑
k=1

χ̂k εk
L. (102)
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We can stop the method if ε < TOL is satisfied for a user-specified tolerance TOL,
as the above definition of the KKT tolerance ε measures the violation of the KKT
conditions for optimality.

4.2.2 The possible loss of superlinear convergence for non-convex problems
and positive definite Hessian approximation

Being at this point, we have discussed the local and global convergence of the method
rather independently obtaining consistent results. However, the question which we
have not addressed so far is whether we can always satisfy the Dennis-Moré condition
for superlinear or quadratic convergence which is needed in the above Theorem 3. This
is certainly possible if we work with exact Hessians. For the case that the upper level
problems are convex these exact Hessian matrices will be positive semi-definite and we
cannot encounter problems with convexity of the sub-problems. The question is now
whether we can work with bounded and positive semi-definite Hessian approximations
Kxx even if the exact Hessian

∂2

∂x2 L0(x∗, w∗
0, λ∗

0) +
n∑

k=1

χ∗
k

∂2

∂x2 Lk
(
x∗, w∗

k , λ∗
k

)
(103)

is indefinite or negative definite still obtaining superlinear convergence. Although this
is for standard SQP methods the case [44], this will in general not be possible for our
sequential convex bilevel programming method. The corresponding effect has been
worked out for sequential linear conic programming methods [16]. It was shown that
sequential linear conic programming methods with bounded positive definite Hessian
may not converge superlinearly for some non-convex problems.

In the following we will show that there exists an example for which the proposed
sequential convex bilevel programming method suffers from the so-called Diehl-Jarre-
Vogelbusch effect. For this aim we consider the problem

min
x∈R2

{−x2
1 − (x2 − 1)2

}
s.t. max

w∈R2

{
2xT w − 1 − wT w

} ≤ 0
(104)

Applying the presented sequential convex bilevel programming strategy with the exact
Hessian Kxx = −2I2×2, the method converges independent of the starting point in
one step to the unique solution x∗ = w∗ = (0,−1)T .

The closest positive semi-definite approximation of the exact Hessian −2I2×2
would be given by Kxx = 0. If we use this approximation the method converges
linearly with convergence rate 1

2 . Note that this example is completely analogous to
the one proposed in [16] and thus the corresponding argumentation transfers.

The Diehl-Jarre-Vogelbusch effect can never cause a problem if the original opti-
mization problem is convex as the exact Hessian is positive semi-definite in this case.
However, for general non-convex optimization problems we should be aware of the
fact that there exist non-convex cases in which the superlinear convergence is lost if
we want to work with positive semi-definite Hessian approximations.
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5 Applications, implementation details, and numerical examples

Looking for applications of the presented sequential convex bilevel programming
method in the context of robust optimization problems we should be aware of the
fact that it is hard to find nonlinear min–max optimization problems in practice which
are—at least without further transformation—concave with respect to their lower level
maximization problems. There is one important exception: the problems for which the
functions Hi are affine in w. As mentioned in the introduction, the case that Hi is affine
in w has been discussed by many authors [5,6,15,17,29,35] using the assumption that
the uncertainty sets are ellipsoidal or intersections of ellipsoids. In this case the lower-
level maximization problems can explicitly be eliminated which leads typically to
a (possibly nonlinear) second order cone program (SOCP) on the upper level. As
this explicit elimination might make the problem also more nonlinear, the presented
sequential convex bilevel programming method could be an alternative, although we do
not expect major improvements when applying it to this well-elaborated problem class.

Looking for the case that the functions Hi are not convex in w, we have to accept that
we need an estimate for the second order terms to achieve conservative reformulations,
which are however still less conservative than linear approximation approaches as we
have extensively discussed within Sect. 2. The corresponding nonlinear robust or
semi-infinite optimization problems are the main application of the presented method.
Here, the efficiency of the sequential convex bilevel programming method is mainly
influenced by two factors:

First, the functions Hi and B as well as their first and some of their second order
derivatives need to be evaluated. In most practical situations the evaluation of the
function B will be cheap. Recall that we have the cases that B describes a simple box
or ball in mind. Thus, the aim is to reduce the cost of the evaluation of sensitivities of
the functions Hi . Note that the presented method needs even in exact Hessian mode
only second order derivatives. This is in contrast to linear adjoint based approxima-
tion techniques [15] which would need third order derivatives to achieve quadratic
convergence. Thus, the proposed sequential convex bilevel programming method can
outperform the adjoint based linearization technique with respect to both: the function
and sensitivity evaluation cost per iteration of a method as well as the conservatism
of the robust counterpart approximation.

Second, the cost of the sequential convex bilevel programming method is influenced
by the cost of solving the sub-problems, which are itself structured min–max QCQPs.
The tractability of these bilevel sub-problems is on the one hand due to their convexity
and on the other hand implied by the structure which comes from the fact that for any
given Δx the lower level QPs are decoupled. For practical purposes, the min–max
QCQPs can for example be transformed into equivalent convex QCQPs which can be
solved with existing algorithms.

5.1 A numerical test example

In this section, we demonstrate the applicability of the proposed method with a numer-
ical example. For this aim, we consider a control task for an elastic rope which is
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modeled by 11 mass points and 10 connecting springs. The states of the system are
the position coordinates z0, z1, . . . , z10 ∈ R

2 as well as the associated velocities
v0, . . . , v10. Consequently, we have 44 states in total which satisfy the following
model equations

∀i ∈ {0, . . . , 10} : żi (t) = vi (t) (105)

v̇0(t) = (u(t), 0)T (106)

∀i ∈ {1, . . . , 9} : v̇i (t) = (0,−g)T + Di

m

‖zi − zi−1‖ − a

‖zi − zi−1‖ (zi−1 − zi )

+ Di+1

m

‖zi − zi+1‖ − a

‖zi − zi+1‖ (zi+1 − zi ) (107)

v̇10(t) = (0,−g)T + D10

m

‖z10 − z9‖ − a

‖z10 − z9‖ (z9 − z10) .

(108)

Note that the mass point with index 0 is assumed to be directly controllable in horizontal
direction, which is indicated by the control input u. Furthermore, g = 9.81 denotes the
gravitational constant. The above dynamic system is nonlinear if the length a of the
spring is not equal to 0. We use a = 1 in our example. Moreover, the spring constants
are assumed to be unknown but given in the form

Di = D + wi , (109)

where w := (w1, . . . , w10) is only known to satisfy ‖w‖2 ≤ 1 while D = 10 is given.
In order to discretize the control input we replace the function u by a piecewise

constant approximation

∼ u(t) :=
N−1∑
i=0

xi I[ti ,ti+1](t),

where I[a,b](t) is equal to 1 if t ∈ [a, b] and equal to 0 otherwise and xi ∈ R
2 are the

new control parameters. The time sequence 0 = t0 < t1 < · · · < tN = T = 10 is in
our example assumed to be equidistant with N = 10. In the following, we summarize
all decision variables in the vector

x := (x0, . . . , xN−1)
T .

If we start the above system at the equilibrium position for z0 = 0 and w = 0 and
simulate from t0 = 0 to T = 10, the position and the velocity of the mass point with
index 10 can be regarded as a function of x and w which we denote by z10(T, x, w)

and v10(T, x, w) such that we can define the functions F1, F2 : R
N × R

10 → R as

F1(x, w) := − (1, 0)T z10(T, x, w) + 5

and F2(x, w) := (1, 0)T v10(T, x, w) − 1
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Our objective is now to minimize the control input F0(x) := ∑N−1
i=0 x2

i while satis-
fying constraints on F1 and F2 in a robust way. The corresponding robust optimization
problem can be written as

min
x

F0(x)

s.t. max‖w‖2≤1
Fi (x, w) ≤ 0 i ∈ {1, 2} . (110)

Note that each evaluation of the function F1 or F2 requires a simulation of the
nonlinear dynamic system with its 44 states which is rather expensive. In the imple-
mentation which we use for this paper the ACADO BDF integrator [28] is used as
this integrator provides internal automatic differentiation for first and second order
adjoint derivatives of the adaptively discretized differential equation. Running the
integrator with the default tolerance of 10−6, one evaluation of F1 and F2 as well
as all required first and second order sensitivities takes all together approximately
0.5 seconds. Compared to this time, the computational cost for evaluating the function
B(x, w) = ‖w‖2

2 − 1 as well as the the objective F0 is negligible.

Now, we have a problem: evaluating the matrices ∂2 Fi (x,w)

∂w2 for some randomly
chosen points (x, w) and i ∈ {1, 2} returns some indefinite matrices. The only thing
we know from this test is that there exist points x for which the functions F1 and F2
are both definitely not convex in w. If we state now that λ := 0.05 is an upper bound
on the eigenvalues of the Hessian matrices of F1 and F2 with respect to w, this is an
empirical statement, which was only validated by computing these Hessians at ran-
domly chosen points (x, w). This is the aspect which we have to accept here recalling
that we would have the same problem if we would work with linear approximation
strategies. Assuming that this value for λ is valid we reformulate the above problem
into a conservative lower level concave min–max problem following the techniques
from Sect. 2.2 obtaining the functions Hi (x, w) := Fi (x, w) + λ − λwT w.

Being at this point, it remains to choose a suitable initial guess for x0, w0
1, and w0

2
in order to finally start our sequential convex bilevel programming algorithm. In order
to obtain such a guess it is advisable to solve the nominal optimization problem first,
i.e., we use a standard optimal control tool to determine x0 as the optimal solution for
the above optimization problem in its non-robustified version, i.e., with w1 = w2 = 0.
Having this point we compute the vectors ri := ∂

∂w
Hi (x0, 0) which help us to use

the heuristic w0
i := r T

i‖ri ‖ as an initialization which is possible as the vectors ri (with
i ∈ {1, 2}) are in our example not equal to zero—otherwise we suggest to start with
w0

i = 0.
In order to analyze the iterations we list the KKT tolerance of the sequential convex

bilevel programming method, as defined in Eq. (102), against the iteration number:

k 1 2 3 4 5

ε 1.5 × 101 1.4 × 100 3.1 × 10−1 1.2 × 10−3 6.1 × 10−10

From the above table, we can observe the quadratic convergence behavior of the
method as full steps were taken. Solving the convex bilevel sub-problem took in our
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example ≈ 6 ms. Compared to the 0.5 s which are needed for the evaluation of the
functions Hi and their sensitivities, the time for solving the min–max QCQP sub-
problems is negligibly small.

In the optimal solution, we found that ‖w∗
1‖2

2 = 1 and ‖w∗
2‖2

2 = 1 is satisfied, i.e.,
we have Fi (x∗, w∗

i ) = Hi (x∗, w∗
i ). This shows a posteriori that our reformulation

based on the estimate λ cannot have possibly introduced any conservatism. Thus, we
know a posteriori that we have found a stationary point of the original non-convex
problem with w∗

1 and w∗
2 being local maximizers of the original non-concave functions

F1 and F2 respectively. If we would have a guarantee that our estimate for λ is not
only empirically but also verifiably an upper bound on the Hessian matrices of the
functions F1 and F2 with respect to w, we could even guarantee that w∗

1 and w∗
2 are

global maximizers of the functions F1 and F2 at the optimal solution x∗. However, as
we have in this paper not provided a proof that λ is such an upper bound, the global
optimality of w∗

1 and w∗
2 remains in our example a conjecture.

6 Conclusions

In this paper, we have presented a sequential convex bilevel programming algorithm
for solving semi-infinite optimization problems arising in the context of robust opti-
mization. We have started with a discussion on how to approximate nonlinear and non-
convex robust counterpart problems with lower level concave min–max optimization
problems. Here, we have shown that the proposed approximation strategies are always
less conservative than existing linear approximation techniques. Moreover, we have
concentrated on optimality conditions for min–max problems working out relations
between the theory for semi-infinite optimization and the theory for mathematical
programs with complementarity constraints.

The main contribution of this paper is the introduction of the sequential convex
bilevel programming method. The main advantage of this method is that it exploits
the specific structure of the lower-level concave min–max problems. This is in con-
trast to existing methods for mathematical programs with complementarity constraints
which are more general but also more difficult to use and analyze as they suffer from
the degeneracy of MPCCs. This problem is avoided by the sequential convex bilevel
technique leading to strong local and global convergence results. Furthermore, we have
discussed the implementation details for the presented method including the transfor-
mation of the min–max QCQP in an equivalent standard QCQP. The applicability
of the method has successfully been tested with a numerical example observing that
the convex bilevel sub-problems can efficiently and reliably be solved such that the
proposed method converges—at least in the discussed example—without numerical
problems towards the optimal solution. Note that a comparison of different algorithms
for semi-infinite optimization problems is beyond the scope of this paper, but might
be an interesting direction for future research.
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