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Abstract We consider convex relaxations for the problem of minimizing a (possibly
nonconvex) quadratic objective subject to linear and (possibly nonconvex) quadratic
constraints. Let F denote the feasible region for the linear constraints. We first show
that replacing the quadratic objective and constraint functions with their convex lower
envelopes on F is dominated by an alternative methodology based on convexifying

the range of the quadratic form
(1

x

)(1
x

)T
for x ∈ F . We next show that the use of “αBB”

underestimators as computable estimates of convex lower envelopes is dominated by
a relaxation of the convex hull of the quadratic form that imposes semidefiniteness
and linear constraints on diagonal terms. Finally, we show that the use of a large class
of D.C. (“difference of convex”) underestimators is dominated by a relaxation that
combines semidefiniteness with RLT constraints.

Keywords Quadratically constrained quadratic programming · Convex envelope ·
Semidefinite programming · Reformulation-linearization technique

Mathematics Subject Classification 90C26 · 90C22

1 Introduction

In this paper we consider a quadratically constrained quadratic programming (QCQP)
problem of the form

(QCQP) z∗ = min f0(x)

s.t. fi (x) ≤ di , i = 1, . . . , q

x ≥ 0, Ax ≤ b,
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234 K. M. Anstreicher

where fi (x) = xT Qi x + cT
i x, i = 0, 1, . . . , q, each Qi is an n × n symmetric

matrix, and A is an m × n matrix. In the case that Qi � 0 for each i , QCQP is a
convex programming problem that can be solved in polynomial time, but in general
the problem is NP-Hard. QCQP is a fundamental problem that has been extensively
studied in the global optimization literature; see for example [10,22] and references
therein.

A common approach to obtaining a lower bound for a nonconvex instance of QCQP
is to somehow convexify the problem. In this paper we compare several different
convexification techniques. Let F = {x ≥ 0 : Ax ≤ b} denote the feasible set
for the linear constraints of QCQP. We assume throughout that F is bounded. One
methodology is to replace each function fi (·) with its convex lower envelope1 f̂i (·)
on F . We refer to the resulting convex relaxation of QCQP as ̂QCQP. In Sect. 2 we
compare ̂QCQP with an alternative relaxation QC̃QP based on the convex set

C = Co

{(
1

x

)(
1

x

)T

: x ∈ F
}

, (1)

where Co{ } denotes the convex hull. We prove that QC̃QP dominates ̂QCQP, although
in general neither of these problems is computationally tractable.

In Sect. 3 we compare two computable relaxations that can be viewed as tractable
approximations of the problems ̂QCQP and QC̃QP. One relaxation utilizes “αBB”
underestimators [1] for the nonconvex quadratic functions of QCQP, and the other
applies semidefinite and diagonal constraints that must hold for matrices in C. We
prove that the latter convexification dominates the former, regardless of the choice of
the parameters used to define the underestimators. In Sect. 4 we consider a more general
D.C. (for “difference of convex”) underestimation procedure suggested in [22], and
a strengthened approximation of QC̃QP that combines semidefiniteness with linear
constraints from the reformulation-linearization technique (RLT). We again show that
the second approach dominates the first, regardless of the parameters used to create
the underestimators.

In Sect. 5 we consider particular instances of QCQP that were used as computational
examples in [2]. The first of these are indefinite box-constrained QPs, corresponding
to QCQP with q = 0 and F = {x : 0 ≤ x ≤ e}. For these problems we obtain excel-
lent computational results by further strengthening the approximation of C through the
addition of triangle inequalities related to the Boolean Quadric Polytope [12]. For the
second class of QCQP problems, corresponding to planar circle-packing (or equiva-
lently point-packing) problems, we prove an interesting theoretical result that relates
convex lower envelopes for reverse convex constraints to the use of RLT constraints
for C.

Notation We use X � 0 to denote that a symmetric matrix X is positive semidefinite.
For n × n matrices X and Y , X • Y denotes the matrix inner product X • Y =∑n

i, j=1 Xi j Yi j . For an n × n matrix X , diag(X) is the vector x with xi = Xii , i =

1 The convex lower envelope is defined at the beginning of the next section.
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On convex relaxations for quadratically constrained 235

1, . . . , n, and Diag(x) is the diagonal matrix with diag(Diag(x)) = x . We use e to
denote a vector with each component equal to one, and e j to denote a vector with all
components equal to zero, except the j th component which is equal to one.

2 Two convex relaxations for QCQP

Let F ⊂ �n be a compact, convex set, and f (·) : F → �. The convex lower
envelope2 of f (·) on F [9,14], denoted f̂F (·), is the pointwise maximum of all convex
underestimators of f (·) on F ;

f̂F (x) = max{g(x) : g(·) is convex on F and g(y) ≤ f (y)∀y ∈ F}, x ∈ F .

An important property of f̂F (·) that we will repeatedly use is that if g(·) is any convex
underestimator of f (·) on F , then g(x) ≤ f̂F (x) for every x ∈ F . When the domain
F is clear from context, we will write f̂ (·) in place of f̂F (·) to reduce notation.

As in Sect. 1, let F = {x ≥ 0 : Ax ≤ b} denote the feasible set for the linear
constraints of QCQP, and let ̂QCQP denote the problem where each function fi (·)
in QCQP is replaced by f̂i (·), its convex lower envelope on F . Let ẑ denote the
solution value in ̂QCQP. Note that although ẑ is well-defined, in practice ẑ may not
be computable because the required convex lower envelopes f̂i (·) may be impossible
to obtain.

We will compare ̂QCQP with an alternative convexification that is based on lin-
earizing the problem by adding additional variables. Let X denote a symmetric n × n
matrix. Then QCQP can be written as

(QCQP) z∗ = min Q0 • X + cT
0 x

s.t. Qi • X + cT
i x ≤ di , i = 1, . . . , q

x ≥ 0, Ax ≤ b, X = xxT .

Written in the above form, QCQP is a linear problem except for the quadratic equality
constraints X = xxT . A convexification of the problem can then be given in terms of
the set C defined in (1). Using C, we obtain a convex relaxation

(
QC̃QP

)
z̃ = min Q0 • X + cT

0 x

s.t. Qi • X + cT
i x ≤ di , i = 1, . . . , q

Y (x, X) ∈ C,

where

Y (x, X) =
(

1 xT

x X

)
.

2 In the literature, the convex lower envelope of f (·) is sometimes called simply the convex envelope of f (·).
We prefer to include the word “lower” as a reminder that the convex (lower) envelope is an underestimator
of f (·).
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236 K. M. Anstreicher

In this section we will demonstrate that the convex relaxation ̂QCQP cannot be
tighter than QC̃QP; in other words, it is always true that ẑ ≤ z̃. To do this we will
show that there is a simple relationship between the convex lower envelopes used in
̂QCQP and the linearized representations of the objective and constraint functions used
in QC̃QP.

Theorem 1 For x ∈ F , let f (x) = xT Qx + cT x, and let f̂ (·) be the convex lower
envelope of f (·) on F . Then f̂ (x) = cT x + minX {Q • X : Y (x, X) ∈ C}.
Proof For x ∈ F , let g(x) = cT x + minX {Q • X : Y (x, X) ∈ C}. Our goal is to
show that f̂ (x) = g(x). To do this we first show that g(·) is a convex function with
g(x) ≤ f (x), x ∈ F , implying that g(x) ≤ f̂ (x).

Assume that for i ∈{1, 2}, xi ∈F and g(xi )= Q • Xi + cT xi , where Y (xi , Xi )∈C.
For 0 ≤ λ ≤ 1, let

x(λ) = λx1 + (1 − λ)x2, X (λ) = λX1 + (1 − λ)X2.

Then Y (x(λ), X (λ)) = λY (x1, X1) + (1 − λ)Y (x2, X2) ∈ C, since C is convex. It
follows that

g(x(λ)) ≤ Q • X (λ) + cT x(λ) = λg(x1) + (1 − λ)g(x2),

proving that g(·) is convex on F . The fact that g(x) ≤ f (x) follows immediately from
Y (x, xxT ) ∈ C and Q • xxT + cT x = f (x).

It remains to show that f̂ (x) ≤ g(x). Assume that g(x) = Q • X + cT x , where
Y (x, X) ∈ C. From the definition of C, there exist xi ∈ F and λi ≥ 0, i = 1, . . . , k,∑k

i=1 λi = 1 such that

k∑

i=1

λi x i = x,

k∑

i=1

λi x i (xi )T = X.

It follows that

g(x) = Q • X + cT x

= Q •
(

k∑

i=1

λi x i (xi )T

)

+ cT

(
k∑

i=1

λi x i

)

=
k∑

i=1

λi f (xi ).

But f̂ (·) is convex on F , and f̂ (x) ≤ f (x) for all x ∈ F , so

f̂ (x) = f̂

(
k∑

i=1

λi x i

)

≤
k∑

i=1

λi f̂ (xi ) ≤
k∑

i=1

λi f (xi ) = g(x).

��
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On convex relaxations for quadratically constrained 237

The claimed relationship between QC̃QP and ̂QCQP is an immediate consequence
of Theorem 1. In particular, using Theorem 1, ̂QCQP could be rewritten in the form

(
̂QCQP

)
ẑ = min Q0 X0 + cT x

s.t. Qi • Xi + cT
i x ≤ di , i = 1, . . . , q

Y (x, Xi ) ∈ C, i = 0, 1, . . . , q,

so that QC̃QP corresponds to ̂QCQP with the added constraints X0 = X1 = . . . = Xq .

Corollary 1 Let ẑ and z̃ denote the solution values in the convex relaxations ̂QCQP
and QC̃QP, respectively. Then ẑ ≤ z̃.

Corollary 1 indicates that the approach to convexifying QCQP taken in QC̃QP has
theoretical advantages over the underestimation methodology used in ̂QCQP. How-
ever, it is important to recognize that both of these approaches have practical limita-
tions. In particular, both the problem of computing an exact convex lower envelope
f̂ (·) for a quadratic function f (·), and the problem of characterizing C, are intractable.
It is, however, known that C can be exactly represented using the cone of completely
positive matrices. To describe this representation it is convenient to define

Y +(x, X) =
⎛

⎝
1 xT s(x)T

x X Z(x, X)

s(x) Z(x, X)T S(x, X)

⎞

⎠ , (2)

where

s(x) = b − Ax,

S(x, X) = bbT − AxbT − bxT AT + AX AT , (3)

Z(x, X) = xbT − X AT .

The matrices S(x, X) and Z(x, X) relax s(x)s(x)T and xs(x)T , respectively. It can
then be shown [5] that

C = {
Y (x, X) : Y +(x, X) ∈ CPm+n+1

}
, (4)

where CPk is the cone of k × k completely positive matrices (that is, matrices that can
be written in the form V V T where V is a nonnegative k × p matrix). Unfortunately,
for k ≥ 5 there is no known complete description for CPk .

We close this section with an example that illustrates that the distinction between
QC̃QP and ̂QCQP is already sharp for m = n = q = 1. Consider the problem

min x2
1

s.t. x2
1 ≥ 1

2
0 ≤ x1 ≤ 1.
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238 K. M. Anstreicher

Fig. 1 Set C for example

Written in the form of QCQP, the constraint x2
1 ≥ 1

2 is −x2
1 ≤ − 1

2 , and it is easy to
see that the convex lower envelope of −x2

1 on [0, 1] is −x1, because −x2
1 is concave.

The relaxation ̂QCQP is then

min x2
1

s.t. −x1 ≤ −1

2
0 ≤ x1 ≤ 1,

with solution value ẑ = 1
4 . The solution value for QC̃QP is z̃ = z∗ = 1

2 . The set C is
depicted in Fig. 1. Note that for x1 = 1

2 , Y (x1, x11) ∈ C for x11 ∈ [ 1
4 , 1

2 ]. The solution

of ̂QCQP then corresponds to using x1 = 1
2 along with x11 = 1

4 for the objective, and
x11 = 1

2 for the single nonlinear constraint.

3 Two computable relaxations

As mentioned above, in general both QC̃QP and ̂QCQP are intractable problems due
to the complexity of computing a convex lower envelope f̂ (·), or the convex hull C.
In this section we consider the important special case where F is the box 0 ≤ x ≤ e,
and describe two further relaxations that are computable approximations of QC̃QP
and ̂QCQP.

For a quadratic function f (x) = xT Qx + cT x defined on F = {x : 0 ≤ x ≤ e},
the well-known “αBB” underestimator [1] is

fα(x) = xT (Q + Diag(α))x + (c − α)T x,

where α ∈ �n+ is chosen so that Q + Diag(α) � 0. It is worthwhile to note that
although here we restrict our attention to the convexification of quadratic functions,
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On convex relaxations for quadratically constrained 239

the αBB underestimator applies to more general nonlinear functions. The same con-
vexification procedure for the quadratic case has appeared numerous times elsewhere
in the literature; see for example [4,13].

Since fα(·) is convex, it is immediate that fα(x) ≤ f̂ (x), 0 ≤ x ≤ e. A further
relaxation of ̂QCQP is then given by the problem

(QCQPαBB) zαBB = min xT (Q0 + Diag(α0))x + (c0 − α0)
T x

s.t. xT (Qi + Diag(αi ))x + (ci − αi )
T x ≤ di , i = 1, . . . , q

0 ≤ x ≤ e,

where each αi is chosen so that Qi + Diag(αi ) � 0.
For the case of F = {x : 0 ≤ x ≤ e}, there are a variety of known constraints that

are valid for Y (x, X) ∈ C. These include:

1. The constraints from the Reformulation-Linearization Technique (RLT) [16],

xi j ≥ 0, xi j ≥ xi + x j − 1, xi j ≤ xi , xi j ≤ x j . (5)

2. The semidefinite programming (SDP) constraint Y (x, X) � 0 [19].
3. Constraints on the off-diagonal components of Y (x, X) coming from the Boolean

Quadric Polytope (BQP) [6,21]; for example, the triangle inequalities for i 
=
j 
= k,

xi + x j + xk ≤ xi j + xik + x jk + 1,

xi j + xik ≤ xi + x jk,

xi j + x jk ≤ x j + xik,

xik + x jk ≤ xk + xi j .

The relationship between the SDP and RLT constraints is discussed in [2]. In fact
for n = 2, the SDP and RLT constraints together give a full characterization of C
[3]. For n = 3 the triangle inequalities and RLT constraints fully characterize the
BQP, but these constraints combined with the SDP constraint do not give a complete
characterization of C [6]. For n = 3, an “extended-variable” description of C obtained
via a triangulation of the 3-cube is given in [3].

We will compare QCQPαBB with an approximation of QC̃QP that imposes some of
the above constraints on C. In particular, we will apply the semidefiniteness condition
Y (x, X) � 0 together with the diagonal RLT constraints diag(X) ≤ x . Note that these
conditions together imply the original bound constraints 0 ≤ x ≤ e. The resulting
relaxation is

(QCQPSDP) zSDP = min Q0 • X + cT
0 x

s.t. Qi • X + cT
i x ≤ di , i = 1, . . . , q

Y (x, X) � 0, diag(X) ≤ x .
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240 K. M. Anstreicher

The following theorem shows that there is a simple relationship between the con-
vexifications used to construct QCQPαBB and QCQPSDP.

Theorem 2 For 0 ≤ x ≤ e, let fα(x) = xT (Q + Diag(α))x + (c − α)T x, where
α ≥ 0 and Q + Diag(α) � 0. Assume that Y (x, X) � 0, diag(X) ≤ x. Then
fα(x) ≤ Q • X + cT x.

Proof Let Q(α) = Q + Diag(α). Since Q(α) � 0,

fα(x) = (c − α)T x + min
X

{
Q(α) • X : X � xxT

}

= (c − α)T x + min
X

{Q(α) • X : Y (x, X) � 0, diag(X) ≤ x},

the last because diag(X) ≤ x holds automatically for X = xxT , 0 ≤ x ≤ e. But then
Y (x, X) � 0 and diag(X) ≤ x imply that

fα(x) ≤ Q(α) • X + (c − α)T x

= Q • X + cT x + αT (diag(X) − x)

≤ Q • X + cT x .

��
The following immediate corollary of Theorem 2 confirms a relationship between

QCQPαBB and QCQPSDP first conjectured by Jeff Linderoth (private communication).

Corollary 2 Let zαBB and zSDP denote the solution values in the convex relaxations
QCQPαBB and QCQPSDP, respectively. Then zαBB ≤ zSDP.

Note that the example at the end of Sect. 2 has F = {x1 : 0 ≤ x1 ≤ 1}, q = 1. For
this problem (α1 − 1)x2

1 is convex for α1 ≥ 1. Using α1 = 1, the problem QCQPαBB

is identical to ̂QCQP and has solution value zαBB = ẑ = 1
4 . The problem QCQPSDP

is identical to QC̃QP, and has solution value zSDP = z∗ = 1
2 .

4 Two stronger relaxations

In this section we consider a convexification procedure for QCQP suggested in [22]
that generalizes the αBB procedure described in the previous section. Consider a
quadratic function f (x) = xT Qx + cT x , and let v j ∈ �n , j = 1, . . . , k. Let F =
{x ≥ 0 : Ax ≤ b}, and assume that for x ∈ F we have l j ≤ vT

j x ≤ u j . It follows

that for x ∈ F , (vT
j x − l j )(v

T
j x − u j ) ≤ 0, or (vT

j x)2 − (l j + u j )v
T
j x + l j u j ≤ 0.

For α ∈ �k+, define

Q(α) = Q +
k∑

j=1

α jv jv
T
j ,
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On convex relaxations for quadratically constrained 241

c(α) = c −
k∑

j=1

α j (l j + u j )v j ,

p(α) =
k∑

j=1

α j l j u j ,

and let fα(x) = xT Q(α)x + c(α)T x + p(α). Then if Q(α) � 0, fα(·) is a convex
underestimator for f (·) on F . In [22], functions of the form fα(·) are referred to as
D.C. (for “difference of convex”) underestimators, and are applied to convexify the
objective in QCQP problems with linear and convex quadratic constraints. Note that
the αBB underestimator on 0 ≤ x ≤ e from the previous section corresponds to the
case of v j = e j , l j = 0, u j = 1, j = 1, . . . , n. Additional possibilities for v j

suggested in [22] include eigenvectors corresponding to negative eigenvalues of Q,
and transposed rows of the constraint matrix A. Using underestimators of the form
fα(·), we obtain a convex relaxation

(QCQPDC) zDC = min xT Q0(α0)x + c0(α0)
T x + p(α0)

s.t. xT Qi (αi )x + ci (αi )
T x + p(αi ) ≤ di , i = 1, . . . , q

x ≥ 0, Ax ≤ b,

where each αi ∈ �k+ is chosen so that Qi (αi ) � 0.
We will compare QCQPDC to a relaxation of QCQP that combines the semidefinite-

ness condition Y (x, X) � 0 with the RLT constraints on (x, X) that can be obtained
from the original linear constraints x ≥ 0, Ax ≤ b. The RLT constraints can be
described very succinctly using the the matrix Y +(x, X) from (2); in fact it is easy to
see that these constraints correspond exactly to X ≥ 0, S(x, X) ≥ 0, Z(x, X) ≥ 0,
where S(·, ·) and Z(·, ·) are given in (3). It follows that the RLT constraints and the
condition that Y (x, X) � 0 together are equivalent to Y +(x, X) being a doubly non-
negative (DNN) matrix, that is, a symmetric matrix that is both positive semidefinite
and componentwise nonnegative. We therefore define the relaxation

(QCQPDNN) zDNN = min Q0 • X + cT
0 x

s.t. Qi • X + cT
i x ≤ di , i = 1, . . . , q

Y +(x, X) ∈ DNN m+n+1,

where DNN k is the cone of k×k doubly nonnegative matrices. Note that the relaxation
QCQPDNN is entirely determined by the data from the original problem QCQP; in
particular, QCQPDNN does not involve the vectors v j and bounds (l j , u j ) used to
construct the convexifications in QCQPDC. Also, from (4) it is clear that QCQPDNN can
be viewed as a relaxation obtained from QC̃QP by replacing the constraint Y +(x, X) ∈
CPm+n+1 with the weaker condition Y +(x, X) ∈ DNN m+n+1.

In order to compare QCQPDC and QCQPDNN we require a generalization of Theo-
rem 2 that applies to the convexification fα(·) used in this section. This result naturally
involves the RLT constraints
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242 K. M. Anstreicher

vT
j Xv j − (l j + u j )v

T
j x ≤ −l j u j , j = 1, . . . , k. (6)

that are obtained from l j ≤ vT
j x ≤ u j , j = 1, . . . , k.

Theorem 3 For x ∈ F , let fα(x) = xT Q(α)x + c(α)T x + p(α), where α ≥ 0 and
Q(α) � 0. Assume that Y (x, X) � 0 and (x, X) satisfy (6). Then fα(x) ≤ Q•X+cT x.

Proof The proof is similar to that of Theorem 2. Since Q(α) � 0,

fα(x) = c(α)T x + p(α) + min
X

{
Q(α) • X : X � xxT

}

= c(α)T x + p(α) + min
X

{Q(α) • X : Y (x, X) � 0, (x, X) satisfy(6)},

the last because (6) are satisfied for any X = xxT , x ∈ F . But then if Y (x, X) � 0
and (x, X) satisfy (6),

fα(x) ≤ p(α) + Q(α) • X + c(α)T x

≤ p(α) + Q • X + cT x − p(α)

= Q • X + cT x,

where the second inequality uses (6). ��

Theorem 4 Let zDC and zDNN denote the solution values in the convex relaxations
QCQPDC and QCQPDNN, respectively. Then zDC ≤ zDNN.

Proof Consider the convex relaxation

zV = min Q0 • X + cT
0 x

s.t. Qi • X + cT
i x ≤ di , i = 1, . . . , q

vT
j Xv j − (l j + u j )v

T
j x ≤ −l j u j , j = 1, . . . , k

x ≥ 0, Ax ≤ b, Y (x, X) � 0.

By Theorem 3 we immediately have zDC ≤ zV . However, the constraints l j ≤ vT
j x ≤

u j are implied by the original constraints x ≥ 0, Ax ≤ b, and therefore by [16, Propo-
sition 8.2], the constraints (6) are implied by the RLT constraints X ≥ 0, S(x, X) ≥ 0,
Z(x, X) ≥ 0. It follows that zV ≤ zDNN. ��

In [22] it is shown that if all of the quadratic constraints of QCQP are convex, then for
a given set of {v j }k

j=1 the problem of choosing the vector α0 that gives the best value of
zDC can be formulated as a semidefinite programming problem. Theorem 4 states that
regardless of the vectors {v j }k

j=1 and {αi }q
i=0 used to construct the convexifications
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On convex relaxations for quadratically constrained 243

in QCQPDC, the resulting lower bound zDC cannot be better than the bound zDNN
obtained from QCQPDNN when the upper and lower bounds l and u correspond to the
feasible set for the linear constraints F . However, in the presence of convex quadratic
constraints, better values of l j and/or u j can be obtained by minimizing or maximizing
vT

j x over the set S corresponding to the feasible region for the linear and convex
quadratic constraints, as suggested in [22], and in this case Theorem 4 would no
longer apply unless the strengthened linear inequalities were explicitly added to F . Of
course obtaining such improved bounds could entail substantial auxiliary computation.
A different approach for utilizing convex quadratic constraints to obtain improved RLT
bounds based on the second-order cone representation of the constraints is suggested
in [7, Section 2.3].

5 Applications

In this section we describe applications of the convexifications described above to
two particular classes of QCQP problems considered in [2]. The first application is to
box-constrained indefinite QP problems of the form

(QPB) z∗ = min xT Q0x + cT
0 x

s.t. 0 ≤ x ≤ e,

corresponding to the general QCQP problem of Sect. 1 with q = 0 and F = {x :
0 ≤ x ≤ e}. Let ẑ and z̃ be solution values for the corresponding problems ̂QCQP and
QC̃QP described in Sect. 2. It is then obvious from the definition of C that z̃ = z∗,
and ẑ = z̃ follows immediately from Theorem 1, so a full description of either the
convex lower envelope f̂0(·) or the convex hull C would provide an exact solution of
QPB. Several valid classes of constraints for C for the case that F = {x : 0 ≤ x ≤ e}
were described in Sect. 3. The relaxation QCQPSDP, corresponding to imposing the
semidefiniteness condition Y (x, X) � 0 along with the diagonal RLT constraints
diag(X) ≤ x , was computationally evaluated on a set of 15 QPB test problems with
n = 30 in [2]. The results of [2] show that the bound zSDP on these problems is
much better than a bound based on imposing the RLT constraints (5) on Y (x, X), and
the bound zDNN based on imposing both semidefiniteness and the RLT constraints is
much better still. (For the 15 problems considered, using semidefiniteness and the RLT
constraints together closed the gap to zero, up to numerical tolerances, on 8 problems
and left an average gap of 0.88 % on the remaining 7 problems.)

The QPB test problems used in [2] are from a larger set of 54 problems with n = 20,
30, 40, 50 and 60 that were solved using the finite branch-and-bound algorithm of [8];
50 of these problems were previously solved using the finite branch-and-bound algo-
rithm of [20]. (The computational results in [20] omit the problems 50-050-1/2/3, and
the problem 40-100-3 was unsolved.) In Table 1 we report the results of applying
several increasingly tight approximations of C on the full set of 54 problems. The
column labeled “SDP” gives the gap to optimality for the bound zSDP, and the column
labeled “SDP+RLT” gives the gap for the bound zDNN that imposes both semidefinite-
ness and the RLT constraints on Y (x, X). For 29 of the 54 problems, the SDP+RLT
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Table 1 Comparison of bounds for indefinite QPB

Problem Optimum Cuts added Relative gaps to optimum

RLT TRI SDP (%) SDP + RLT (%) SDP + RLT + TRI (%)

20-100-1 706.50 197 55 4.655 0.002 0.000

20-100-2 856.50 184 172 5.102 0.171 0.000

20-100-3 772.00 168 1.750 0.000

30-060-1 706.00 371 777 8.799 1.229 0.000

30-060-2 1,377.17 381 3.614 0.000

30-060-3 1,293.50 394 288 5.924 0.368 0.000

30-070-1 654.00 369 784 14.133 3.058 0.000

30-070-2 1,313.00 449 4.727 0.000

30-070-3 1,657.40 452 442 3.763 0.010 0.000

30-080-1 952.73 365 718 10.290 1.315 0.000

30-080-2 1,597.00 376 1.616 0.000

30-080-3 1,809.78 317 1.492 0.000

30-090-1 1,296.50 370 4.009 0.000

30-090-2 1,466.84 344 4.160 0.000

30-090-3 1,494.00 420 1.527 0.000

30-100-1 1,227.13 356 4.777 0.000

30-100-2 1,260.50 427 465 8.316 0.048 0.000

30-100-3 1,511.05 377 265 6.622 0.139 0.000

40-030-1 839.50 656 4.419 0.000

40-030-2 1,429.00 889 4.747 0.000

40-030-3 1,086.00 705 6.494 0.000

40-040-1 837.00 710 1,966 14.228 3.117 0.000

40-040-2 1,428.00 600 1.718 0.000

40-040-3 1,173.50 745 1,427 8.209 0.626 0.000

40-050-1 1,154.50 797 1,608 10.592 0.515 0.000

40-050-2 1,430.98 788 961 6.047 0.354 0.000

40-050-3 1,653.63 680 5.665 0.000

40-060-1 1,322.67 696 1,722 12.043 2.287 0.000

40-060-2 2,004.23 739 4.758 0.000

40-060-3 2,454.50 701 2.207 0.000

40-070-1 1,605.00 584 3.675 0.000

40-070-2 1,867.50 650 3.418 0.000

40-070-3 2,436.50 828 3.538 0.000

40-080-1 1,838.50 615 5.312 0.000

40-080-2 1,952.50 639 3.094 0.000

40-080-3 2,545.50 755 742 3.647 0.015 0.000

40-090-1 2,135.50 763 5.948 0.000

40-090-2 2,113.00 731 336 7.376 0.035 0.000

40-090-3 2,535.00 598 2.338 0.000

40-100-1 2,476.38 673 3.265 0.000
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Table 1 continued

Problem Optimum Cuts added Relative gaps to optimum

RLT TRI SDP (%) SDP + RLT (%) SDP + RLT + TRI (%)

40-100-2 2,102.50 707 1,251 5.428 0.184 0.000

40-100-3 1,866.07 664 1,732 9.176 2.257 0.000

50-030-1 1,324.50 903 4.877 0.000

50-030-2 1,668.00 831 233 5.257 0.200 0.000

50-030-3 1,453.61 830 180 7.715 0.087 0.000

50-040-1 1,411.00 1,017 5.103 0.000

50-040-2 1,745.76 868 509 7.766 0.212 0.000

50-040-3 2,094.50 1,081 3.938 0.000

50-050-1 1,198.41 723 1,531 18.304 8.664 0.144

50-050-2 1,776.00 867 667 9.377 0.765 0.000

50-050-3 2,106.10 937 933 7.689 0.752 0.000

60-020-1 1,212.00 1,199 7.048 0.000

60-020-2 1,925.50 1,319 4.418 0.000

60-020-3 1,483.00 1,040 735 8.200 0.543 0.000

Average 5.969 0.499

bound is exact up to the numerical tolerances used by the SeDuMi solver [17]; for
these problems the solution matrix Y (x, X) is numerically rank-one. For the remain-
ing 25 problems we consider adding triangle inequalities coming from the Boolean
Quadric Polytope [6,21]. For 24 of these 25 problems, adding triangle inequalities
closes the gap to zero up to numerical tolerances; a positive gap remains for only
problem 50-050-1, with a gap of 0.144 %.3 In the “Cuts Added” columns we report
the number of RLT cuts required for problems solved to optimality using only added
RLT constraints, or the number of RLT cuts and triangle (TRI) inequalities added
for problems that could not be solved using RLT cuts alone. In both cases, violated
constraints were added in several “rounds” with a decreasing infeasibility tolerance
to avoid adding a large number of redundant inequalities, which would substantially
degrade the performance of the solver.

The results reported in Table 1 suggest that on QPB problems of these dimensions,
the approach based on approximating C is highly competitive with other method-
ologies. The solution process for individual problems in [20] required the solution
of up to approximately 28,000 linear programs, with a total of up to approximately
500,000 cuts generated. (The root gaps, after the addition of cuts, ranged from 12.0 % to
168.5 %, with a mean of 66.2 %.) The SDP relaxations used in [8] substantially reduce
the amount of enumeration compared to the algorithm of [20], but still required up
to 104 CPU seconds on a 2.7 GHz Linux-based computer to solve individual prob-

3 The problem 50-050-1 is structurally similar to the other problems considered. One possibility to attempt
to reduce the gap on this problem, which we have not attempted, would be to impose additional valid
constraints from the BQP as considered in [21].
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lems. Results for the general-purpose global optimization solver BARON [15] on
these problems were also reported in [20]. Of the 51 problems considered, BARON
was unable to solve 21 problems within 4,000 CPU seconds on a 1.8 GHz Linux-
based computer, and the problems that were solved required approximately 20 times
more computation than that required using the algorithm of [20] running on a slower
machine. Good results using a methodology similar to that applied here for indefi-
nite QPB problems of similar dimensions were previously reported in [21]. Yajima
and Fujie [21] consider additional valid inequalities for the BQP beyond the triangle
inequalities, but only approximate the semidefiniteness condition Y (x, X) � 0 by
adding linear inequalities. The advantage of using linear inequalities is that the result-
ing relaxations are ordinary linear programming (LP) problems that can be solved
using an LP solver, as opposed to the conic solver required when Y (x, X) � 0 is
directly imposed.

The second example of QCQP that we consider is a circle-packing problem in
the plane: for a given n ≥ 2, find the maximum radius of n non-overlapping circles
that all lie in the unit box 0 ≤ xi ≤ 1, 0 ≤ yi ≤ 1, i = 1, . . . , n. This geometric
problem has been extensively studied in the global optimization literature [11,18]. Via
a well-known transformation the problem is equivalent to the “point packing” problem

PP : max θ

s.t. (xi − x j )
2 + (yi − y j )

2 ≥ θ, 1 ≤ i < j ≤ n

0 ≤ x ≤ e, 0 ≤ y ≤ e.

Obviously PP corresponds to an instance of QCQP with a linear objective and con-
straints of the form fi j (x, y, θ) ≤ 0, where

fi j (x, y, θ) = −(xi − x j )
2 − (yi − y j )

2 + θ, 1 ≤ i < j ≤ n.

Note that these are all “reverse convex” constraints; i.e. each fi j (·, ·, ·) is a concave
quadratic function. The variable θ represents the minimum squared distance separating
n points in the unit square; the corresponding radius for n circles that can be packed
into the unit square is

√
θ/[2(1 + √

θ)].
In [2], bounds for the solution value of PP were computed using several combina-

tions of semidefiniteness and RLT constraints. Note that since PP involves no terms
of the form xi y j , all SDP and RLT constraints can be based on matrices X and Y
relaxing xxT and yyT , respectively. In addition, it is clear that by symmetry one can
assume that .5 ≤ xi ≤ 1, i = 1, . . . , nx and .5 ≤ yi ≤ 1, i = 1, . . . , ny where
nx = �n/2� and ny = �nx/2�. We use “SYM” to refer to any problem formulation
that uses these more restricted bounds. (Section 5 of [2] considers more elaborate
symmetry-breaking using order constraints, but we omit discussion of this topic here.)
The computational results obtained in [2] using the SDP, RLT and SYM conditions are
summarized in Conjecture 1. (As in Sect. 3, the SDP relaxation includes the diagonal
constraints diag(X) ≤ x and diag(Y ) ≤ y.) As described in [2], these findings are
stated as a conjecture since the solution values given were numerically obtained for
instances of size n ≤ 50.
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Fig. 2 Bounds on distance from relaxations of PP

Conjecture 1 [2] For n ≥ 2 consider the RLT and SDP relaxations of PP. Then:

1. The optimal value for the RLT relaxation is 2.
2. The optimal value for the SDP relaxation is 1+ 1

n−1 and adding the RLT constraints
does not change this value.

3. For n ≥ 5 the optimal value for the RLT+SYM relaxation is 1
2 .

4. For n ≥ 5 the optimal value for the SDP+SYM relaxation is 1
4

(
1 + 1

�(n−1)/4�
)

.

Note that the RLT bound of 2.0 is “worst possible” in that this is the maximum
squared distance between two points in the unit square. In Fig. 2 we illustrate the
various bounds described in Conjecture 1 for 2 ≤ n ≤ 30. (Fig. 2 gives the square
roots of the solution values for the various relaxations, corresponding to bounds on
the minimum distance bewteen two points.) The “MAX” values correspond to high-
precision estimates for the exact optimal values of PP obtained by verified computing
techniques [11].

Our interest here is to demonstrate a relationship between the bounds described
in Conjecture 1 and bounds that correspond to replacing the quadratic constraints
fi j (x, y, θ) ≤ 0 with their convex lower envelopes. To do this we will utilize a
specialization of Theorem 1 that applies when F = {x : 0 ≤ x ≤ e} and f (·) is
concave.

Following the notation of [6], let BQPn denote the Boolean Quadric Polytope [12]

BQPn = Co{(x, {yi j }1≤i< j≤n) : x ∈ {0, 1}n, yi j = xi x j , 1 ≤ i < j ≤ n}.

The definition of BQPn avoids duplication of variables due to the symmetry of xxT

and the fact that diag(xxT ) = x for binary x . For x ∈ �n , X ∈ �n×n it is then
convenient to define the projection operator
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proj(x, X) = (x, {xi j }1≤i< j≤n)

that deletes the components of X on and below the diagonal. Finally, define the convex
set

Bn = {(x, X) : proj(x, X) ∈ BQPn, 0 ≤ diag(X) ≤ x}.

We remark that the lower bounds 0 ≤ diag(X) are not actually required in the sequel,
but we prefer to include them so as to make Bn bounded.

Theorem 5 Let F = {x : 0 ≤ x ≤ e}. For x ∈ F , let f (x) = xT Qx + cT x,
where diag(Q) ≤ 0, and let f̂ (·) be the convex lower envelope of f (·) on F . Then
f̂ (x) = cT x + minX {Q • X : (x, X) ∈ Bn}.
Proof The proof is similar to that of Theorem 1, but since several steps require modi-
fications we include the details. For x ∈ F , let g(x) = cT x +minX {Q • X : (x, X) ∈
Bn}. Our goal is to show that f̂ (x) = g(x). To do this we first show that g(·) is a
convex function with g(x) ≤ f (x), x ∈ F , implying that g(x) ≤ f̂ (x).

Assume that for i ∈ {1, 2}, xi ∈ F and g(xi ) = Q•Xi +cT xi , where (xi , Xi ) ∈ Bn .
For 0 ≤ λ ≤ 1, let

x(λ) = λx1 + (1 − λ)x2, X (λ) = λX1 + (1 − λ)X2.

Then (x(λ), X (λ)) ∈ Bn , since Bn is convex. It follows that

g(x(λ)) ≤ Q • X (λ) + cT x(λ) = λg(x1) + (1 − λ)g(x2),

proving that g(·) is convex on F . It is shown in [6, Proposition 5] that if x ∈ F ,
then proj(x, xxT ) ∈ BQPn , and 0 ≤ diag(xxT ) ≤ x for x ∈ F . It follows that
(x, xxT ) ∈ Bn for any x ∈ F , and therefore g(x) ≤ Q • xxT + cT x = f (x).

It remains to show that f̂ (x) ≤ g(x). Assume that g(x) = Q • X + cT x , where
(x, X) ∈ Bn . From the definition of Bn , there exist xi ∈ {0, 1}n , and λi ≥ 0, i =
1, . . . , k,

∑k
i=1 λi = 1 such that

proj

( k∑

i=1

λi x i ,

k∑

i=1

λi x i (xi )T
)

= proj(x, X).

Define

X̄ =
k∑

i=1

λi x i (xi )T .

From the definition of Bn we then have

Xi j = X̄i j , i 
= j

0 ≤ Xii ≤ X̄ii = xi , i = 1, . . . , n.
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Therefore

g(x) = Q • X + cT x

= Q • X̄ + cT x +
n∑

i=1

qii (Xii − xi )

≥ Q • X̄ + cT x

=
k∑

i=1

λi f (xi ).

But f̂ (·) is convex on F , and f̂ (x) ≤ f (x) for all x ∈ F , so

f̂ (x) = f̂

(
k∑

i=1

λi x i

)

≤
k∑

i=1

λi f̂ (xi ) ≤
k∑

i=1

λi f (xi ) ≤ g(x).

��
See [6, Proposition 9] for a result closely related to Theorem 5. Using Theorem 5

we can prove an interesting relationship between bounds for PP obtained using convex
lower envelopes of the constraints versus bounds obtained using RLT constraints on
(x, X) and (y, Y ). Slightly abusing notation, we can write the constraint functions for
PP in the form

fi j (x, y, θ) = fi j (x) + fi j (y) + θ,

where fi j (x) = −(xi − x j )
2, and therefore the convex lower envelope can be written

in the form

f̂i j (x, y, θ) = f̂i j (x) + f̂i j (y) + θ.

Theorem 6 For F = {(x, y) : 0 ≤ x ≤ e, 0 ≤ y ≤ e}, let ẑ be the solution
value for the relaxation of PP obtained by replacing the constraint functions with their
convex lower envelopes on F , and let zRLT be the solution value for the relaxation
that imposes the RLT constraints on (x, X) and (y, Y ). Then ẑ ≥ zRLT. Moreover this
relationship continues to hold if F is replaced by the tighter SYM bounds.

Proof By Theorem 5,

f̂i j (x) = min
X

{2xi j − xii − x j j : ((xi , x j ), X[i, j]) ∈ B2},

where X[i, j] is the principal submatrix of X corresponding to row and column indeces i
and j . However, BQP2 is completely characterized by the RLT inequalities on xi j [12],
and the additional constraints 0 ≤ xii ≤ xi , 0 ≤ x j j ≤ x j of B2 are RLT constraints
on the diagonal elements of X . The result immediately follows. When applying the
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tighter SYM bounds, we can apply an affine transformation to the variables to re-write
the problem in terms of transformed variables (x ′, y′) with 0 ≤ x ′ ≤ e, 0 ≤ y′ ≤ e,
and use the fact that the convex lower envelopes and RLT constraints [16, Proposition
8.4] are both invariant with respect to affine transformations of the variables. ��

Since the RLT constraints on (x, X) and (y, Y ) are already sufficient to characterize
the convex lower envelopes of the quadratic constraints in PP, it would be natural to
speculate that adding the semidefiniteness conditions X � xxT and Y � yyT would
have no effect on bounds for the solution value. The values given in Conjecture 1 show
that this is not the case. Note, however, that each convex lower envelope f̂i j (x) requires
only values of the variables X[i, j], and the semidefiniteness condition Y (x, X) � 0 is
stronger than the condition that all principal submatrices of Y (x, X) corresponding to
two variables are semidefinite.

Acknowledgments I am grateful to two anonymous referees for corrections and suggestions that have
improved the paper.

References

1. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: αBB: A global optimization method for general
constrained nonconvex problems. J. Glob. Optim. 7, 337–363 (1995)

2. Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization technique for
nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43, 471–484 (2009)

3. Anstreicher, K.M., Burer, S.: Computable representations for convex hulls of low-dimensional
quadratic forms. Math. Prog. B 124, 33–43 (2010)

4. Bomze, I.M.: Branch-and-bound approaches to standard quadratic optimization problems. J. Glob.
Optim. 22, 27–37 (2002)

5. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs.
Math. Prog. 120, 479–495 (2009)

6. Burer, S., Letchford, A.N.: On nonconvex quadratic programming with box constraints. SIAM J.
Optim. 20, 1073–1089 (2009)

7. Burer, S., Saxena, A. : The MILP road to MIQCP. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear
Programming, IMA Volumes in Mathematics and its Applications, vol. 154, pp. 373–406. Springer
(2011)

8. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic program-
ming via semidefinite relaxations. Math. Prog. 113, 259–282 (2008)

9. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 2nd edn. Springer, Berlin (1993)
10. Linderoth, J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic

programs. Math. Prog. 103, 251–282 (2005)
11. Markót, M.C., Csendes, T.: A new verified optimization technique for the “packing circles in a unit

square” problems. SIAM J. Optim. 16, 193–219 (2005)
12. Padberg, M.: The Boolean quadric polytope: some characteristics, facets and relatives. Math. Prog. B

45, 139–172 (1989)
13. Poljak, S., Wolkowicz, H.: Convex relaxations of (0,1) quadratic programming. Math. Oper. Res. 20,

550–561 (1995)
14. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
15. Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Glob Optim. 8,

201–205 (1996)
16. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Con-

tinuous Nonconvex Problems. Kluwer, Dordrecht (1998)
17. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim.

Methods Softw. 11–12, 625–653 (1999)

123



On convex relaxations for quadratically constrained 251

18. Szabó, P.G., Markót, M.C., Csendes, T.: Global optimization in geometry—circle packing into the
square. In: Audet, C., Hansen, P., Savard, G. (eds.) Essays and Surveys in Global Optimization,
pp. 233–266. Kluwer, Dordrecht (2005)

19. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)
20. Vandenbussche, D., Nemhauser, G.: A branch-and-cut algorithm for nonconvex quadratic programming

with box constraints. Math. Prog. 102, 559–575 (2005)
21. Yajima, Y., Fujie, T.: A polyhedral approach for nonconvex quadratic programming problems with box

constraints. J. Glob. Optim. 13, 151–170 (1998)
22. Zheng, X.J., Sun, X.L., Li, D.: Nonconvex quadratically constrained quadratic programming: best D.C.

decompositions and their SDP representations. J. Glob. Optim. 50, 695–712 (2011)

123



Copyright of Mathematical Programming is the property of Springer Science & Business Media B.V. and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.


