
Math. Program., Ser. B (2012) 136:279–300
DOI 10.1007/s10107-012-0604-1

FULL LENGTH PAPER

Solving k-cluster problems to optimality
with semidefinite programming

Jérôme Malick · Frédéric Roupin

Received: 14 April 2010 / Accepted: 25 July 2011 / Published online: 26 October 2012
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2012

Abstract This paper deals with the computation of exact solutions of a classical
NP-hard problem in combinatorial optimization, the k-cluster problem. This problem
consists in finding a heaviest subgraph with k nodes in an edge weighted graph. We
present a branch-and-bound algorithm that applies a novel bounding procedure, based
on recent semidefinite programming techniques. We use new semidefinite bounds that
are less tight than the standard semidefinite bounds, but cheaper to get. The experiments
show that this approach is competitive with the best existing ones.

Keywords Combinatorial optimization · k-cluster · Exact resolution · Semidefinite
programming · Lagrangian relaxation · Branch-and-bound

Mathematics Subject Classification 90C22 · 90C27 · 90C57

1 Introduction, motivations

Given an edge weighted graph with n vertices, the k-cluster problem consists in finding
a subgraph with the heaviest weight and with exactly k nodes (1 < k < n − 1). This
problem is a classical problem of combinatorial optimization; it is also known under
the name of “heaviest k-subgraph problem”, “k-dispersion problem”, “k-defence-
sum problem” [27], and “densest subgraph problem” when all the edge weights are

J. Malick (B)
CNRS, Lab. Jean Kuntzmann, Grenoble, France
e-mail: jerome.malick@inria.fr

F. Roupin
Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030,
93430 Villetaneuse, France
e-mail: Frederic.Roupin@lipn.univ-paris13.fr

123

280 J. Malick, F. Roupin

equal to 1. This problem can be seen as a generalization of the max-clique problem,
and also as a particular quadratic knapsack problem where all the costs are equal.

We recall briefly some complexity results about the k-cluster problem in order
to argument that it is a hard combinatorial problem. This problem does not admit
a polynomial time approximation scheme [25], and it is known to be NP-hard even
in very special cases: in unweighted bipartite graphs of maximal degree 3 [13] and
planar graphs [24]. It can be solved in polynomial-time in trees [38], cographs and
split graphs [9]. Strong negative results have been obtained about the approximability
of the clique problem, but there is no direct way to use them for the k-cluster problem:
it is open whether an approximation algorithm with a fixed ratio exists in general. The

best general approximation ratio is actually O(n
1
3) [14], and several approximation

algorithms with a better ratio have been designed for special graphs (see e.g. [29] for
recent results and references).

These results give an idea of how tough the k-cluster problem is to be solved
to optimality. Even if the machinery of linear-optimization-based branch-and-bound
algorithms has reached a high degree of development (see for example the recent
[36]), only medium-size instances of the k-cluster problem can be solved in general
with these solvers (see [2,10,39]). Linear relaxations seem to be not tight enough
for k-cluster in order to be used efficiently within an algorithm for exact resolution.
Therefore, the best exact and approximate resolution methods devoted to this problem
are based on nonlinear approaches, such as convex quadratic programming [4] or
semidefinite programming [17,23,43].

We present in this paper an approach for solving k-cluster problems to optimal-
ity by using standard branch-and-bound techniques together with new semidefinite
programming bounds. The bounding procedure trades computing time for a (small)
deterioration of the quality of the bound, so that it fits well within a branch-and-bound
algorithm. To get these semidefinite bounds, we follow the scheme sketched in [32]
for general binary quadratic program: we simplify and specify it for the k-cluster
problem—and we push the development to show numerically that this approach is
efficient. The main contribution of this paper is to prove numerically that these new
semidefinite bounds are interesting in view of solving hard combinatorial optimiza-
tion problems to optimality. For large-scale k-cluster problems indeed, our approach
is competitive with the best known approach [3,4] that uses CPLEX.

The paper is organized as follows. We formulate the k-cluster problem in Sect. 2 in
a way to introduce the new semidefinite bounds in Sect. 3. We compare these bounds
with the usual semidefinite bound in Sect. 4 to argue that they have nice features in
view of exact resolution. Finally we embed them within a simple branch-and-bound
algorithm in Sect. 5 and compare the overall efficiency of this approach with the best
known solver for exact resolution of k-cluster problems.

2 Equivalent formulations

This section introduces the notation used in the sequel, and presents a sequence of
equivalent formulations of the k-cluster problem: namely, the initial formulation (1),
simplified (2), augmented with additional constraints (3), the formulation as a binary

123

Solving k-cluster problems 281

quadratic programming problem (4) and the formulation as semidefinite programming
problems (6), (8). All these formulations are standard, except the last one. We empha-
size: all of them are exact reformulations; we start relaxing in the next section.

Initial modeling as a {0, 1}-quadratic programming problem. Consider an undi-
rected weighted graph G = (V, E) with n vertices {v1, . . . , vn} and with nonnegative
weights wi j on edges (vi , v j). For an integer k in {2, . . . , n−2}, the so-called k-cluster
problem consists in determining a subset S of k vertices such that the total edge weight
of the subgraph induced by S is maximized. To select subgraphs, assign a decision
variable zi ∈ {0, 1} for each node (zi = 1 if the node is taken, and zi = 0 if the node
is not). The weight of the subgraph given by z is

∑
(i, j)∈E wi j zi z j . Thus the k-cluster

problem can be phrased as the 0-1 quadratic problem

{
max 1

2

∑n
i=1

∑n
j=1 wi j zi z j∑n

i=1 zi = k, z ∈ {0, 1}n .
(1)

We rewrite this problem synthetically as

{
max 1

2 z�W z
e�z = k, z ∈ {0, 1}n .

(2)

with the vector of all ones e = (1, . . . , 1) ∈ R
n and the weight-matrix W = (wi j)i j

of the graph G (which is a symmetric n × n matrix).

Reformulation 1: Enforcement of redundant constraints. In view of relaxing, we
add redundant constraints to have a better duality gap. We introduce the standard
product-constraints as follows. Observe that a feasible z (that is, such that e�z = k
and z ∈ {0, 1}n) also satisfies for all j ∈ {1, . . . , n}

n∑

i=1

zi z j = kz j .

The left-hand side of this equality is quadratic in z; so we introduce the symmetric
n × n-matrix C j such that

∑n
i=1 zi z j = 1

2 z�C j z. Adding these n product constraints,
we come up with the following equivalent formulation of k-cluster

⎧
⎨

⎩

max 1
2 z�W z

e�z = k, z ∈ {0, 1}n

z�C j z = 2k z j , j ∈ {1, . . . , n}.
(3)

These product constraints are the only one we add, because they are tight in a
certain way; this follows indeed from the general results that we recall briefly here.
For a {0, 1}-quadratic problem, it is well-known (see e.g. [28]) that the best bound by
Lagrangian duality is obtained when dualizing only the {0, 1}-constraints (and not the
linear constraints). Though this bound does not lead directly to a SDP problem, the
semidefinite relaxation of the general problem reinforced by the product constraints

123

282 J. Malick, F. Roupin

(e.g. (3) for k-cluster) is equivalent to this best bound [12]. Adding other redundant
quadratic equality constraints would lead to the same bound, so we stick with (3).

We also recall that adding to (2) the single constraint (e�z − k)2 = 0 instead of the
n product constraints is an equivalent approach: the two formulations lead to two SDP
relaxations which give the same bound—but on which solvers behave differently. The
numerical comparison between the two SDP formulations is made in [33] showing
that (3) is preferable for our developments. We will come back to this in Sect. 4.2.

Reformulation 2: Change of variables. Dealing with quadratic problems with
{−1, 1} constraints and purely quadratic problems will ease the next developments. So
we introduce the new variable x = (x0, . . . , xn) ∈ R

n+1 performing two operations:

1. The change of binary variable xi = 2zi − 1 ∈ {−1, 1} for i ∈ {1, . . . , n}.
2. The “homogenization” of the quadratic forms with the extra-variable x0 ∈ {−1, 1}.

See more precisely the role of this homogenization in Lemma 3 in appendix.
A graph interpretation is as follows: we add an isolated vertex x0 to the graph, and
we want to compute a (k + 1)-cluster containing this vertex; in other words, x0 is
like a “flag” that indicates which vertices are in the k-cluster.

The change of variable z → x gives the following equivalent formulation of k-cluster

⎧
⎨

⎩

max x�Q x
x�Q j x = 4k − 2n, j ∈ {0, . . . , n}
x ∈ {−1, 1}n+1

(4)

where the n + 2 symmetric matrices Q and Q j (for j ∈ {0, . . . , n}) are defined by

Q := 1

4

[
e�W e e�W

W e W

]

, Q0 :=
[

0 e�
e 0

]

and Q j :=
[

0 ẽ�
j

ẽ j C j

]

(5)

with ẽ j = e + (n − 2k)e j the vector of R
n made up from e and e j the j th element of

the canonical basis of R
n . The change of variable and the reformulation are detailed

in Lemma 3 in appendix.

Reformulation 3: Lifting in matrix space. We now lift the problem (4) up to the
matrix space Sn+1 in order to transform the quadratic forms with respect to x ∈ R

n to
linear forms with respect to a matrix variable X . We follow the classical pattern (e.g.
[16,30]) and we use classical notation, recalled below. The natural inner product in
matrix space Sn+1 is defined for any X, Y ∈ Sn+1 by

〈X, Y 〉 =
n+1∑

i, j=1

Xi j Yi j = trace(XY).

This inner product is very convenient for our purposes through the relation:

∀ x ∈ R
n+1, ∀ A ∈ Sn+1, x� A x = 〈A, xx�〉.

123

Solving k-cluster problems 283

We denote ‖ · ‖ the associated norm; it is the same notation as the norm in R
n , but no

confusion should be possible since the matrices are represented by capital letters.
The idea of the standard lifting is to introduce the symmetric matrix of rank one

X = xx�. With the help of X , we express the binary constraints xi ∈ {−1, 1} (that is
xi

2 = 1) as Xii = 1, and the quadratic constraint x� A x = c as 〈A, X〉 = c. So we
get the following equivalent formulation of (4)

⎧
⎪⎪⎨

⎪⎪⎩

max 〈Q, X〉
〈Q j , X〉 = 4k − 2n, j ∈ {0, . . . , n}
Xii = 1, i ∈ {0, . . . , n}
X = xx�.

Notice then that X = xx� is a rank-one symmetric semidefinite matrix, and that
conversely any rank-one symmetric semidefinite matrix can be written this way. So
we can cast the above problem as an SDP linear problem with rank-one constraint

⎧
⎪⎪⎨

⎪⎪⎩

max 〈Q, X〉
〈Q j , X〉 = 4k − 2n, j ∈ {0, . . . , n}
〈Ei , X〉 = 1, i ∈ {0, . . . , n}
rank(X) = 1, X 	 0.

(6)

where Ei is the matrix with zeros entries except in position (i, i) where there is a one.

Reformulation 4: Introducing the spherical constraint. The hard constraint in (6)
is the rank-one constraint, which is moreover difficult to handle. So we go one step
further to the standard SDP lifting by rewriting this rank-one constraint as a norm,
along the lines of [32]. The (curious and) useful property is the following (see [32,
Theorem 1]): for all X 	 0 satisfying Xii = 1, we have ‖X‖ ≤ n + 1 and moreover

‖X‖ = n + 1 ⇐⇒ rankX = 1. (7)

Therefore the idea is to replace the rank-one constraint in the SDP formulation of the
k-cluster by the constraint ‖X‖2 = (n+1)2, called the “spherical constraint”. Thus we
have the following formulation of k-cluster that we formalize in the next proposition;
this is the formulation we will use in this paper.

Lemma 1 With the notation of this section, the optimal value of the k-cluster problem
is equal to the optimal value of

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max 〈Q, X〉
〈Q j , X〉 = 4k − 2n, j ∈ {0, . . . , n}
〈Ei , X〉 = 1, i ∈ {0, . . . , n}
‖X‖2 = (n + 1)2

X 	 0.

(8)

Proof The proof is obvious in view of the previous developments: by Lemma 3, the
optimal value of (1) is equal to the one of (4) which is in turn equivalent to (6), and
then to (8) by (7). �

123

284 J. Malick, F. Roupin

We have transformed a quadratic problem with quadratic constraint in R
n+1 to

a linear SDP problem with one single quadratic constraint (the spherical constraint
‖X‖2 = (n + 1)2). This quadratic constraint carries the nonconvexity and the com-
binatorial difficulty of the initial problem. The idea is now to treat it by Lagrangian
dualization, as explained in the Sect. 3.2.

3 Semidefinite relaxations

3.1 Standard semidefinite bounds

The previous section explains the formulation of the k-cluster problem as SDP prob-
lems (6) and (8). All the combinatorial difficulty of the original problem is now located
in the rank-one constraint in (6), or in the spherical constraint in (8). The standard
SDP relaxation then consists in enlarging the feasible set in (6) by dropping the rank
constraint, to derive a convex problem. In our situation, the standard SDP relaxation
of the k-cluster problem (6) is indeed

⎧
⎪⎪⎨

⎪⎪⎩

max 〈Q, X〉
〈Q j , X〉 = 4k − 2n, j ∈ {0, . . . , n}
〈Ei , X〉 = 1, i ∈ {0, . . . , n}
X 	 0.

(9)

We note that this SDP problem is equivalent to the one obtained from the
{0, 1}-formulation (3) (used by [4] in particular). As mentioned in the discussion
following (3), it is also equivalent to the SDP problem coming from (2) augmented by
the squared constraint (e�x − k)2 = 0. More precisely, by following the same lines
to go from (3) to (9), we get the equivalent SDP problem

⎧
⎪⎪⎨

⎪⎪⎩

max 〈Q, X〉
〈QS, X〉 = −(2k − n)2

〈Ei , X〉 = 1, i ∈ {0, . . . , n}
X 	 0

(10)

with a particular QS ∈ Sn+1. In practice, this bound is known to be tight and several
approximation algorithms have been proposed using it (see e.g. [17]).

Those SDP problems (9) and (10) have linear objective functions and as well as
linear constraints together with the conic constraint. Over the last decade, several
algorithms and associated solvers have been developed to solve problems of this type.
We refer for instance to the introduction of the recent [35] for references and for some
explanations about the different approaches; here we just point out:

– Interior points. The most known and used methods for SDP; they have nice com-
plexity theory (see e.g. the review [44]), and reliable numerical performances. For
the forthcoming numerical experiments of Sect. 4.2, we use the software CSDP
[6,20].

123

Solving k-cluster problems 285

– Spectral bundle. The bundle methods of convex optimization [22] have been spe-
cialized successfully to semidefinite programming, and especially to applications
of semidefinite programming in combinatorial optimization [19]. For the numeri-
cal experiments, we use the software SB [18].

– Regularization. Recently other approaches based on regularization (augmented
Lagrangian and proximal method) have been developed for solving large-scale
SDP problems, as for example the relaxation of max-stable problem [35]. Let us
also mention the penalized augmented Lagrangian method of PENNON [26].

– First-order methods. To tackle ever larger SDP problems, several first-order meth-
ods have been developed: we mention for example low-rank methods (see [8] and
references therein) that have recently drawn renewed interest.

Though there exist several types of methods and several efficient solvers, computing
the SDP bound (9) or (10) is still expensive, and this may prevent its direct use as
bounding procedure within a branch-and-bound for solving k-cluster to optimality.
Note in particular that the method of [4] uses the SDP bound only once at the beginning
of the search tree (as an initial calibration of the quadratic convex relaxation used later
for bounding, see more in Sect. 5). We are not aware of research for k-cluster in the
line of [42] for max-cut. Here, we consider different bounds that have an SDP-quality
but that are less tight that (9) and (10). In the next sections, we argue that those
new bounds are easier to compute and then well-adapted to be embedded within a
branch-and-bound.

3.2 New family of semidefinite bounds

We investigate now a way to keep a SDP-like quality of bound without paying the full
computational price to get it. The idea is to keep the rank-one constraint, to write it
with the help of the spherical constraint as in (8) and then to dualize it. This approach
is sketched in [32] in a general setting; here, we specialize the study for the k-cluster
to push to the end and to get tools for exact resolution.

For the real parameter α ∈ R, we consider the Lagrangian function

L(X;α) := 〈Q, X〉 − α

2
(‖X‖2 − (n + 1)2)

and the associated dual function

�(α) :=

⎧
⎪⎪⎨

⎪⎪⎩

max L(X;α)

〈Q j , X〉 = 4k − 2n, j ∈ {0, . . . , n}
〈Ei , X〉 = 1, i ∈ {0, . . . , n}
X 	 0.

(11)

By weak duality, each value �(α) is an upper bound for the optimal value of k-cluster,
since we can write: for all feasible X for (8) (and then in (11)),

〈Q, X〉 = L(X, α) ≤ �(α) (12)

so that �(α) is upper bound for (8) indeed.

123

286 J. Malick, F. Roupin

Hence we have a new family of SDP bounds �(α) (parameterized by α ∈ R). In
a way, these bounds generalize the standard SDP bound (9): observe indeed that for
α = 0, (11) is exactly (9). They have moreover interesting properties: the important
theoretical properties are gathered in the following proposition; we discuss the numer-
ical properties in the next section. In what follows, val(∗) denotes the optimal value
of an optimization problem numbered by (∗).

Proposition 1 Function � : R → R defined by (11) satisfies the following properties:

– For any α ∈ R, we have a bound for k-cluster

�(α) ≥ val(8) = val(1).

– If α > 0, this bound is weaker than the SDP bound

�(α) ≥ val(9) ≥ val(8) = val(1),

but we get arbitrarily close to the SDP bound when α tends to 0

lim
α→0,α>0

�(α) = val(9).

– If α > 0, we may compute �(α) by solving a semidefinite least-squares problem:

�(α)=
(α

2
(n+1)2+ 1

2α
‖Q‖2

)
−α

⎧
⎪⎪⎨

⎪⎪⎩

min 1
2‖X −Q/α‖2

〈Q j , X〉=4k−2n, j ∈ {0, . . . , n}
〈Ei , X〉 = 1, i ∈ {0, . . . , n}
X 	 0

(13)

Proof The first property comes from (12). The second property about the comparison
between �(α) and �(0) = val (9) follows from Theorem 3 of [32]: the function
� : R → R is convex (so continuous at 0) and nondecreasing (so �(α) ≥ �(0) if
α > 0). To prove the third point, we write for α > 0

L(X, α) = α

2
(n + 1)2 − α

2
(‖X‖2 − 2〈X, Q/α〉)

= α

2
(n + 1)2 − α

2

(∥
∥
∥
∥X − Q

α

∥
∥
∥
∥

2

− ‖Q‖2

α2

)

=
(α

2
(n + 1)2 + 1

2α
‖Q‖2

)
− α

2

∥
∥
∥
∥X − Q

α

∥
∥
∥
∥

2

,

which yields that (11) corresponds to (13). �
The point is thus the following: for α > 0, the new SDP bound �(α) is always

less tight than the usual SDP bound �(0), but it can be reduced arbitrary close to

123

Solving k-cluster problems 287

it by decreasing α. The key question is now how easier is �(α) to compute; this is
addressed in the next section.

4 Relaxed resolution: computation of bounds

The new SDP bound �(α) looks more complicated than the usual SDP bound �(0).
It turns out that nice geometrical properties make it cheaper to compute. Section 4.1
explains the computation, and then Sect. 4.2 presents a numerical comparison.

4.1 Computing the bound by projection

By (13), computing the new SDP bound �(α) when α > 0 comes down to solving

⎧
⎨

⎩

min 1
2‖X − Q/α‖2

〈Q j , X〉 = 4k − 2n, j ∈ {0, . . . , n}
〈Ei , X〉 = 1, i ∈ {0, . . . , n}, X 	 0.

(14)

This quadratic SDP problem has a simple geometric interpretation: Consider indeed
the affine subspace Aff in Sn+1 defined by the affine constraints of this problem

Aff :=
{

X ∈ Sn+1 : 〈Q j , X〉 = 4k − 2n, 〈Ei , X〉 = 1, for i, j ∈ {0, . . . , n}
}
.

Then the problem (14) is

{
min ‖X − Q/α‖2

X ∈ Aff ∩ S+
n+1

and thus consists in projecting the matrix Q/α onto the intersection Aff∩ S+
n+1 of the

affine subspace Aff and the cone S+
n+1. This problem is an instance of the so-called

semidefinite least-squares [31]. Efficient algorithms have been recently developed to
solve these problems, based on three paradigms: (1) alternating projection methods
[21], (2) interior-point methods [45], (3) duality [31] (see also [41] and [7] for devel-
opments on an important special case).

We have developed our own semidefinite least-squares solver to solve (14). This
solver follows the general method of [31] while being specific to be more efficient in
exploiting the particular features of (14). Interesting properties are summarized in the
next proposition. Consider the linear operator A : Sn+1 → R

2n+2 defined by

A(X) := (〈Q0, X〉, . . . , 〈Qn, X〉, 〈E0, X〉, . . . , 〈En, X〉),

and the vector b ∈ R
2n+2 defined by

b := (4k − 2n, . . . , 4k − 2n, 1, . . . , 1),

123

288 J. Malick, F. Roupin

such that the affine subspace Aff admits AX = b as an equation. Notice that the adjoint
of A, denoted by A∗ : R

2n+2 → Sn+1, and defined by 〈A∗(y), X〉 = y�A(X) for all
y ∈ R

2n+2 and X ∈ Sn+1, is

A∗(y) =
n∑

i=0

yi Qi +
n∑

i=0

yi+n+1 Ei .

For a given y ∈ R
2n+2, we also define the matrix

X (y) := PS+
n+1

(
Q/α + A∗(y)

)

where PS+
n+1

is the projection onto S+
n+1. Note that the dependence with respect to α

is dropped for simplicity.

Proposition 2 The function f : R
2n+2 → R defined by

f (y) := 1

2
‖X (y)‖2 − y�b

is convex and differentiable with gradient ∇ f (y) = AX (y) − b. Besides, we have

val(14) ≥ ‖Q‖2

2α2 − f (y) (15)

for all y ∈ R
2n+2. Assume furthermore that there exists a vector y� ∈ R

2n+2 that
attains the minimum f � of f ; then equality holds in (15) and X� = X (y�) is the
unique solution of (14).

Proof Up to a change of sign and to the constant ‖Q‖2

2α2 , the function f corresponds to
the function θ in [31]. We just apply results of this paper: the convexity and differen-
tiability of f comes from Theorems 3.1 and 3.2; (15) is equation (4.2); and the rest
comes from Theorem 4.1. �

The differentiability of f allows us to use standard algorithms for unconstrained
differentiable optimization for solving (14) thus to compute the bound �(α). We
can cite, among others: gradient, quasi-Newton, Newton-like methods as truncated
generalized Newton (see [5,37]). For its simplicity and robustness, we choose the
limited memory quasi-Newton algorithm [15], which has proved to be efficient in
many (academic and industrial) applications.

4.2 Numerical comparisons of semidefinite bounds

This section gives numerical comparisons of the new SDP bound �(α) and the usual
SDP bound �(0) in terms of tightness, computation time and balance between both.

Solvers and settings. To compute the SDP bound �(0), that is solving (9), we use:

123

Solving k-cluster problems 289

 1100

 1150

 1200

 1250

 1300

 1350

 1400

 0 0.002 0.004 0.006 0.008 0.01
 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

θ(
α)

C
P

U
 T

im
e

(s
)

Value of α

SDP Bound

Fig. 1 Illustration of the features of �(α) on a graph with n = 300, k = 75 and d = 25 %: when α → 0, we
get more tightness (�(α) → �(0)) but for an increasing computing cost. The leftmost point corresponds
to α = 10−4

– SB [18], a SDP solver based on the spectral bundle method [19]. This software
can handle large-scale problems and is known to be efficient in the context of
combinatorial optimization (see e.g. the recent [42]). We use it with default settings,
except that we add an initial scaling of the constraints and we set the stopping
criterion to 1e-4 (instead of 1e-5).

– CSDP [6], a robust and efficient interior point solver. We use it with default settings,
except that we activate “Fastmode” and we set the stopping criterion “objtol” to
1e-5 (instead of 1e-8).

To compute the SDP bound �(α), that is essentially solving (14), we use:

– SDLS, a home-made solver implementing a version of the algorithm of [31]
adapted for solving (14). We use the quasi-Newton algorithm [15] to minimize
the function f of Proposition 2. We set the stopping criterion to 1e-7, and, as for
SB, the constraints of (14) are scaled so that the constraints matrices are of norm
1. For sake of simplicity, we also decide to keep α constant. In view of preliminary
experiments, we then fix α to 1e-4: our strategy is indeed to have a SDP-like
bound, and �(10−4) is almost as tight as �(0), while its computing time is rea-
sonable. We illustrate this with Fig. 1 which plots (for an instance with n = 300)
the decrease of �(α) to �(0) when α → 0 and the increase of the corresponding
computing time. For example, �(α) for α = 10−4 (the leftmost point) is much
more tight than for α = 0.002 with less than twice the computing price.

Different formulations of the same bound. Computing times depend obviously on
the solvers, and in turn the performances of the solvers depend on the formulation of
the bounds. In our case, the SDP bound can be computed by solving (9) or (10), and
each of both turns out to advantage one solver.

123

290 J. Malick, F. Roupin

To have a fair comparison between the three solvers, we have done preliminary
tests (reported in [33]) to choose the best semidefinite formulation for each solver.
As expected, (10) is better suited for CSDP (when n = 100 about five times faster
than using (9)), since here the computing time directly depends on the number of
variables and constraints. On the other hand, the formulation (9) provides the best
results for SB and SDLS (when n = 100 about four times faster than using (10)). In
the numerical experiments below, we thus have: SB solves (9), CSDP solves (10), and
SDLS solves (14).

Test problems. We consider instances of k-cluster, randomly generated as follows.
Given a density d ∈ [0, 1], a random number ρ ∈ [0, 1] is generated for any pair of
indexes i < j ; if ρ > d, then wi j is set to 0, otherwise it is set to 1.

The parameters of these instances are: the size of the graph n, the graph density d
and the value of k. In this section, we take

n = 80, 100, 300, d = 25 %, 50 %, 75 % and k = n/4, n/2, 3n/4.

We have 5 instances of k-cluster problems for each set of parameters. Each forthcoming
numerical result is thus an averaged of 5 results.

The instances with 80 and 100 vertices have already been used in several others
papers, as [2] and especially [4] which is the reference method for the comparison of
Sect. 5.2. Note that these problems have unweighted graphs, which are at least as hard
as the ones with weighted graphs.

Numerical results. The numerical experiments have been carried out on a Pentium
IV 2.2 GHz with 1 Go of RAM under Linux. Table 1 reports the computation times (in
seconds) of the three solvers to compute the SDP bounds. Figure 2 illustrates the run
on two characteristic instances. The results show that �(α) provides a SDP-quality
bound which is easier to get than the usual SDP bound �(0).

Since the solvers do not compute the same bounds (remember that SB and CSDP
compute �(0) and SDLS computes �(α)), we report:

– gap, the relative difference between �(α) and �(0), i.e., (�(α) − �(0))/�(0),
– time SDLS, the computing time for SB and CSDP to achieve the value �(α).

Some comments are in order. Although less tight, the new bounds �(α) are very
close to �(0): the relative gap always lower than 0.25 %. Remember moreover that
the gap will be further reduced within the branch-and-bound by rounding down the
bound to the integer value. We notice also that the gap is almost constant in absolute
value so that its relative value decreases mechanically, when k or d increase (since the
optimal value of the instance increases in this case).

The crucial point is that our solver provides bounds faster than SB and CSDP.
As expected, CSDP is very robust and efficient for the medium-size instances (n =
80); but compared to SB, its performance deteriorates when the size of the problem
gets bigger. In this case, the interest of SDLS becomes clear: the gap between the
bounds does not increase, whereas the running times increase slower than those of
SB and CSDP.

Furthermore, our solver provides these bounds faster whenever the solving process
is interrupted. This is illustrated in Fig. 2 for example: the convergence curve is always

123

Solving k-cluster problems 291

Table 1 Upper bounds: average results for randomly generated instances of k-cluster

n k d (%) �(α) �(0) by SB �(0) by CSDP

Time (s) gap (%) SDP Time (s) Time SDLS Time (s) Time SDLS

80 20 25 0.18 0.21 0.55 0.23 0.29 0.19

50 0.18 0.14 0.87 0.41 0.45 0.35

75 0.16 0.12 1.37 0.61 0.31 0.24

40 25 0.17 0.06 0.54 0.37 0.35 0.28

50 0.10 0.04 0.98 0.80 0.33 0.28

75 0.07 0.03 1.39 0.81 0.40 0.32

60 25 0.15 0.02 1.17 0.85 0.35 0.29

50 0.14 0.01 1.34 1.30 0.35 0.29

75 0.15 0.01 1.64 1.41 0.33 0.29

mean 0.15 0.07 1.09 0.76 0.34 0.28

100 25 25 0.19 0.23 1.27 0.51 0.64 0.50

50 0.23 0.15 2.40 0.86 0.53 0.42

75 0.29 0.13 2.54 1.14 0.56 0.45

50 25 0.23 0.07 1.15 0.67 0.52 0.43

50 0.12 0.05 2.77 1.01 0.57 0.47

75 0.12 0.05 2.02 1.10 0.59 0.48

75 25 0.17 0.02 3.12 1.75 0.57 0.47

50 0.17 0.01 1.86 1.37 0.65 0.55

75 0.16 0.01 8.99 6.25 0.54 0.47

mean 0.19 0.08 2.9 1.63 0.58 0.47

300 75 25 3.51 0.15 19.48 6.70 15.26 12.40

50 3.56 0.09 41.78 8.21 7.04 5.38

75 3.79 0.08 25.15 10.80 6.89 5.60

150 25 1.66 0.05 11.45 8.33 16.25 12.64

50 0.92 0.02 13.78 11.93 12.04 9.92

75 0.74 0.04 66.12 26.30 7.30 6.01

225 25 2.68 0.02 58.09 50.18 8.43 6.74

50 4.01 0.01 82.77 79.92 7.84 6.53

75 4.45 0.01 38.14 38.07 10.06 7.19

mean 2.81 0.05 39.64 25.15 10.12 8.05

Five problems are tested for each (n, k, d). All computing times are in seconds

below the one of CSDP and also the one of SB (excepted at the very beginning). Note
also that none of SB and CSDP dominates the other.

We insist finally on the three following points.

1. Robustness. As expected, the running times CSDP are almost constant for the
instances of the same size (see for example the two examples of Fig. 2). Our
solver has also a similar behavior, which is a desirable property in the context of
branch-and-bound. Note that SB does not have this behavior (it was faster than

123

292 J. Malick, F. Roupin

Fig. 2 Comparison of the CPU time of the three solvers for two instances of the k-cluster problem with
n = 300, d = 0.5, and k = 150 (left side) k = 225 (right side)

CSDP on some instances, but slower on others). For example, let us give the
standard computing time deviations for n = 100. The mean standard deviations
for the five instances at given triplet (n, k, d) are 0.02 for SDLS, 0.11 for CSDP,
and 2.32 for SB.

2. Fast initial decrease. Our solver SDLS (as well as SB) has a very fast initial con-
vergence, as illustrated on Fig. 2. This is a highly desirable property in the context
of branch-and-bound. In particular, the improvement of the bound computed by
SDLS is big in the first iterations.

3. Low-memory. We also mention that our solver uses little memory: for instance, it
requires about 4 MB to solve (14) when n = 100.

The conclusion of these first experiments is that the new SDP bounds have an
advantageous trade-off between tightness and speed of computation, together with
interesting features in view of exact resolution.

5 Exact resolution: solving k-cluster to optimality

We use the solver to compute �(α) as the bounding procedure of a branch-and-bound
for solving k-cluster problems to optimality. As presented in Sect. 5.1, our branch-and-
bound algorithm is very basic; the novelty is essentially the use of �(α). In Sect. 5.2,
we compare it with [4] the best known method to solve k-cluster (that mixes nicely
CPLEX and quadratic relaxations parameterized with SDP).

5.1 Branch-and-bound for k-cluster

We summarize in this section the main ingredients of our branch-and-bound algorithm.

Heuristics for initial feasible point. Good feasible points give good lower bounds
at the beginning of the branch-and-bound, and this yields better pruning. Following
[39], we apply the following two-step heuristic that gives very good feasible points:

123

Solving k-cluster problems 293

1. Apply the natural greedy algorithm (see e.g. [1]) consisting in removing n − k
vertices from G by choosing successively the vertex with the minimum degree in
the reduced graph.

2. Enhance the feasible point by a local search which consists in swapping two nodes
(one in the k-cluster and not the other) until no improvement is possible.

Branching strategy. For simplicity, the branching scheme is based on a basic depth-
first search. Moreover, we have to choose, at each node of the search tree, a vertex
to add to the cluster or to exclude from it (in other words, we want to fix one of the
{−1, 1}-variables). Again for simplicity, we use a branching order fixed in advance, as
follows. As in [39], we estimate of the expected contribution of each node, by solving
for each i

Di = max

⎧
⎨

⎩

∑

j∈V \{i}
wi j z

i
j :

∑

j∈V \{i}
zi

j = p − 1, zi
j ∈ {0, 1}, j ∈ V \{i}

⎫
⎬

⎭
.

This problem asks to choose p−1 largest values among the edges connected to i–which
can be done efficiently by a median search algorithm. Then we order the variables with
decreasing Di . Numerical testing has showed us that this choice is competitive with
other approaches (such as branching on the most fractional variable).

Branching step. Branching on the index i0 consists in decomposing (14) into two
smaller instances, as follows. To obtain the new objective function, we remove the
i0th line from Q, and add it (or subtract if the vertex is excluded) to the first one. We
do the same for the i0th column. We also remove two constraints: 〈Ei0, X〉 = 1 and
〈Qi0, X〉 = 4k − 2n. Finally we use the previous optimal y to make a warm-start
for the two reduced problems: we keep the current values associated to the remaining
constraints. We observed that this speeds up the solving process of a mean factor of 3.

Early termination. Within branch-and-bound algorithms, the early termination of
the bounding procedure often provides a substantial overall speed-up (see e.g. [11]
and [42]). In our case, the next observation is important, so we formalize it as a lemma.

Lemma 2 For any variable y ∈ R
2n+2 and anyα > 0, the valueα((n + 1)2/2+ f (y))

is a bound for the k-cluster problem.

Proof Just combine (13) and (15) to get that

val(1) ≤ �(α) ≤ α
((n + 1)2

2
+ f (y)

)
.

Thus we get a bound of the optimal value of (1). �
As any differentiable optimization algorithm, the algorithm to minimize f is

stopped when an approximate solution is computed; more precisely when

‖∇ f (yk)‖ = ‖AX (yk) − b‖ ≤ ε

123

294 J. Malick, F. Roupin

with the fixed tolerance ε. Though the computed X (yk) does not satisfies perfectly the
constraints, the lemma guarantees that we still get a bound for our problem with yk .
In fact, we can stop the algorithm anytime before convergence, and we still get a
bound. This is very useful within the branch-and-bound: we can stop the bounding
procedure when the bound gets lower than the previous threshold. More precisely, we
use the following early termination rule. Let β be the current best lower bound given
by a k-subgraph; then we stop the run of the algorithm when

(n + 1)2/2 + f (y) < (β + 1)/α.

Fixing α and ε. For simplicity, we keep the level-parameter α and the stopping
criterion ε constant. We chose these parameters empirically: we did numerical tests
on some instances (as those of Sect. 4, see also Fig. 1), we observed that ε = 10−7 and
α = 10−4 seem to be good values, and we take those values for all the tests. Dynamic
adjustement of those parameters might provide additional speed-ups, but we postpone
this technical point for further research.

5.2 Experiments on solving k-cluster to optimality: comparison

The best approach for k-cluster. As far as we are aware, the currently strongest results
are obtained by the convex quadratic relaxation procedure of [4] (see also [3], and
[40]), that we briefly recall here. Start with the initial formulation (2), and observe
that for any u, γ , the problem is equivalent to

⎧
⎨

⎩

max z�Q(u, γ)z
e�z = k
z ∈ {0, 1}n

(16)

with the quadratic form

z�Q(u, γ)z := 1

2
z�W z +

n∑

i=1

ui (z
2
i − zi) + (e�z − k)

n∑

i=1

γi zi .

Relaxing the integrality constraints gives the upper bound

R(u, γ) =
⎧
⎨

⎩

max z�Q(u, γ)z
e�z = k
z ∈ [0, 1]n .

If u and γ are chosen such that Q(u, γ) is negative semidefinite, the bound R(u, γ)

is obtained by solving a convex quadratic problem. In practice, the variables (u∗, γ ∗)
are chosen such that they minimize the upper bound

{
min R(u, γ)

Q(u, γ) � 0

123

Solving k-cluster problems 295

Table 2 Computing times (in seconds) for exact resolution: comparison on the test-problems of [4] and
[40]

n k d (%) B&B using �(α) B&B of [4]

Time (s) # Nodes # Pbs faster Gap (%) (root) Time (s) # Nodes

80 20 25 186.6 14,869 1/5 9.43 72.4 207,562

50 674.2 43,702 0/5 8.19 325.6 52,7300

75 1809.4 132,455 0/5 6.60 1322.6 2,170,499

40 25 28.5 1,426 1/5 2.76 19.6 31,442

50 53.6 6,774 0/5 1.86 24.8 36,544

75 413.4 19,784 0/5 1.39 176.9 276,198

60 25 3.69 200 0/5 0.90 0.92 1,699

50 6.91 330 0/5 0.62 2.09 4,358

75 20.44 1,098 0/5 0.43 3.60 7,592

mean 355.2 24,515 216.5 362,577

100 25 25 1,443 (3) 155,658 2/3 9.45 1483 (3) 2,499,727

50 1,802 (2) 172,912 2/2 8.10 1978 (1) 3,510,428

75 n.a. n.a. n.a. 5.75 n.a. n.a.

50 25 314.2 13,532 4/5 2.63 473.6 504,644

50 349 (1) 12,020 1/1 2.23 392 (1) 396,780

75 704.2 29,503 2/5 1.09 548.4 580,512

75 25 16.08 565 0/5 0.86 9.00 12,996

50 72.09 2,547 0/5 0.68 50.81 74,196

75 40.49 2,662 0/5 0.36 14.32 21,045

mean 592.6 48,675 668.6 950,041

which turns out to be a linear SDP problem, more precisely, the dual of (9). Thus a
solution of the problem (16) with (u∗, γ ∗) is computed by a standard solver for convex
quadratic 0-1 problem, more precisely a branch-and-bound algorithm using R(u∗, γ ∗)
as bounding procedure. The interest is then that they can advantageously use CPLEX
implementing the state-of-the-art for mixed-integer quadratic solver.

Numerical results. We solve to optimality, on the same computer, the same test-
problems as in [4] (see also [40]). Table 2 presents the numerical results: we can
solve all the instances with comparable times; since we have implemented a very
basic branch-and-bound (simple branching strategy and depth-first search), whereas
the results of [4] are obtained with the mixed-integer programming solver of CPLEX,
this shows the interest of our approach.

Table 2 reports for each method the computing time and the number of nodes. Recall
that each entry of the table is the mean over the 5 instances with the same parameters
settings. To go beyond average numbers, the table also shows the number of problems
(out of 5) solved faster by our method (in the column “# pbs faster”).

Let us comment more precisely the comparison of Table 2. We observe that QCR
is faster in average than our approach for graphs with n = 80 vertices but it is slower

123

296 J. Malick, F. Roupin

Table 3 Computing times (in seconds) for exact resolution of large-scale instances

n k d (%) B&B using �(α)

Time (s) # Nodes in search tree # Pbs solved Gap (%) (root)

120 30 25 57,156 964,968 1/5 10.00

50 n.a. n.a. 0/5 n.a.

75 n.a. n.a. 0/5 n.a.

60 25 16,230 223,187 3/5 3.26

50 3,716 56,101 3/5 2.61

75 9,020 176,355 5/5 1.47

90 25 124 2952 4/5 1.07

50 12,818 179,349 5/5 1.19

75 1,845 24,549 5/5 1.03

when n = 100. As in [4], the computation is stopped after 1 h: we indicate ‘n.a.’ if the
corresponding problems were not solved within the time limit, and we indicate ‘(x)’
next to the computing time when we were able to solve only ‘x’ instances (out of 5)
in less within the time limit.

We did not include the results for small graphs (n = 40) that are in [4]: for those
graphs, QCR clearly outperforms our method (by a factor between 5 and 10), but both
methods converge very quickly (less than few seconds). In that case, the tightness of
the bound is actually not crucial, and it seems like there is no need to spend time in
computing semidefinite bounds.

Though the two methods are comparable with respect to computing times, they
have opposite strategies. QCR does many (cheap) bound evaluations, whereas our
algorithm computes more expensive bounds and prunes better: we enumerate 15–
20 times fewer nodes on average. The bound of [4] is of SDP-quality at the root of
the branch-and-bound tree only, but deteriorates down in the tree, while �(α) is of
SDP-quality everywhere, without paying the whole price in computing time. Thus our
method is particularly well-adapted for the instances with small d and k; these are the
most difficult instances, where good pruning is essential. Moreover, the increase of
number of nodes with increase of dimension is less dramatic for our method than for
QCR (passing from n = 80 to n = 100, the number is multiplied by 2 instead of 3).

Finally, we point out that the computing time of our method is not strongly correlated
to the number of the evaluated nodes in the search tree. This is a consequence of our
solver ability to be interrupted during the solving process.

5.3 Experiments on solving k-cluster to optimality: larger problems

We have conducted numerical experiments on problems beyond the actual state of
the art. Table 3 reports the results for instances with n = 120.

For those large graphs, we change the experimental protocol, as follows. We do
not compare with QCR (the largest tests of [4] and [40] are with n = 100). So we

123

Solving k-cluster problems 297

do need anymore to use the same computer as their: we run this third experiment
on a Dell precision T7500 Intel Xeon 2.80 GHz with 4 GB RAM under linux, using
single-thread (single core). We fix a computing time limit of 60,000 s, and we report
the number of instances solved for each setting (in the column “# pbs solved”).

As far as we know, this is the first time that k-cluster problems with unrestricted
graphs of size larger than 100 are solved to optimality. On the other hand, we see
that our solver runs into some trouble, especially for the most difficult problems
(those with low density). Two reasons could explain those difficuties, and open ways
to improve the approach. First, recall that, except for the bounding procedure, our
branch-and-bound is very basic. Including sophisticated strategies on each point of
Sect. 5.1 would probably bring performance improvement. Second, the bound �(α)

is not tight enough to avoid losing oneself in the branch-and bound tree (see the
gap at the root). Considering stronger bounds of the same kind (adding cuts for
example) would therefore be interesting. The two points are the subject of current
investigations.

5.4 Conclusions, perspectives

This paper develops a branch-and-bound algorithm using a novel bounding procedure
to solve k-cluster problems to optimality. The key is to use new semidefinite bounds
for k-cluster that trade some quality of bound for a speed-up of computation time. This
is the first successful attempt to solve this NP-hard optimization to optimality with a
semidefinite programming approach competitive with state-of-the-art methods.

The numerical experiments of Sects. 4.2 and 5.2 show that the new semidefinite
bounds θ(α) have a practical interest. They have indeed good balance between tight-
ness and computing time; they provide SDP-quality bounds while being faster to
compute. The dedicated solver for computing θ(α) also combines advantages of the
SDP solvers SB and CSDP: like SB, it gives guaranteed upper bounds, has a fast initial
convergence, and allows to be interrupted; and like CSDP it is reliable, in the sense
that we observe only small variations in computational times. The branch-and-bound
using θ(α) takes advantage of SDP-like bounds (all way long) to prune well. Its per-
formance is comparable with the best method for this problem. In practice, our method
works particularly fine on the most difficult instances of k-cluster (with a large number
of vertices, small density and small k).

The exact resolution scheme presented here could be adapted to other combinato-
rial problems: the semidefinite bounds upon which the approach is based are indeed
introduced in [32] for general binary quadratic problems. The first step toward a gen-
eralization would be to extend the numerical study of Sect. 4.2 (and [33]); this is what
proposes our recent work [34] (which also presents a different derivation of the SDP
bounds).

Acknowledgments This work was supported by CNRS (“GdR Recherche Opérationnelle”) and Grenoble
University (Université Joseph Fourier, through “Pôle Math-STIC”). We thank Quentin Monnet and Lise-
Marie Veillon (Master students of ENSIIE, Evry, France) for their help in developing parts of the solver.
We also thank the two anonymous referees for numerous suggestions about a preliminary version of this
article.

123

298 J. Malick, F. Roupin

Appendix: Formulation of the k-cluster as a quadratic {−1, 1}-problem

The spherical constraint appears more easily on purely quadratic {−1, 1}-optimization
problems (see [32]). The second reformulation in Sect. 2 considers the transformation
of the k-cluster problem, from the natural modeling as a quadratic {0, 1}-problem (with
linear and quadratic constraints), to a purely quadratic {−1, 1}-problem. We specify
here this transformation, that uses standard techniques.

Lemma 3 With the notation of this section, the k-cluster problem (1) is equivalent to
the quadratic problem in dimension n + 1

⎧
⎨

⎩

max x�Q x
x�Q j x = 4k − 2n, j ∈ {0, . . . , n}
x ∈ {−1, 1}n+1

(17)

where the symmetric (n + 1) × (n + 1)-matrices Q and Q j (j ∈ {0, . . . , n}) are
defined by (5). More precisely, this equivalence means that the optimal values of (1)
and (17) are the same and that the optimal solutions coincide as follows:

– if z̄ is a solution of (1) then x̄ = (1, 2z̄ − e) is a solution of (17);
– if x̄ is a solution of (17), then z̄ = ((x̄0 x̄1, . . . , x̄0 x̄n) + e)/2 is a solution of (1).

Proof Operate first the change of variable x = 2z − e, and express the objective and
the constraints with respect to x = (x1, . . . , xn) ∈ R

n . Just develop the objective

z�W z = (x + e)�

2
W

(x + e)

2
= 1

4
(x�W x + 2x�W e + e�W e),

and similarly transform e�z = k as e�x = 2k − n, and for all j = 1, . . . , n

z�C j z = 2kz j ⇐⇒ x�C j x + 2x�(C j e − 2ke j)

= 4k − e�C j e ⇐⇒ x�C j x + 2x�ẽ j = 4k − 2n

the last equivalence coming from e�C j e = 2n and ẽ j = C j e − 2ke j . So we get
quadratic problem in x ∈ {−1, 1}n

⎧
⎪⎪⎨

⎪⎪⎩

max 1
4 (x�W x + 2x�W e + e�W e)

e�x = 2k − n
x�C j x + 2x�ẽ j = 4k − 2n, j ∈ {1, . . . , n}
xi ∈ {−1, 1} i ∈ {1, . . . , n}.

(18)

The formulation of (3) is equivalent to (18) in the sense that the optimal values are
the same and the solutions are in one-to-one correspondance with x = 2z − e.

123

Solving k-cluster problems 299

We consider now that the following purely quadratic problem with the addi-
tional variable x0 ∈ {−1, 1}

⎧
⎪⎪⎨

⎪⎪⎩

max 1
4 (x�W x + 2x�W e x0 + e�W e x0

2)

e�x x0 = 2k − n
x�C j x + 2x�ẽ j x0 = 4k − 2n, j ∈ {1, . . . , n}
xi ∈ {−1, 1} i ∈ {0, . . . , n}.

(19)

We observe that this problem is equivalent to (17) in view of the definitions of the
matrices in (5). So we just have to establish that (18) is equivalent to (19); we do so
in two steps. If (x1, . . . , xn) is feasible in (18), then obviously (1, x) and (−1,−x)

are both feasible in (19), with same objective value. It follows that val(19) ≤ val(18).
Conversely if (x0, . . . , xn) is feasible in (19), then x0 = ±1 and (x0x1, . . . , x0xn) is
feasible in (18) with the same objective value. It follows that val(18) ≤ (19), so that
we have the equality in fact. The relation between the argmins then becomes clear.

�

References

1. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense subgraph. J. Algorithms
34(2), 203–221 (2000)

2. Billionnet, A.: Different formulations for solving the heaviest k-subgraph problem. Inf. Syst. Oper.
Res. 43(3), 171–186 (2005)

3. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for the unconstrained
quadratic 0–1 problem. Math. Program. 109(1), 55–68 (2006)

4. Billionnet, A., Elloumi, S., Plateau, M.-C.: Improving the performance of standard solvers for quadratic
0–1 programs by a tight convex reformulation: the QCR method. Discret. Appl. Math. 157(6), 1185–
1197 (2009)

5. Bonnans, J.F., Gilbert, JCh.: Numerical Optimization. Springer, Berlin (2003)
6. Borchers, B.: CSDP, a C library for semidefinite programming. Optim. Methods Softw. 11(1), 613–623

(1999)
7. Borsdorf, R., Higham, N.: A preconditionned newton algorithm for the nearest correlation matrix.

Submitted (2008)
8. Burer, S., Monteiro, R.D.C.: A nonlinear programming algorithm for solving semidefinite programs

via low-rank factorization. Math. Program. (Series B) 95, 329–357 (2003)
9. Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discret. Appl. Math. 9(1), 7–39

(1984)
10. Erkut, E.: The discrete p-dispersion problem. Eur. J. Oper. Res. 46(1), 48–60 (1990)
11. Faye, A., Roupin, F.: A cutting planes algorithm based upon a semidefinite relaxation for the quadratic

assignment problem. In: ESA 2008, LNCS 3669, pp. 850–861 (2005)
12. Faye, A., Roupin, F.: Partial lagrangian for general quadratic programming. 4’OR Q. J. Oper. Res.

5(1), 75–88 (2007)
13. Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in graph par-

titioning. J. Algorithms 41(2), 174–211 (2001)
14. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29(3), 410–421 (2001)
15. Gilbert, JCh., Lemaréchal, C.: Some numerical experiments with variable-storage quasi-Newton algo-

rithms. Math. Program. 45, 407–435 (1989)
16. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfi-

ability problems using semidefinite programming. J. ACM 6, 1115–1145 (1995)
17. Han, Q., Ye, Y., Zhang, J.: An improved rounded method and semidefinite programming relaxation

for graph partition. Math. Program. 92(3), 509–535 (2002)

123

300 J. Malick, F. Roupin

18. Helmberg, C.: A C++ implementation of the Spectral Bundle Method. http://www-user.tu-chemnitz.
de/ helmberg/SBmethod/, Version 1.1.3 (2004)

19. Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM J. Optim.
10(3), 673–696 (2000)

20. Helmberg, C., Rendl, F., Vanderbei, R., Wolkowicz, H.: An interior point method for semidefinite
programming. SIAM J. Optim. 6, 342–361 (1996)

21. Higham, N.: Computing a nearest symmetric correlation matrix-a problem from finance. IMA J. Numer.
Anal. 22(3), 329–343 (2002)

22. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer,
Heidelberg (1993). Two volumes

23. Jäger, G., Srivastav, A.: Improved approximation algorithms for maximum graph partitioning problems.
J. Combin. Optim. 10(2), 133–167 (2005)

24. Keil, J.M., Brecht, T.B.: The complexity of clustering in planar graphs. J. Comb. Math. Comb. Comput.
9, 155–159 (1991)

25. Khot, S.: Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM J.
Comput. 36, 1025–1071 (2005)

26. Kočvara, M., Stingl, M.: On the solution of large-scale sdp problems by the modified barrier method
using iterative solvers. Math. Program. 109(2), 413–444 (2007)

27. Krarup, J., Pisinger, D., Plastria, F.: Discrete location problems with push-pull objectives. Discret.
Appl. Math. 123, 363–378 (2002)

28. Lemaréchal C., Oustry F. (1999) Semidefinite relaxations and Lagrangian duality with application to
combinatorial optimization. Research report 3710, INRIA

29. Liazi, M., Milis, I., Zissimopoulos, V.: A constant approximation algorithm for the densest k-subgraph
problem on chordal graphs. Inf. Process. Lett. 108(1), 29–32 (2008)

30. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory IT 25, 1–7 (1979)
31. Malick, J.: A dual approach to semidefinite least-squares problems. SIAM J. Matrix Anal. Appl. 26(1),

272–284 (2004)
32. Malick, J.: Spherical constraint in Boolean quadratic programming. J. Glob. Optim. 39(4), 609–622

(2007)
33. Malick, J., Roupin, F.: Numerical study of SDP bounds for the k-cluster problem. E. Notes Discret.

Math. 36(1), 399–406 (2010). Proceedings of ISCO 2010
34. Malick, J., Roupin, F.: On the bridge between combinatorial optimization and nonlinear optimization:

a family of semidefinite bounds leading to newton-like methods. To appear in Math Programming B.
http://hal.archives-ouvertes.fr/hal-00662367 (2012)

35. Malick, J., Povh, J., Rendl, F., Wiegele, A.: Regularization methods for semidefinite programming.
SIAM J. Optim. 20(1), 336–356 (2009)

36. Martin, A., Achterberg, T., Koch, T.: Branching rules revisited. Oper. Res. Lett. 33(1), 342–354 (2005)
37. Nocedal, J., Wright, S.: Numerical Optimization. Springer, NY (1999)
38. Perl, Y., Shiloach, Y.: Efficient optimization of monotonic functions on trees. SIAM J. Algebr. Discret.

Methods 4(4), 512–516 (1983)
39. Pisinger, D.: Upper bounds and exact algorithms for p-dispersion problems. Comput. Oper. Res. 33,

1380–1398 (2006)
40. Plateau, M.-C.: Reformulations quadratiques convexes pour la programmation quadratique en variables

0–1. PhD thesis, Conservatoire National des Arts et Métiers (CNAM, Paris) (2006)
41. Qi, H., Sun, D.: Quadratic convergence and numerical experiments of Newton’s method for computing

the nearest correlation matrix. SIAM J. Matrix Anal. Appl. 28, 360–385 (2006)
42. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and

polyedral relaxations. Math. Program. 121, 307–335 (2010)
43. Roupin, F.: From linear to semidefinite programming: an algorithm to obtain semidefinite relaxations

for bivalent quadratic problems. J. Comb. Optim. 8(4), 469–493 (2004)
44. Todd, M.J.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)
45. Tutuncu, R.H., Toh, K.C., Todd, M.J.: Inexact primal-dual path-following algorithms for a special class

of convex quadratic SDP and related problems. Pac. J. Optim. 3(1), 135–164 (2006)

123

http://www-user.tu-chemnitz.de/
http://www-user.tu-chemnitz.de/
http://hal.archives-ouvertes.fr/hal-00662367

Copyright of Mathematical Programming is the property of Springer Science & Business Media B.V. and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

