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Abstract In this paper, we establish the polynomial complexity of a primal-dual path-following

interior point algorithm for solving semidefinite optimization (SDO) problems. The proposed algorithm

is based on a new kernel function which differs from the existing kernel functions in which it has a double

barrier term. With this function we define a new search direction and also a new proximity function

for analyzing its complexity. We show that if q1 > q2 > 1, the algorithm has O((q1 +1) n
q1+1

2(q1−q2) log n
ε
)

and O((q1 +1)
3q1−2q2+1
2(q1−q2)

√
n log n

ε
) complexity results for large- and small-update methods, respectively.
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1 Introduction

We consider the semidefinite optimization problem (SDO) in its primal format:

(P ) min
X

C •X s.t. Ai •X = bi, 1 ≤ i ≤ m,X � 0

and its dual problem

(D) max
(y,Z)

bT y s.t.
m∑

i=1

yiAi + Z = C, Z � 0,

where C,Ai ∈ Sn, b ∈ R
m and (X, y, Z) are unknown variables. Here Sn denotes the space

of n × n real symmetric matrices. In addition,X � 0 indicates thatX is a symmetric positive
semidefinite matrix and the expression A • B :=

∑n
j=1

∑n
i=1AijBij denotes the inner-product

between two symmetric matrices.Without loss of generality we assume that the matricesAi are
linearly independent.

The semidefinite optimization is an exciting problem in mathematical programming that
has many applications in both engineering and scientific fields. For more details concerning this
subject the reader consults [2, 15, 16]. Recently, generalized barrier methods play an important
role to designing new and efficient primal-dual path-following interior point (IP) algorithms to
solve the linear optimization (LO) and SDO [3–10]. These methods are based on the so-called
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kernel functions for determining new search directions and new proximity functions for analyzing
the complexity of these algorithms. With this new paradigm the polynomial complexity of large-
update primal-dual IP algorithms is improved in contrast with the classical complexity given
by the logarithmic barrier functions (see [3–14]).

In this paper, we establish the polynomial complexity of a primal-dual path-following IP
algorithm for SDO by introducing the following new kernel function

ψ(t) = t2 − 1 +
t1−q1 − 1
q1 − 1

+
t1−q2 − 1
q2 − 1

, qi > 1, i = 1, 2.

In contrast with the existing kernel functions, ψ(t) has a double barrier term defined by two
parameters q1 and q2. With this function a new search direction and a proximity are determined
for analyzing the proposed algorithm. We derive complexity results for this algorithm with
large- and small-update methods. We note that if q1 = q2, then ψ(t) reduces to a well-known
kernel function with a single barrier term introduced by Bai et al. [3] and EL Ghami [8] for LO
and SDO and extended by other authors for different problems in mathematical programming.

This paper is organized as follows. In Section 2, the central path and the classical Nesterov–
Todd direction are given. In Section 3, the new kernel-function-based Nesterov–Todd direction
and the generic primal-dual algorithm are presented. In Section 4, a new eligible kernel function
and its growth properties for SDO are studied. In Section 5, the iteration bounds for the
algorithm are computed. Finally, a conclusion ends Section 6.

The following notations are used throughout the paper. Sn
+ and Sn

++ denote the cone of
symmetric positive semidefinite and symmetric definite positive matrices, respectively. Fur-
thermore, X � 0 (X � 0) means that X ∈ Sn

+ (X ∈ Sn
++). For any X � 0, λi(X), 1 ≤ i ≤ n,

denote its eigenvalues. The trace of an n × n matrix X is denoted by Tr(X) =
∑n

i=1Xii.

‖ · ‖ denotes the Frobenius norm and I is the identity matrix. For two real valued functions
f(x), g(x) : R

n
+ → R

n
++, f(x) = O(g(x)) if f(x) ≤ kg(x) for some positive constant k and

f(x) = Θg(x) if k1g(x) ≤ f(x) ≤ k2g(x) for some positive constants k1 and k2.

2 The Central Path and the Classical Nesterov–Todd Search Direction for SDO

In this section, we recall the notion of the central path with its properties and we derive the
classical Nesterov–Todd search direction for SDO.

Throughout the paper, we assume that (P ) and (D) satisfy the interior point condition,
i.e., there exists (X0, y0, Z0) such that

Ai •X0 = bi, 1 ≤ i ≤ m,
m∑

i=1

y0
iAi + Z0 = C, X0 � 0, Z0 � 0.

It is well known that finding a solution of (P ) and (D) is equivalent to find a solution of the
following system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ai •X = bi, 1 ≤ i ≤ m, X � 0,
m∑

i=1

yiAi + Z = C, Z � 0,

XZ = 0.

(2.1)
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The basic idea of primal-dual interior point methods is to replace the third equation in (2.1) by
the parameterized equation XZ = μI where μ > 0. Then one considers the following system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ai •X = bi, 1 ≤ i ≤ m, X � 0,
m∑

i=1

yiAi + Z = C, Z � 0,

XZ = μI.

. (2.2)

It is also well known that the system (2.2) has a unique solution for each μ > 0. It is denoted
by (X(μ), y(μ), Z(μ)) and we call it the μ-center of both problems (P ) and (D). The set of
μ-centers defines a homotopy which is called the central path of (P ) and (D). If μ→ 0, then the
limit of the central path exists and since the limit points satisfy the complementarity condition,
the limit yields optimal solutions for (P ) and (D).

Now to obtain the search direction for SDO, we apply Newton’s method for the system (2.2)
for a given strictly feasible primal-dual point (X, y, Z), which yields the following linear system
of equations: ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ai • ΔX = 0, 1 ≤ i ≤ m,
m∑

i=1

Δyi
Ai + ΔZ = 0,

XΔZ + ΔXZ = μI −XZ.

(2.3)

Since Ai are linearly independent and X � 0, Z � 0, the system (2.3) has a unique solution
(ΔX ,Δy,ΔZ). Note that ΔZ is symmetric due to the second equation in (2.3) but ΔX may be
not symmetric. Therefore the proposal made by researchers is to symmetrize the third equation
in (2.3) by using a symmetric nonsingular matrix P and by replacing (2.3) by the system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ai • ΔX = 0, 1 ≤ i ≤ m,
m∑

i=1

Δyi
Ai + ΔZ = 0,

ΔX + PΔZP
T = μZ−1 −X.

(2.4)

In [15], Todd studied several symmetrization schema. Among them, we consider the Nesterov–
Todd (NT) symmetrization scheme whereP is defined as

P = X
1
2 (X

1
2ZX

1
2 )−

1
2X

1
2 = Z− 1

2 (Z
1
2XZ

1
2 )

1
2Z− 1

2 .

Let D = P
1
2 where P

1
2 denotes the symmetric square root of P. The matrixD is used to scale

both matricesX andZ to the same matrixV defined by

V :=
1√
μ
D−1XD−1 =

1√
μ
DZD =

1√
μ

(D−1XZD)
1
2 . (2.5)

Note that both matricesD andV are symmetric and positive definite. So by using (2.5), the
linear system (2.4) becomes ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Āi •DX = 0, 1 ≤ i ≤ m,
m∑

i=1

Δyi
Āi +DZ = 0,

DX +DZ = V −1 − V,

(2.6)
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with

Āi = DAiD, 1 ≤ i ≤ m, DX :=
1
μ
D−1ΔXD

−1 and DZ :=
1
μ
DΔZD. (2.7)

The system (2.6) determines a uniquely symmetric NT direction with the matrices DX and DZ

be orthogonal, since DX •DZ = 0, and it is evident to see

Tr(DXDZ) = Tr(DZDX) = 0.

The above Nesterov–Todd direction leads to the classical primal dual IP algorithms for SDO.

3 The New Search Direction and the Generic Primal-dual IP Algorithm for SDO

In this section, we recall the definition of a matrix function and we derive the new kernel-
function-based Nesterov–Todd direction and then we describe our generic primal-dual (IP)
algorithm to SDO.

Definition 3.1 ([8, Definition 3.2.1]) Let X be a symmetric matrix, and let

X = Q−1
X diag(λ1(X), λ2(X), . . . , λn(X))QX

be an eigenvalue decomposition of X, where λi(X), 1 ≤ i ≤ n, denote the eigenvalues of X, and
QX is orthogonal. If ψ(t) is any univariate function whose domain contains {λi(X); 1 ≤ i ≤ n},
then the matrix function ψ(X) is defined by

ψ(X) = Q−1
X diag(ψ(λ1(X)), ψ(λ2(X)), . . . , ψ(λn(X)))QX .

Definition 3.1 is called the spectral decomposition theorem of symmetric matrices and its
importance enables us to extend the definition of any function ψ : R → R to a function from
Sn to Sn.

Now in a similar way to [12], the barrier function Ψ(X) is defined as follows:

Ψ(X) :=
n∑

i=1

ψ(λi(X)) = Tr(ψ(X)). (3.1)

When we use the function ψ(·) and its first three derivatives ψ′(·), ψ′′(·) and ψ′′′(·) without any
specification, it denotes a matrix function if the argument is a matrix and a univariate function
(from R to R) if the argument is in R.

Now following [6–8], [11] and [12], the kernel-function-based Nesterov–Todd direction for
SDO is based in replacing the right hand side V −1−V in the third equation in (2.6) by −ψ′(V ).
Thus we have the linear system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Āi •DX = 0, 1 ≤ i ≤ m,
m∑

i=1

ΔyiĀi +DZ = 0,

DX +DZ = −ψ′(V ),

(3.2)

where ψ(t) is a given kernel function, and ψ(V ), ψ′(V ) are the associated matrix functions. The
system (3.2) has a unique symmetric solution.

In the algorithm, we use the barrier function Ψ(V ) defined in (3.1) as a measure function
and also we introduce the norm-based proximity measure δ(V ) as follows:

δ(V ) :=
1
2
‖DX +DZ‖ =

1
2
‖ψ′(V )‖ =

1
2

√
Tr(ψ′(V ))2. (3.3)
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For the notational convenience we denote δ(V ) by δ. Hence, our generic primal-dual IP algo-
rithm for SDO is described in Figure 1 as follows.

Generic primal-dual IP algorithm for SDO

Input:

An accuracy parameter ε ;

an update parameter θ, 0 < θ < 1;

a proximity parameter τ, τ > 0;

a strictly feasible pair (X0, Z0) and μ0 > 0 s.t. Ψ(X0, Z0, μ0) ≤ τ ;

begin

X := X0; Z := Z0; μ := μ0;

while nμ > ε do

begin

μ := (1 − θ)μ;

while Ψ(X,Z, μ) > τ do

begin

solve the system (3.2) and use (2.7) to obtain (ΔX ,Δy,ΔZ);

determine a default step size α;

update X := X + αΔX ; y := y + αΔy; Z := Z + αΔZ ;

end

end

end.

Figure 1 Algorithm

4 The Barrier Kernel Function and Its Properties

In this section, we present the eligible kernel function and its growth properties for SDO.

Definition 4.1 We call ψ : R++ → R+ a barrier kernel function if it is twice differentiable
and the following conditions are satisfied :

(1) ψ(1) = ψ′(1) = 0;
(2) ψ′′(t) > 0 for all t > 0;
(3) limt�→0 ψ(t) = limt�→+∞ ψ(t) = +∞.

From the conditions (1) and (2), it follows that ψ(t) is strictly convex and minimal at t = 1,
and ψ(t) is expressed in term of its second derivative as follows:

ψ(t) =
∫ t

1

∫ ξ

1

ψ′′(ζ)dζdξ. (4.1)

However, the condition (3) indicates the barrier property of ψ(t).
Let

ψ(t) = (t2 − 1) +
t1−q1 − 1
q1 − 1

+
t1−q2 − 1
q2 − 1

, qi > 1, i = 1, 2, t > 0. (4.2)
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It is easy to check that ψ(t) is indeed a barrier kernel function and its three first derivatives are

ψ′(t) = 2t− t−q1 − t−q2 , (4.3)

ψ′′(t) = 2 + q1t
−q1−1 + q2t

−q2−1 > 0 for t > 0, q1, q2 > 1, (4.4)

ψ′′′(t) = −q1(q1 + 1)t−q1−2 − q2(q2 + 1)t−q2−2. (4.5)

Lemma 4.2 Let ψ(t) be as defined in (4.2). Then

tψ′′(t) + ψ′(t) > 0, t < 1, (4.6)

ψ′′′(t) < 0, t > 0, (4.7)

tψ′′(t) − ψ′(t) > 0, t > 1, (4.8)

2ψ′′(t)2 − ψ′′′(t)ψ′(t) > 0, t < 1, (4.9)

ψ′′(t)ψ′(βt) − βψ′(t)ψ′′(βt) > 0, t > 1, β > 1. (4.10)

Proof For (4.6), by using (4.3) and (4.4), it follows that tψ′′(t) + ψ′(t) = 4t+ (q1 − 1)t−q1 +
(q2−1)t−q2 > 0 for all q1, q2 > 1 and t > 0. For (4.7), it is clear from (4.5), ψ′′′(t) < 0 for t > 0.
For (4.8), we have tψ′′(t) − ψ′(t) = (q1 + 1)t−q1 + (q2 + 1)t−q2 > 0 for all q1, q2 > 1 and t > 0.
For (4.9), we have 2ψ′′(t)2 − ψ′′′(t)ψ′(t) = 8 + (8q1 + 2q1(q1 + 1))t−q1−1 + (8q2 + 2q2(q2 +
1))t−q2−1 + +(q1(q1 − 1))t−2(q1+1) + (q2(q2 − 1))t−2(q2+1) + g(t), where g(t) = (4q1q2 − q1(q1 +
1) − q2(q2 + 1))t−q1−q2−2. Then 2(ψ′′(t))2 − ψ′′′(t)ψ′(t) > 0 if g(t) > 0 for all q1, q2 > 1 and
t < 1. Indeed, g(t) > 0 since g(t) > [(q1 − 1) + (q2 − 1)] t−q1−q2−2 > 0 for all q1, q2 > 1 and
t > 0. For (4.10), by [3, Lemma 2.4], it suffices to show that ψ(t) satisfies (4.6) and (4.8). These
properties show the eligibility of ψ(t). This completes the proof. �

Lemma 4.3 One has
(i) ψ(

√
t1t2) ≤ 1

2 (ψ(t1) + ψ(t2)) for all t1, t2 > 0,
(ii) 1

2 (t− 1)2 ≤ ψ(t) ≤ 1
2 (ψ′(t))2, t > 0,

(iii) ψ(t) ≤ ( 2+q1+q2
4 )(t− 1)2, t ≥ 1.

Proof For (i), by [12, Lemma 2.1.2], it suffices to show that ψ(t) satisfies (4.8). This statement
indicates the exponential property of ψ(t). For (ii), it obtained by using the definition of ψ(t)
in (4.1), and the fact that ψ′′(t) > 1 for all t > 0, then we have

ψ(t) =
∫ t

1

∫ ξ

1

ψ′′(ζ)dζdt ≥
∫ t

1

∫ ξ

1

dζdt =
1
2
(t− 1)2.

The second inequality is obtained as follows:
∫ t

1

∫ ξ

1

ψ′′(ζ)dζdξ ≤
∫ t

1

∫ ξ

1

ψ′′(ξ)ψ′′(ζ)dζdξ

=
∫ t

1

ψ′′(ξ)ψ′(ξ)dξ

=
∫ t

1

ψ′(ξ)dψ′(ξ)dξ =
1
2
(ψ′(t))2.

For (iii), by using Taylor’s theorem with ψ(1) = ψ′(1) = 0, ψ′′(1) = 2+q1+q2
2 and ψ′′′(t) < 0,

we obtain ψ(t) = ψ(1) + ψ′(1)(t − 1) + 1
2ψ

′′(1)(t − 1)2 + 1
3!ψ

′′′(c)(c − 1)3 = 1
2ψ

′′(1)(t − 1)2 +
1
3!ψ

′′′(c)(c − 1)3 < 1
2ψ

′′(1)(t − 1)2 = ( 2+q1+q2
4 )(t − 1)2 for some c, 1 ≤ c ≤ t. This completes

the proof. �
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Let � : [0,∞) → [1,∞) be the inverse function of ψ(t) for t ≥ 1 and ρ : [0,∞) → (0, 1] be
the inverse function of −1

2ψ
′(t) for t ∈ (0, 1] . Then we have the following lemma.

Lemma 4.4 For ψ(t),we have
(i)

√
1 + s ≤ �(s) ≤ 1 +

√
2s, s ≥ 0,

(ii) ρ(s) ≥ ( 1
1+2a )

1
q1−q2 ,if q1 > q2 and s ≥ 0.

Proof For (i), let s = ψ(t) for t ≥ 1, i.e., �(s) = t, t ≥ 1. By the definition of ψ(t), s =
t2 − 1 + ψb(t), t > 0, where ψb(t) = t1−q1−1

q1−1 + t1−q2−1
q2−1 denotes the barrier term of ψ(t). It

follows that
t2 − 1 + ψb(t) ≤ t2 − 1. (4.11)

This inequality is due to the fact that ψb(1) = 0 and ψb(t) is monotonically decreasing. This
implies that t = �(s) ≥ √

s+ 1. By Lemma 4.3 (ii), we have s = ψ(t) ≥ 1
2 (t− 1)2, t ≥ 1.Then

we have t = �(s) ≤ 1 +
√

2s, s ≥ 0. For (ii), let a = − 1
2ψ

′(t) for t ∈ (0, 1]. Then by definition
of ρ, ρ(a) = t ⇔ a = −1

2ψ
′(t) for all t ∈ (0, 1] . So we have a = −t + t−q1+t−q2

2 ⇔ t−q1+t−q2

2 =
a+t⇔ t−q1+q2+1

2tq2 = a+t⇔ t−q1+q2+1 = 2tq2(a+t). It follows that tq2−q1 ≤ 2(a+1)−1 = 2a+1.
Hence, we obtain t ≥ ( 1

1+2a )
1

q1−q2 for all t ∈ (0, 1] and q1 > q2. This completes the proof. �

Theorem 4.5 ([8, Theorem 3.3.2]) Let � : [0,∞) → [1,∞) be the inverse function of ψ(t), t ≥
1. Then we have

Ψ(βV ) ≤ nψ

(
β�

(
Ψ(V )
n

))
, β ≥ 1 for V ∈ Sn

++.

In the next theorem, we obtain an estimate for the effect of a μ-update on the value of Ψ(V ).

Theorem 4.6 Let 0 ≤ θ < 1and V+ = V√
1−θ

. If Ψ(V ) ≤ τ, then we have

Ψ(V+) ≤ 2 + q1 + q2
4(1 − θ)

(
√
nθ +

√
2τ)2.

Proof Since 1√
1−θ

≥ 1 and �
(Ψ(V )

n

) ≥ 1, we have
�(Ψ(V )

n )√
1−θ

≥ 1. Using Theorem 4.5 with
β = 1√

1−θ
, Lemmas 4.3–4.4 and Ψ(V ) ≤ τ, we have

Ψ(V+) ≤ nψ

(
1√

1 − θ
�

(
Ψ(V )
n

))

≤ (2 + q1 + q2)n
4

(
�
(Ψ(V )

n

) −√
1 − θ√

1 − θ

)2

≤ (2 + q1 + q2)n
4

(
�
(Ψ(V )

n

) −√
1 − θ√

1 − θ

)2

≤ (2 + q1 + q2)n
4

(1 +
√

2τ
n −√

1 − θ
√

1 − θ

)2

≤ (2 + q1 + q2)n
4

(θ +
√

2τ
n√

1 − θ

)2

=
2 + q1 + q2
4(1 − θ)

(
√
nθ +

√
2τ)2,

where the last inequality holds since 1−√
1 − θ = θ

1+
√

1−θ
≤ θ for all 0 ≤ θ < 1. This completes

the proof. �



550 Achache M.

Denote
Ψ̃0 =

2 + q1 + q2
4(1 − θ)

(
√
nθ +

√
2τ)2. (4.12)

Then Ψ̃0 is an upper bound for Ψ(V ) during the Newton process of the algorithm.
In the next proposition, we give a lower bound for the proximity δ in term of Ψ(V ).

4.1 A Lower Bound for δ in Term of Ψ(V )

Proposition 4.7 For any V � 0,

δ ≥
√

Ψ(V )
2

.

Proof By Lemma 4.3(ii) and (3.3), we have

δ2 =
1
4
Tr(ψ′(V )2) ≥ 2

4

n∑

i=1

ψ(λi(V )) ≥ 1
2
Ψ(V ).

Hence, we have δ ≥
√

Ψ(V )
2 . This completes the proof. �

Remark 4.8 During the algorithm we assume that τ ≥ 1.Using Proposition 4.7 and the

assumption Ψ(V ) ≥ τ, we have δ ≥
√

Ψ(V )
2 ≥ 1√

2
.

5 Complexity Analysis

In this subsection, we compute a default step sizeα and the decrease of the proximity function
during an inner iteration. After a step size α, new iterates are denoted by

X+ = X + αΔX, y+ = y + αΔy, Z+ = Z + αΔZ.

5.1 Determining a Default Step Size

Define for α > 0,
f(α) = Ψ(V+) − Ψ(V ).

Then f(α) is the difference of the proximity between a new iterate and a current iterate for a
fixed μ > 0.

Due to (2.5) and (2.7), we may write

X+ = X + αΔX = X + α
√
μDDXD =

√
μD(V + αDX)D

and
Z+ = Z + αΔZ = Z + α

√
μD−1DZD

−1 =
√
μD−1(V + αDZ)D−1.

Thus we have
V 2

+ := (V + αDX)(V + αDZ),

and
V 2

+ = (V + αDX)
1
2 (V + αDX)

1
2 (V + αDZ)(V + αDX)

1
2 (V + αDX)−

1
2 ,

by assuming that V + αDX � 0 and V + αDZ � 0 for such feasible step size α.Then it is clear
that V 2

+ is similar to the matrix

(V + αDX)
1
2 (V + αDZ)(V + αDX)

1
2 .
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As a result we deduce that V+ has the same eigenvalues as the matrix

[(V + αDX)
1
2 (V + αDZ)(V + αDX)

1
2 ]

1
2 ,

and then we have

Ψ(V+) = Ψ([(V + αDX)
1
2 (V + αDZ)(V + αDX)

1
2 ]

1
2 ).

Next we show that our proximity Ψ(V ) satisfy the following proposition.

Proposition 5.1 ([11, Proposition 5.2.6]) For any V1,V2 � 0,

Ψ((V
1
2

1 V2V
1
2

1 )
1
2 ) ≤ 1

2
(Ψ(V1) + Ψ(V2)).

Using Proposition 5.1, it follows that

f(α) ≤ f1(α),

where
f1(α) =

1
2

[Ψ(V + αDX) + Ψ(V + αDZ)] − Ψ(V ).

Obviously, f(0) = f1(0) = 0.
Now to estimate the decrease of the proximity during one step, we need the two successive

derivatives of f1(α) with respect to α.By using the rule of differentiability involving matrix
functions, we obtain

f ′1(α) =
1
2
Tr [ψ′(V + αDX)DX + ψ′(V + αDZ)DZ ]

and
f ′′1 (α) =

1
2
Tr

[
ψ′′(V + αDX)D2

X + ψ′′(V + αDZ)D2
Z

]
.

It is obvious that f ′′1 (α) > 0, unless DX = DZ = 0.
Using the definition of δ, we get

f ′1(0) =
1
2
Tr [ψ′(V )DX + ψ′(V )DZ ] ,

=
1
2
Trψ′(V )(DX +DZ),

= −2δ2.

Lemma 5.2 ([3, Lemma 4.1]) One has

f ′′1 (α) ≤ 2δ2ψ′′(λ1(V ) − 2αδ),

where λ1(V ) is the smallest eigenvalue of V.

Lemma 5.3 ([3, Lemma 4.2]) One has f ′1(α) ≤ 0 if α satisfies the inequality

−ψ′(λ1(V ) − 2αδ) + ψ′(λ1(V )) ≤ 2δ. (5.1)

Lemma 5.4 ([3, Lemma 4.4]) Let ρ and α̃ be defined as (5.1). Then

α̃ ≥ 1
ψ′′(ρ(2δ))

.

Lemma 5.5 One has
α̃ ≥ 1

2 + 2q1(1 + 4δ)
q1+1

q1−q2

. (5.2)
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Proof Using the definition of ψ′′(t), and Lemma 4.4 (ii), we have

α̃ ≥ 1
ψ′′(ρ(2δ))

≥ 1
2 + q1(ρ(2δ))q1+1 + q2(ρ(2δ))q2+1

=
1

2 + q1(1 + 4δ)
q1+1

q1−q2 + q2(1 + 4δ)
q2+1

q1−q2

.

Assuming that q1 ≥ q2, then it follows that

q2(1 + 4δ)
q2+1

q1−q2 ≤ q1(1 + 4δ)
q1+1

q1−q2

and we deduce that
α̃ ≥ 1

2 + 2q1(1 + 4δ)
q1+1

q1−q2

.

This completes the proof. �

As a default step size, we take

ᾱ =
1

2 + 2q1(1 + 4δ)
q1+1

q1−q2

, (5.3)

with α̃ ≥ ᾱ.

Next lemma shows that our proximity function Ψ with the default step size ᾱ is decreasing.

Lemma 5.6 ([11, Lemma 3.12]) Suppose that h(t) is a twice differentiable convex function
with

h(0) = 0, h′(0) < 0

and attains its global minimum at t∗ > 0, and h′′(t) is increasing with respect to t.Then for any
t ∈ [0, t∗] , we have

h(t) ≤ th′(0)
2

.

Since f1(α) holds the condition of the above lemma,

f(α) ≤ f1(α) ≤ f ′1(0)
2

α for all 0 ≤ α ≤ α̃,

then we have the following lemma to obtain the upper bound for the decreasing value of the
proximity in the inner iteration.

Lemma 5.7 ([3, Lemma 4.5]) If the step sizeα is such that α ≤ α̃, then

f(α) ≤ −αδ2.
Lemma 5.8 Let ᾱ be a step size as defined in (5.3), and δ ≥ 1. Then we have

f(ᾱ) ≤ − δ2

2 + 2q1(1 + 4δ)
q1+1

q1−q2

.

Proof By Lemma 5.7 and (5.3), we have

f(ᾱ) ≤ − δ2

2 + 2q1(1 + 4δ)
q1+1

q1−q2

. (5.4)
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This completes the proof. �
Now, we express the decrease in one inner iteration in terms of Ψ(V ) by using Proposition 4.7

as follows.

Lemma 5.9 One has
f(ᾱ) ≤ − 1

24q1
Ψ

q1−2q2−1
2(q1−q2) .

Proof Using Proposition 4.7, Remark 4.8, and substituting the value of ᾱ, we have

f(ᾱ) ≤ −ᾱδ2

= − δ2

2 + 2q1(1 + 4δ)
q1+1

q1−q2

≤ − δ2

2 + 2q1(
√

2δ + 4δ)
q1+1

q1−q2

= − δ2

4q1(
√

2δ + 4δ)
q1+1

q1−q2

≤ − δ2

22q1δ
q1+1

q1−q2

= − Ψ
44√
2
Ψ

q+1
2(q1−q2)

=
1

31q1
Ψ

q1−q−2q2−1
2(q1−q2) , since

44√
2
� 31.

This completes the proof. �
Now we are ready to estimate the total number of iteration bound of the algorithm.

5.2 Iteration Bound

At this stage, we need the following proposition from Proposition 1.3.2 in [12] without proof.

Proposition 5.10 Let t0, t1, . . . , tK be a sequence of positive numbers such that

tk+1 ≤ tk − γt1−β̄
k , k = 0, 1, . . . ,K − 1,

where γ > 0 and 0 < β̄ ≤ 1. Then

K ≤ tβ̄0
γβ̄

.

Denote the value of Ψ(v) after the μ-update asΨ0 and the subsequent values in the same
manner as Ψk, k = 1, 2, . . . . Then we have

Ψ0 ≤ Ψ̃0

with Ψ̃0 being defined in (4.12). Let K be the total number of inner iterations per the outer
iteration. Then we have

ΨK−1 > τ, 0 ≤ Ψk ≤ τ.

Lemma 5.11 Let Ψ̃0 be defined as in (4.12) and K be the total number of inner iterations in
the outer iteration. Then we have

K ≤ 62q1(q1 − q2)
q1 + 1

Ψ̃
q1+1

2(q1−q2)

0 .
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Proof Using Proposition 5.10 and Lemma 5.9 with γ = 1
31q1

and β̄ = q1+1
2(q1−q2)

, we get

K ≤ 62q1(q1 − q2)
q1 + 1

Ψ̃
q1+1

2(q1−q2)
0 .

This completes the proof. �

Theorem 5.12 If τ ≥ 1, the total number of iterations to get a primal-dual optimal solution
for SDO is no more than

K

θ
log

n

ε
≤ 62(q1 + 1)

3q1−2q2+1
2(q1−q2)

θ

(
(
√
nθ +

√
2τ)2

(1 − θ)

) q1+1
2(q1−q2)

log
n

ε
.

Proof Since nμ ≤ ε, μk := (1 − θ)kμ0 and μ0 = 1, by a simple computation, we obtain

k ≤ 1
θ

log
n

ε
.

Therefore the number of outer iterations is bounded above by
1
θ

log
n

ε
.

Multiplication of this result by the number in Lemma 5.11 the theorem holds. Hence, we have

K

θ
log

n

ε
≤ η

(
(2 + q1 + q2)(

√
nθ +

√
2τ)2

4(1 − θ)

) q1+1
2(q1−q2)

log
n

ε

= η

(
(
√
nθ +

√
2τ)2

1 − θ

) q1+1
2(q1−q2)

log
n

ε
,

with η = 62q1(q1−q2)
θ(q1+1)

(
2+q1+q2

4

) q1+1
2(q1−q2) .

Now since
(

2+q1+q2
4

) q1+1
2(q1−q2) ≤ 1

2 (q1 + 1)
q1+1

2(q1−q2) and 62q1(q1−q2)
(q1+1) ≤ 62(q1 + 1) for all q1 >

q2 > 1, it follows that

K

θ
log

n

ε
≤ 62(q1 + 1)

3q1−2q2+1
2(q1−q2)

θ

(
(
√
nθ +

√
2τ)2

(1 − θ)

) q1+1
2(q1−q2)

log
n

ε
.

This completes the proof. �

Remark 5.13 If τ = O(1) and θ = Θ(n), then the iteration bound for the small-update
algorithm is

O

(
(q1 + 1)

3q1−2q2+1
2(q1−q2)

√
n log

n

ε

)
.

In particular if q1 = lq2,with l > 1, then the total iteration bound is

O

(
(q1 + 1)

(3l−2)q1+1
2(l−1)q1

√
n log

n

ε

)
.

Therefore, the larger l, the better the total iteration bound. In addition if l → ∞, then the
iteration bound is

O

(
(q1 + 1)

3q1+1
2q1

√
n log

n

ε

)
.

Remark 5.14 Since

Ψ0 ≤ nψ

(
1√

1 − θ
�

(
Ψ(V )
n

))
≤ nψ

(1 +
√

2τ
n√

1 − θ

)
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and by (4.11), if t ≥ 1, then ψ(t) ≤ (t2 − 1). Using this we obtain

Ψ0 ≤ n

((1 +
√

2τ
n )2

1 − θ
− 1

)
=
θn+ 2

√
2nτ + 2τ

1 − θ
.

With this estimate the total number of iterations is bounded above by

Ψ0 ≤ 62q1(q1 − q2)
θ(q1 + 1)

(
θn+ 2

√
2nτ + 2τ

(1 − θ)

) q1+1
2(q1−q2)

log
n

ε

≤ 62(q1 + 1)
θ

(
θn+ 2

√
2nτ + 2τ

(1 − θ)

) q1+1
2(q1−q2)

log
n

ε

since
62q1(q1 − q2)

q1 + 1
≤ 62q21
q1 + 1

≤ 62(q1 + 1) for all q1 > q2 > 1.

Therefore, if τ = O(n) and θ = Θ(1), the iteration bound for the large-update algorithm is

O
(
(q1 + 1)n

q1+1
2(q1−q2)

)
log

n

ε
.

In particular, if q1 = lq2 with l > 1, then the total iteration bound is

O

(
(q1 + 1)n

l(q1+1)
2(l−1)q1 log

n

ε

)
.

In addition, if l → ∞, then the total iteration bound is

O

(
(q1 + 1)n

q1+1
2q1 log

n

ε

)
.

6 Conclusion

In this paper, we proposed a new primal-dual path-following interior point algorithm for solv-
ing semidefinite optimization problems based on a new kernel function which has a dou-
ble barrier term. The algorithm yields the iteration bounds O((q1 + 1)n

q1+1
2(q1−q2) log n

ε ), and

O((q1 + 1)
3q1−2q2+1
2(q1−q2)

√
n log n

ε ) for large and small-update algorithms, respectively provided that
q1 > q2 > 1. Future researches might extend this analysis for linear and convex quadratic
optimization problems, complementarity and conic problems. Finally, numerical tests will be
an important topic of research in the future.
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