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Abstract In this paper we will discuss different realizations for an efficient interval
arithmetic implementation using expression templates and template meta program-
ming in C++. We will improve the handling of the rounding mode switches using
expression templates and show how the constructed expression trees can be combined
with other features like automatic differentiation. For a further improvement of the run
time performance we try to move as many functionality as possible to the compile time
using template meta programming techniques. In addition we will illustrate how an
interval arithmetic implementation will profit from new features and keywords defined
in the upcoming C++ standard.
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1 Introduction

Interval arithmetic is set arithmetic working on intervals defined as connected, closed
and not necessarily bounded subsets of the reals

X=[x.x]l={xeR|x=<x=<x} (D
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216 M. Nehmeier

where x = —o0 and X = 400 are allowed. The set of all possible intervals together
with the empty set is called IR. The basic arithmetic operations on intervals are based
on powerset operations:

XoY = [ min (V(xoy)), max (A(xo y)):| 2)
Y xeX,yeY

xeX,ye

On floating point systems the value of the lower bound is rounded toward —oo
(symbol V) and the upper bound is rounded toward +oco (symbol A) to include all
possible results of the powerset operation on the real numbers. Continuous functions
could be defined in a similar manner. Note that monotonicity properties could be used
to define the result of an interval operation or function only using the bounds of the
input intervals.

2 Interval arithmetic using expression templates

One of the main challenges for an efficient interval arithmetic implementation is the
performance penalty for switching the rounding mode to assure the inclusion property
of the computation. The problem becomes worse due to poorly implemented float-
ing point functions' which require a rounding mode toward the nearest floating point
number (symbol ) to work correctly. Hence, interval routines have to restore the
primary rounding mode after the computation to ensure a valid behavior for the rest
of the program.

C++ interval libraries like Boost [7] or filib++ [18] commonly provide two dif-
ferent approaches to handle the rounding mode. The first and slow one is to reset
the rounding mode after each interval operation which leads to needless and at least
useless switches of the rounding mode for interval expressions with two or more
operations like a 4+ b 4 c. The second approach omits the reset of the rounding
mode after each interval operation and shifts the responsibility of saving and resetting
the primary rounding mode to the user. But both methods have their disadvantage
in speed or usability. To avoid these drawbacks of common C++ interval libraries
we, in [20], applied expression templates [22] to efficiently control the rounding
mode.

Expression templates is a C++ technique to represent an expression as an expres-
sion tree by using C++ templates with the benefit that this tree is explicitly visible at
compile time. This offers the possibility to delay the execution of the single operations
of an expression and evaluate the whole expression at once. Figure 1 shows the steps of
an aspired transformation of an interval expression into basic floating point operations
using expression templates and applying the identity

Ax = —V(—x) 3)

1 E.g.: On a Debian Linux system with GCC 4.3.2 and GNU C Library 2.7 the result for the computation
of ¢30 with rounding toward +o00 is 0.110028.
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store_rounding() ;
@ set_rounding downward() ;
/ N\ tl = al + bi;
r=a+b+c wmp @ »t2=—a2—b2;
/ \ rl = tl1 + ci;
IE‘ IE' r2 = -(t2 - c2);
reset_rounding() ;

Fig. 1 Aspired transformation of an interval expression into basic floating point operations

to reduce the switches of the rounding mode. Thereby, the variables with the suffix 1
or 2 of the code snippet in Fig. 1 are the lower or upper bounds of the corresponding
variables of the expression, respectively.?

Applying formula (3) to compute the upper bound of an interval expression by set-
ting the rounding mode toward —oo and resetting it after the computation only works
for the basic arithmetic operations. For correctly rounded standard functions, as those
provided by the C++ library CRlibm [9], generally a differing rounding mode is nec-
essary. To take this limitation into account, we, in [20], decided to build an expression
tree at compile time and implemented a visitor-object passed through the tree at run
time to manage the rounding mode switches.

In spite of this additional object at run time we achieved a measurable performance
increase compared to Boost and filib++ for interval expressions with more than one
or two> operations [20], respectively. Figure 2 shows a comparison of the average run
time for 100,000 repetitions of interval expressions with different length.

40 @ Expression templates
A filibe+
@ filib++ native directed
‘ Boost
30
%)
=
g
= 20 A
E
=
10 +
0 T T T T T
0 1 2 3 4 5

number of operations

Fig. 2 Performance comparison for interval expressions with different length

2 Note that the upper bound t2 of the intermediate result is stored negated.

3 filib++ uses assembler subroutines other than the expression template implementation which uses plain
C++. Hence filib++ offers a better performance for short expressions.
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3 Improvement of the expression template approach

Up to this point we only used the expression tree to provide an abstract representation
of the interval expression at run time to manage the switches of the rounding mode.
Moreover, the advantage of an explicitly visible expression tree at compile time should
be used for further optimizations and features by applying template meta program-
ming techniques [23] to move as many functionality as possible to the compile time.
Furthermore, we show that an implementation could benefit from new features of the
upcoming C++ standard [3], called C++0x.

3.1 Optimize rounding mode switches

One characteristic of all basic interval operations and functions is that they require
a specific rounding mode to compute one bound of the result. Additionally a unique
rounding mode is activated after the computation of the second bound. This knowledge
could be used to annotate each operation or function with two states rndB and rnda
to specify the required rounding mode before and the activated rounding mode after
the computation. Although the obvious attribution of rndB is a rounding toward —co
and rounding toward 400 for rndA to correspond to the formula (2)* a different
mapping of rndB and rndA is commonly used. For basic arithmetic operations the
formula (3) could be applied. Hence, the rounding mode toward —oo is assigned to
rndB and rndA for the interval addition, subtraction, multiplication and division. On
the other hand if we use CRIlibm [9] for the standard functions we need a rounding
mode to the nearest floating point number for both attributes rndB and rndA. This is
necessary because CRlibm uses the processor with the rounding mode to the nearest
floating point number to provide correctly rounded floating point functions with the
four different rounding modes to the user® [10]. Therefore, these correctly rounded
floating point functions are used to compute the elementary interval functions using
the well known monotonicity properties. Figure 3 shows the annotated expression tree

store_rounding();
set_rounding nearest();
sl = GkeZ|2kn—m/2€X) 7 -1
: min(sin_rd(x1), sin_rd(x2));
s2 = (GkeZ|2kn+n/2€X) 7 -1
: -max(sin_ru(x1), sin_ru(x2));
set_rounding_downward() ;
=-> tl = min((y2 >= 0 ? x1 : x2) / yi,
(y2 >= 0 7 -x1 : -x2) / -y2);
t2 = -min((y1 >= 0 ? x2 : x1) / -y2,
(y1 >=0 7 -x2 : -x1) / y1);
rl = sl + t2;
r2 = -(s2 + t1);
reset_rounding() ;

X X Y

Fig. 3 Expression tree with corresponding rounding modes of interval expression sin(X) — X/Y as well
as the aspired pseudo code of the code transformation

4 1. Set rounding mode V = rndB, 2. compute lower bound, 3. set rounding mode A = rndA, 4. compute
upper bound.

5 The function names are suffixed with _rn, _ru, _rd, and _rz for the rounding modes to the nearest
number, toward +o0, toward —oo and to zero, respectively [10].
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for the interval expression sin(X) — X/Y as well as the aspired pseudo code of the
code transformation®. In this pseudo code the sin is computed with CRlibm functions
using the processor in round to nearest mode. For the division and the subtraction
the rounding mode toward —oo is used to compute the result using the algorithms
described in [17].

This tree could be generated by expression templates using the class Interval’
for the leaf nodes and the classes UExpr<class OP, typename A> and
BExpr<class OP, typename A, typename B> for the inner nodes. Here,
the template classes UExpr and BExpr are abstract representations for unary or binary
expressions specified by the template parameter OP as a policy class [1] working on
the arguments of the types A and B, respectively.

Listing 1 shows the structure of a policy class used for a binary expression. The two
rounding mode states rndB and rndA are defined as static constants of an enumeration
type RndState with enumerators DOWNWARD, UPWARD, NEAREST and TOZERO
for the provided rounding modes as well as the additional enumerators UNKNOWN and
UNUSED.

struct Sub {
static const RndState rndB = RndState::DOWNWARD;
static const RndState rndA = RndState::DOWNWARD;

static Interval eval (Interval a, Interval b) {
/* compute a - b */
}

Y

Listing 1 Policy class for an interval subtraction.

With these classes it is possible to generate the expression tree as a nested tem-
plate type at compile time, see Fig. 4. Thereafter a trait class [19] Eval<typename
NODE, RndState RND> is used to compile an efficient evaluation code for this
expression. This trait is recursively applied on each node of the expression tree with the
template parameter NODE corresponding to the type of the node and the enumerator
RND describing the current rounding mode.

BExpr<Sub, e, e>

N

UExpr<Sin, e> BExpr<Div, e, o>
Interval Interval Interval

Fig. 4 Tree structure of the generated expression type of the interval expression sin(X) — X/Y

The first specialization of this trait class is the class Eval<Interval,
RndState RND> which works on the leaf nodes (type Interval) of the tree
whereat the rounding mode information RND is still variable. The implementation of

6 Note that this pseudo code does not contain any exception handling for the reason of readability and the
intermediate results for the upper bounds s2 and t2 are stored negated.

7 In practice the class Interval should be implemented as a generic class with a template parameter for
the type of the interval bounds.
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this trait has a static function which returns the interval at this node and additionally

store the current and unchanged rounding mode state (enumerator RND) in a static

constant rnd.

The evaluation of the inner nodes is done by the trait specializations
Eval<BExpr<class OP, typename A, typename B>,RndState RND>
and Eval<UExpr<class OP, typename A>, RndState RND>, respec-
tively. As well as the trait specialization for intervals these two traits have to store
the information about the rounding mode which is active after the evaluation of this
node. Normally this could be done by assigning the static constant rndA of the policy
class OP to the static constant rnd of the trait. However if the rounding mode is not
used by the policy class some additional work with template meta programming is
necessary to compute the current rounding mode from the information of the child
nodes.

The evaluation of an inner node using the trait specializations for binary expres-
sions® Eval<BExpr<class OP, typename A, typename B>,RndState
RND> performs as follows:

1. Use the trait Eval<A, RND> to mix in the evaluation of the first child node of
type A using the current rounding mode RND.

2. Use the trait Eval<B, Eval<A, RND>::rnd> to mix in the evaluation of
the second child node of type B using the rounding mode which was left by the
trait for the evaluation of the first child node.

3. Mix in the necessary run time code for switching to the required rounding mode
OP: : rndB. This could be done by using a trait class RndSet<RndState
OLD, RndState NEW> together with the information about the active round-
ing mode from the traits for the evaluation of the child nodes together with the
new mode OP: : rndB.

4. Mix in the function OP: : eval (a, b) to evaluate the corresponding operation
of the policy class using the results a and b from the evaluation of the child nodes.

The main concept of this approach is to entrain the available information about
the active rounding mode during the transformation of the expression tree into the
final run time code at compile time. Therefore, the trait class RndSet<RndState
OLD, RndState NEW> could be used to mix in only the necessary run time code
for switching the rounding mode. In cases like OLD == NEW or NEW == UNUSED
no rounding mode switches are necessary and therefore a “dummy” trait with no
functionality is used.

Just like in our first expression template implementation [20] the construction of
the complex expression tree could be hidden from the user by operator overloading.
Additionally, an overloaded assignment operator could perform the following steps to
evaluate the expression with an optimized rounding strategy.

1. Store the primary rounding mode at run time.

2. Use the trait Eval<T, UNKNOWN> to mix in the evaluation of the expression
tree T.

3. Restore the rounding mode at run time.

8 The trait specialization for unary expressions is implemented in the same manner.
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Note that the trait for the evaluation of the expression tree in Step 2 is parameterized
with the enumerator UNKNOWN for the rounding mode state. This is necessary because
this trait is mixed in at compile time and the stored rounding mode in Step 1 is only
visible at run time. Hence, all the recursive calls of the trait class are uninformed about
the rounding mode until they reach an operation of the expression which sets one of
the four provided rounding modes. Afterwards, the corresponding rounding mode for
the expression at run time is known at compile time.

3.2 Flexible tree structure

Our implementations in Sect. 3.1 as well as in [20] demonstrate, that expression
templates are well suited to improve the performance of the computation of interval
expressions without a disadvantage in the usability for the user. However, the devel-
oper of such a library is burdened with extra work to implement the additional classes
and traits for all necessary kinds of operations (unary, binary, ternary, ...).

This extra work could be avoided by using a new feature of the upcoming C++
standard [3] called variadic templates [12]. Listing 2 demonstrates this new technique
at a variadic tuple class which could be specialized at compile time with an arbitrary
number of (different) types.

template<typename... ELEMENTS> class Tuple;

template<> class Tuple<> {
/* zero-tuple Iimplementation */
Y

template<typename HEAD, typename... TAIL>

class Tuple : private Tuple<TAIL...> {
HEAD head;

public:

/* implementation */

Y

Listing 2 A tuple class with variadic templates, see [12].

The ellipsis after the keyword typename of the template identifier ELEMENTS in
the first line of Listing 2 labels this parameter as a template type parameter pack [12]
which could be used with an arbitrary number of arguments. With the feasibility of
“unpacking” a fixed number of arguments of the parameter pack it is possible to address
each element using recursive template specializations. The last specialization of the
tuple class in Listing 2 illustrates the separation of the first argument HEAD from the
tail of the parameter pack to realize the tuple structure. Note that this specialization of
the tuple class defines only one attribute of the type HEAD. The arguments of the tail
are addressed by recursively inheriting from the tuple class containing these arguments
until it reaches the zero-tuple implementation.

With this new concept it is now possible to replace all the different expression clas-
ses for unary, binary, ternary, ...operations by one universal class Expr<class OP,
typename... ARGS> which is derived form the class Tuple<ARGS...> to hold an
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arbitrary number of arguments for the different exchangeable operations represented
by the policy class OP. Furthermore the different specializations of the evaluation trait
Eval<typename NODE, RndState RND> for the inner nodes are replaced by
one specialization matching the new universal expression type Expr<OP, ARGS...>
and performing the following steps:

1. Create an instance of type Tuple<Interval, .., Interval> of the
size’ |ARGS].

2. Evaluate each argument of the expression by recursively applying the evaluation
trait on each single argument writing the result into the tuple of step 1.

3. Apply the tuple with all the results of the evaluated arguments to the policy OP.

Note thatin Step 2 and 3 arecursive traitclass ElementAt<int N, class T>
is used to access the reference of the Nth element of the tuple T at compile time by
using the technique of “unpacking” template arguments [12]. Naturally this new trait
specialization uses the same technique to compute the rounding mode at compile time
as described in Sect. 3.1.

The new expression class together with only two specializations of the evaluation
trait (one for intervals/leaf nodes, one for the new expression class/inner nodes) now
offers the possibility to easily extend the expression template implementation with
new operations and functions. This is done by providing a new policy class with the
desired functionality together with an implemented function returning an instance of
the new expression class distincted with this policy.

3.3 Automatic differentiation

The computation of the first or higher derivatives of a function is a common problem
in scientific computing using interval arithmetic.

The most obvious approach to compute the derivative values is the symbolic dif-
ferentiation which applies the well known rules of differentiation onto the expression
to compute a formal expression of the derivative function. This is a feasible approach
for problems with modest size but the limitation of symbolic processors is reached
quickly [8].

Another method called numerical differentiation is the approximation of the deriv-
ative with difference quotients. In practice this approach suffers from quirks of the
floating point numbers like truncation errors and roundoff errors.

Superior to these approaches is the automatic differentiation [21] which is a tech-
nique to compute the expression and the derivative together by applying the well
known rules of differentiation. The difference to symbolic differentiation is that it
propagates numerical values instead of formal expressions.

Commonly used implementations of automatic differentiation may be divided
into two categories [5], the implementations like ADOL-C [13], FADBAD [4] or
C-XSC [14] using operator overloading to compute the values of the function and

9 The size of the template type parameter pack ARGS could be computed with the command
sizeof... (ARGS) at compile time. The type Tuple<Interval, .., Interval> then could be
created by recursively “packing” [12] the template type parameter pack using template meta programming.
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the derivative together as well as special tools like ADIC [6] or TAPENADE [15]
applying the technique of source transformation to mix in the expressions to compute
the derivatives. Both of these techniques are somehow inflexible in the manner that
the operators are not overloaded for high order differentiation or additional tools are
required for the source transformation.

We, however, use the expression tree to mix in the code for the differentiation using
template meta programming techniques. The main concept is to apply the symbolic
differentiation at compile time only onto the single operations of the expression tree
to create the run time code for the automatic differentiation. This has two advantages,
we can, in theory, compute derivatives of any order and secondly the differentiation
of the operations is done with types. This means that the symbolic differentiation of
an operation with a specified order is performed only once by the compiler. After-
wards for every occurrence of this operation with this specified order the distincted
type is used.

To apply this approach onto our expression template implementation a restructur-
ing of the expression tree and a modification of the evaluation traits is necessary. The
leaf nodes of the tree are now represented by two different types Interval and Var
standing for interval constants and interval variables. Additionally the evaluation traits
matching the types Interval and Var are extended by a third template parameter'”
N of type int specifying the order of the differentiation and returning an instance of
the type

Tuple<Interval, .., Interval>

N+1

filled with the appropriate values of the variable or constant together with the corre-
sponding derivatives.

The more significant changes are related to the inner nodes of the tree. The pol-
icy classes which implement the functionality of the corresponding operation, see
Listing 1, are replaced by new policy classes which only have a descriptive behavior.
Listing 3 shows the definition of such a policy class for an interval multiplication.
A typedef of nested template specifications of this new descriptive policy classes,
applying the basic rules of differentiation, is used to define the derivative df of these
operations.

template<class U, class V> struct Mul {

// derivative: U * V'’ + U’ * VUV

typedef Add<Mul<U, typename V::df>, Mul<typename U::df, vV>> df;
Y

Listing 3 New policy class for an interval multiplication.
Additionally the descriptive policy class Df<int I, int N>, see Listing 4, is

defined to handle the relation of the operation and its arguments. Thereby, the template
parameters stands for the Nth derivative of the Tth argument.

10 Besides the template parameters specifying the type of the node and the rounding mode.
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template<int I, int N> struct Df {
typedef Df<I,N+1> df;
Y

Listing 4 Policy class describing the Nth derivative of the Ith argument.

With these descriptive policy classes it is easy to assemble the nested policy OP
describing the operation required by an inner node. The following line defines the
policy OP for a multiplication

OP := Mul<Df<0,0>,Df<1, 0>

as a multiplication of the values (Oth derivative) of the first (index 0) and second
(index 1) argument. Now the derivative of this operation

OP’'=0P: :df = Add<Mul<Df<0, 0>,Df<1,1>,Mul<Df<0,1>,Df<1l, 0>>

can be easily deduced using the type df of the policy OP at compile time.
Up to now, the policy OP has only a descriptive behavior. The functionality of this
policy is implemented by the static template function

template<class M> static Interval eval (M& m)

of the trait EvalPolicy<class P> specialized to match the descriptive policy
classes like Mul<class U, class V>or Df<int I, int N>. Thereby the
template parameter M stand for a matrix assembled by a tuple of tuples of intervals

Tuple<

Tuple<Interval, .., Interval>,

Tuple<Interval, .., Interval>

>

containing the values and required derivatives of the subexpressions of the current oper-
ation or function, see Fig. 5. The specialization of the trait EvalPolicy<class
P> for the type Df<int I, int N> then easily returns the reference of the inter-
val at the Tth row and the Nth column of the matrix m. The specializations matching
the other descriptive policies like Add<class U, class V>, Mul<class U,
class V>orSin<class U, class V> thennaturally perform the correspond-
ing operation or function on the return values of the recursive calls of the trait for the
template parameters of this type.

The evaluation of an inner node Expr<OP, ARGS..> distincted with such a
descriptive policy class OP is once again executed by the evaluation trait extended
by a third template parameter N of type int specifying the order of the differentiation
performing the following steps, see Figure 5:

1. Mix in the run time code to create an instance m of a matrix type of the size
|ARGS| x (N + 1) assembled by a tuple of tuples of intervals.
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glg’ EvalPolicy<OP>::eval(m)
h|h’ EvalPolicy<0OP: :df>::eval(m)
e
Fig. 5 Performed steps of the evaluation trait for an inner node computing the function £ (g (...) ,h(..))

together with its first derivative

2. Use the trait recursively to mix in the evaluation of the child nodes writing their
results (value and derivatives) into the matrix m.

3. Mix in the run time code to create an instance t of a tuple of intervals of the
size N + 1.

4. Mix in the run time code for the evaluation of the operation and its derivatives by
applying the matrix m onto the corresponding trait
— EvalPolicy<OP>::eval (m)

EvalPolicy<OP: :df>::eval (m)

EvalPolicy<OQOP: :df::df>::eval (m)

writing their results into the tuple t.
5. Mix in the run time code to return the tuple t.

The use of operator overloading as well as a new type Derivative<int N>
could be used to provide a domain specific language for interval arithmetic supporting
automatic differentiation, see Listing 5 as an example.

typedef Derivative<2> DF2;
auto expr = sin(Var()) - Var () / Interval (100.0, 100.0);

DF2 res = expr (Interval (0.5, 1.5));

Listing 5 Computation of interval expression sin(X) — X/[100, 100] for X = [0.5, 1.5] using automatic
differentiation up to the second derivative.

The class Derivative<int N> represents a tuple of intervals which stores the
values of the expression up to the Nth derivative. The evaluation of the constructed
expression tree expr!! is then performed by the overloaded function call operator
and assignment operator to specify the value of the variable of the expression and to
construct the required evaluation code, respectively.

11 The C++0x keyword auto is a placeholder for the type of a variable which could be deduced by a
compiler [16].
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Note that in this exemplary implementation of the automatic differentiation the
variable of an expression is represented by a single type Var. This means that the dif-
ferentiation only works with one symbolic variable. But the extension of this approach
for a partial differentiation with independent variables could easily be done by the
introduction of a new generic type such as Var<char c> to use different variables
like Var<’x’> or Var<’y'> [11]. And once again the technique to compute the
required rounding mode described in Sect. 3.1 is also used in this approach.

4 Run time and compile time measurements

Due to the fact that several of the used C++ keywords and features belong to the
upcoming C++ standard, the compiler support for this work is not very good at
the moment. To our knowledge, the GNU C++ Compiler in version 4.4 or above is the
only compiler which can handle all of the used C++0x keywords and features. Hence,
we have used the GNU compiler in version 4.4.3 with option -O2 on a Linux system
with the Intel Core 2 Quad Processor Q9550 (12M Cache, 2.83 GHz, 1333 MHz FSB)
for the measurements.

Figure 6 shows a comparison of the average run time of our new expression tem-
plate approach against our prior implementation [20] for 100,000 repetitions of interval
expressions with different length. Note that the run time of our new approach is mea-
sured for the computation of the function value as well as for the computation of the
first and second derivative whereas the run time of our prior approach is only measured
for the computation of the function value. As we can see, the new approach results in
a further performance increase for longer expressions.

To test the approach in a realistic environment we used our implementation in a
interval Newton method for the function

ET new (2. derivative)
157 ET old

w10
g
g
Q
g

5 -

O T T T T

0 5 10 15 20

number of operations

Fig. 6 Performance comparison of our new expression template approach against our prior implementa-
tion [20] for interval expressions with different length
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% —539.25 % x'? + 60033.8 x x'0 — 1.77574¢6 * x®
+1.70316€7 % x® — 5.50378¢7 * x* + 4.87225¢7 * x> — 9¢6

and measured a speedup of about 20% compared to a similar implementation in filib++.

On the other hand we noticed that the compile time suffers not much. For the case
study with the interval Newton method we have measured a increase of the compile
time of about 5.6% compared to the implementation using filib++.

5 Related work

In [11] Gil and Gutterman used expression templates and template meta program-
ming to perform symbolic differentiation at compile time whereas Aubert, Césaré and
Pironneau used expression templates to reduce the number of loops, temporaries and
copies while computing the first order partial derivatives of an expression [2].

6 Conclusion and further research

Our first attempt [20] of using expression templates for an efficient interval arith-
metic library achieved promising results and points us to a new perception of how
to implement interval arithmetic in C++. In this paper we enhanced this approach
in providing a flexible tree structure which is easy to extend with new operations
and functions. Furthermore we used template meta programming to identify only the
necessary rounding mode switches during the evaluation of an interval expression
which led to an additional performance increase compared to [20]. Additionally the
availability of an explicitly visible expression tree during compile time offered us the
possibility to mix in the required run time code to perform automatic differentiation
of arbitrary order.

Supplementary we showed how an expression template implementation as
well as their usage could benefit form new language features of the upcoming
C++ standard [3].

Further investigations are planned to improve interval arithmetic and scientific com-
puting using expression templates and template meta programming especially in the
connection to new features of the coming C++ standard.
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