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Solution to the inverse Wul� problem by means of
the enhanced semide�nite relaxation method
Abstract: We propose a novel method of resolving the optimal anisotropy function. The idea is to con-

struct the optimal anisotropy function as a solution to the inverse Wul� problem, i.e. as a minimizer for the

anisoperimetric ratio for a given Jordan curve in the plane. It leads to a nonconvex quadratic optimization

problem with linear matrix inequalities. In order to solve it we propose the so-called enhanced semide�nite

relaxation method which is based on a solution to a convex semide�nite problem obtained by a semide�nite

relaxation of the original problem augmented by quadratic-linear constraints. We show that the sequence of

�nite-dimensional approximations of the optimal anisoperimetric ratio converges to the optimal anisoperi-

metric ratio which is a solution to the inverse Wul� problem. Several computational examples, including

those corresponding to boundaries of real snow�akes, and discussion on the rate of convergence of numeri-

cal method are also presented in this paper.
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1 Introduction
The classical isoperimetric inequality L2 ≥ 4ðA relates the length L of a Jordan curve Ã in the plane ℝ2 and

the area A enclosed by Ã. The equality is attained if and only if Ã is a circle. It was apparently known to

antique mathematician Pappus from Alexandria (cf. [33]). In [35] Wul� formulated and later Dingas in [12]

rigorously proved the isoperimetric inequality in the framework of the so-called relative Finsler geometry.

Given the Jordan curve Ã in the plane and the Finsler metric function Õ, we can de�ne the total interface

energy functional

LÕ(Ã) := ∫
Ã

Õ(n) ds,
where n is the unit inward normal vector to Ã. Then an analogous anisoperimetric inequality is satis�ed for

the so-called anisoperimetric ratioΠÕ (or the isoperimetric ratio in the relative Finsler geometry given by the

metric Õ)

ΠÕ(Ã) :=
LÕ(Ã)

2

4|WÕ|A(Ã)
≥ 1.

Here |WÕ| is the area of theWul� shape corresponding to the Finsler metricÕ. The anisoperimetric inequality

has been proved and generalized to any spatial dimension (see [10]).

Knowledge of the Finsler metric functionÕ plays an essential role in many applied problems. In particu-

lar, in material science the Finsler metric function enters many crystal growth models based on Allen–Cahn

type of nonlinear parabolic partial di�erential equations (cf. [4, 11, 14, 18, 26] and other references therein).

In [3] Bellettini and Paolini derived the Allen–Cahn parabolic partial di�erential equation for the gradient

�ow for the anisotropic Ginzburg–Landau free energy

E(u) = ∫
Ø

î
2
Õ(∇u)2 +

1
î
f(u) dx,



264 | D. Ševčovič and M. Trnovská, Solution to the inverse Wul� problem

where Õ is the Finsler metric function. Here the function u ∈ [−1, 1] stands for the order parameter charac-

terizing two phases (u = ±1) of a material. The function f is a double-well potential that gives rise to a phase

separation and î ≪ 1 is a small parameter representing thickness of the interface (cf. [16]). Another impor-

tant application involving the anisotropy function arises from motion of planar interfaces in which a family

of curves is evolved in the normal direction by the velocity

v = êÃ,Õ + f,

whereêÃ,Õ is the so-called anisotropic curvature (cf. [3, 4, 11, 14, 18] andSection 2.2). Sucha�owalsohas a spe-

cial importance in anisotropic di�usion image segmentation and edge detection models (see [22, 25, 31, 34]).

Knowing underlying image anisotropy one can construct an e�cient algorithm to segment important bound-

aries in the image or even denoising it by means of a anisotropic variant of Perona–Malik model [25, 34].

However, less attention is put on understanding and resolving the Finsler anisotropy function itself.

The main purpose of this paper is to propose a novel method of determining the optimal Finsler metric

function. The main idea is to resolve the Finsler metric with respect to a given planar curve representing thus

a benchmark for underlying anisotropy. For instance, a boundary of a snow�ake can be considered as such

a benchmark curve yielding the optimal Finsler metric for its crystal growthmodel. In our approach, the idea

is to �nd the underlying anisotropy function Õ by means of minimization of the anisoperimetric ratio. Due

to properties of anisoperimetric ratio this approach can be viewed as a method of construction of the Finsler

metricÕ that minimizes the total interface energy LÕ for a given Jordan curve Ã in the plane provided that the

area of theWul� shape is prescribed. It can be also regarded as a solution to the inverseWul� problem stated

as follows: given a Jordan curve Ã, �nd an optimal anisotropy function Õ minimizing the anisoperimetric

ratio, i.e.

inf
Õ

ΠÕ(Ã).

In this paper we show how to solve the inverse Wul� problem by means of nonconvex optimization and

semide�nite relaxation methods and techniques. We will reformulate the inverse Wul� problem in terms

of an inde�nite quadratic optimization problem with linear matrix inequality constraints. It is shown that

this problem belongs to a general class of quadratic optimization problems with linear and semide�nite

constraints. In the proposed method of enhanced semide�nite relaxation, an equality constraint of the

form Ax = b are augmented by the quadratic-linear constraint AxxT = bxT
. Although it is a dependent

constraint, it turns out that semide�nite relaxation of such an augmented problem leads to a convex semi-

de�nite program (SDP) obtained as a second Lagrangian dual problem to the augmented inde�nite quadratic

optimization problem. Since the convexity of SDP is enhanced by the augmented quadratic-linear constraint,

we will refer to this method as the enhanced semide�nite relaxation method. The resulting SDP can be

e�ciently solved by using of available solvers for nonlinear programming problems over symmetric cones,

e.g. SeDuMi or SDPT3 Matlab solvers [32]. The method of the enhanced semide�nite relaxation can be also

used in other applications leading to nonconvex constrained problems.

The paper is organized as follows. In the next section we introduce necessary notation. We also recall

known facts from parametric description of planar curves, Finsler relative geometry and anisoperimetric in-

equality. Section 3 is devoted to the Fourier series representation of the inverse problem. We also provide

two useful criteria for nonnegativity of the Fourier series expansion given in terms of positive semide�nite

Toeplitz matrices. In Section 4 we introduce and investigate properties of the Fourier length spectrum of

a planar curve. We investigate its useful properties and derive important estimates. We furthermore reformu-

late the optimization problem in terms of Fourier coe�cients of the anisotropy function. Section 5 is devoted

to amethod of the enhanced semide�nite relaxation of nonconvex quadratic optimization problem.Wederive

relatively simple su�cient conditions under which the primal problem and its semide�nite relaxed problem

yield the same optimal value. Analysis of convergence of �nite-dimensional approximations is studied in

Section 6. Finally, in Section 7 we present several computational examples illustrating optimal anisotropy

functions minimizing the anisoperimetric ratio for various classes of planar curves including in particular

examples of snow�akes. We also investigate the experimental order of complexity and convergence of �nite-

dimensional approximations to the solution of the inverse Wul� problem.
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2 Preliminaries and notations

2.1 Parameterization of plane curves

Following [21, 28] we introduce a notation for parameterization of planar curves. Let Ã ⊂ ℝ2 be a C1
-smooth

curve of a �nite length, i.e. Ã can be parameterized by a C1
-mapping x : [0, 1] → ℝ2, Ã = {x(u) : u ∈ [0, 1]}

such that ‖àux(u)‖ > 0 for any u ∈ [0, 1]. Here ‖a‖ = √aTa denotes the Euclidean norm of a vector a. For
a C1

-smooth Jordan curve Ã (simple and closed curve in the plane) we will assume the parameterization x
of Ã is counterclockwise and we will impose periodic boundary conditions for x(u) at u = 0, 1. For each

point x = x(u) ∈ Ã we can de�ne the unit tangent vector t = àux/‖àux‖. The tangent angle í can be de�ned

through the relation t ≡ (t1, t2)
T = (cos í, sin í)T. The unit inward vector n then satis�es n = (− sin í, cos í)T.

The arc-length parameterization s ∈ [0, L(Ã)] is related to the �xed domain parameterization u ∈ [0, 1] by

the relation ds = ‖àux‖ du. Then t = àsx. For a C2
-smooth curve Ã we also recall the Frenet formulae àst = ên

and àsn = −êt, where ê = det(àsx, à2sx) is the curvature. For the tangent angle íwe obtain àsí = ê. Notice that

for a strictly convex curve Ã (i.e. int(Ã) is strictly convex) the sign of the curvature ê is positive and so the

tangent angle í ∈ [0, 2ð] can be used as a parameterization of Ã and dí = ê ds. The total length L(Ã) and the

areaA(Ã) enclosed by a C1
-Jordan curve Ã are given by

L(Ã) = ∫
Ã

ds and A(Ã) = −
1
2
∫
Ã

xTn ds.
2.2 Finsler metric and description of the relative geometry

In this subsection we recall basic facts and notations regarding description of the relative Finsler geom-

etry in ℝn. Following Paolini [24] and Gräser [16, Assumptions A1,A2], we consider the so-called Finsler

metric Õ : ℝn → ℝ+ which has the following properties:

(i) Õ is a positively homogeneous function of degree one, i.e. Õ(tx) = tÕ(x) for each x ∈ ℝn and t ≥ 0,
(ii) Õ is a C2

-smooth function and Õ(x) > 0 inℝn \ {0}, Õ(0) = 0,
(iii) Õ2

is a strictly convex function.

Regularity assumptions on the Finsler metric Õ have been discussed in Beneš, Hilhorst and Weidenfeld [5].

Remark 2.1. In classical de�nitions of the Finsler metric (cf. [3, 14]), absolute homogeneity property of Õ,

i.e. Õ(tx) = |t|Õ(x) for each x ∈ ℝn and t ∈ ℝ, is usually assumed. In contrast to such an assumption on

absolute homogeneity of Õ, in our de�nition we allow Õ to belong to a larger class of functions. In partic-

ular, we consider a class of anisotropy functions having odd number of folds (cf. [9], see also [16, 19]). For

example, a three-fold anisotropy function depicted in Figure 1, can be found as a shape of the (111) facet of
Pb particles, prepared and equilibrated on Cu(111) under ultrahigh vacuum conditions (cf. [1])

Then the Wul� shapeWÕ and the Frank diagram FÕ corresponding to the Finsler metric Õ can be de�ned as

follows:

WÕ = ⋂
‖n‖=1{x ∈ ℝn : −xTn ≤ Õ(n)}, FÕ = {x ∈ ℝn : Õ(−x) ≤ 1}. (2.1)

TheWul� shapeWÕ is always a convex set. In the caseÕ(x) = ‖x‖ the Wul� shape and the Frank diagram are

just unit balls inℝn. If we restrict our attention to the planeℝ2, n = 2, we can provide a simpli�ed character-

ization of the Finsler metric Õ by means of the real anisotropy function ò = òÕ where

òÕ(í) = Õ(n), where n = (− sin í, cos í)T, (2.2)

and vice versa, with regard to (2.1), the Finsler metric Õ can be constructed from ò as follows:

Õò(−x) = ò(í)‖x‖, where

x
‖x‖ = −n for x ̸= 0,

Õò(0) = 0.
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Figure 1. (a) the Wul� shape and Frank diagram for the anisotropy function ò(í) = 1 + ù cos(mí) for the three-fold
anisotropym = 3, (b) hexagonal anisotropym = 6, ù = 1/(m2 − 1), (c) a parametric curve (2.3) with tails form = 3, ù = 1/4.

The anisotropy function ò : ℝ → ℝ+0 is assumed to be a 2ð-periodic smooth function of the tangent angle í.
If we restrict our attention to the class of ð-periodic anisotropy functions, then the corresponding Finsler

metric Õò is an absolute homogeneous function.

In terms of the anisotropy function ò, the Wul� shape Wò and the Frank diagram can be described as

follows:

Wò = ⋂
í∈[0,2ð]

{x ∈ ℝ2 : −xTn ≤ ò(í)}, Fò = {x = −rn : 0 ≤ r ≤
1

ò(í)
},

where t = (cos(í), sin(í))T andn = (− sin(í), cos(í))T are unit tangent and inwardnormal vectors. Since àít = n
and àín = −t, its boundary àWò can be parameterized as

àWò = {x(í) : x(í) = −ò(í)n + ò�(í)t, í ∈ [0, 2ð]} (2.3)

provided that the Frank diagram Fò is strictly convex, i.e. Õò is strictly convex and smooth. Notice that the

right hand side of (2.3) is the set of all Cahn–Ho�man vectors of the form x = −∇Õò(n), ‖n‖ = 1.
As dí = ê ds, we have t = àsx = êàíx and à2sx = àst = ên.

Since àíx = (ò + ò��)t − 2ò�n for àWò, we obtain

ê = det(àsx, à2sx) = ê2(ò + ò��)

and so the curvature ê of àWò is given by ê = [ò(í) + ò��(í)]−1 (cf. [29]). Hence the Wul� shape Wò is strictly

convex if and only if ò + ò�� > 0. If we de�ne the anisotropic curvature by the relation êò := [ò(í) + ò��(í)]ê,
then êò ≡ 1 on àWò.

Finally, the area |Wò| of the Wul� shape entering the anisoperimetric ratio can be calculated as follows:

|Wò| = −
1
2

∫
àWò

xTn ds = 1
2

∫
àWò

ò(í) ds =
1
2

2ð

∫
0

ò(í)[ò(í) + ò��(í)] dí =
1
2

2ð

∫
0

|ò(í)|2 − |ò�(í)|2 dí (2.4)

because dí = ê ds = [ò + ò��]−1 ds. Clearly, if ò ≡ 1, then the boundary àW1 ofW1 is a circle with the radius 1,
and |W1| = ð.

In Figure 1 we show typical examples of the anisotropy functions with three-fold and hexagonal symme-

tries. We consider a class of anisotropy functions of the form ò(í) = 1 + ù cos(mí), where m ∈ ℕ (cf. [9, 19]).

The parameter ù ≥ 0 represents the so-called strength of anisotropy. Clearly, ò ≥ 0, ò + ò�� ≥ 0 provided that

ù ≤ 1/(m2 − 1). In Figure 1 (c) we plot the curve àWò given by (2.3) for the casem = 3 and ù = 1/4 > 1/(m2 − 1).
In such a case ò(í) + ò��(í) becomes negative for some angles í and àWò is no longer a Jordan curve. Hence

the condition ò + ò�� ≥ 0 is crucial for the analysis of a Wul� shape.
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2.3 Anisoperimetric ratio and anisoperimetric inequality

In [29] Yazaki and the �rst author proved the mixed anisoperimetric inequality

Lò(Ã)Lì(Ã)
A(Ã)

≥ Kò,ì, whereKò,ì = 2√|Wò||Wì| + Lò(àWì). (2.5)

It has been shown for a C2
-smooth Jordan curve Ã and an arbitrary pair of anisotropy functions ò, ì ∈ K

belonging to the cone of 2ð-periodic functions that

K = {ò ∈ W2,2
per(0, 2ð) : ò(í) ≥ 0, ò(í) + ò��(í) ≥ 0, for a.e. í ∈ [0, 2ð]}. (2.6)

The minimum in inequality (2.5) is attained for a curve Ã which is a certain convex combination of bound-

aries àWò and àWì of Wul� shapes (cf. [29, Theorem 2]). Here Wr,2
per(0, 2ð) denotes the Sobolev space of all

real-valued 2ð-periodic functions having their distributional derivatives square integrable up to the order r.
This is a Hilbert space when endowed by the norm

‖ò‖r,2 = (
∞

∑
k=0

(1 + k2r)|òk|
2)

12
.

By {òk ∈ ℂ : k ∈ ℤ}we have denoted the set of complex Fourier coe�cients of the function ò (see (3.1) below).

In the particular case when ì = ò ∈ K we have

Kò,ò = 2|Wò| + Lò(àWò) = 4|Wò|

because

Lò(àWò) = ∫
àWò

ò ds = 2|Wò|

(see (2.4)). Therefore, as a consequence of (2.5) we obtain the anisoperimetric inequality

Πò(Ã) ≡
Lò(Ã)

2

4|Wò|A(Ã)
≥ 1. (2.7)

The equality is attained if and only if Ã is homothetically similar to àWò. Note that both (2.5) and its special

case (2.7) are generalizations of the anisoperimetric inequality by Wul� [35] (see also [10]) to the case

of 2ð-periodic anisotropy functions, i.e. for a larger class of positive homogeneous Finsler metric function.

It is worth noting that the area |Wò| of a Wul� shape satis�es

0 ≤ |Wò| =
Lò(Ã)

2

4Πò(Ã)A(Ã)
≤

Lò(Ã)
2

4A(Ã)
< ∞

for any anisotropy function ò ∈ K and a Jordan curve Ã.
For a given smooth Jordan curve Ã in the plane, our goal is to �nd the optimal anisotropy function ò

minimizing the anisoperimetric ratio

inf
ò∈K

Πò(Ã). (2.8)

It is useful to emphasize that the following homogeneity conditions hold true:

L tò(Ã) = tLò(Ã), |Wtò| = t2|Wò|, Πtò(Ã) = Πò(Ã) (2.9)

for any ò ∈ K and all t > 0. The anisoperimetric ratio is therefore a homogeneous function of the zero-th order

with respect to positive scalar multiple of the anisotropy function ò. In order to solve problem (2.8) uniquely

with respect to scalar multiples of ò, instead of (2.8), we can solve the maximization problem

sup |Wò| subject to Lò(Ã) = L(Ã), ò ∈ K. (2.10)

It means that the goal is to maximize the area of the Wul� shape under the constraint that the interface

energy Lò(Ã) is �xed to the constant length L(Ã). The choice of the scaling constraint Lò(Ã) = L(Ã) is

quite natural because in the case Ã is a circle, the anisotropy function ò ∈ K maximizing |Wò| under the
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constraint Lò(Ã) = L(Ã) is just unity, ò ≡ 1. It should be also obvious that, up to a positive multiple of ò,
a solution ò to the maximization problem (2.10) is also a solution to the minimal interface energy problem

inf Lò(Ã) subject to |Wò| = 1, ò ∈ K. (2.11)

Hence the problem of resolving theminimizer ò for the anisoperimetric ratio can be also viewed as a problem

of �nding the anisotropy function minimizing the total interface energy.

3 Fourier series representation
Let ò : ℝ → ℝ be a 2ð-periodic function, ò ∈ W2,2

per(0, 2ð). It can be represented by its complex Fourier series

ò(í) =
∞

∑
k=−∞

òke
ikí, (3.1)

where

òk =
1
2ð

2ð

∫
0

e−ikíò(í) dí

are complex Fourier coe�cients. Since ò(í) is assumed to be a real function, we have ò−k = ò̄k for any k ∈ ℤ
and ò0 ∈ ℝ. Notice that for ò ∈ W2,2

per(0, 2ð) we have ò(í) + ò��(í) = ∑∞
k=−∞(1 − k2)òke

ikí
in the norm of the

Lebesgue space L2(0, 2ð) = W0,2
per(0, 2ð).

It follows from (2.4) that the area |Wò| of theWul� shape can be expressed in terms of Fourier coe�cients

as follows:

|Wò| =
1
2

2ð

∫
0

|ò|2 − |ò�|2 dí =
1
2

2ð

∫
0

∞

∑
k,m=−∞

ò̄mòk(1 −mk)ei(k−m)í dí

= ð
∞

∑
k=−∞

(1 − k2)|òk|
2 = ðò2

0 + 2ð
∞

∑
k=1

(1 − k2)|òk|
2. (3.2)

Similarly, we can express the interface energy

Lò(Ã) = ∫
Ã

ò(í) ds =
∞

∑
k=−∞

òk ∫
Ã

eikí ds = c0ò0 + 2ℜ
∞

∑
k=1

̄ckòk, (3.3)

where the complex coe�cients

ck = ∫
Ã

e−ikí ds, k ∈ ℤ,

form the so-called Fourier length spectrum of the curve Ã (see Section 4).

3.1 Criteria for nonnegativity of Fourier series

In this sectionwe recall twouseful criteria guaranteeingnonnegativity of complexFourier series. Bothof them

are based on positive de�niteness of certain Hermitian matrices related to the complex Fourier coe�cients.

For a transpose of the matrix A we will henceforth write AT
. For a complex conjugate of a complex

matrix H we will write H∗
, i.e. H∗ = H̄T

. The sets of real N ×N symmetric and complex Hermitian ma-

trices are denoted by SN and HN
, respectively, i.e. SN = {A ∈ ℝN×N : A = AT}, HN = {H ∈ ℂN×N : H = H∗}.

We will write A ⪰ 0 (A ≻ 0) if a real symmetric matrix or a complex Hermitian matrix A is positive semide�-

nite (positive de�nite). That is, A ⪰ 0 (A ≻ 0) if xTAx ≥ 0 (xTAx > 0) for all x ∈ ℝN, x ̸= 0, if the real case and

if z∗Az ≥ 0 (z∗Az > 0) for all z ∈ ℂN, z ̸= 0, if the complex case.
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An easy criterion is based on the Bochner Theorem on positive-de�nite real functions. Given Fourier

series representation (3.1) of a smooth 2ð-periodic function ò : ℝ → ℝ, we can construct the following

Toeplitz circulant matrix:

Q = Toep(ò0, ò1, . . . , òN−1) = (

ò0 ò̄1 . . . ò̄N−1

ò1 ò0 . . . ò̄N−2
.

.

.

.

.

.

.
.
.

.

.

.

òN−1 òN−2 . . . ò0

) , (3.4)

i.e. Qpq = òp−q, where ò−k = ò̄k. The matrix Q is Hermitian, Q ∈ HN
.

Proposition 3.1 ([13, Theorem 1.8]). Let ò : ℝ → ℝ be a smooth 2ð-periodic function. Then ò(í) ≥ 0 for any
í ∈ ℝ if and only if the Toeplitz matrix Q(N) = Toep(ò0, ò1, . . . , òN−1) ⪰ 0 is positive semide�nite for anyN ∈ ℕ.

This is a relatively simple criterion. Its proof is rather straightforward and it is based on a similar

argument as the one of Proposition 4.1. Unfortunately, it includes in�nitely many conditions Q(N) ⪰ 0
for any N ∈ ℕ even in the case Fourier series expansion (3.1) is �nite. Indeed, let us consider the func-

tion ò(í) = 1 − a cos(í). Clearly, we have ò0 = 1, ò±1 = −a/2, ò±k = 0 for k ≥ 2. Then for any �niteN there exists

a number a > 1 such that Toep(1,−a/2, 0, . . . , 0) ∈ HN
is a positive semide�nite matrix but the function ò(í)

attains negative values. On the other hand, whenN → +∞, then the range for a is being restricted to [−1, 1],
i.e. ò(í) ≥ 0.

However, the condition ò(í) + ò��(í) ≥ 0 is crucial for avoiding of sel�ntersection of the parametric

description (2.3) of the boundary àWò of the Wul� shape. In [20] McLean derived another useful criterion

for nonnegativity of a partial �nite Fourier series sum. It is again formulated in terms of positive semidef-

inite Hermitian matrices. This criterion is a consequence of the classical Riesz-Fejer factorization theorem

(cf. [27, pp. 117–118]) and it reads as follows:

Proposition 3.2 ([20, Proposition 2.3]). Let ò0 ∈ ℝ, òk = ò̄−k ∈ ℂ for k = 1, . . . , N − 1. Then the �nite Fourier
series expansion ò(í) = ∑N−1

k=−N+1 òke
ikí is a nonnegative function ò(í) ≥ 0 for í ∈ ℝ if and only if the set F ⊂ HN

is nonempty, where

F = {F ∈ H
N : F ⪰ 0,

N

∑
p=k+1

Fp,p−k = òk for each k = 0, 1, . . . , N − 1}.

3.2 Reformulation as a nonconvex quadratic optimization problem with
semide�nite constraints

In order to compute the optimal anisotropy function ò as a limit of its �nite Fourier modes approximation,

we introduce the �nite-dimensional subconeKN
ofK:

K
N = {ò ∈ K : ∃(ò0, ò1, . . . , òN−1)

T ∈ ℂN, ò(í) =
N−1

∑
k=−N+1

òke
ikí}, (3.5)

whereò−k = ò̄k.Wewill identify the coneKN
with a cone inℂN consisting of all vectors (ò0, ò1, . . . , òN−1)

T ∈ ℂN

representing functions of the form

ò(í) =
N−1

∑
k=−N+1

òke
ikí ∈ K.

Then, for ò ∈ KN
andN ∈ ℕ, we have

|Wò| = ðò2
0 + 2ð

N−1

∑
n=1

(1 − n2)|òn|
2, Lò(Ã) = c0ò0 + 2ℜ

N−1

∑
n=1

̄cnòn.

GivenN ∈ ℕ, our purpose is to solve the following �nite-dimensional optimization problem:

max |Wò| subject to Lò(Ã) = L(Ã), ò ∈ K
N. (3.6)
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An optimal solution to (3.6) will be denoted by òN
. It should be emphasize that the constraint ò ∈ KN

ensures

ò(í) + ò��(í) ≥ 0 for ò = òN.

Without such a constraint the optimum of maxò{|Wò| : Lò(Ã) = L(Ã), ò(í) = ∑N−1
k=−N+1 òke

ikí} may have kinks

and sel�ntersections of the boundary àWò of the optimal Wul� shape as it is shown in Figure 1 (c).

By Proposition 3.2 and taking into account that ò(í) + ò��(í) = ∑N−1
k=−N+1(1 − k2)òke

ikí
for any ò ∈ KN

,

we end up with the following representation of the coneKN
:

Lemma 3.1. We have ò ∈ KN if and only if there exist F, G ∈ HN, F, G ⪰ 0, such that
N

∑
p=k+1

Fp,p−k = òk,
N

∑
p=k+1

Gp,p−k = (1 − k2)òk for any k = 0, . . . , N − 1.

Finally, we will rewrite problem (3.6) in terms of real and imaginary parts xR, xI ∈ ℝN of a solution vec-

tor ò ∈ KN
. For this purpose, we decompose ò into its real and imaginary parts:

x = (
xR

xI) ≡ [xR; xI] ∈ ℝn, n = 2N, and òk = xR
k + ixI

k,

and introduce the real n × nmatrix P0 as follows:

P0 = diag(p0, p1, . . . , pN−1, q0, q1, . . . , qN−1), (3.7)

where p0 = q0 = −ð, pk = qk = 2ð(k2 − 1) for k ≥ 1. We also decompose the Fourier length spectrum {ck : k ≥ 0}
as follows: ák + iâk = 2ck, k ≥ 1, á0 = c0, â0 = 0, where á = (á0, . . . , áN−1)

T, â = (â0, . . . , âN−1)
T ∈ ℝN. Next we

de�ne a 2 × n real matrix A and the vector b ∈ ℝ2 as follows:

A = (
áT âT

0TN eT1
) , b = (

L(Ã)
0

) , (3.8)

where 0N = (0, . . . , 0)T ∈ ℝN and e1 = (1, 0, . . . , 0)T ∈ ℝN. With help of the semide�nite representation of the

coneKN
from Lemma 3.1 we can reformulate (3.6) as follows:

min xTP0x subject to

{{{{{{
{{{{{{
{

Ax = b, x ≡ [xR; xI],
N

∑
p=k+1

Fp,p−k = xR
k + ixI

k,
N

∑
p=k+1

Gp,p−k = (1 − k2)(xR
k + ixI

k), k = 0, . . . , N − 1,

F, G ⪰ 0.

(3.9)

The equation from the second row in Ax = b guarantees xI
0 = 0, i.e. ò0 ∈ ℝ. It is worth noting that the

matrix P0 is inde�nite and this is why problem (3.9) is a nonconvex optimization problem with linear matrix

inequality constraints. In Section 5 we will investigate a general class of nonconvex optimization problems

of the form (3.9) and we will show that (3.9) can be solved by means of the enhanced semide�nite relaxation

method based on the second Lagrangian dual to (3.9) augmented by a quadratic-linear constraint.

4 The Fourier length spectrum of a curve
In this section, we introduce a notion of the so-called complex Fourier length spectrum. It is related to Fourier

series expansion of a quantity depending on the tangent angle í of the unit tangent vector t = (t1, t2)
T
.

De�nition 4.1. LetÃ be aC1
-smooth curve in the plane. By the complex Fourier length spectrumofÃwemean

the set {cp : p ∈ ℤ} of all Fourier complex coe�cients de�ned as follows:

cp = ∫
Ã

e−ipí ds = ∫
Ã

(t1 − it2)
p ds,

where t = (t1, t2)
T = (cos(í), sin(í))T is the unit tangent vector to Ã.
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Example 4.1. For example, if Ã is a circle with a radius r > 0, then we have c0 = 2ðr and ck = 0 for each k ̸= 0.
Indeed,Ã can be parameterized by x1(u) = r cos(2ðu), x2(u) = r sin(2ðu). So í = ð/2 + 2ðu. Since ds = 2ðr du,
we have ck = 0 for each k ̸= 0.

Example 4.2. Let us consider a “capsule” curve consisting of two horizontal line segments with length l > 0
connected by half-arcs with a radius r > 0 (see Figure 4). Then c0 = L(Ã) = 2l + 2ðr and c2k = 2l, c2k+1 = 0
because the tangent angle í ∈ {0, ð} on the line segments and integration of e−ikí over the union of remaining

half-arcs yields zero for any k ̸= 0.

Concerning properties of the Fourier length spectrum we can formulate the following result.

Proposition 4.1. LetÃ be aC1-smooth curve in the plane. Then the complex Fourier length spectrum {cp : p ∈ ℤ}
satis�es:
(i) c0 = L(Ã) > 0 and ̄cp = c−p. If Ã is a closed (Jordan) curve, then c±1 = 0.
(ii) For any N ∈ ℕ, the Toeplitz circulant matrix R = Toep(c0, c1, . . . , cN−1), i.e. Rpq = cp−q, is a positive semi-

de�nite complex Hermitian matrix.

Proof. (i) We have

c±1 = ∫
Ã

(t1 ∓ it2) ds = ∫
Ã

às(x1 ∓ ix2) ds = 0

because Ã is a closed curve and (t1, t2)
T = t = àsx = (àsx1, àsx2)

T
. The rest of the statement (i) directly follows

from the de�nition of the Fourier length spectrum.

In order to prove the statement (ii) we calculate

z∗Rz =
N

∑
k,m=1

z̄kck−mzm = ∫
Ã

N

∑
k,m=1

z̄k exp(−i(k −m)í)zm ds

= ∫
Ã

N

∑
k,m=1

z̄k exp(−ikí)zm exp(imí) ds = ∫
Ã

!!!!!!!!!

N

∑
k=1

zk exp(ikí)
!!!!!!!!!

2

ds ≥ 0

for any vector z ∈ ℂN. Hence R ⪰ 0, as claimed.

For a general positive semide�nite Toeplitz circulant complex matrix we can estimate o�-diagonal terms by

the diagonal ones.

Proposition 4.2. Let c0, c1, . . . , cN−1 ∈ ℂ. Assume the complex Toeplitz circulant matrixR = Toep(c0, c1, . . . , cN−1)
is positive semide�nite. Then:
(i) |ck| ≤ c0 for any k ∈ ℤ, |k| ≤ N − 1.
(ii) If, in addition, c1 = 0, then |c2k|

2 + |c2k+1|
2 ≤ c20 for any k ≤ N/2 − 1, and

N−1

∑
p=2

|cp|
2

p2 − 1
≤

c20
2
(1 −

1
N
). (4.1)

Proof. Recall that anN ×NHermitian matrix R is positive semide�nite if and only if the mainK × K subma-

trixW,Wpq = Rnpnq , is positive semide�nite for any index subset {n1, . . . , nK} ⊆ {1, . . . , N} (see e.g. [37, Theorem
6.2, p. 160]). To prove statement (i) it is su�cient to consider a 2 × 2matrixW corresponding to the index sub-

set {1, k + 1}, i.e.W = ( c0 ̄ck
ck c0 ). SinceW ⪰ 0, we have |ck| ≤ c0 for each k = 1, . . . , N − 1.

In order to prove statement (ii) we consider the index subset {1, 2k + 1, 2k + 2}. Then the corresponding

3 × 3matrixW has the form

W = (
c0 ̄c2k ̄c2k+1
c2k c0 ̄c1
c2k+1 c1 c0

) = (
c0 ̄c2k ̄c2k+1
c2k c0 0
c2k+1 0 c0

)

because c1 = 0. As 0 ≤ det(W) = c0(c
2
0 − |c2k|

2 − |c2k+1|
2), we obtain the estimate

|c2k|
2 + |c2k+1|

2 ≤ c20 .
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To prove inequality (4.1) forN even, we have

N−1

∑
p=2

|cp|
2

p2 − 1
=

N/2−1

∑
k=1

|c2k|
2

(2k)2 − 1
+

|c2k+1|
2

(2k + 1)2 − 1
≤

N/2−1

∑
k=1

c20
(2k)2 − 1

=
c20
2
(1 −

1
N − 1

).

ForN odd, we can apply the above inequality as for an even dimensionN − 1 to obtain

N−1

∑
p=2

|cp|
2

p2 − 1
=

N−2

∑
p=2

|cp|
2

p2 − 1
+

|cN−1|
2

(N − 1)2 − 1
≤

c20
2
(1 −

1
N − 2

+
2

(N − 1)2 − 1
) =

c20
2
(1 −

1
N
).

Applying Proposition 4.2 for the case of the Fourier length spectrumof a Jordan curve,we obtain the following

result.

Corollary 4.1. Let Ã be a C1-smooth Jordan curve in the plane. Then the complex Fourier length spectrum
{cp : p ∈ ℤ} satis�es inequality (4.1) for anyN ∈ ℕ and this estimate is optimal.

By optimality of the estimate we mean that there exists an r-parameterized family of Jordan curves for which

the left hand side of (4.1) converges to c20 /2 asN → ∞ and r → 0.

Proof. The proof follows directly from Propositions 4.1 and 4.2. To prove optimality of (4.1), let us consider

a “capsule” like curve consisting of two horizontal line segments of the length l > 0 connected by half-arcs

with a radius r > 0 from Example 4.1 (see Figure 4). Then c0 = L(Ã) = 2l + 2ðr and c2k = 2l, c2k+1 = 0. The left

hand side of inequality (4.1) is therefore

N−1

∑
p=2

|cp|
2

p2 − 1
= 4l2

N/2−1

∑
k=1

1
(2k)2 − 1

= 2l2(1 −
1

N − 1
)

and it tends to the value c20 /2 asN → ∞ and r → 0.

In the subsequent sections we will prove that inequality (4.1) plays an essential role in the proof of the fact

that the enhanced semide�nite relaxation method for solving the inverse Wul� problem indeed yields the

optimal solution for the anisoperimetric function ò.

Proposition 4.3. Let P0 = diag(p0, p1, . . . , pN−1, q0, q1, . . . , qN−1) be an n × n real matrix, n = 2N. Assume p0 < 0,
q0 ≤ 0, p1 = q1 = 0 and pk, qk > 0 for k = 2, . . . , N − 1. Let A be a 2 × n real matrix

A = (
áT âT

0TN eT1
),

where á = (á0, á1, á2, . . . , áN−1)
T, â = (â0, â1, â2, . . . , âN−1)

T ∈ ℝN are such that á1 = â1 = 0. Assume ý > −q0 ≥ 0
and

N−1

∑
k=2

(
á2
k

pk
+
â2
k

qk
) ≤

á2
0

−p0
−
1
ý
−

â2
0

q0 + ý
. (4.2)

Then the matrix P0 + ýATA is positive semide�nite.

Proof. We note that we can delete zero columns and rows from the matrix P0 + ýATA. Since á1 = â1 = 0, the
matrixP0 + ýATA ⪰ 0 if and only if the squeezed (n − 2) × (n − 2)matrix P̃0 + ýÃTÃ ⪰ 0 is positive semide�nite

in which the second andN + 2 zero columns and rows of P0 + ýATAwere omitted. The matrix P̃0 + ýÃTÃ has

the following structure:

P̃0 + ýÃTÃ = (
p0 + ýá2

0 ýá0v
T

ýá0v D + ývvT
) ,

where v = (á2, . . . , áN−1, â0, â2, . . . , âN−1)
T ∈ ℝN−3

.

The main diagonal submatrix D = diag(p2, . . . , pN−1, q0 + ý, q2, . . . , qN−1) is positive de�nite provided

that ý > −q0 ≥ 0. Hence the block submatrixD + ývvT ≻ 0. By using the Schur complement property, we con-

clude that P̃0 + ýÃTÃ ⪰ 0 if and only if the Schur complement is nonnegative, i.e.

0 ≤ p0 + ýá2
0 − ý2á2

0 v
T(D + ývvT)−1v. (4.3)



D. Ševčovič and M. Trnovská, Solution to the inverse Wul� problem | 273

By using the Morrison–Sherman formula we obtain

(D + ývvT)−1 = D−1 −
ý

1 + ýã
D−1vvTD−1,

where we have denoted ã = vTD−1v ≥ 0. Hence condition (4.3) is equivalent to the inequality

0 ≤ p0 + ýá2
0 − ý2á2

0(ã −
ýã2

1 + ýã
) =

p0 + ýp0ã + ýá2
0

1 + ýã
.

Since p0 < 0, solving the above inequality for ã = vTD−1v yields the condition vTD−1v ≤ á2
0/(−p0) − 1/ý, which

is indeed condition (4.2).

5 Enhanced semide�nite relaxation method

5.1 General nonconvex quadratic optimization problem with linear matrix
inequality constraints

In this subsection, our goal is to propose and investigate the so-called enhanced semide�nite relaxation

method for solving the following optimization problem:

min xTP0x + 2qT0 x + r0 subject to

{{{{{{
{{{{{{
{

xTPlx + 2qTl x + rl ≤ 0, l = 1, . . . , d,

Ax = b,

H0 +
n

∑
j=1

xjHj ⪰ 0,
(5.1)

where x ∈ ℝn is the variable and the data: P0, Pl ∈ Sn are n × n real symmetric matrices, q0, ql ∈ ℝ
n
, r0, rl ∈ ℝ,

A is an m × n real matrix, b ∈ ℝm and H0, H1, . . . , Hn ∈ Hk
, i.e. H0, H1, . . . , Hn are k × k complex Hermitian

matrices. The last constraint in (5.1) is a complex linear matrix inequality (LMI). It can be easily transformed

into real LMI using the following equivalence:

H ⪰ 0 ⇐⇒ H̃ ≡ (
ℜH −ℑH
ℑH ℜH

) ⪰ 0. (5.2)

Regarding the input matrices P0, Pl, l = 1, . . . , d, and A we will henceforth assume the following assumption:

Assumption (A). We have Pl ⪰ 0 for l = 1, . . . , d and there exists a realm × nmatrix V such that

P0 +
1
2
(VTA + ATV) ⪰ 0.

Remark 5.1. Assumption (A), in particular the conditionP0 +
1
2 (V

TA + ATV) ⪰ 0 for someV includes a special

case when P0 is positive semide�nite on the null space {x : Ax = 0}. In such a case, it follows from the Finsler

Theorem (cf. [15]) that the matrix P0 + ýATA ⪰ 0 for each ý > 0 su�ciently large. Assumption (A) is then satis-

�ed if we setV = ýA. However, assumption (A) ismore general. Indeed, let us consider the following example:

P0 = (
0 −1
−1 1

) , A = (0 1).

Then there exists no real number ý ≥ 0 such that

P0 + ýATA = (
0 −1
−1 1 + ý

) ⪰ 0.

However, for the choice of V = (2 0) we have

P0 +
1
2
(VTA + ATV) = (

0 0
0 1

) ⪰ 0.
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In what follows, under assumption (A), we will show that problem (5.1) can be solved by means of

Lagrangian duality and relaxation with a convex semide�nite programming (SDP) problem. Note that for

the case A = 0,Hj = 0, j = 0, 1, . . . , n, and d = 1 the method was proposed and analyzed in [8, Appendix C.3].

In what follows, we will propose a relaxed SDP that includes LMI of the general form

H0 +
n

∑
j=1

xjHj ⪰ 0.

Moreover, we will augment SDP (5.1) with the additional quadratic-linear constraint AxxT = bxT
which

follows from Ax = b.

5.2 Augmented problem and enhanced semide�nite relaxation

Clearly, problem (5.1) is equivalent to the following augmented problem with one additional constraint:

min xTP0x + 2qT0 x + r0 subject to

{{{{{{
{{{{{{
{

xTPlx + 2qTl x + rl ≤ 0, l = 1, . . . , d,

Ax = b, AxxT = bxT,

H0 +
n

∑
j=1

xjHj ⪰ 0.

(5.3)

We will show that the additional constraint AxxT = bxT
turns into a linear constraint AX = bxT

between

the relaxed matrix X ⪰ xxT
and the vector x. Furthermore, we will prove that the original problem and its

second Lagrangian dual yield the same optimal values provided that the matrices Pl, l ≥ 0, and A satisfy

assumption (A). In particular, if P0 + ýATA ⪰ 0 for ý ≫ 1, then with regard to Remark 5.1 the value func-

tion x Ü→ xTP0x + 2qT0 x + r0 is convex on the a�ne subspace {x : Ax = b} of the feasible set of the semide�nite

relaxed problem. This is why we will henceforth refer a method when additional constraint AxxT = bxT
is

added to Ax = b to as the enhanced semide�nite relaxation method.
The idea of semide�nite relaxation of (5.3) is rather simple and it consists in relaxing the equalityX = xxT

by the semide�nite inequality X ⪰ xxT
(cf. [8, Appendix B]). Although the form of the relaxed problem can

be deduced from (5.3), we will still present a systematic way of its derivation based on construction of the

second Lagrangian dual SDP to (5.3).

5.3 The �rst and second Lagrangian dual problems

Next, we construct the �rst and second Lagrange dual problem for the augmented problem (5.3). To this end,

let us consider the following Lagrangian function L1 = L1(x; ë, u, V, Z):

L
1 = xTP0x + 2qT0 x + r0 +

d

∑
l=1

ël[x
TPlx + 2qTl x + rl] + uT(Ax − b) + tr(VT(AxxT − bxT)) − tr(ZT(H̃0 +

n

∑
j=1

xjH̃j)),

where 0 ≤ ë ∈ ℝd, u ∈ ℝn, V is an m × n real matrix and Z is a 2k × 2k real symmetric positive semide�-

nite matrix. The tuple (ë, u, V, Z) represents the Lagrange multipiers to problem (5.3). Here we have used

a real version of complex LMI based on equivalence (5.2). The dual problem can be obtained by analyzing

infx L
1(x; ë, u, V, Z). In the appendix we show by using straightforward calculations and applying properties

of the Schur complement, the Lagrangian dual problem (5.3) has the form:

max ã subject to

{{{{{{
{{{{{{
{

M0 +
d

∑
l=1

ëlMl +M∗(V, u) −
n

∑
j=0

zjNj − ãN0 ⪰ 0,

Z ⪰ 0, ë ≥ 0,

zj = tr(Z
TH̃j), j = 0, 1, . . . , n.

(5.4)
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Here we have denoted

Mj = (
Pl ql
qTl rl

) , M∗(V, u) =
1
2
(
VTA + ATV ATu − VTb
uTA − bTV −2uTb

) ,

N0 = (
0n×n 0n
0Tn 1

) , Nj =
1
2
(
0n×n ej
eTj 0

) ,

where ej is the j-th unit vector inℝn. Note that problem (5.4) is closely related to the so-called Shor-relaxation

method (see [30] for details).

We proceed by constructing the second Lagrangian dual problem. Let us consider problem (5.4).

We de�ne its Lagrangian function L2(ã, ë, Z, V, u, z;W, â, X̃, á) as follows:

L
2 = ã + tr(ZW) + ëâ + tr(X̃(M0 +

d

∑
l=1

ëlMl +M∗(u, V) −
n

∑
j=0

zjNj − ãN0)) +
n

∑
j=0

áj(zj − tr(ZH̃j))

with dual variables

W ⪰ 0, X̃ = (
X x
xT ÿ

) ⪰ 0, â ≥ 0, áj ∈ ℝ, j = 0, 1, . . . , n.

By â ≥ 0 we mean âj ≥ 0 for each j = 0, . . . , N − 1. The dual problem to (5.4) can be obtained by solving the

following problem:

sup
ã,ë,Z,V,u,z

L
2(ã, ë, Z, V, u, z;W, â, X̃, á).

After straightforward calculations (see the appendix for details) the second Lagrangian dual to SDP (5.3) then

reads as follows:

min tr(P0X) + 2qT0 x + r0 subject to

{{{{{{
{{{{{{
{

tr(PlX) + 2qTl x + rl ≤ 0, l = 1, . . . , d,

Ax = b, AX = bxT, X ⪰ xxT,

H0 +
n

∑
j=1

xjHj ⪰ 0.

(5.5)

Henceforth, we will refer to (5.5) as the enhanced semide�nite relaxation of problem (5.1). Notice that the

second Lagrangian dual to (5.1) is just problem (5.5) without the constraint AX = bxT
.

Remark 5.2. Instead of the additional constraintAxxT = bxT
in (5.3) we could alternatively use the simpli�ed

constraint

tr(ATAxxT) = xTATAx = bTAx

and consider the augmented problem (5.3) in which the constraint AxxT = bxT
is replaced by the equa-

tion xTATAx = bTAx. Using a similar technique as before we can construct the Lagrange dual which is just

optimization problem (5.4) withV = íAwhere í ∈ ℝ. Then the second Lagrangian dual problem has the form

of optimization problem (5.5) in which the constraint AX = bxT
is replaced by tr(ATAX) = bTAx. In such

a case, assumption (A) has to be modi�ed by taking constraint V = ýA.

Problem (5.5) can be viewed as the semide�nite relaxation (5.3). Replacing the condition X ⪰ xxT
in (5.5)

withX = xxT
would lead to a problem equivalent to problem (5.3). Such a relaxation is often used in solving

nonconvex quadratic problems or combinatorial optimization problems (see [2, 6, 7, 23]).

Remark 5.3. It is worth noting that problem (5.5) has no interior point unless A = 0. Indeed, suppose that

there are X and x feasible for (5.5) and satisfying X ≻ xxT
. So there exists a positive de�nite matrix D such

that X = xxT + D. But then bxT = AX = AxxT + AD = bxT + AD. Hence AD = 0 and since D is nonsingular,

we obtain A = 0. A similar property holds for problem (5.5) in which the constraint AX = bxT
is replaced by

tr(ATAX) = bTAx (see Remark 5.2). Indeed, bTAx = tr(ATAX) = xTATAx + tr(ATAD) implies tr(ATAD) = 0.
However, sinceD ≻ 0, we obtain A = 0.
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5.4 Equivalence of problems

In this subsection we give su�cient conditions under which problem (5.3) and its second dual (5.5) yield the

same optimal values.

Proposition 5.1. Denote by p̂1 the optimal value of problem (5.1) and by p̂2 the optimal value of enhanced semi-
de�nite relaxed problem (5.5). Then p̂1 ≥ p̂2.

Proof. If problem (5.3) is not feasible, then p̂1 = +∞ and the inequality is satis�ed. Assume p̂1 < +∞.

Denote by f(x) = xTP0x + 2qT0 x + r0 the quadratic objective of problem (5.3). Then there exists a sequence of

points {x(k)}∞k=1, feasible for (5.3) such that p̂1 = lim infk→∞ f(x(k)). It covers the casewhenoptimum is attained

as well as optimum is not attained. Denote X(k) = x(k)(x(k))T ⪰ 0, k = 1, 2, . . . ,∞. Then it is easy to see that

the pair (x(k), X(k)) is feasible for problem (5.5) for all k = 1, 2, . . . ,∞. Since xTPjx = tr(Pjxx
T), j = 0, 1, . . . , d,

we have f(x(k)) ≥ p̂2 for each k ≥ 1. Hence p̂1 ≥ p̂2.

If we denote by
̂d the optimal value of problem (5.4), the previous proposition together with the weak

duality yields
̂d ≤ p̂2 ≤ p̂1. A strong duality property between problems (5.3) and (5.4) would imply the

equality p̂1 = p̂2. In the case d = 1, A = 0, b = 0 and there are no LMI constraints (i.e. Hi = 0) in (5.1)

then the strong duality has been shown under the assumption that problem (5.1) has an interior point

(cf. [8, Appendix B.1]). The proof relies on the so-called S-procedure and it is not obvious how to generalize it

to the case of nontrivial LMI constraints and/or quadratic-linear constraints occurring in (5.3). Nevertheless,

in the following proposition we prove the equality p̂1 = p̂2 under assumption (A) made on input matrices P1
and Pl without assuming the strong duality property. First we introduce an auxiliary lemma whose proof

easily follows from the property of positive semide�nite matrices: tr(AB) ≥ 0 for A ⪰ 0, B ⪰ 0.

Lemma 5.1. LetM ⪰ 0 andX ⪰ xxT. Then tr(MX) ≥ xTMx.

Theorem 5.1. Suppose that the SDP problem (5.1) is feasible and assumption (A) is satis�ed. Let p̂1 be the
optimal value of (5.1) and p̂2 be the optimal value of SDP (5.5) obtained by the enhanced semide�nite relax-
ation method. Then p̂1 = p̂2. If ( ̃x, X̃) is an optimal solution to (5.5), then ̃x is the optimal solution to (5.1).

Proof. Let (x, X) be a feasible solution (5.5). By means of Lemma 5.1 we have

xTPlx + 2qTl x + rl ≤ tr(PlX) + 2qTl x + rl ≤ 0, l = 1, . . . , d.

Hence x is a feasible solution to (5.3). Since P0 +
1
2 (V

TA + ATV) ⪰ 0 and

tr((VTA + ATV)(X − xxT)) = 2 tr(VT(AX − AxxT)) = 0

for any (x, X) feasible to (5.5), by Lemma 5.1 we furthermore have

xTP0x + 2qT0 x + r0 ≤ tr(P0X) + 2qT0 x + r0 ≡ Õ(x, X).

In order to prove the equality p̂1 = p̂2 we consider a minimizing sequence (x(k), X(k)) of feasible solutions

to (5.5), p̂2 = lim infk→∞ Õ(x(k), X(k)). Since x(k)
is feasible to (5.3), we have

p̂1 ≤ (x(k))TP0x
(k) + 2qT0 x

(k) + r0 ≤ Õ(x(k), X(k))

for any k ∈ ℕ. Thus p̂1 ≤ lim infk→∞ Õ(x(k), X(k)) = p̂2. Finally, if ( ̃x, X̃) is an optimal solution to (5.5), then

p̂1 ≤ ̃xTP0 ̃x + 2qT0 ̃x + r0 ≤ tr(P0X̃) + 2qT0 ̃x + r0 = p̂2.

Hence ̃x is optimal to (5.3), as claimed.

5.5 Application of the enhanced semide�nite relaxation method to a solution of
the inverse Wul� problem

We conclude this section with construction of the second Lagrangian dual formulation of optimization prob-

lem (3.9) resolving minimal anisoperimetric ratio over all anisotropy function belonging to the coneKN
.
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Theorem 5.2. The enhanced semide�nite relaxation of optimization problem (3.9) has the form

min tr(P0X) subject to

{{{{{{
{{{{{{
{

Ax = b, AX = bxT, X ⪰ xxT, x = [xR; xI],
N

∑
p=k+1

Fp,p−k = xR
k + ixI

k,
N

∑
p=k+1

Gp,p−k = (1 − k2)(xR
k + ixI

k), k = 0, . . . , N − 1,

F, G ⪰ 0,

(5.6)

where the matrices P0, A and b are de�ned as in (3.7) and (3.8). Problem (3.9) is feasible. Optimal values p̂1, p̂2

of (3.9) and (5.6), respectively, are �nite and p̂1 = p̂2. If ( ̃x, X̃) is an optimal solution to (5.6), then ̃x is the opti-
mal solution to (3.9). Conversely, if ̃x is the optimal solution to (3.9), then ( ̃x, X̃) is the optimal solution to (5.6)

where X̃ = ̃x ̃xT.

Proof. Feasibility of (3.9) is obvious because for ò̃ = (1, . . . , 0)T ∈ KN we have L ò̃(Ã) = L(Ã) and |Wò̃| = ð > 0.
Furthermore, we have the following estimate:

−xTP0x = |Wò| =
Lò(Ã)

2

4Πò(Ã)A(Ã)
≤

L(Ã)2

4A(Ã)
< ∞

for any ò = xR + ixI ∈ KN
, x = [xR; xI], feasible to (3.9). So the optimal value p̂1 of SDP (3.9) is �nite.

Note that problem (3.9) can be rewritten in the form of SDP (5.1). Since the quadratic constraints become

linear when assuming Pl ≡ 0 for l = 1, . . . , d, we can construct the second Lagrangian dual to the augmented

SDP (5.3) having additional linear constraints of the formQx + r = 0. Furthermore, by taking a standard basis

ofHN
, the semide�nite constraints F, G ⪰ 0 can rewritten as LMI in the formH0 + ∑n

j=1 xjHj ⪰ 0.
Taking into account Proposition 4.2 for ák + iâk = 2ck, k ≥ 1, á0 = c0, â0 = 0 and p0 = q0 = −ð, pk = qk =

2ð(k2 − 1) we conclude that condition (4.2) is ful�lled for all ý > ðmax(N/c20 , 1). Hence P0 + ýATA ⪰ 0 and

assumption (A) is satis�ed. By Theorem 5.1 we conclude p̂1 = p̂2 where p̂2 is the optimal value of the SDP (5.6)

obtained by the enhanced semide�nite relaxation method.

6 Convergence analysis
In this section we prove convergence of a sequence of approximative anisoperimetric ratio to the opti-

mal value of problem (2.8). For any �nite dimension N ∈ ℕ we recall that òN ∈ KN
is a minimizer of the

N-dimensional restriction (3.6) of the original problem (2.8). Then, for ò̃N+1 = (òN
0 , òN

1 , . . . , òN
N−1, 0)

T ∈ KN+1

we have L ò̃N+1 (Ã) = L(Ã) and this is why ò̃N+1
is feasible solution to (3.6) in the dimension N + 1. Thus

we obtain |WòN | = |Wò̃N+1 | ≤ |WòN+1 | for allN ∈ ℕ. It means that 1 ≤ ΠòN+1 (Ã) ≤ ΠòN (Ã) for eachN ∈ ℕ. This is
why the sequence {ΠòN (Ã)}∞N=1 of anisoperimetric ratios is nonincreasing and having thus a �nite limit. More

precisely, we have the following result:

Theorem 6.1. Let òN ∈ KN be a minimizer to optimization problem (3.6) in the dimensionN ∈ ℕ. Then

1 ≤ lim
N→∞

ΠòN (Ã) = inf
ò∈K

Πò(Ã).

Proof. Let ò ∈ K be �xed and such that Πò(Ã) < ∞. Given the dimension N ∈ ℕ we will construct ò̃N ∈ KN

such that ò̃N → ò as N → ∞ in the norm of the Sobolev space W1,2
per(0, 2ð). To this end, we employ both the

Bochner and McLean criteria for positiveness of Fourier series (cf. Propositions 3.1 and 3.2).

Since ò ∈ K, it follows from Proposition 3.1 that the Toeplitz matrices

Q(N) = Toep(ò0, ò1, . . . , òN−1), S(N) = Toep(î0, î1, . . . , îN−1),

where îk := (1 − k2)òk, are positive semide�nite. Hence the sets F,G ⊂ HN
given by

F = {F : F ⪰ 0,
N

∑
p=k+1

Fp,p−k =
N − k
N

òk for all k = 0, . . . , N − 1}
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and

G = {G : G ⪰ 0,
N

∑
p=k+1

Gp,p−k =
N − k
N

(1 − k2)òk for all k = 0, . . . , N − 1}

are nonempty as

1
NQ(N) ∈ F and

1
NS(N) ∈ G, respectively. By Proposition 3.2 we have

ò̃N ∈ K
N, where ò̃N

k =
N − k
N

òk, k = 0, . . . , N − 1.

Then the distance between ò̃N
and ò in the norm of the Sobolev spaceW1,2

per(0, 2ð) can be estimated as follows:

‖ò̃N − ò‖21,2 =
N−1

∑
k=0

(1 + k2)|ò̃N
k − òk|

2 +
∞

∑
k=N

(1 + k2)|òk|
2

=
N−1

∑
k=0

(1 + k2)
k2

N2 |òk|
2 +

∞

∑
k=N

(1 + k2)|òk|
2

≤
1
N2

∞

∑
k=0

(1 + k2)k2|òk|
2

≤
2
N2

∞

∑
k=0

(1 + k4)|òk|
2 =

2
N2 ‖ò‖

2
2,2.

As ò ∈ K ⊂ W2,2
per(0, 2ð), we have ‖ò‖2,2 < ∞ and therefore limN→∞ ò̃N = ò in the norm of W1,2

per(0, 2ð). More

precisely,

‖ò̃N − ò‖1,2 = O(N−1) asN → ∞.

Clearly, the Wul� shape area |Wò| as well as the total interface energy Lò(Ã) are continuous functionals

in ò in the norm of the Sobolev space W1,2
per(0, 2ð). Hence limN→∞ |Wò̃N | = |Wò| and limN→∞ L ò̃N (Ã) = Lò(Ã).

Thus

lim
N→∞

Πò̃N (Ã) = Πò(Ã).

Finally, as ò̃N ∈ KN
and òN

is a minimizer of Πò inKN
, we have Πò̃N (Ã) ≥ ΠòN (Ã). Therefore

1 ≤ lim
N→∞

ΠòN (Ã) ≤ Πò(Ã)

for any ò ∈ K and the proof follows.

Remark 6.1. In the statement of Theorem 6.1 the in�mum infò∈K Πò(Ã) need not be attained by any ò ∈ K.

Indeed, let us consider a convex “capsule” curve Ã from Example 4.2. Then infò∈K Πò(Ã) = 1 because

the boundary àWò of the limiting optimal Wul� shape should coincide with the convex curve Ã. If there
is ò ∈ K ⊂ W2,2

per(0, 2ð) such that Πò(Ã) = 1, then for the curvature of àWò = Ã we have ê = [ò + ò��]−1 ≥ 0.
Since àsí = ê, i.e. dí = ê ds, we obtain

∫
àWò

1
ê
ds =

2ð

∫
0

1
ê2
dí =

2ð

∫
0

[ò(í) + ò��(í)]2 dí < ∞, (6.1)

because ò and ò��
are square integrable functions for any ò ∈ W2,2

per(0, 2ð). But the curvature ê ≡ 0 on nontrivial

line segments of the capsule àWò = Ã. So ∫
àWò 1

ê ds = ∞, a contradiction to (6.1).

7 Numerical experiments
Let Ã be a Jordan curve in the plane ℝ2 and x(0), x(1), . . . , x(K) ∈ Ã be a set of its points where x(0) = x(K)

. The

curve Ãwill be approximated by a polygonal curve with vertices x(0), x(1), . . . , x(K)
. The unit tangent t(k) vector

at nlhx(k)
will be approximated by t(k) ≡ x(k+1) − x(k−1)

‖x(k+1) − x(k−1)‖
.
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Figure 2. (a) the curve Ã, (b) the optimal anisotropy function ò ≡ òN, N = 50, (c) the Wul� shapeWò and Frank diagram Fò.

Since ds = ‖àux‖ du ≈ 1
2 ‖x(k+1) − x(k−1)‖, the elements of the Fourier length spectrum {cp, p ∈ ℤ} can be approx-

imated by

cp = ∫
Ã

(t1 − it2)
p ds ≈

1
2

K−1

∑
k=1

(t(k)1 − it(k)2 )p‖x(k+1) − x(k−1)‖. (7.1)

The enhanced semide�nite relaxation (5.6) of optimization problem (3.9) was solved by using the

powerful nonlinear convex programming solver SeDuMi developed by J. Sturm [32]. SeDuMi (Self-Dual-

Minimization) implements self-dual embedding method proposed by Ye, Todd and Mizuno [36]. It is imple-

mented as an add-on forMATLABand it has a capacity in solving large optimizationproblems, including (5.6).

Without assuming the quadratic-linear constraint AX = bxT
with X ⪰ xxT

in (5.6) the SeDuMi solver was

unable to solve the problem because of its unboundedness.

In Figure 2 (a) we present a simple test example of a Jordan curve Ã = {x(u) : u ∈ [0, 1]} wherex(u) = (x1(u), x2(u))
T, x1(u) = cos(2ðu), x2(u) = 0.7 sin(2ðu) + sin(cos(2ðu)) + (sin(6ðu) sin(2ðu))2.

The curve was discretized by K = 1000 grid points and the Fourier length spectrum coe�cients were

computed according to (7.1). We chose N = 50 Fourier modes in this example. The anisoperimetric ratio for

the optimal anisotropy function ò (depicted in Figure 2 (b) equals 2.306 whereas the isoperimetric ratio of Ã
equals 3.041. TheWul� and Frank diagrams are shown in Figure 2 (c). In Table 1 we present results of compu-

tation for various numbersN of Fourier modes for a curve shown in Figure 2 (a). The area |WòN | of the optimal

Wul� shape converges to the value 4.1612 as N ≈ 300 when we impose the constraint LòN (Ã) = L(Ã) = 9.167.
It should be also noted that satisfactory numerical results were obtained for rather low dimensionsN ≈ 50.

N nc nv time (s) eotc |WòN |
25 102 2576 1 − 4.14087
50 202 10151 6 2.58 4.14519
100 402 40301 47 2.97 4.14597
200 802 160601 434 3.21 4.14611
300 1202 360901 1692 3.36 4.14612
350 1402 491051 3020 3.75 4.14624

Table 1. Dependence of the time complexity of computation with respect to the number of Fourier modesN, its experimental
order of time complexity (eotc) and the area of the optimal Wul� shape |WòN |.

It is known that the worst case time complexity of SeDuMi implementation (including main and inner

iterations) is O(n2vn
2.5
c + n3.5c ) where nc and nv are the numbers of variables and constraints, respectively

(cf. [17]). Since the number of constraints nc = O(N) and number of variables nv = O(N2) (see Table 1) the

worst case time complexity should have the order O(N6.5). We calculated the experimental order of time

complexity (eotc) by comparing elapsed times Tk for di�erentNk as follows: eotck = ln(Tk+1/Tk)/ ln(Nk+1/Nk).
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Figure 3. Nonconvex polygonal curves (a–c) and their corresponding optimal Wul� shapes and Frank diagrams (d–f).

It turns out the eotc ≲ 3.8, i.e. T ≲ O(N3.8), so it is below the worst case complexity. All computations were

performed on Quad-Core AMD Opteron Processor with 2.4 GHz frequency, 32 GB of memory.

In Figure 3 we present results of resolution of the optimal anisotropy function for various polygonal

curves (a–c). The corresponding optimal Wul� shapes and Frank diagrams (e–f) show their anisotropy

structure. For instance, there are four outer normal directions of facets in Figure 3 (a). The corresponding

Wul� shape in Figure 3 (d), solid blue line, has a shape of the four fold anisotropy with the same set of outer

normal directions. Similarly, other polygons shown in Figure 3 have hexagonal (b–e) and octagonal (c–f)

anisotropy and the sets of their outer normal vectors to facets coincide. We again chose a su�ciently large

number N = 50 of Fourier modes in these examples so that numerically computed Wul� shapes are just

slightly rounded polygons.
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Figure 4. (a) the “capsule” curve Ã, (b) the optimal anisotropy function ò ≡ òN, N = 50, (c) the Wul� shapeWò and Frank
diagram Fò, (d) the graph of the function ò + ò�� ≡ 1/ê.

For any strictly convex C2
-curve Ã the optimal anisotropy function ò corresponds to the Wul� shape

with àWò = Ã and Πò(Ã) = 1. On the other hand, if Ã is just a piecewise C2
-smooth curve, then there need

not exist a minimizing anisotropy function belonging to K ⊂ W2,2
per(0, 2ð). The purpose of the next example

shown in Figure 4 is to illustrate behavior of Sobolev norms in the space Wk,2
per (0, 2ð), k = 0, 1, 2, of the
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N ‖òN‖0,2 ‖òN‖1,2 ‖òN‖2,2 eoc(W2,2per) ΠòN − 1 eoc(Πò − 1)
10 1.3937 1.5032 2.0164 − 0.057060 −
25 1.4467 1.5701 2.6417 0.29 0.023216 −0.98
50 1.4634 1.5910 3.2631 0.3 0.012790 −0.86
100 1.4730 1.6029 4.2039 0.37 0.006784 −0.91
150 1.4763 1.6071 4.9362 0.4 0.004665 −0.92
200 1.4780 1.6093 5.5618 0.41 0.003567 −0.93
250 1.4791 1.6106 6.1141 0.42 0.002894 −0.94

Table 2. Dependence of various Sobolev norms of the optimal anisotropy function with respect to the dimensionN. Experimen-
tal rate of divergence of the ‖ ⋅ ‖2,2 norm and experimental rate of convergence of the anisoperimetric ratio to unity.

optimal solution òN
for various dimensionsN ∈ ℕ. We consider the “capsule” like curve Ã from Example 4.2

with l = 4, r = 1. This a C1
-smooth and only piecewise C2

-smooth convex curve. According to Remark 6.1

we have infò∈K Πò(Ã) = 1 but there is no minimizer ò belonging to K ⊂ W2,2
per(0, 2ð). It can be deduced from

Table 2 that the Sobolev norms ‖òN‖k,2, k = 0, 1, stay bounded forN ≫ 1. On the other hand, the norm ‖òN‖2,2
becomes unbounded and ‖òN‖2,2 ≈ O(N0.5) asN → ∞, i.e. the experimental order of convergence is approxi-

mately 0.5. The pointwise behavior of the function ò + ò�� ≡ 1/ê is shown in Figure 4 (d). The anisoperimetric

ratio ΠòN (Ã) tends to unity with the speed of O(N−1), i.e. the experimental order of convergence is −1.
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Figure 5. Jordan curves (a, d) representing to boundaries of snowflakes. The optimal anisotropy function òN is shown in (b, e).
The Wul� shape and Frank diagram are depicted in (c, f)

In the last two numerical examples shown in Figure 5 we present computation of the optimal anisotropy

functions for boundaries of real snow�akes. We used N = 50 Fourier modes. In both cases we resolved the

optimal anisotropy function ò corresponding to hexagonal symmetry, as it can be expected for snow�ake

crystal growth. If we introduce the anisotropy strength as follows:

ù :=
òmax − òmin

2òavg
,
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whereòmax, òmin are themaximal andminimal values ofò(í) for í ∈ [0, 2ð] andòavg =
1
2ð ∫

2ð

0
ò(í) dí = ò0, then

ù = 0.028850 for the snow�ake (a) and ù = 0.045666 for the snow�ake (d).¹Notice that themaximal value of the

strength parameter ù for the anisotropy function of the form ò(í) = 1 + ù cos(mí) is ù = 1/(m2 − 1) = 0.0285714
for hexagonal symmetrym = 6.

8 Conclusions
We proposed a newmethod for resolving the optimal anisotropy function that minimizes the anisoperimetric

ratio for a given Jordan curve in the plane. Construction of the optimal anisotropy function can be regarded

as a solution to the inverse Wul� problem. Our approach of solving the inverse Wul� problem was based

on reformulation of the optimization problem in terms of complex Fourier coe�cients of the anisotropy

functions. We furthermore proposed and analyzed the Fourier length spectrum of a curve. Using results from

the theory of semide�nite matrices, we were able to prove useful asymptotic estimates on elements of the

Fourier length spectrum. It turned out that the �nite Fourier modes approximation leads to an inde�nite

quadratic optimization problem with linear matrix inequalities. We solved this problem by means of the

so-called enhanced semide�nite relaxation method. It consisted in solving the relaxed convex semide�nite

problem obtained as the second Lagrangian dual of the original problem augmented by a quadratic-linear

constraint. Various numerical examples and tests of experimental order of convergence were presented.

In particular, we presented examples of computation of optimal anisotropy function for a set of snow�ake

boundaries.

A Appendix
In this appendix section we provide a detailed derivation of the �rst and second Lagrangian duals of (5.3)

and (5.4), respectively.

Clearly,

tr(VTAxxT) = xTVTAx = xTATVx =
1
2
xT(VTA + ATV)x.

Since tr(VTbxT) = xTVTb = bTVx, the Lagrangian L1
can be rewritten in a compact form as follows:

L
1(x; ë, u, V, Z) = xTQx + 2sTx + ó,

where

Q = P0 +
d

∑
l=1

ëlPl +
1
2
(VTA + ATV),

s = q0 +
d

∑
l=1

ëlql +
1
2
(ATu − VTb − z),

ó = r0 + ëTr − uTb − z0

with z = (z1, . . . , zn), zj = tr(Z
TH̃j) and r = (r1, . . . , rl)

T
.

Then the Lagrange dual function G1
can be de�ned as:

G
1(ë, u, V, Z) = inf

x
L

1(x; ë, u, V, Z).

Since àxL
1 = 2Qx + 2s, the dual function attains a �nite valueG1 > −∞ if and only ifQ is positive semide�nite

and the vector s belongs to the range R[Q] of Q. If these two conditions are satis�ed, then G1 = −sTQ†s + ó

1 Snow�ake images sources: (a) http://milanturek.�les.wordpress.com/2010/07/sneh-vlocka8.jpg, (d) http://www.isifa.com/

data/dispatches/ed/167/_main.jpg.

http://milanturek.files.wordpress.com/2010/07/sneh-vlocka8.jpg
http://www.isifa.com/data/dispatches/ed/167/_main.jpg
http://www.isifa.com/data/dispatches/ed/167/_main.jpg
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where Q†
is the Moore–Penrose pseudoinverse to Q. The dual problem has the form

maxG1(ë, u, V, Z) subject to

{{{{{{{{{
{{{{{{{{{
{

q0 + ëq1 +
1
2
(ATu − VTb − z) ∈ R[P0 +

d

∑
l=1

ëlPl +
1
2
(VTA + ATV)],

P0 +
d

∑
l=1

ëlPl +
1
2
(VTA + ATV) ⪰ 0,

Z ⪰ 0, ë ≥ 0, zj = tr(Z
TH̃j), j = 0, 1, . . . , n.

Using the properties of the generalized Schur complement (cf. [38]), it can be rewritten in the following form:

max ã subject to

{{{{
{{{{
{

Z ⪰ 0, ë ≥ 0, zj = tr(Z
TH̃j), j = 0, 1, . . . , n,

(
P0 + ∑d

l=1 ëlPl +
1
2 (V

TA + ATV), q0 + ëTq + 1
2 (A

Tu − VTb − z)

(q0 + ëTq + 1
2 (A

Tu − VTb − z))T, r0 + ëTr − uTb − z0 − ã
) ⪰ 0.

If we introduce the notation forM0,Ml, N0, Nj andM∗, then we obtain (5.4).

We derive the second dual problem. To this end, consider the Lagrangian L2(ã, ë, Z, V, u, z;W, â, X̃, á) for
problem (5.4), i.e.

L
2 = ã + tr(ZW) + ëâ +

n

∑
j=0

áj(zj − tr(ZH̃j)) + tr(X̃(M0 +
d

∑
l=1

ëlMl +M∗(u, V) −
n

∑
j=0

zjNj − ãN0))

= ã(1 − tr(X̃N0)) +
d

∑
l=1

ël[âl + tr(X̃Ml)] + tr(Z(W −
n

∑
j=0

ájH̃j))

+ tr(X̃M∗(u, V)) + tr(X̃M0) +
n

∑
j=0

zj(áj − tr(X̃Nj)).

The functionL2(ã, ë, Z, V, u, z;W, â, X̃, á) is linear in the (ã, ë, Z, V, u, z)-variable. The dual function is de�ned

as follows:

G
2(W, â, X̃, á) = sup

ã,ë,Z,V,u,z
L

2(ã, ë, Z, V, u, z;W, â, X̃, á).

It attains a �nite value G2 < +∞ if and only if the following conditions are satis�ed:

1 − tr(X̃N0) = 0, âl + tr(X̃Ml) = 0, l = 1, . . . , d, W −
n

∑
j=1

ájH̃j = 0,

AX − bxT = 0, Ax = b, áj − tr(X̃Nj) = 0, j = 0, 1, . . . , n.

Taking into account the condition tr(X̃N0) = 1, we conclude ÿ = 1. Hence

X̃ = (
X x
xT 1

) ⪰ 0

or, equivalently,X ⪰ xxT
. The conditions AX − bxT = 0 and Ax = b follow from the identity:

tr(X̃M∗(u, V)) =
1
2
tr [(

X x
xT 1

)(
VTA + ATV ATu − VTb
uTA − bTV −2uTb

)] = tr(XATV) − tr(xbTV) + xTATu − uTb.

The conditions âl + tr(X̃Ml) = 0 and â ≥ 0 yield

tr(XPl) + 2qTl x + rl ≤ 0

for l = 1, . . . , d. SinceW ⪰ 0, we deduce

n

∑
j=0

ájH̃j ⪰ 0.
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From the condition áj − tr(X̃Nj) = 0, we obtain xTej = áj, i.e. x = (á1, . . . , án)
T
and á0 = 1. Finally, the real LMI

H̃0 +
n

∑
j=1

xjH̃j ⪰ 0

is equivalent to the complex LMI

H0 +
n

∑
j=1

xjHj ⪰ 0,

using equivalence (5.2). As tr(X̃M0) = tr(XP0) + 2qT0 x + r0, the second Lagrangian dual has the form of

SDP (5.5), as claimed.
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