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Abstract A cutting-plane procedure for integer programming (IP) problems usually
involves invoking a black-box procedure (such as the Gomory–Chvátal procedure) to
compute a cutting-plane. In this paper, we describe an alternative paradigm of using the
same cutting-plane black-box. This involves two steps. In the first step, we design an
inequality cx ≤ d where c and d are integral, independent of the cutting-plane black-
box. In the second step, we verify that the designed inequality is a valid inequality by
verifying that the set P ∩ {x ∈ R

n | cx ≥ d + 1} ∩ Z
n is empty using cutting-planes

from the black-box. Here P is the feasible region of the linear-programming relaxation
of the IP. We refer to the closure of all cutting-planes that can be verified to be valid
using a specific cutting-plane black-box as the verification closure of the considered
cutting-plane black-box. This paper undertakes a systematic study of properties of
verification closures of various cutting-plane black-box procedures.
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1 Introduction

Cutting-planes are indispensable for solving Integer Programs (IPs). When using
generic cutting-planes (like Gomory–Chvátal or split cuts), often the only guiding
principal used is that the incumbent fractional point must be separated. In a way,
cutting-planes are generated ‘almost blindly’, where we apply some black-box method
to constructively compute valid cutting-planes and hope for the right set of cuts to
appear that helps in proving optimality or close significant portion of the integral-
ity gap. One possible approach to improve such a scheme would therefore be if we
were somehow able to deliberately design strong cutting-planes that were tailor-made,
for example, to prove the optimality of known good candidate solutions. This moti-
vates a different paradigm to generate valid cutting-planes for integer programs: First
we design cutting-planes which we believe will be useful without considering their
validity. Then, once the cutting-planes are designed, we verify that it is valid.

For n ∈ N, let [n] = {1, . . . , n} and for a rational polytope P ⊆ R
n denote its

integral hull by PI := conv (P ∩ Z
n), where conv represents convex hull. We now

precisely describe the verification scheme (abbreviated as: V-scheme). Let M be an
admissible cutting-plane procedure (that is, a valid and ‘reasonable’ cutting-plane
system—we will formally define these) and let M(P) be the closure with respect
to the family of cutting-planes obtained using M. For example, M could represent
split cuts and then M(P) represents the split closure of P . Usually using cutting-
planes from a cutting-plane procedure M, implies using valid inequalities for M(P)

as cutting-planes. In the V-scheme, we apply the following procedure: We design or
guess the inequality cx ≤ d where (c, d) ∈ Z

n × Z. To verify that this inequality
is valid for PI , we apply M to P ∩ {x ∈ R

n | cx ≥ d + 1} and check whether
M(P ∩ {x ∈ R

n | cx ≥ d + 1}) = ∅. If M(P ∩ {x ∈ R
n | cx ≥ d + 1}) = ∅, then

cx ≤ d is a valid inequality for PI . This leads us to the following definition.

Definition 1 We say that the inequality cx ≤ d is verifiable using a cutting plane
operator M for a rational polytope P ⊆ R

n if c ∈ Z
n , d ∈ Z and M(P ∩ {x ∈ R

n |
cx ≥ d + 1}) = ∅. �	

We might wonder how much we gain from having to only verify that a given
inequality cx ≤ d is valid for PI , rather than actually computing it. In fact at a first
glance, it is not even clear that there would be any difference between computing and
verifying. The strength of the verification scheme lies in the following inclusion that
can be readily verified for admissible cutting-plane procedures:

M
(
P ∩ {

x ∈ R
n | cx ≥ d + 1

}) ⊆ M(P) ∩ {
x ∈ R

n | cx ≥ d + 1
}
. (1)

The interpretation of this inclusion is that an additional inequality cx ≥ d + 1
appended to the description of P can provide us with crucial extra information
when deriving new cutting-planes by using M that is not available when consid-
ering P alone. In other words, (1) can potentially be a strict inclusion such that
M(P ∩ {x ∈ R

n | cx ≥ d + 1}) = ∅ while M(P) ∩ {x ∈ R
n | cx ≥ d + 1} 
= ∅.

This is equivalent to saying that we can verify the validity of cx ≤ d, however we are
not able to compute cx ≤ d. To the best of our knowledge, the only paper discussing
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Verification schemes for cutting-planes 201

a related idea is [4], but theoretical and computational potential of this approach has
not been further investigated.

The set obtained by intersecting all cutting-planes verifiable using M will be called
the verification closure (abbreviated as: V-closure) of M and denoted by ∂M(P), that
is,

Definition 2 Let M be a cutting plane operator. Then

∂M(P) :=
⋂

(c,d)∈Zn×Z

s.t. M(P∩{x∈Rn |cx≥d+1})=∅

{
x ∈ R

n | cx ≤ d
}
. (2)

�	
Under mild conditions, (1) implies ∂M(P) ⊆ M(P) for all rational polytopes P .

(We formally verify this later.) Since there exist inequalities that can be verified but
not computed, this inclusion can be proper. We illustrate this in the next example.

Example 1 Given a rational polytope P ⊆ R
n , recall that the split closure of P is

defined as,

SC(P)=
⋂

(π,π0)∈Zn×Z

conv((P ∩ {x ∈R
n | πx ≤π0})∪(P ∩ {x ∈ R

n | πx ≥ π0+1})).

Let SCi (P) denote the i th split closure P , that is SCi (P) = SC(SCi−1(P)) and
SC1(P) := SC(P).

Consider the following family of polytopes [3] for n ∈ N:

An :=
⎧
⎨

⎩
x ∈ [0, 1]n |

∑

i∈I

xi +
∑

i 
∈I

(1 − xi ) ≥ 1

2
∀ I ⊆ [n]

⎫
⎬

⎭
. (3)

Note that (An)I = ∅ and recall that it takes n rounds of split cuts to establish that An

is infeasible [7]. For simplicity, consider the instance P := A3. Then SC2(A3) 
= ∅
and SC3(A3) = ∅.

We will show that the V-split closure of A3 is the empty set, that is, ∂SC(A3) = ∅.
We first design the inequality x1 + x2 + x3 ≥ 2. In order to show that the inequality
x1 + x2 + x3 ≥ 2 is verifiable for ∂SC(A3) we will establish that SC(Q) = ∅ where
Q := A3 ∩ {

x ∈ R
3 | x1 + x2 + x3 ≤ 1

}
. It is easy to see that max{xi | x ∈ Q} < 1

for i ∈ [3] and so we obtain that the split cuts xi ≤ 0 for i ∈ [3] are valid for SC(Q).
However, x1 + x2 + x3 ≥ 1

2 is in the description of Q. Thus, SC(Q) = ∅, and so
x1 +x2 +x3 ≥ 2 can be obtained via the V-split closure, that is, it is valid for ∂SC(A3).
By symmetry, we also obtain that ∂SC(A3) ⊆ {

x ∈ R
3 | x1 + x2 + x3 ≤ 1

}
and so it

follows that ∂SC(A3) = ∅. �	
We note that rank of A3 with respect to Gomory–Chvátal (GC) cuts [2,14], Lift-

and-project (LP) cuts [1], and Matrix cone cuts (N0, N, N+) [16] is also 3 but the
V-rank is 1 for any of these operators.
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Outline and contribution This paper undertakes a systematic study of the strengths
and weaknesses of the V-closures. In Sect. 2, we prove basic properties of the
V-closure. In order to present these results, we first describe general classes of reason-
able cutting-planes, the so called admissible cutting-plane procedures, a machinery
developed in [19]. We prove that ∂M is almost admissible, that is the V-schemes
satisfy many important properties that all known classes of admissible cutting-plane
procedures including GC cuts, lift-and-project cuts, split cuts (SC), and N, N0, N+
cuts satisfy.

In Sect. 3, we show first that V-schemes have natural inherent strength, that is
even if M is an arbitrarily weak admissible cutting-plane procedure, ∂M is at least as
strong as the GC and the N0 closures. We then compare the strength of various regular
closures (GC cuts, split cuts, and N0, N, N+ cuts) with their V-versions and with each
other. For example, we show that ∂GC(P) ⊆ SC(P) and ∂N0(P) ⊆ SC(P) for every
rational polytope P . The complete list of these results is illustrated in Fig. 1.

In Sect. 4, we present upper and lower bounds on the rank of valid inequalities
with respect to the V-closures for a large class of 0/1 problems. These results show
that while the V-closures are strong compared to the regular closures, they are not
unrealistically so.

In Sect. 5, we illustrate the strength of the V-schemes when applied on specific
structured problems. We show that facet-defining inequalities of monotone polytopes
contained in [0, 1]n have low rank with respect to any ∂M operator. We show that
numerous families of inequalities with high GC, N0, or N rank [3,5,16] (such as
clique inequalities) for the stable set polytope have a rank of 1 with respect to any
∂M with M being arbitrarily weak and admissible. We will also show that for the
subtour elimination relaxation of the traveling salesman problem the rank for ∂M
with M ∈ {GC, SC, N0, N, N+} is in Θ(n) where n is the number of nodes, that is the
rank is Θ(

√
dim(P)) with P being the TSP-polytope. It is well-known that for the

case of rational polytopes in R
2 the GC rank can be arbitrarily large [2]. In contrast,

we establish that the rank of rational polytopes in R
2 with respect to ∂GC is 1.

An extended abstract of the results in this paper is presented in [11].

2 General properties of the V-closure

Definition 3 [19] Let M be a cutting plane procedure for binary integer linear pro-
grams and let P := {x ∈ [0, 1]n | Ax ≤ b} be any rational polytope contained in the
0/1 hypercube. The cutting-plane procedure M is called admissible if the following
holds:

1. Validity: PI ⊆ M(P) ⊆ P .
2. Inclusion preservation: If P ⊆ Q, then M(P) ⊆ M(Q) for all polytopes

P, Q ⊆ [0, 1]n .
3. Homogeneity: M(F ∩ P) = F ∩ M(P), for all faces F of [0, 1]n .
4. Single coordinate rounding: If xi ≤ ε < 1 (or xi ≥ ε > 0) is valid for P ,

then xi ≤ 0 (or xi ≥ 1) is valid for M(P).
5. Commuting with coordinate flips and duplications: τi (M(P)) =

M(τi (P)), where τi is either one of the following two operations: (i)Coordinate
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flip: τi : [0, 1]n → [0, 1]n with (τi (x))i = (1 − xi ) and (τi (x)) j = x j

for j ∈ [n]\{i}; (ii) Coordinate Duplication: τi : [0, 1]n → [0, 1]n+1 with
(τi (x))n+1 = xi and (τi (x)) j = x j for j ∈ [n].

6. Substitution independence: Let ϕF : R
n → R

d be the projection onto the
d-dimensional face F of [0, 1]n . Then we requireϕF (M(P∩F)) = M(ϕF (P∩F)).

7. Short verification: There exists a polynomial p such that for any inequality
cx ≤ d that is valid for M(P) there is a set I ⊆ [m] with |I | ≤ p(n) such that
cx ≤ d is valid for M({x ∈ [0, 1]n | ai x ≤ bi , i ∈ I }).

Let M be a cutting plane procedure for general integer linear programs. Such a
operator M is defined as being admissible if (A.) M satisfies (1.)–(7.) when restricted
to polytopes contained in [0, 1]n and (B.) M satisfies

(a) (1.) for all polytopes P ⊆ R
n , that is, if P := {x ∈ R

n | Ax ≤ b} then PI ⊆
M(P) ⊆ P;

(b) (2.) for any two polytopes P and Q in R
n , that is if P and Q are rational polytopes

satisfying P ⊆ Q then M(P) ⊆ M(Q);
(c) (7.) for all polytopes P := {x ∈ R

n | ai x ≤ bi , i ∈ [m]}, that is there exists a
polynomial p such that for any inequality cx ≤ d that is valid for M(P) there is
a set I ⊆ [m] with |I | ≤ p(n) such that cx ≤ d is valid for M({x ∈ R

n | ai x ≤
bi , i ∈ I }).

and satisfies Strong Homogeneity (which replaces Homogeneity)

8. Strong Homogeneity: If P ⊆ F≤ := {x ∈ R
n | ax ≤ b} and F = {x ∈ R

n |
ax = b} where (a, b) ∈ Z

n × Z, then M(F ∩ P) = M(P) ∩ F .

In the following, we assume that M(P) is a closed convex set. If M satisfies all
required properties for being admissible except (7.), then we say M is almost admis-
sible.

We note here that almost all known classes of cutting-plane schemes such as GC
cuts, lift-and-project cuts, split cuts, and N, N0, N+ are admissible (cf. [19] for more
details). Observe that (1) in Sect. 1 follows from inclusion preservation. In the fol-
lowing we will mostly work with admissible cutting-plane procedures, however most
results hold more generally (that is, these results hold due to only a subset of the
properties of admissible cutting plane operators) and we will indicate in brackets for
each result which of the above properties are used. Since we assume to work with
valid cutting planes only, Property 1 is added in the bracket for each result.

Also note that whenever M is admissible, then M(P) 
= P whenever P ⊆ [0, 1]n

with P 
= ∅ and PI = ∅ (see [19]). Note that we did not include commutation of M
with coordinate permutations, which is merely renaming of coordinates, as we assume
this to be trivially true.

Remark 1 (Properties of admissible cutting plane for general IP versus binary IP)
Requiring strong homogeneity for general IPs leads to a slightly more restricted class
than the requirement of homogeneity in the 0/1 case. Our motivation to add this
property to the list of properties satisfied by admissible cutting plane operators are:
(1) It is an important property that is used for proving various results about the closures
of cutting planes (see for example [6,21]) which holds true for all well-known cutting
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plane operators for general IPs. (2) Moreover as we show in Theorem 1, this ‘restrictive’
property is inherited by ∂ M due to it holding for M . Since in this paper, we study
properies of V-schemes, this is an appropriate property to study.

Note that another typical property one would expect to hold for well-defined cutting-
plane procedures for general IPs is invariance under integral translations. While we
have not added this to the list of properties of admissible cutting plane operators, it is
straightforward to check that this property holds for ∂ M , if it holds for M.

Remark 2 (Property 4 and V-closures) Observe that any V-scheme ∂M supports prop-
erty 4 by definition. To see this, let P ⊆ [0, 1]n be a polytope and let without loss of
generality P∩{x ∈ R

n | xi = 0} = ∅. Then in particular M(P∩{x ∈ R
n | xi ≤ 0}) = ∅

and thus ∂M(P) ⊆ {x ∈ R
n | xi = 1}.

Remark 3 (Admissible cutting-plane procedures for compact convex sets) The defi-
nition of admissible cutting-plane procedures readily generalizes to compact convex
sets. Since the set M(P) is convex and compact, this allows us to iterate M, that is
given a compact convex set P , the set Mi (P) := M(Mi−1(P) is well-defined for
i ∈ N (where M1(P) := M(P)). Observe that ∂M(P) is a compact convex set by
definition and is well-defined for a general compact convex set P if M(P) is defined
for compact convex set P . Therefore, the set (∂ M)i (P) := ∂ M((∂ M)i−1(P) is also
well-defined for i ∈ N (where (∂ M)1(P) := ∂ M(P)).

Finally we remark that the assumption of M being applicable for compact convex
sets is not necessary for defining iterations of M . Indeed one may alternatively assume
that M(P) is a rational polytope. However, this still leaves difficulty with the definition
of (∂ M)i . Moreover, this property is not true for well-known cutting plane operators
such as the N , N+ operator. On the other hand, all the well-known operators described
above, that is GC,SC, N, N0, N+, are applicable to general compact convex sets.
(See [9] for a definition of GC operator for compact convex sets.)

All polytopes are assumed to be rational polytopes in this paper if not stated
otherwise. In this case we can confine ourselves to valid inequalities with inte-
gral coefficients. We will use en to represent the vector of all ones in R

n . If the
dimension of the vector is obvious from context, then we will use e instead of en .
Recall that An :=

{
x ∈ [0, 1]n | ∑

i∈I xi + ∑
i 
∈I (1 − xi ) ≥ 1

2∀ I ⊆ [n]
}

; this set

is referred often in the rest of the paper. We will use {αx ≤ β} as a shorthand for
{x ∈ R

n | αx ≤ β} whenever the ambient dimension n is understood from context.
Let ϕF be the projection onto the face F of [0, 1]n and Q = ϕF (P ∩ F). We simplify
the notation Q = ϕF (P ∩ F) as Q ∼= (P ∩ F). Moreover, instead of the cumbersome
notation ϕF (M(P ∩ F)) = M(ϕF (P ∩ F)) for substitution independence, we will
simply say M(Q) ∼= M(P ∩ F).

Next we present a technical lemma that we require for the main result of this section.

Lemma 1 Let Q ⊆ R
n be a compact set contained in the interior of the set {βx ≤ ζ }

with (β, ζ ) ∈ Z
n × Z and let (α, η) ∈ Z

n × Z. Then there exists a positive integer τ

such that Q is strictly contained in the set {(α + τβ)x ≤ η + τζ }.
Proof Since Q is a bounded set, αx ≤ η+ M for all x ∈ Q for some bounded M ∈ R.
Also since Q is contained in the interior of the set {βx ≤ ζ }, there exists an ε > 0
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such that βx ≤ ζ − ε for all x ∈ Q. Therefore for τ ∈ Z+ satisfying M/ε < τ , we
obtain that (α + τβ)x ≤ η + M + τζ − τε < η + τζ for all x ∈ Q. �	

We next show that ∂M satisfies almost all properties that we observe in most well-
known cutting-plane procedures.

Theorem 1 Let M be an admissible cutting-plane procedure. Then ∂M is almost
admissible. In particular,

1. For 0/1 polytopes, ∂M satisfies properties (1.) to (6.).
2. If M is defined for general polytopes, then ∂M satisfies property (8.).

Proof It is straightforward to verify (1.), (2.), and (4.)–(6.). The non-trivial part is
property (8.) (or (3.) respectively). In fact it follows from the original operator M
having this property. We will prove (8.); property (3.) in the case of P ⊆ [0, 1]n

follows mutatis mutandis.
First observe that ∂M(P ∩ F) ⊆ ∂M(P) and ∂M(P ∩ F) ⊆ F . Therefore, ∂M(P ∩

F) ⊆ ∂M(P)∩F . To verify ∂M(P∩F) ⊇ ∂M(P)∩F , we show that if x̂ /∈ ∂M(P∩F),
then x̂ /∈ ∂M(P)∩ F . Observe first that if x̂ /∈ P ∩ F , then x̂ /∈ ∂M(P)∩ F . Therefore,
we assume that x̂ ∈ P ∩ F . Hence we need to prove that if x̂ /∈ ∂M(P ∩ F) and
x̂ ∈ P ∩ F , then x̂ /∈ ∂M(P). Since x̂ /∈ ∂M(P ∩ F), there exists c ∈ Z

n and d ∈ Z

such that cx̂ > d and M(P ∩ F ∩ {cx ≥ d + 1}) = ∅. By strong homogeneity of M,
we obtain

M(P ∩ {cx ≥ d + 1}) ∩ F = ∅. (4)

Let F≤ = {ax ≤ b} and F = {ax = b} with P ⊆ F≤. Now observe that (4) is
equivalent to saying that M(P ∩ {cx ≥ d + 1}) is contained in the interior of the set
{ax ≤ b}. Therefore by Lemma 1, there exists a τ ∈ Z+ such that M(P∩{cx ≥ d+1})
is contained in the interior of {(c + τa)x ≤ d + 1 + τb}. Equivalently, M(P ∩ {cx ≥
d + 1}) ∩ {(c + τa)x ≥ d + 1 + τb} = ∅ which implies

M(P ∩ {cx ≥ d + 1}) ∩ (P ∩ {(c + τa)x ≥ d + 1 + τb}) = ∅. (5)

Since P ⊆ F≤, we obtain that

P ∩ {(c + τa)x ≥ d + 1 + τb} ⊆ P ∩ {cx ≥ d + 1}. (6)

Now using (5), (6) and the inclusion preservation property of M it follows that M(P ∩
{(c + τa)x ≥ d + 1 + τb}) = ∅. Thus (c + τa)x ≤ d + τb is a verifiable inequality
for ∂M(P). Moreover note that since x̂ ∈ P ∩ F , we have that ax̂ = b. Therefore,
(c + τa)x̂ = cx̂ + τb > d + τb, where the last inequality follows from the fact that
cx̂ > d. �	

It can be shown that short verification, that is property (7.) of admissible systems
follows whenever ∂M(P) is a rational polyhedron. However, we do not need this
property for the results in this paper.

123



206 S. S. Dey, S. Pokutta

3 Strength and comparisons of V-closures

In this section, we compare various regular closures and their verification counterparts
with each other. We first formally define possible relations between admissible closures
and the notation we use.

Definition 4 Let L, M be almost admissible. Then

1. L refines M, if for all rational polytopes P we have L(P) ⊆ M(P). We write:
L ⊆ M. It is indicated by empty arrow heads in Fig. 1.

2. L strictly refines M, if L refines M and there exists a rational polytope P such that
L(P) � M(P). We write: L � M. It is indicated by a filled arrow heads in Fig. 1.

3. L is incomparable with M, if there exist rational polytopes P and Q such that
M(P) � L(P) and M(Q) � L(Q). We write: L ⊥ M. It is indicated with an
arrow with circle head and tail in Fig. 1.

In each of the above definitions, if either one of L or M is defined only for polytopes
P ⊆ [0, 1]n , then we confine the comparison to this class of polytopes. �	

In Sect. 3.1, we will establish the following result.

Theorem 2 Let M be an admissible cutting plane operator. Then

1. ∂M � M (via Properties 1, 2, 4, 6, 7).
2. ∂M ⊆ GC and ∂M ⊆ N0 (via Properties 1, 2, 4).

In Sect. 3.2, we will establish the following result.

Theorem 3 Let L and M be admissible cutting plane operators such that L ⊆ M.
Then ∂L ⊆ ∂M. Moreover,

1. ∂GC � SC.
2. ∂N0 ⊥ ∂GC.
3. ∂N0 ⊥ SC.
4. ∂N � ∂N0.

Well-known relations between the operators {GC, SC, N0, N, N+} and those pre-
sented in Theorems 2 and 3 are depicted in Fig. 1.

3.1 Strength of ∂M for arbitrary admissible cutting-plane procedures M

In order to show that ∂M refines M, we require the following technical lemma; see
[10] for a similar result. We use the notation σP (·) to refer to the support function of
a set P , that is σP (c) = sup{cx | x ∈ P}.
Lemma 2 Let P, Q ⊆ R

n be compact convex sets. If σP (c) ≤ σQ(c) for all c ∈ Z
n,

then P ⊆ Q.

Proof For a compact convex set T , we have that T = ⋂
c∈Zn {x ∈ R

n | cx ≤ σT (c)}.
See [10] for a proof. If x̂ ∈ P , then cx̂ ≤ σP (c) for all c ∈ Z

n . By assumption
σP (c) ≤ σQ(c), we obtain that cx̂ ≤ σQ(c) for all c ∈ Z

n . However since Q =⋂
c∈Zn {x ∈ R

n | cx ≤ σQ(c)}, we obtain that x̂ ∈ Q. �	
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Fig. 1 Direct and V-closures and their relations. M is an arbitrarily weak admissible system. In order to
simplify the figure, we have removed the arcs corresponding to GC ⊥ N, GC ⊥ N+, SC ⊥ N, SC ⊥ N+.
An arc A → B states that A is refined by B—the other edges indicate incompatibility

Proposition 1 (Properties 1, 2, 4, 6, 7) Let M be admissible. Then ∂M � M.

Proof We first verify that ∂M ⊆ M. Since M(P) ⊆ P and ∂M(P) ⊆ P (this follows
from the definition of ∂M and Lemma 2), both M(P) and ∂M(P) are bounded. More-
over since M(P) is closed by definition, and ∂M(P) is defined as the intersection of
halfspaces (thus a closed set), we obtain that M(P) and ∂M(P) are both compact con-
vex sets. Thus, by Lemma 2, it is sufficient to compare the support functions of M(P)

and ∂M(P) with respect to integer vectors only. Let σM(P)(c) = d for c ∈ Z
n . We

verify that σ∂M(P)(c) ≤ �d�. Observe that, M(P ∩ {cx ≥ �d�+ 1}) ⊆ M(P)∩ {cx ≥
�d� + 1}, where the inclusion follows from the inclusion preservation property of
M. However note that since cx ≤ d is a valid inequality for M(P), we obtain that
M(P)∩{cx ≥ �d�+1} = ∅. Thus, M(P ∩{cx ≥ �d�+1}) = ∅ and so cx ≤ �d� is a
valid inequality for ∂M(P). Equivalently we have σ∂M(P)(c) ≤ �d� ≤ d = σM(P)(c),
completing the proof.

Now we verify ∂M � M. Let n ∈ N be such that M(An) 
= ∅ and M(An−1) = ∅;
such an n exists (due to the coordinate rounding property of M we have that M(A1) = ∅
and since M satisfies property 7, there exists t ∈ N such that M(At ) 
= ∅; (see [19])).
We claim that ∂M(An) = ∅ which implies that ∂M � M follows.

In order to establish the claim, observe that M(An ∩ {xn ≤ 0}) ∼= M(An−1) = ∅,
where the last equality is due to the choice of n. Therefore xn ≥ 1 is valid for ∂M(An).
Similarly, we can derive the validity of xn ≤ 0 for ∂M(An). We therefore conclude
that ∂M(An) = ∅. �	
Remark 4 Recall that ∂M is defined via integral inequalities and M(P) does neither
have to be polyhedral nor rational in general. We use compactness and Lemma 2 to
confine ourselves to integral normals which allows for the comparison of M and ∂M.
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Also observe that for strict inclusion it suffices that there exists a polytope P ⊆
[0, 1]n with PI = ∅ and M(P) 
= ∅. Then it can be verified that there is a face F of
[0, 1]n (F can be [0, 1]n) such that M(P ∩ F) 
= ∅ but ∂M(P ∩ F) = ∅ via properties
1, 2, and 3 of an admissible operator M. The requirement of P such that M(P) 
= ∅
and PI = ∅, can be considered a weakening of property 7 which is sufficient for the
existence of such a polytope.

We next show that even if M is chosen arbitrarily, ∂M is at least as strong as the GC
closure and the N0 closure. Let M ◦ L denote the composition of two operators, that is
(M ◦ L)(P) = M(L(P)). Note that here we assume that M is an admissible cutting
plane operator applicable to general compact convex sets if L(P) is not polyhedral.
Also note that M ◦ L is an admissible operator. See [19] for a proof of this for the case
when P is contained in [0, 1]n , and a similar proof can be given in the more general
case.

Proposition 2 (Properties 1, 2, 4) Let M be admissible. Then ∂M ⊆ GC ◦ M and
∂M ⊆ N0.

Proof Given T ⊆ R
n a compact convex set, recall that GC(T ) = ⋂

π∈Zn {πx ≤
�σT (π)�}. Let P ⊆ R

n be a polytope. First let cx < d + 1 with c ∈ Z
n and d ∈ Z be

valid for M(P). Then cx ≤ d is valid for GC(M(P)). It suffices to consider inequalities
of this type even if M(P) is not polyhedral by Lemma 2. As M(P) ⊆ {cx < d + 1}
it follows that ∅ = M(P) ∩ {cx ≥ d + 1} ⊇ M(P ∩ {cx ≥ d + 1}). It follows that
cx ≤ d is valid for ∂M(P) and thus ∂M(P) ⊆ GC(M(P)).

Now let P ⊆ [0, 1]n . For proving ∂M(P) ⊆ N0(P), recall that N0 = ⋂
i∈[n] Pi

where Pi := conv{(P ∩ {xi = 0}) ∪ (P ∩ {xi = 1})}. We will show that ∂M(P) ⊆ Pi

for all i ∈ [n]. Therefore let cx ≤ d with c ∈ Z
n and d ∈ Z be valid for Pi with i ∈ [n]

arbitrary. (It is sufficient to consider only inequalities with integer coefficients since Pi

is a rational polytope.) In particular, cx ≤ d is valid for P ∩ {xi = l} with l ∈ {0, 1}.
Thus we can conclude that P ∩ {cx ≥ d + 1} ∩ {xi = l} = ∅ for i ∈ {0, 1}. Therefore
xi > 0 and xi < 1 are valid for P ∩ {cx ≥ d + 1} and so by coordinate rounding
(property (4.) of Definition 3), xi ≤ 0 and xi ≥ 1 are valid M(P ∩ {cx ≥ d + 1}). We
obtain M(P ∩ {cx ≥ d + 1}) = ∅ and thus cx ≤ d is valid for ∂M(P). �	
Remark 5 Note that, although the identity map I is not admissible as it does not satisfy
property 4, it follows from the proof of Proposition 2 that ∂ I ⊆ GC. Moreover in this
particular case, it is not difficult to verify that ∂ I = GC.

On the other hand, we remark that it is not true that the V-scheme of an admissible
operator M is always the composition of GC with M . For example, as shown in
Sect. 5, ∂GC(P) = PI for any rational polytope in R

2. In contrast, it is well-known
that GC ◦ GC(P) = GC2(P) does not yield PI for rational polytopes P ⊆ R

2 in
general. Also, as we will see later, the V-schemes derive clique inequalities in a single
round. This is not necessarily true for GC ◦ M(P) in general.

3.2 Comparing M and ∂M for M being GC, SC, N0, N, or N+

We now compare various closures and their associated V-closures. The first result
shows that the verification scheme of the Gomory–Chvátal procedure is strictly
stronger than split cuts.
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Proposition 3 ∂GC � SC.

Proof We first verify that ∂GC ⊆ SC. Consider cx ≤ d being valid for P ∩{πx ≤ π0}
and P ∩ {πx ≥ π0 + 1} with c, π ∈ Z

n and d, π0 ∈ Z. Clearly, cx ≤ d is valid for
SC(P) and it suffices to consider inequalities cx ≤ d with this property as SC(P) is a
rational polytope [6] (since we work with polytopes, this is also implied by Lemma 2).
Therefore consider P ∩ {cx ≥ d + 1}. By cx ≤ d being valid for the disjunction
πx ≤ π0 and πx ≥ π0 + 1 we obtain that P ∩ {cx ≥ d + 1} ∩ {πx ≤ π0} = ∅
and P ∩ {cx ≥ d + 1} ∩ {πx ≥ π0 + 1} = ∅. This implies that P ∩ {cx ≥ d + 1} ⊆
{πx > π0} and similarly P ∩ {cx ≥ d + 1} ⊆ {πx < π0 + 1}. We thus obtain that
πx ≥ π0 + 1 and πx ≤ π0 are valid for GC(P ∩ {cx ≥ d + 1}). It follows GC(P ∩
{cx ≥ d + 1}) = ∅. Thus cx ≤ d is valid for ∂GC(P).

To see that ∂GC � SC, observe that ∂GC(A2) = ∅ and SC(A2) 
= ∅. �	
Next we compare V-schemes of two closures that are comparable. Before we present

these results, we clarify the difference between the notion of verifiable inequalities
against the notion of valid inequalities for V-closure of M. Recall that given a polytope,
P ⊆ R

n , we say cx ≤ d is a verifiable inequality if c ∈ Z
n , d ∈ Z and M(P ∩ {cx ≥

d + 1}) = ∅. Thus the V-closure of M is the intersection of all verifiable inequalities.
On the other hand, there may be a valid inequality for ∂M(P) that is not verifiable.
A trivial example of such as a valid inequality cx ≤ d for ∂M(P) is when c is not a
rational vector. The following example illustrates this difference more explicitly.

Example 2 Consider the set P = {x ∈[0, 1]2 | x1+x2 ≥ 1
2 , x1−x2 ≤ 1

2 ,−x1+x2 ≤ 1
2 }.

Observe that ∂N0(P) = PI = {(1, 1)}. This can be obtained by observing that the
inequalities x1 ≥ 1 and x2 ≥ 1 are verifiable using N0. Now consider the inequality
2x1 + 3x2 ≥ 5. Clearly 2x1 + 3x2 ≥ 5 is valid for ∂N0(P) but is not verifiable since
N0(P ∩ {2x1 + 3x2 ≤ 4}) ⊇ N0(A2) = 1

2 e. �	
The next result shows that switching to the verification schemes preserves inclusion.

It holds for verification schemes of any two operators, as it is based on a purely
geometric property.

Proposition 4 Let L, M be cutting-plane (not necessarily admissible) operators such
that L ⊆ M. Then ∂L ⊆ ∂M.

Proof Let P ⊆ R
n be a polytope. By the definition of ∂M, it is sufficient to show that

every inequality cx ≤ d verifiable by using M is valid for ∂L(P). Now observe that
since cx ≤ d is verifiable by using M, we have that M(P ∩ {cx ≥ d + 1}) = ∅. Thus,
L(P ∩ {cx ≥ d + 1}) = ∅ since L ⊆ M and therefore cx ≤ d is verifiable using L.
Equivalently cx ≤ d is valid for ∂L(P), completing the proof. �	

In order to prove strict refinement or incompatibility between V-closures the fol-
lowing proposition is helpful. It establishes when strict refinement carries over to the
V-schemes.

Proposition 5 (Properties 1, 3, 6) Let L, M be admissible. If P ⊆ [0, 1]n is a polytope
with PI = ∅ such that M(P) = ∅ and L(P) 
= ∅, then ∂L does not refine ∂M.

Before presenting the proof of Proposition 5, we first present a lemma which relates
the V-scheme with the actual closure.
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Lemma 3 (Properties 1, 3, 6) Let L be admissible. Let P ⊆ [0, 1]n be a polytope,
P 
= ∅ and PI = ∅. Define Q ⊆ [0, 1]n+1 as Q = conv({(x, 1) ∈ R

n+1 | x ∈
P} ∪ {(y, 0) ∈ R

n+1 | y ∈ [0, 1]n}). Then ∂L(Q) = QI iff L(P) = ∅.

Proof (⇐) If L(P) = ∅, then observe that L(Q ∩{x ∈ R
n+1 | xn+1 ≥ 1}) ∼= L(P) =

∅. Therefore xn+1 ≤ 0 is valid for ∂L(Q). Thus ∂L(Q) = QI .
(⇒) We will now show that if L(P) 
= ∅, then the point 1

2 e ∈ R
n+1 satisfies

1
2 e ∈ ∂L(Q) and hence ∂L(Q) 
= QI . Let c ∈ Z

n and cn+1, d ∈ Z such that
L(T ) = ∅ with T = {x ∈ Q | cx + cn+1xn+1 ≥ d + 1}, that is cx + cn+1xn+1 ≤ d is
valid for ∂L(Q). We will show that c( 1

2 en) + 1
2 cn+1 ≤ d. Let zmin := minx∈[0,1]n cx

and zmax := maxx∈[0,1]n cx ; let xmin and xmax be a minimizer and a maximizer,
respectively. Further we define zP := minx∈P cx . As L(P) 
= ∅, by property 6 we
have P ∼= Q ∩ {xn+1 = 1} 
⊆ T and therefore zP + cn+1 < d + 1 and hence
cn+1 ≤ d − zP . On the other hand we have that zmin ≤ zP since P ⊆ [0, 1]n . As
Q ∩ {xn+1 = 0} is integral we have T ∩ (Q ∩ {xn+1 = 0}) = ∅ and so zmax ≤ d.
Moreover, by definition of xmin and xmax we can assume that xmin and xmax are
antipodal, that is en = xmax + xmin . So we conclude

1

2
e = 1

2
((xmin, 0) + (xmax , 0) + (0, . . . , 0, 1)),

and therefore

c

(
1

2
en

)
+ 1

2
cn+1 ≤ 1

2
(zP + d + (d − zP )) = d

which completes the proof. �	
We will use the following notation in the remainder of this section. Let G ⊆ [0, 1]n

be a closed convex set. For l ∈ [0, 1], by Gxn+1=l we denote the set S ⊆ [0, 1]n+1

such that S ∩ {xn+1 = l} ∼= G and S does not contain any other points. We can think
of S arising from G by padding the coordinates of the points with l to the right. If G
is the singleton {p}, then we write {p}xn+1=l as pxn+1=l .

Proof of Proposition 5 Consider the auxiliary polytope Q given as Q := conv
(
Pxn+1=1

∪[0, 1]n
xn+1=0

)
. By Lemma 3, ∂L(Q)=∅ if and only if L(P)∼=L(Q∩{xn+1 ≥1}) = ∅

(and similarly for M). Since we have M(P) = ∅ but L(P) 
= ∅, we obtain
QI = ∂M(Q) 
⊇ ∂L(Q). �	

In the following propositions, polytopes are presented that help establish the strict
inclusion or incompatibility depicted in Fig. 1, via Proposition 5.

Proposition 6 ∂ N0 ⊥ ∂GC via the two polytopes P1 := conv([0, 1]3∩{x1+x2+x3 =
3/2}) ⊆ [0, 1]3 and P2 := conv({( 1

4 , 1
4 , 0), ( 1

4 , 1
4 , 1), ( 1

2 , 0, 1
2 ), ( 1

2 , 1, 1
2 ), (0, 1

2 , 1
2 ),

(1, 1
2 , 1

2 )}) ⊆ [0, 1]3.

Proof By Proposition 5 it suffices to show that GC(P1) = ∅ 
= N0(P1) and, vice
versa, GC(P2) 
= ∅ = N0(P2).
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For the first case, clearly GC(P1) = ∅. For proving that N0(P1) 
= ∅ it suffices to
show that 1

2 e is contained in conv((P1 ∩ {xi = 0}) ∪ (P1 ∩ {xi = 1})) for all i ∈ [3].
By symmetry, it suffices to show this for i = 1. This is true as 1

2 e is the convex
combination of the points (0, 1, 1/2) and (1, 0, 1/2).

For the second case, we first show that N0(P2) = ∅. For this observe that conv((P2∩
{x3 = 0})∪(P2∩{x3 = 1})) contains only points whose first two coordinates are equal
to 1/4. On the other hand

conv((P2 ∩ {x1 = 0}) ∪ (P2 ∩ {x1 = 1}))
∩conv((P2 ∩ {x2 = 0}) ∪ (P2 ∩ {x2 = 1})) = 1

2
e,

as P2∩{x3 = 1/2} ∼= A2 and thus N0(P2) = ∅. It thus remains to show that GC(P2) 
=
∅. We will show that 1

2 e ∈ P2. Let cx ≤ d with c ∈ Z
3 be valid for P2. We divide the

proof into two cases:

1. Either c1 or c2 is non-zero. In this case observe that

d ≥ d0 := max

{
c

(
1

2
, 0,

1

2

)
, c

(
1

2
, 1,

1

2

)
, c

(
0,

1

2
,

1

2

)
, c

(
1,

1

2
,

1

2

)}

> d1 := c

(
1

2
,

1

2
,

1

2

)
,

where the second inequality follows from the fact that
( 1

2 , 1
2 , 1

2

)
lies in the rela-

tive interior of the convex hull of
( 1

2 , 0, 1
2

)
,
( 1

2 , 1, 1
2

)
,
(
0, 1

2 , 1
2

)
,
(
1, 1

2 , 1
2

)
. Now

observe that since d0, d1 ∈ 1
2 Z, we obtain that the interval [d1, d0] contains at least

one integer number. Thus, �d� ≥ �d0� ≥ d1 = c
( 1

2 , 1
2 , 1

2

)
.

2. c1 = c2 = 0. If c3 > 0, then d ≥ c3 (since ( 1
4 , 1

4 , 1) ∈ P2) and we obtain the
GC inequality c3x3 ≤ �c3� where �c3� ≥ 1. Thus this inequality cannot separate
1
2 e. Similarly if c3 ≤ −1, it can the verified that the resulting inequality cannot
separate 1

2 e. �	
Proposition 7 ∂N0 ⊥ SC via P1 := A3 ⊆ [0, 1]3 and P2 := conv([0, 1]3 ∩ {x1 +
x2 + x3 = 3/2}).
Proof Clearly SC 
⊆ ∂N0 as ∂N0(P1) = ∅ (proof similar to Example 1) but SC(P1) 
=
∅ (cf. Lemma 3.3 in [8]).

For the converse, by Proposition 6 we have N0(P2) 
= ∅. However, SC(Q) = QI

by observing that the split x1 + x2 + x3 ≤ 1 and x1 + x2 + x3 ≥ 2 derives QI . Now
the result follows from Proposition 5. �	
Proposition 8 ∂N � ∂N0.

Proof We will show that there exists a polytope Q contained in the 0/1 cube such that
QI = ∅ and ∅ = N(Q) � N0(Q). Then the result follows by the use of Proposition 5.

Let P ⊆ [0, 1]n such that N(P) � N0(P), for example as discussed in page 171
of [16], for some n ∈ N. Let p ∈ N0(P)\N(P) and define
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Q := conv
(
Pxn+1=1/2 ∪ {

pxn+1=1, pxn+1=0
})

.

Clearly, QI = ∅.
We first verify that N(Q) = ∅. Observe first that N(Q) ⊆ N0(Q) ⊆ conv (Q ∩

{xn+1 = 0} ∪ Q ∩ {xn+1 = 1}) = conv(pxn+1=0, pxn+1=1). On the other hand, it is
easily verified that if

∑n
i=1 ci xi ≤ d is a valid inequality for P , then it is also a valid

inequality for Q. Therefore we obtain that N(Q) ⊆ conv(N(P)xn+1=0, N(P)xn+1=1).
Now since conv(N(P)xn+1=0, N(P)xn+1=1)∩ conv(pxn+1=0, pxn+1=1) = ∅, we obtain
that N (Q) = ∅.

Next we verify that N0(Q) 
= ∅. As p ∈ N0(P) we can conclude that
pxn+1=1/2 ∈ ⋂

i∈[n] conv (Q ∩ {xi = 0} ∪ Q ∩ {xi = 1}). Thus we have to show
that pxn+1=1/2 ∈ conv (Q ∩ {xn+1 = 0} ∪ Q ∩ {xn+1 = 1}). This is clear though as{

pxn+1=1, pxn+1=0
} ⊆ Q. �	

4 Rank of valid inequalities with respect to V-closures

In this section, we establish several bounds on the rank of ∂M for the case of polytopes
P ⊆ [0, 1]n . Given a natural number k, we use the notation Mk(P) and rkM(P) to be
denote that kth closure of P with respect to M and the rank of P with respect to M
respectively. As ∂M ⊆ N0 we obtain:

Remark 6 [Upper bound in [0, 1]n] (Properties 1, 2, 4) Let M be admissible and
P ⊆ [0, 1]n be a polytope. Then rk∂M(P) ≤ n.

Note that in general the property of M being admissible, does not guarantee that
the upper bound on rank is n. For example, the GC closure can have a rank strictly
higher than n (cf. [13,20]).

4.1 Rank of An

In quest for lower bounds on the rank of 0/1 polytopes, we note that among polytopes
P ⊆ [0, 1]n that have PI = ∅, the polytope An = {x ∈ [0, 1]n | ∑

i∈I xi + ∑
i 
∈I

(1 − xi ) ≥ 1
2∀ I ⊆ [n]} has maximal rank (of n) for many admissible systems [18].

We will now establish that ∂M is not unrealistically strong by showing that it is subject
to similar limitations. Recall that we do not prove short verification (property (7.))
for ∂M which is the basis for the lower bound in [19, Corollary 23] for admissible
systems. We will show that the lower bound for ∂M is inherited from the original
operator M. Let

Fk
n := {

x ∈ {0, 1/2, 1}n | exactly k entries equal to 1/2
}
,

and let Ak
n := conv

(
Fk

n

)
be the convex hull of Fk

n . (Note A1
n = An .) With F being a

face of [0, 1]n let I (F) denote the index set of those coordinate that are fixed by F .
We begin with a crucial lemma.
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Lemma 4 (Properties 1, 2, 5, 6) Let M be admissible and let  ∈ N such that Ak+
n ⊆

M(Ak
n) for all n, k ∈ N with k +  ≤ n. If n ≥ k + 2 + 1, then Ak+2+1

n ⊆ ∂M(Ak
n).

Proof Let P := Ak
n and let cx ≤ d with c ∈ Z

n and d ∈ Z be verifiable for ∂M(P),
that is M(P ∩ {cx ≥ d + 1}) = ∅. To prove this result, it is sufficient to prove that
Ak+2+1

n ⊆ P ∩ {cx ≤ d}.
We first claim that

Ak
k+

∼= Ak
n ∩ F 
⊆ P ∩ {cx ≥ d + 1} (7)

for all (k +)-dimensional faces F of [0, 1]n . Assume by contradiction that Ak
n ∩ F ⊆

P ∩ {cx ≥ d + 1}. As Ak+
k+ ⊆ M(Ak

k+) by assumption, we obtain ∅ 
= Ak+
k+ ⊆

M(Ak
k+)

∼= M(Ak
n ∩ F) ⊆ M(P ∩ {cx ≥ d + 1}) which contradicts the verifiability

of cx ≤ d over ∂M(P).
Without loss of generality we can further assume that c ≥ 0 and ci ≥ c j whenever

i ≤ j by applying coordinate flips and permutations.
Next we claim that for all (k + )-dimensional faces F of [0, 1]n , the point vF

defined as

vF
i :=

⎧
⎨

⎩

∈ {0, 1}according to F , for all i ∈ I (F)

0, if ci is one of the  largest coefficients of c with i 
∈ I (F)

1/2, otherwise
(8)

for i ∈ [n] is not contained in P ∩ {cx ≥ d + 1}, that is cvF < d + 1 and so
cvF ≤ d+1/2. Note thatvF ∈ P and observe thatvF := argminx∈Fk

n ∩F cx . Therefore,

if vF ∈ P ∩{cx ≥ d + 1}, then Ak
n ∩ F ⊆ P ∩{cx ≥ d + 1} which in turn contradicts

(7). This claim holds in particular for those faces F fixing coordinates to 1.
Finally, we claim that Ak+2+1

n ⊆ P ∩ {cx ≤ d}. It suffices to show that cv ≤ d
for all v ∈ Fk+2+1

n and we can confine ourselves to the worst case v given by

vi :=
{

1, if i ∈ [n − (k + 2 + 1)]
1/2, otherwise.

Observe that cv ≥ cw holds for all w ∈ Fk+2+1
n . Let F be the (k + )-dimensional

face of [0, 1]n obtained by fixing the first n − (k + ) coordinates to 1. Then

cv =
n−(k+2+1)∑

i=1

ci + 1

2

n∑

i=n−(k+2+1)+1

ci

≤
n−(k+)∑

i=1

ci − 1

2
cn−(k+) +

n−k∑

i=n−(k+)+1

0 + 1

2

n∑

i=(n−k)+1

ci

= cvF − 1

2
cn−(k+) ≤ d + 1

2
− 1

2
cn−(k+).
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In case cn−(k+) ≥ 1 it follows that cv≤d. Therefore consider the case cn−(k+) =0.
Then we have that ci = 0 for all i ≥ n−(k+). In this case cvF is integral and cvF

< d + 1 implies cvF ≤d. So cv≤cvF ≤d follows, which completes the proof. �	
Using Lemma 4 we can establish the following lower bound on the rank of ∂M

for An .

Theorem 4 (Lower bound for An) (Properties 1, 2, 5, 6) Let M be admissible and
let  ∈ N such that Ak+

n ⊆ M(Ak
n) for all n, k ∈ N with k +  ≤ n. If n ≥ k + 2+ 1,

then rk∂M(An) ≥
⌊

n−1
2+1

⌋
.

Proof We will show the A1+k(2+1)
n ⊆ (∂M)k(An) as long as n ≥ k + 2 + 1. The

proof is by induction on k. Let k = 1, then A1+2+1
n ⊆ ∂M(A1

n) = ∂M(An) by
Lemma 4. Therefore consider k > 1. Now (∂M)k(An) = ∂M((∂M)k−1(An)) ⊇
∂M(A1+(k−1)(2+1)

n ) ⊇ A1+k(2+1)
n , where the first inclusion follows by induction

and the second inclusion by Lemma 4 again. Thus (∂M)k(An) 
= ∅ as long as 1 +
k(2 + 1) ≤ n, which is the case as long as k ≤

⌊
n−1
2+1

⌋
and we can conclude

rk∂M(An) ≥
⌊

n−1
2+1

⌋
. �	

For M ∈ {GC, SC, N0, N, N+} we have that  = 1 (see [19]) and therefore we
obtain the following corollary.

Corollary 1 Let M ∈ {GC, N0, N, N+, SC} and n ∈ N with n ≥ 4. Then rk∂M(An) ≥⌊ n−1
3

⌋
.

We can also derive an upper bound on the rank of An as follows.

Proposition 9 (Upper bound for An)(Properties 1, 2, 3, 4, 6) Let M be admissible and
n ∈ N. Then rk∂M(An) ≤ n − 2.

Proof For n ≤ 3, observe that the arguments presented in Example 1 for the case of
∂SC would be valid for any admissible cutting plane operator. Thus, the result holds
for n ≤ 3.

For n ≥ 4, the proof is by induction on n. Consider An ∩ {xi = l} ∼= An−1 for
(i, l) ∈ [n] × {0, 1}. Then after n − 3 applications of ∂M, by induction we have
(∂M)(n−3)(An ∩ {xi = l}) = ∅. As (i, l) ∈ [n] × {0, 1} was arbitrary we obtain that
xi < 1 and xi > 0 are valid for (∂M)(n−3)(An). Another application of ∂M suffices
to derive xi ≤ 0 and xi ≥ 1 and thus (∂M)(n−2)(An) = ∅ follows. �	

5 V-closures for well-known and structured problems

We first establish a useful lemma which holds for any ∂M with M being admissible.
The lemma is analogous to Lemma 1.5 in [16].

Lemma 5 (Properties 1, 2, 4) Let M be admissible, let P ⊆ [0, 1]n be a closed convex
set and let (c, d) ∈ Z

n+1+ . If cx ≤ d is valid for P ∩ {xi = 1} for every i ∈ [n] with
ci > 0, then cx ≤ d is valid for ∂M(P).
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Proof Clearly, cx ≤ d is valid for PI : if x ∈ P ∩ Z
n is non-zero, then there exists an

i ∈ [n] with xi = 1, otherwise cx ≤ d is trivially satisfied.
We claim that cx ≤ d is valid for ∂M(P). Let Q := P ∩{cx ≥ d + 1} and observe

that Q ∩ {xi = 1} = ∅ for any i ∈ [n] with ci > 0. Therefore by the coordinate
rounding property of admissible operators, we have that M(Q) ⊆ ⋂

i∈[n]:ci >0 {xi = 0}.
By definition of Q we also have that M(Q) ⊆ {cx ≥ d + 1}. Since c ≥ 0 and d ≥ 0
we deduce M(Q) = ∅ and the claim follows. �	

5.1 Monotone polytopes

The following theorem is a direct consequence of Lemma 5 and follows in a similar
fashion as Lemma 2.7 in [5] or Lemma 2.14 in [16].

Theorem 5 (Properties 1, 2, 3, 4) Let M be admissible. Further, let P ⊆ [0, 1]n be
a polytope and (c, d) ∈ Z

n+1+ such that cx ≤ d is valid for P ∩ F whenever F is an
(n − k)-dimensional face of [0, 1]n obtained by fixing coordinates to 1. Then cx ≤ d
is valid (∂M)k(P).

Proof The proof is by induction on k, the number of coordinates fixed to obtain a n−k
dimensional face. For k = 1 the assertion follows with Lemma 5. Therefore let k > 1.
Define Qi = P ∩ {xi = 1} for all i ∈ [n]. Then cx ≤ d is valid for Qi ∩ F̃ whenever
F̃ is an (n − 1) − (k − 1)-dimensional face of [0, 1]n−1 fixing k − 1 coordinates to 1
and i is not one of those coordinates. We can apply the induction hypothesis obtaining
that cx ≤ d is valid for (∂M)k−1(Qi ) for all i ∈ [n]. By homogeneity of ∂M we
obtain (∂M)k−1(Qi ) = (∂M)k−1(P) ∩ {xi = 1} for all i ∈ [n]. Applying Lemma 5
once more yields that cx ≤ d is valid for (∂M)k(P). �	

We call a polytope P ⊆ [0, 1]n monotone if x ∈ P , y ∈ [0, 1]n , and y ≤ x
(coordinate-wise) implies y ∈ P . We can derive the following corollary from Theo-
rem 5 which is the analog to Lemma 2.7 in [5].

Corollary 2 (Properties 1, 2, 3, 4) Let M be admissible and let P ⊆ [0, 1]n be a
monotone polytope with maxx∈PI ex = k. Then rk∂M(P) ≤ k + 1.

Proof Observe that since P is monotone, so is PI and thus PI possesses an inequality
description P = {x ∈ [0, 1]n | Ax ≤ b} with A ∈ Z

m×n+ and b ∈ Z
n+ for some m ∈ N.

Therefore it suffices to consider inequalities cx ≤ d valid for PI with c, d ≥ 0. As
maxx∈PI ex = k and P is monotone, we claim that P ∩ F = ∅ whenever F is an
n − (k + 1) dimensional face of [0, 1]n obtained by fixing k + 1 coordinates to 1.
Assume by contradiction that x ∈ P ∩ F 
= ∅. As P ∩ F is monotone, the point
obtained by setting all fractional entries of x to 0 is contained in PI ∩ F which is a
contradiction to maxx∈PI ex = k. Therefore cx ≤ d is valid for all P ∩ F with F
being an n − (k + 1) dimensional face of [0, 1]n obtained by fixing k + 1 coordinates
to 1. The result follows now by using Theorem 5. �	
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5.2 Stable set polytope

Given a graph G := (V, E), the fractional stable set polytope of G is given by
FSTAB(G) := {x ∈ [0, 1]n | xu + xv ≤ 1 ∀(u, v) ∈ E}. See [16] for a description of
clique inequalities, odd hole inequalities, odd anti-hole inequalities, and odd wheel
inequalities for the stable set polytope.

Now Lemma 5 can be used to prove the following result.

Theorem 6 (Properties 1, 2, 4) Clique inequalities, odd hole inequalities, odd anti-
hole inequalities, and odd wheel inequalities are valid for ∂M(FSTAB(G)) with M
being an admissible operator.

Proof In the following let

P0 :=
{

x ∈ [0, 1]|V | | xu + xv ≤ 1 ∀(u, v) ∈ E
}

,

for V, E chosen as explained below.
We first consider the clique inequalities. Let H(V, E) be an induced clique. Then

the clique inequality is

∑

u∈V

xu ≤ 1.

Now for every vertex v in V , fixing xv = 1 in the system P0 implies that xu = 0 for
u 
= v. Thus, the clique inequality is valid for P0 ∩ {xv = 1} for all v ∈ V . Now by
Lemma 5 the result follows.

Odd hole inequalities are GC inequalities: Add all the inequalities of the form
xu + xv ≤ 1 along the odd hole, divide by 2, and the round down the right-hand-side.
Therefore, odd hole inequalities are valid for ∂M.

Let H(V, E) be an induced graph which is an odd anti-hole with |V | ≥ 5. Call the
complement of H(V, E) as H̄(V, Ē) (i.e. H̄ is an odd hole). Then the odd anti-hole
inequality is

∑

u∈V

xu ≤ 2.

For every vertex v in V , fixing xv = 1 in the system

P0 =
{

x ∈ [0, 1]|V | | xu + xv ≤ 1 ∀(u, v) ∈ E
}

,

implies that xu = 0 for all u except the neighbors of vertex v in H̄ . Moreover, these
two neighbors of v in H̄ are neighbors of each other in H (since |V | ≥ 5). Thus,
max

∑
u∈V xu = 2 for x ∈ P0 ∩ {xv = 1}. Now by Lemma 5 the result follows.

Let H({0, . . . , n}, E) be an induced graph which is an odd wheel, that is n is odd,
the vertices 1 through n form a hole and the vertex 0 is a neighbor to all other vertices.
Then the odd wheel inequality is
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n∑

i=1

xi + n − 1

2
x0 ≤ n − 1

2
.

Now for the vertex 0, fixing x0 = 1 in the system

P0 =
{

x ∈ [0, 1]n+1 | xu + xv ≤ 1 ∀(u, v) ∈ E
}

,

implies that xu = 0 for u ∈ {1, . . . , n}. Therefore, max
∑n

i=1 xi + n−1
2 x0 = n−1

2 for
x ∈ P0 ∩ {x0 = 1}.

On fixing x1 = 1 in P0, we obtain that x0 = 0, x2 = 0, xn = 0 and therefore the
system P0 reduces to

xk + xk+1 ≤ 1 ∀k ∈ {2, . . . , n − 2} (9)

0 ≤ xk ≤ 1 ∀k ∈ {2, . . . , n − 2}. (10)

Now observe that the constraint set (9) is totally unimodular. Therefore,
max

∑n
i=1 xi + n−1

2 x0 = n−1
2 for x ∈ P0 ∩ {x1 = 1}. Similarly, max

∑n
i=1 xi +

n−1
2 x0 = n−1

2 for x ∈ P0 ∩ {xv = 1} for v ∈ {2, . . . , n}. Now by Lemma 5 the result
follows. �	

5.3 The traveling salesman problem

So far we have seen that transitioning from a general cutting-plane procedure M to its
V-scheme, ∂M, can result in a significantly lower rank for valid inequalities, potentially
making them accessible in a small number of rounds. However, we will now show
that the rank of (the subtour elimination relaxation of) the traveling salesman polytope
remains high, even when using V-schemes of strong operators such as SC or N+. For
n ∈ N, let G = (V, E) be the complete graph on n vertices and Hn ⊆ [0, 1]n be the
polytope given by (see [5] for more details)

x(δ({v})) = 2 ∀ v ∈ V
x(E(W )) ≤ |W | − 1 ∀ ∅ � W � V
xe ∈ [0, 1] ∀e ∈ E,

where for a given node v, x(δ({v})) is the sum of the components of the vector x
corresponding to edges incident to the node v and for any subset W of V, x(E(W )) is
the sum of the components of the vector x corresponding to edges which are incident
to nodes contained only in W . Note that the dimension of Hn is Θ(n2). We obtain the
following statement which is the analog to [5, Theorem 4.1]. A similar result for the
admissible systems M in general can be found in the full-length version of [19].

Theorem 7 (Properties 1, 2, 3, 4, 5, 6) Let M ∈ {GC, N0, N, N+, SC}. For n ∈ N

and Hn as defined above we have rk∂M(Hn) ∈ Θ(n). In particular rk∂M(Hn) ∈
Θ(

√
dim(P)).
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Proof We first establish the lower bound. As shown in [3] or [5, Theorem 4.1], there
exists an embedding

f : A�n/8� ↪→ Hn,

consisting of coordinate flips and coordinate duplications only, such that f ( 1
2 e) ∈

Hn\(Hn)I . Since ∂M is almost admissible, we have that ∂M commutes with f . We
obtain

f

(
1

2
e

)
∈ f (∂Mk(A�n/8�)) = ∂Mk( f (A�n/8�)) ⊆ ∂Mk(Hn),

for k < rk∂M(A�n/8�) and thus rk∂M(Hn) ≥ rk∂M(A�n/8�) ∈ �(n) by Corollary 1.
For the upper bound, observe that Hn is a face of Tn given by

x(δ({v}) ≤ 2 ∀ v ∈ V
x(E(W )) ≤ |W | − 1 ∀ ∅ � W � V
xe ∈ [0, 1] ∀e ∈ E .

(see [5] for details). As Tn is given by a system of inequalities of the form Ax ≤ b with
non-negative coefficients, it follows that Tn is a monotone polytope. Furthermore, we
can conclude that maxx∈(Tn)I ex ≤ n so that we can apply Corollary 2. We obtain that
rk∂M(Hn) ≤ rk∂M(Tn) ≤ n + 1 which finishes the proof. �	

The same result can be shown to hold for the asymmetric TSP problem (see [3]
and [5]).

5.4 General polytopes in R
2

The GC rank of valid inequalities for polytopes in R
2 can be arbitrarily high; see

example in [17]. The SC rank of valid inequalities for polytopes in R
2 can be at least

2; A2 is an example where the split rank is 2 and the instance is infeasible and see [12]
for an example where the instance is feasible and the split rank is at least 2.

However, ∂GC is significantly stronger as shown next.
In the following proof, a split is a set of the form {g ≤ hx ≤ g + 1} where h ∈ Z

2

and g ∈ Z and we call the lines {hx = g} and {hx = g + 1} as the boundary lines of
the split. A set Q ⊂ R

2 is called lattice-free if int(Q) ∩ Z
2 = ∅. Therefore a split set

is an example of a lattice-free convex set.
The following result follows from [15].

Lemma 6 If P ⊆ R
2 is a full-dimensional unbounded lattice-free convex set, then P

is contained in a split set.

Theorem 8 Let P be a polytope in R
2. Then ∂GC(P) = PI .

Proof The proof is divided into various cases based on the dimension of PI .
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Case 1 dim(PI ) = 2. We will show that every facet-defining inequality can be
obtained using the ∂GC operator. Given a facet-defining inequality cx ≤ d, there
exists at least two integer points belonging to PI that satisfy the inequality at equality.
Let Q := P ∩{x ∈ R

2 | cx ≥ d}. We assume that Q � {cx < d +1}, since otherwise
cx ≤ d is a GC cut. Let x1 and x2 be two consecutive integer points on the face of PI

defined by {cx = d}. As Q � {cx < d + 1} we obtain that Q intersects {cx = d + 1}
in a segment contained between two integer points y1, y2 on {cx = d + 1}. Since
x1, x2, y2, y1 (in topological order) are the vertices of a lattice-free parallelogram and
these are the only integer points contained in this parallelogram, the lines l1 and l2

through x1 y1 and x2 y2 respectively are the boundary lines of a split. Call this split
S. It is sufficient to verify that Q ∩ {cx ≥ d + 1} is strictly contained in S, since this
implies that GC(Q ∩ {cx ≥ d + 1}) = ∅. Note that Q is contained in the union of the
split set d ≤ cx ≤ d + 1 and S, since otherwise it is straightforward to verify that yi

for some i ∈ {1, 2} must belong to Q. Therefore Q ∩ {cx ≥ d + 1} is contained in S,
and it remains to prove that Q ∩ {cx ≥ d + 1} is strictly contained in S. Let l̂ i ⊆ li be
the half-line starting at the point yi which does not contain the point xi . Since xi ∈ P
and yi /∈ P , by convexity of P we have that l̂ i ∩ P = ∅. Moreover, since Q ⊆ P ,
we have that Q ∩ {cx ≥ d + 1} ∩ l̂ i = ∅ for i ∈ {1, 2}. Since Q ∩ {cx ≥ d + 1} is
contained in S, we therefore obtain that Q ∩ {cx ≥ d + 1} is strictly contained in S. �

Before we consider other cases where dim(PI ) ≤ 1, observe that since P is a
rational polytope, with out loss of generality we may assume that P is full-dimensional:
Since P is rational polytope, it is straightforward to verify that there exists a full-
dimensional rational polytope T satisfying P ⊆ T and TI = PI . Since ∂GC(P) ⊆
∂GC(T ) it is sufficient to verify that ∂GC(T ) = TI .

If P contains integer points, then we further preprocess P in the following fashion.
Suppose there exists a linear inequality in the description of P , such that removing this
inequality from the description of P results in a polyhedron P ′ such that P ′

I = PI . Note
that in this case P ′ is a polytope since P ′ is rational and P ′

I = PI 
= ∅. We rename P ′
by P and by applying this procedure iteratively, we obtain a polytope where removing
any facet-defining inequality introduces new integer points.

We call a point v ∈ Z
2 as minimally infeasible for facet-defining inequality f x ≤ g

of P if (1) v satisfies all the constraints defining P except f x ≤ g and (2) conv(P ∪
{v})∩Z

2 = (P∩Z
2)∪{v}. A minimally infeasible point exists for every facet-defining

inequality of P: By the preprocessing of P , we know that removing the facet-defining
inequality f x ≤ g introduces new integer points in P . Now it is straightforward to
verify that any optimal solution of the problem min{ f x | x ∈ P̂ ∩ Z

2} is a minimally
infeasible point for f x ≤ g, where P̂ is the set obtained by replacing f x ≤ g by
f x > g in the description of P .

Case 2 dim(PI ) = 1. Let PI ⊆ {cx = d} where c ∈ Z
2 and d ∈ Z. Note that the

inequality cx ≤ d satisfies at least two integer points belonging to PI at equality.
Therefore by the application of the proof technique used in case 1, we have that the
inequality cx ≤ d is valid for ∂GC(P). Similarly, cx ≥ d is valid for ∂GC(P). Thus,

∂GC(P) ⊆ {cx = d}. (11)
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Let PI = {cx = d, g ≤ f x ≤ h}, where f is a vector orthogonal to c. Next
observe that there exists at least one facet-defining inequality of P that separates the
integer points in {cx = d, f x < g} from P . Call one such facet-defining inequality as
F1. Similarly let F2 be a facet-defining inequality that separates the integer points in
{cx = d, f x > h} from P . Since P is full-dimensional, bounded and non-empty it has
at least three facets. Select a facet-defining inequality of P different from F1 and F2.
Let v ∈ Z

2 be a minimally infeasible point for this facet and let P ′ := conv(P ∪ {v}).
Since F1 and F2 still separate the integer points in the the set {cx = d, f x <

g} ∪ {cx = d, f x > h} from P ′, we may assume without loss of generality

v := (P ′\P) ∩ Z
2 satisfies cx < d. (12)

Therefore, dim(conv(P ′
I )) = 2 and by case 1, we have that ∂GC(P ′) = P ′

I . Finally
note that since ∂GC(P) ⊆ ∂GC(P ′), we obtain that

∂GC(P) ⊆ {cx = d} ∩ ∂GC(P ′) (13)

= {cx = d} ∩ P ′
I (14)

= PI , (15)

where (13) follows from (11) and (15) follows from (12).

Case 3 dim(PI ) = 0. Since P is full-dimensional, bounded and non-empty it has at
least three facets. Let v1 and v2 be minimally infeasible points for two distinct facet-
defining inequalities for P . Then we have that v1 
= v2. Let Pi = conv(P ∪ {vi })
for i ∈ {1, 2}. Then we have ∂GC(P) ⊆ ∂GC(P1 ∩ P2) ⊆ ∂GC(P1) ∩ ∂GC(P2) =
P1

I ∩ P2
I = {u}, where the second last equality follows from case 2 and the fact that

dim(Pi
I ) = 1 and the last equality follows from the fact that v2 /∈ conv({v1} ∪ {u})

and v1 /∈ conv({v2} ∪ {u}).

Case 4 PI = ∅: Like in the case where PI 
= ∅, we preprocess P by removing any
facet-defining inequality if removing the inequality does not introduce any integer
points in the resulting polyhedron. Note that, in this case, the resulting set need not be
bounded. If P is unbounded, since it is lattice-free and full-dimensional, by Lemma 6
we have that P is contained in a split set {a0 ≤ ax ≤ a0+1}. Moreover since P ∩Z

2 =
∅, we obtain that P ∩ {ax ≥ a0 + 1} is a line segment (possibly an empty set) strictly
contained between two integer points. This implies that GC(P ∩ {ax ≥ a0 + 1}) = ∅
and thus ax ≤ a0 is a valid inequality for ∂GC(P). Similarly, ax ≥ a0 + 1 is a valid
inequality for ∂GC(P), completing the proof.

Now consider the case where P is bounded. Then P has at least three facets. Let v1

and v2 be minimally infeasible points for two distinct facet-defining inequalities of P
and let Pi := conv({vi } ∪ P) for i ∈ {1, 2}. Therefore, ∂GC(P) ⊆ ∂GC(P1 ∩ P2) ⊆
∂GC(P1)∩ ∂GC(P2) = {v1} ∩ {v2} = ∅ where the second last equality follows from
case 3 and the last equality follows from the fact that v1 
= v2. �	
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6 Concluding remarks

In this paper, we consider a new paradigm for generating cutting-planes. Rather than
computing a cutting-plane we suppose that the cutting-plane is given, either by a delib-
erate construction or guessed in some other way and then we verify its validity using
a regular cutting-plane procedure. We have shown that cutting-planes obtained via
the verification scheme can be very strong, significantly exceeding the capabilities of
the regular cutting-plane procedure. This superior strength is illustrated, for example,
in Theorems 1, 3, Fig. 1, Lemma 6, Proposition 9, Theorems 5, 6, 7 and 8. On the
other hand, we also show that the verification scheme is not unrealistically strong, as
illustrated by Theorems 4 and 7.

We would like to point out that verification schemes (with minor adjustments)
can also be applied to mixed-integer programming problems to generate pure integer
cuts. For example one could replace the Gomory–Chv́atal generator with projected
Gomory–Chv́atal cuts in the mixed-integer case.

Acknowledgments The authors are most grateful to the anonymous referees for their detailed remarks
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