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Abstract
The structure and quantitative composition of the cerebral cortex are interrelated with its

computational capacity. Empirical data analyzed here indicate a certain hierarchy in local

cortical composition. Specifically, neural wire, i.e., axons and dendrites take each about 1/3

of cortical space, spines and glia/astrocytes occupy each about (1/3)2, and capillaries

around (1/3)4. Moreover, data analysis across species reveals that these fractions are

roughly brain size independent, which suggests that they could be in some sense optimal

and thus important for brain function. Is there any principle that sets them in this invariant

way? This study first builds a model of local circuit in which neural wire, spines, astrocytes,

and capillaries are mutually coupled elements and are treated within a single mathematical

framework. Next, various forms of wire minimization rule (wire length, surface area, volume,

or conduction delays) are analyzed, of which, only minimization of wire volume provides

realistic results that are very close to the empirical cortical fractions. As an alternative, a

new principle called “spine economy maximization” is proposed and investigated, which is

associated with maximization of spine proportion in the cortex per spine size that yields

equally good but more robust results. Additionally, a combination of wire cost and spine

economy notions is considered as a meta-principle, and it is found that this proposition

gives only marginally better results than either pure wire volume minimization or pure spine

economy maximization, but only if spine economy component dominates. However, such a

combined meta-principle yields much better results than the constraints related solely to

minimization of wire length, wire surface area, and conduction delays. Interestingly, the type

of spine size distribution also plays a role, and better agreement with the data is achieved

for distributions with long tails. In sum, these results suggest that for the efficiency of local

circuits wire volume may be more primary variable than wire length or temporal delays, and

moreover, the new spine economy principle may be important for brain evolutionary design

in a broader context.
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Author Summary

Cerebral cortex is an outer layer of the brain in mammals, and it plays a critical part in var-
ious cognitive processes such as learning, memory, attention, language, and consciousness.
The cerebral cortex contains a number of neuroanatomical parameters whose values are
essentially conserved across species and brain sizes, which suggests that these particular
parameters are somehow important for brain efficient functioning. This study shows that
the fractional volumes of five major cortical components both neuronal and non-neuronal
(axons, dendrites, spines, glia/astrocytes, capillaries) are also approximately conserved
across mammals, and neural wire (axons and dendrites) occupies the most of cortical
space. Moreover, the fractional volumes form a special hierarchy of dependencies, being
approximately equal to integer powers of 1/3. Is there any evolutionary principle of corti-
cal organization that would explain these properties? This study finds that there are two
different theoretical principles that can provide answers: one standard related to minimi-
zation of neural wire fractional volume, and a new proposition associated with economical
maximization of spine content. However, the latter principle produces more robust results,
which suggests that spine economical maximization is potentially an alternative to the
more common “wire minimization” in explaining the cortical layout. Therefore, the cur-
rent study can become an important contribution to our understanding (or debating) of
the main factors influencing the evolution of local cortical circuits in the brain.

Introduction
The gray matter of cerebral cortex is composed primarily of neurons with their extended axo-
nal and dendritic processes, synapses (mostly dendritic spines) connecting different neurons,
non-neuronal cells called glia (of which astrocytes are likely the most important), and micro-
vasculature (capillaries). It is thought that neurons and synapses are the main computational
and functional elements, whereas glia and capillaries serve supporting or modulatory roles
associated with supplying metabolic substrates (oxygen and glucose) to neurons and synapses
based on their demands [1, 2]. The experimental data show that there are certain scaling regu-
larities in the arrangement of neuronal, synaptic [3–5], and capillary [6] processes. It is com-
monly hypothesized that these scaling rules may be the consequence of the design principle
called neural “wiring minimization” or “wiring economy” [3, 7–10], or efficiency in functional-
ity-cost trade-offs [11–14]. However, there are some indications that wiring length minimiza-
tion is not enough to explain the pattern of global connections in the macaque cortex and in
the nematode C. elegans nervous system [15, 16], and even small-scale networks of macaque
and cat visual cortices perform sub-optimally in terms of wire length reduction [17]. This
opens a possibility for some other optimization principles governing brain architecture.

Here, it is proposed a new, alternative, design principle that can be called “spine economical
maximization” or spine economy. It is based on maximization of spine proportion in the cortex
with simultaneous penalization of spine size. This scenario is equivalent to requiring that in a
given cortical volume there are as many information storing connections between neurons as
possible (maximal functionality) that cost as little energy as possible (economical approach, for
bigger spines use more energy). Moreover, we require that these connections are efficiently
coupled with astrocytes and capillaries, and the whole system of neuronal and non-neuronal
elements is treated within a single theoretical framework. The choice of the guiding principle
associated with spine economy is motivated by the following empirical results: (i) Axo-spinal
synaptic connections are the most numerous in the cortical gray matter [18] and are very

Cortical Composition Hierarchy and Optimization Principles

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004532 October 5, 2015 2 / 35



important not only for short-term neuronal communication [12], but also for long-term infor-
mation storage [19]; (ii) Mammalian brain is metabolically expensive [20–22], which means
that energy is an important constraint on brain function [14, 23, 24]; (iii) Spines are likely the
major users of metabolic energy in the cortical gray matter [25–27], as is reflected in a strong
correlation between cortical synaptogenesis and its energetics [27, 28], which suggests that
spine number or size can be limited by available energy.

The new hypothetical principle associated with spine economy is tested here for local orga-
nization of cortical circuits. Specifically, it is tested if fractional occupancy of space by the main
cortical components predicted on a basis of the spine economical maximization principle
agrees with empirical data. Fractional distribution of volume taken by neuronal and non-neu-
ronal elements should be an important aspect of local cortical organization, because densities
of neurons, glia, and vasculature are mutually correlated across cortical regions and layers [29–
31]. Thus, too much space taken by one component can lead, due to competition, to underper-
formance of other components [32] or to an excessive cortical size [33], both of which can be
undesirable for brain efficient design and functionality. Thus, some neuroanatomical balance
between fractional volumes of cortical elements seems necessary. Unfortunately, it is virtually
not known whether these fractions are variable or preserved across species. This interesting
topic was only briefly addressed before, with the suggestion that the combined fraction of neu-
ronal wire (axons and dendrites) can result from minimization of temporal delays in inter-neu-
ronal signaling [8]. However, from an evolutionary perspective, the knowledge of fractional
distribution of all major cortical components, also those supplying metabolic energy, should
add an important information to our understanding of the geometric layout of the cortex and
for testing various hypotheses concerning its design principles [34].

The paper is organized as follows. First, empirical data on fractional volumes of cortical
components are analyzed. In particular, we look for regularities in the data within and across
species. We build and study a theoretical model of cortical composition with coupled neuronal
and non-neuronal elements. Next, we investigate which optimization principle can best explain
the empirical facts. Three classes of optimization models are considered. One is based on a
standard principle of neural wire minimization and includes minimization of wire length, wire
surface area, wire volume, and local temporal delays. Second class is based on a new proposi-
tion of spine economical maximization. Third class is a linear combination of the first two
types of models, i.e., it mixes wire cost with spine economy. All kinds of models are based on
an implicit assumption that evolution had optimized the nervous system according to some
rules [13, 14, 35–37].

Results

Empirical composition of the cerebral cortex across mammals reveals
hierarchical organization
Existing experimental data on fractional volumes of cortical gray matter components were ana-
lyzed (see the Methods), and it is found that these fractions exhibit a certain hierarchy, since
they can be approximated by integer powers of 1/3 (Table 1; Fig 1). Specifically, axons and den-
drites occupy each about 1/3 of cortical space, dendritic spines and glia/astrocytes constitute
each roughly (1/3)2 of the cortex, and capillaries take an extremely small volume fraction
around (1/3)4 (Table 1; Fig 1). This regularity is called here the rule of “powers of 1/3”. More-
over, an allometric analysis reveals that the fractions of all examined cortical components are
species- and brain size independent, i.e. they do not correlate significantly with cortical size
and scale with exponents close to zero (Table 1; Fig 2). Typical values for axons: exponent =
−0.036, R2 = 0.083, p = 0.713; for dendrites: exponent = −0.002, R2 = 0.037, p = 0.717; for
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Table 1. Structural composition of the graymatter of cerebral cortex.

Species Volume fraction (%)

Axons Dendrites Spines Glia/Astrocytes Capillaries

Mouse 34.0 35.0 14.0 11.0* 0.7 ± 0.1

Rat 47.0 ± 5.0 35.0 ± 5.0 9.0 8.0 ± 4.0* 1.4

Rabbit 47.0 ± 5.5 34.7 ± 3.9 5.7 ± 0.8 12.7 ± 2.2* −

Cat 27.8 ± 5.7 31.0 ± 6.3 − 15.5 2.1 ± 0.5

Macaque − 33.0 ± 19.0 4.5 ± 0.8 − 0.9 ± 0.1

Human − 35.4 ± 23.7 14.8 ± 9.9 11.5 ± 3.4 1.7 ± 0.3

Species mean 39.0 ± 2.3 34.0 ± 5.3 9.6 ± 2.0 11.7 ± 1.1 1.4 ± 0.1

Normalized mean 40.8 ± 2.4 35.5 ± 5.5 10.0 ± 2.1 12.2 ± 1.2 1.5 ± 0.1

Rule “powers of 1/3” 33.3 33.3 11.1 11.1 1.2

Symbol * corresponds to the fraction of unspecified glia cells. The next-to-last line contains normalized to 100% mean fractional values over species. The

last line is a theoretical prediction based on a “powers of 1/3” rule. References for the data are given in the Methods.

doi:10.1371/journal.pcbi.1004532.t001

Fig 1. Hierarchical organization of the five major components in the gray matter of cerebral cortex. Empirical data points for each component are
denoted by blue diamonds and correspond to different mammals (see Table 1). Solid black lines represent integer powers of the fraction 1/3. In particular,
these fractions are: (1/3)4 for capillaries, (1/3)2 for glia and spines, and 1/3 for dendrites and axons. Note, that on average empirical fractional volumes across
species approximately conform to this simple rule.

doi:10.1371/journal.pcbi.1004532.g001
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Fig 2. Scaling dependence of fractional volumes of the basic cortical components on cortical gray
matter volume. (A) Axon fractional volume, (B) dendrite fractional volume, (C) spine fractional volume, (D)
glia fractional volume, and (E) capillary fractional volume as functions of cortical volume in log-log
coordinates. Note a conservation trend across mammals. Scaling plots were constructed based on data in
Table 1. The following volumes of cortical gray matter (two hemispheres) were used: mouse 0.12 cm3 [38], rat
0.42 cm3 [39], rabbit 4.0 cm3 [40], cat 14.0 cm3 [40], macaque monkey 42.9 cm3 [39], human 571.8 cm3 [39].

doi:10.1371/journal.pcbi.1004532.g002
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spines: exponent = −0.013, R2 = 0.008, p = 0.885; for glia/astrocytes: exponent = 0.031, R2 =
0.180, p = 0.477; and for capillaries: exponent = 0.064, R2 = 0.243, p = 0.399 (Fig 2).

Optimality principles for local cortical circuits
It is possible that the relative constancy of the fractional occupancy of cortical space and its
simple hierarchy reflect some kind of evolutionary optimized principle. Three such principles
are considered: one associated with neural wire minimization, second with spine proportion
economical maximization, and the third proposition is the mixture of the first two. The last
choice means that we consider the possibility of some “meta-principle”, which includes the
contributions of both primary principles (wire minimization and spine economy maximiza-
tion) with some weights related to their importance. The most general fitness function F, or
benefit-cost function, associated with such a meta-principle, which we want to minimize, is
given by (see the Methods, in particular the section “The fitness functions” for the derivation)

F ¼ f
ðrx þ yÞ

�ug1
� ð1� f Þ s

�ug2
þ l x þ y þ sþ g þ c� 1ð Þ; ð1Þ

where x, y, s, g, c are respectively volume fractions of axons, dendrites, spines, glia, and capillar-
ies in the cortical gray matter, and λ is the Lagrange multiplier associated with a mathematical
constraint of the fractions normalization. The symbol f is the control parameter (0� f� 1), or
mixing ratio, measuring a relative contribution (importance) to the fitness function of the two
contrasting notions: wire minimization and spine economical maximization. If f = 1 then the
function F corresponds to wire cost only, whereas if f = 0 then the function F describes spine
economy only (the negative sign in front of (1 − f) is necessary to obtain maximum for spine
content). The symbol �u is the average spine volume, r is some positive measure of asymmetry
between axons and dendrites, γ1 and γ2 are positive exponents. Different values of γ1 corre-
spond to different kinds of wire minimization. In particular, γ1 = 0 relates to wire volume mini-
mization, γ1 = 1/3 corresponds to wire surface area minimization, γ1 = 2/3 is associated with
wire length minimization, and γ1 = 5/6 relates to local temporal delays minimization (see the
Methods). The parameters r, γ2, and f constitute the free parameters.

In the next sections we study theoretical consequences of minimization of the fitness func-
tion represented by Eq (1). Specifically, we find optimal values of fractional volumes of the cor-
tical components and compare them with the empirical data.

Optimal fractional volumes of cortical components: Wire minimization vs.
spine economical maximization
Wire minimization principle corresponds to f = 1 in Eq (1). For this scenario the optimal frac-
tional volumes of cortical components depend on two parameters: γ1 and r. The dependence of
optimal fractions on γ1 is critical. If γ1 = 0 (the case of wire fractional volume minimization)
then the theoretical fractions can be similar to the empirical values in Table 1 (the next-to-last
line) only when r* 1 (Fig 3). If γ1 > 0 (the other types of wire minimization), regardless of the
value of r, the optimal fractions of glia/astrocytes and capillaries vanish, which is unrealistic
(Fig 3A and 3C). Moreover, only the case γ1 = 0 produces finite reliable values of the average
spine volume �u (Table 2); for γ1 > 0 we obtain �u 7!1. The abrupt transition in solutions from
γ1 = 0 to γ1 > 0 is reminiscent of discontinuous phase transitions. The dependence of the opti-
mal fractional volumes on r is more smooth (if γ1 = 0; Fig 3B and 3D). Realistic fractions are
obtained for almost symmetrical situation, i.e. when r is close to 1; too small or too large r pro-
duces vanishing fractions of either dendrites or axons (Fig 3B and 3D). Moreover, all the
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described results look qualitatively similar regardless of the asymptotic nature of the distribu-
tions of spine sizes (compare Fig 3A and 3B vs. Fig 3C and 3D).

Alternatively, for spine economical maximization principle, i.e. for f = 0 in Eq (1), the opti-
mal fractions of cortical components depend moderately on the exponent γ2. This depen-
dence is displayed in Fig 4 for four distributions of spine sizes: two with short tails (Gamma

Fig 3. Optimal fractional volumes for neural “wire minimization” principle as functions of the exponent γ1 and r. The results for short-tailed Gamma
(n = 2) distribution are in (A) and (B), and for long-tailed Log-normal distribution in (C) and (D). Note that for γ1 > 0 (panels A and C) all fractions are constant,
in particular glia/astrocytes and capillaries vanish (g = c = 0). Parameter values: for panels (A) and (C) r = 0.95, while for panels (B) and (D) γ1 = 0.
Additionally, for log-normal σ = 0.3. For all panels θ = 0.321 μm3.

doi:10.1371/journal.pcbi.1004532.g003
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and Exponential distributions) and two with long tails (Log-logistic and Log-normal). As can
be seen the optimal fractions of axons and dendrites are equal and about 0.4, and they are
qualitatively almost independent of γ2 and spine size distribution. Similarly, the capillary con-
tent is relatively stable at about 0.01 or a little less (Fig 4). In contrast, the fractions of spines
and astrocytes/glia can change significantly as a function of γ2. Typically, the spine propor-
tion decreases with increasing γ2, whereas glia/astrocytes content depends non-monotonically
on γ2, but both of them are restricted from above (spines by* 0.16 and astrocytes
by* 0.14). These trends are preserved as we change the distributions of spine volumes from
short-range to long-range (Fig 4A and 4B vs. Fig 4C and 4D). The pattern for the remaining
two distributions (Gamma n = 1 and Rayleigh; not shown) is very similar. Overall, the opti-
mal fractions of cortical components can either vary with γ2 or not, but these dependencies
are essentially invariant with respect to the distribution type of spine sizes. More importantly,
the optimal fractional volumes are quantitatively similar to the empirical values given in
Table 1 (the next-to-last line) for a broad range of γ2.

Table 2. The best optimal theoretical fractional volumes and related parameters in the cortex for a particular case of “wire minimization” principle
associated with wire volumeminimization (γ1 = 0). The optimal fractions correspond either to minimal Euclidean distance (ED) or minimal Mahalanobis
distance (MD) between theory and data (given in bold face).

Spine size distribution θ Optimal parameters ED MD

x y s g c u P r

Exponential 0.100 0.388 0.330 0.068 0.201 0.014 0.157 0.528 0.94 0.091 6.981

0.100 0.403 0.316 0.067 0.200 0.013 0.157 0.528 0.91 0.094 6.942

0.321 0.423 0.371 0.111 0.085 0.009 0.935 0.709 0.96 0.045 6.485

0.321 0.397 0.397 0.112 0.085 0.010 0.936 0.710 1.00 0.058 6.360

Gamma (n = 1) 0.100 0.376 0.316 0.081 0.210 0.017 0.175 0.684 0.93 0.104 7.842

0.100 0.442 0.259 0.078 0.206 0.016 0.175 0.682 0.80 0.134 7.427

0.321 0.413 0.357 0.119 0.099 0.012 0.793 0.805 0.95 0.030 3.991

0.321 0.396 0.374 0.119 0.099 0.012 0.794 0.806 0.98 0.037 3.892

Gamma (n = 2) 0.100 0.366 0.310 0.086 0.219 0.019 0.175 0.753 0.93 0.115 9.078

0.100 0.463 0.230 0.080 0.210 0.017 0.174 0.750 0.74 0.163 8.173

0.321 0.406 0.352 0.121 0.108 0.013 0.715 0.846 0.95 0.026 2.681

0.321 0.395 0.363 0.121 0.108 0.013 0.715 0.846 0.97 0.030 2.640

Rayleigh 0.100 0.368 0.305 0.082 0.226 0.019 0.159 0.734 0.92 0.124 9.623

0.100 0.471 0.221 0.076 0.216 0.016 0.158 0.731 0.72 0.177 8.701

0.321 0.405 0.352 0.117 0.113 0.013 0.642 0.822 0.95 0.020 2.271

0.321 0.394 0.362 0.117 0.113 0.013 0.642 0.822 0.97 0.025 2.236

Log-logistic 0.100 0.404 0.350 0.097 0.136 0.013 0.404 0.683 0.95 0.015 2.378

0.100 0.399 0.356 0.097 0.136 0.013 0.404 0.684 0.96 0.017 2.351

0.321 0.399 0.348 0.124 0.114 0.014 0.671 0.891 0.95 0.027 1.803

0.321 0.403 0.334 0.123 0.124 0.015 0.584 0.910 0.93 0.031 1.448

Log-normal 0.100 0.418 0.367 0.072 0.133 0.010 0.311 0.472 0.96 0.034 5.734

0.100 0.401 0.356 0.073 0.158 0.012 0.244 0.513 0.96 0.045 4.801

0.321 0.411 0.354 0.106 0.116 0.012 0.561 0.731 0.95 0.010 2.897

0.321 0.402 0.341 0.110 0.133 0.015 0.475 0.804 0.94 0.021 1.405

For log-logistic distribution the minimal ED and MD were obtained for the parameter β = 1.5 if θ = 0.100, and if θ = 0.321 then β = 3.5 for minimal ED and

β = 4.5 for minimal MD. For log-normal distribution the minimal ED was reached for σ = 0.7 and minimal MD for σ = 0.55 if θ = 0.100, and if θ = 0.321 then

σ = 0.3 for minimal ED and σ = 0.2 for minimal MD.

doi:10.1371/journal.pcbi.1004532.t002
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The degree of similarity between the theory and the data is quantified by two different mea-
sures, their Euclidean distance ED, and their Mahalanobis distance MD (see Eqs 34 and 35).
The latter is more general, as it takes variability in the data into account. Both measures yield
qualitatively very similar results (compare Figs 5 and 6). For wire minimization principle, ED
and MD depend biphasically (non-monotonically) on r if γ1 = 0 in a similar fashion for all dis-
tributions of spine volumes, with characteristic sharp minima for r* 0.95, for which there are
the best matches to the data (Figs 5A and 6A). The overall best results are achieved for Log-

Fig 4. Optimal fractional volumes for “spine economical maximization” principle as functions of the exponent γ2. The results are qualitatively very
similar for (A) Exponential distribution, (B) Gamma (n = 2) distribution, (C) Log-logistic distribution (β = 3.0), and (D) Log-normal distribution (σ = 0.25). For all
distributions θ = 0.321 μm3.

doi:10.1371/journal.pcbi.1004532.g004

Cortical Composition Hierarchy and Optimization Principles

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004532 October 5, 2015 9 / 35



Fig 5. Euclidean distance (ED) between optimal theoretical results and empirical data as a function of r, threshold θ, and γ1, γ2. Panels (A) and (B)
refer to “wire minimization”, whereas panels (C) and (D) correspond to “spine economical maximization”. (A) Dependence of ED on r for all distributions of
spine volumes for “wire volumeminimization”, i.e. γ1 = 0. (B) ED as a function θ for r = 0.95. Blue lines correspond to Gamma (n = 2) distribution and red lines
(with diamonds and squares) to Log-normal (γ1 = 0 for solid lines and γ1 = 0.65 for dashed lines). For Log-normal distribution σ = 0.3. Note that for γ1 > 0 ED is
constant (dashed red line with blue squares), i.e. ED = 0.15. (C) Dependence of ED on γ2 for all distributions of spine volumes. (D) ED as a function θ. Blue
lines correspond to Gamma (n = 2) distribution and red lines (with diamonds and squares) to Log-normal (γ2 = 0.3 for solid lines and γ2 = 0.65 for dashed
lines). For Log-normal distribution σ = 0.25. In panels (A) and (C) θ = 0.321 μm3, and the following labels were used: Exponential distribution is shown as solid
blue line, Gamma (n = 1) and Gamma (n = 2) are shown respectively as dashed green and dashdot cyan lines, Rayleigh distribution is represented by dotted
black line, Log-logistic is shown as solid red line with circles, and Log-normal as solid black line with diamonds. The curves for Log-logistic and Log-normal
correspond to different values of the parameters, respectively, β and σ that yield the minimal ED for a given r or γ2.

doi:10.1371/journal.pcbi.1004532.g005
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normal distribution (ED = 0.010, MD = 1.405), and other distributions especially those with
short-tails produce higher ED and MD (Table 2). Outside the optimal value of r the values of
ED and MD grow rather fast, and the agreement between theory and the experiment becomes
weak (Figs 5A and 6A). If however, γ1 > 0, then ED and MD are both constant and relatively
large (ED = 0.15, MD = 18.5), regardless of other parameters and distribution types (Figs 5B
and 6B), which implies that similarity with the data is always very weak in this case.

Fig 6. The same as in Fig 5 but for the more general Mahalanobis distance (MD) between optimal theoretical fractions and empirical fractions. (A)
MD as a function of r, and (B) MD as a function of θ for wire minimization. (C) MD as a function of γ2, and (D) MD as a function of θ for spine economical
maximization. In panel (D) γ2 = 0.2 for solid lines and γ2 = 0.5 for dashed lines.

doi:10.1371/journal.pcbi.1004532.g006
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On the other hand, for spine economical maximization ED and MD exhibit minima for γ2
< 1 (Figs 5C and 6C). Interestingly, neither the minimal values of ED and MD, nor associated
with them the optimal values of γ2 vary much as we change the spine distribution type for a
given threshold θ (Figs 5C and 6C). Specifically, the optimal γ2 is in the range 0.15–0.40 for θ =
0.100 μm3, and 0.35–0.75 for θ = 0.321 μm3 (Table 3). The minima of ED and MD for heavy-
tailed distributions are much broader than for short-tailed, which suggests that heavy-tailed
distributions can be more flexible in comparison to the data (Figs 5C and 6C). This follows
from the fact that heavy-tailed distributions depend on an additional parameter that can be
adjusted (Fig. A in Supporting S1 Text). Moreover, the best optimal cortical fractional volumes
in Table 3 look very similar across different distributions of spine sizes. ED values for these
best solutions are also very similar (Table 3). The smallest possible minimal value of ED is
0.038, and it is reached by four different distributions, independent of the asymptotic tail
(Gamma n = 2, Rayleigh, Log-logistic, and Log-normal). (As a comparison, for a hypothetical
situation when all theoretical optimal cortical components were uniformly distributed, i.e. each
of them were 0.2, we would obtain ED = 0.342, which is about 10 times larger than the actual

Table 3. The best optimal theoretical fractional volumes and related parameters in the cortex for “spine economical maximization” principle. The
optimal fractions correspond to either the minimal Euclidean distance (ED) or Mahalanobis distance (MD) between theory and data (given in bold face).

Spine size distribution θ Optimal parameters ED MD

x y s g c u P γ2

Exponential 0.100 0.374 0.374 0.119 0.118 0.014 0.615 0.850 0.25 0.043 1.982

0.100 0.374 0.374 0.119 0.118 0.014 0.615 0.850 0.25 0.043 1.982

0.321 0.398 0.398 0.093 0.102 0.009 0.599 0.585 0.50 0.050 5.913

0.321 0.397 0.397 0.098 0.097 0.010 0.678 0.623 0.45 0.051 5.883

Gamma (n = 1) 0.100 0.366 0.366 0.129 0.123 0.016 0.626 0.959 0.20 0.051 2.353

0.100 0.366 0.366 0.129 0.123 0.016 0.626 0.959 0.20 0.051 2.353

0.321 0.388 0.388 0.098 0.116 0.011 0.520 0.650 0.60 0.039 3.886

0.321 0.385 0.385 0.111 0.107 0.012 0.660 0.746 0.45 0.042 3.597

Gamma (n = 2) 0.100 0.370 0.370 0.136 0.110 0.015 0.778 0.993 0.15 0.056 2.554

0.100 0.370 0.370 0.136 0.110 0.015 0.778 0.993 0.15 0.056 2.554

0.321 0.382 0.382 0.101 0.122 0.012 0.495 0.692 0.65 0.038 2.914

0.321 0.380 0.380 0.112 0.116 0.013 0.589 0.774 0.50 0.040 2.507

Rayleigh 0.100 0.361 0.361 0.127 0.135 0.017 0.534 0.973 0.20 0.056 3.306

0.100 0.371 0.371 0.136 0.108 0.015 0.806 0.988 0.15 0.056 2.645

0.321 0.380 0.380 0.102 0.125 0.013 0.486 0.710 0.60 0.038 2.555

0.321 0.378 0.378 0.113 0.118 0.013 0.585 0.789 0.45 0.040 2.284

Log-logistic 0.100 0.377 0.377 0.106 0.126 0.013 0.498 0.747 0.40 0.039 2.152

0.100 0.377 0.377 0.106 0.126 0.013 0.498 0.747 0.40 0.039 2.152

0.321 0.383 0.383 0.102 0.120 0.012 0.511 0.695 0.75 0.038 2.999

0.321 0.372 0.372 0.114 0.127 0.015 0.524 0.824 0.60 0.043 1.793

Log-normal 0.100 0.381 0.381 0.098 0.128 0.013 0.445 0.675 0.30 0.038 2.794

0.100 0.372 0.372 0.120 0.120 0.015 0.603 0.868 0.20 0.045 1.880

0.321 0.383 0.383 0.101 0.121 0.012 0.499 0.688 0.55 0.038 3.005

0.321 0.372 0.372 0.115 0.126 0.014 0.535 0.828 0.35 0.043 1.788

For log-logistic distribution the minimal ED and MD were obtained for the parameter β = 1.5 if θ = 0.100, and if θ = 0.321 then β = 3.0 for minimal ED and

β = 4.0 for minimal MD. For log-normal distribution the minimal ED and MD were reached for σ = 0.75 if θ = 0.100, and if θ = 0.321 then σ = 0.25 for

minimal ED and MD.

doi:10.1371/journal.pcbi.1004532.t003
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minimal ED in Table 3). The situation is different for the MD distance. Despite a high degree
of similarity among the optimal fractional volumes across different distributions, MD discrimi-
nates these cases much better than ED (Table 3). Distributions having identical ED have in
general different MD values (Table 3). The overall trend is such that the best fits to the empiri-
cal fractional volumes are given by the distributions of spine sizes with long-tails. The smallest
possible minimal MD is achieved for Log-normal distribution (MD = 1.788; Table 3). Because
of its higher generality, only the MDmeasure is used subsequently for comparing theoretical
predictions with the data.

The degree of the sensitivity of the optimal cortical fractions on the threshold θ for spine
formation is qualitatively mostly similar for both principles of cortical organization considered
here (Fig 5B and 5D and Fig 6B and 6D), except for the case of wire minimization with γ1 > 0,
for which ED, MD, and cortical fractions are independent of θ but are not realistic (Figs 5B and
6B). Indeed, for wire volume minimization (with γ1 = 0) and spine economical maximization,
ED and MD depend very strongly on θ if θ< 0.2 μm3 (Figs 5B and 5D and 6B and 6D). How-
ever, if θ> 0.2 μm3 this dependence is milder in both cases (Figs 5B and 5D and 6B and 6D).

Optimal spine sizes and probability of spine formation: Wire minimization
vs. spine economical maximization
Optimization of the fitness function F also yields optimal average spine volume �u and indi-
rectly the conditional probability of spine formation P (see the Methods). We consider the
results for pure wire minimization and pure spine economy maximization.

As was previously noted, for wire minimization principle (f = 1 in Eq 1) with γ1 > 0, we
obtain �u 7!1, and consequently P = 1, both of which are unrealistic. For wire minimization
with γ1 = 0 (wire volume minimization), both �u and P depend non-monotonically on the
parameter r (Fig 7A and 7B). For short-range distributions of spine size, �u and P are positively
correlated, whereas for the distributions with heavy-tails these two quantities are anti-corre-
lated. Thus for wire minimization there is no clear one-to-one correspondence between average
spine size and conditional probability of spine formation. Among all the distributions, for the
optimal value of r (r� 0.95), the heavy-tailed Log-normal produces the most realistic spine
volume �u ¼ 0:24� 0:56mm3, i.e. the closest to the empirical values (0.2–0.4 μm3 for human
and macaque monkey [41, 42]), regardless of the value of threshold θ (Table 2; Fig 7A). For
short-tail distributions the values of �u are strongly threshold θ-dependent (Table 2).

In contrast, for spine economical maximization (f = 0 in Eq 1) the quantities �u and P depend
monotonically on the exponent γ2, and thus are positively correlated for all distributions, i.e.
small spine volumes are generally associated with low probabilities P and vice versa (Fig 7C
and 7D). For optimal values of γ2 (< 1) the average spine volumes have very similar values
regardless of the spine size distribution and the threshold θ (Gamma n = 2 and Rayleigh distri-
butions are exceptions), typically: �u ¼ 0:44� 0:67mm3 (Table 3), which is also close to the
experimental data [41, 42].

Optimal fractional volumes of cortical components: Combined “wire min
and spine max”meta-principle
Now we consider the scenario when wire minimization and spine economical maximization
notions are mixed together simultaneously, and optimal fractional volumes are obtained by
minimization of the meta fitness function in Eq (1) with the control parameter 0< f< 1. In
general, the best results in terms of agreement with the empirical data are reached for the cases
when spine economy rule dominates in the meta fitness function, i.e. f� 1, (Fig 8; Tables 4–6).
More precisely, MD distance has very shallow minima in the range f* 0.1–0.3 (Fig 8). The
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Fig 7. Optimal average spine volume u and conditional probability of spine formation P for different distributions of spine sizes. Panels (A) and (B)
refer to “wire volumeminimization”, whereas panels (C) and (D) correspond to “spine economical maximization”. (A) Non-monotonic dependence of spine
volume u and (B) conditional probability P on r for wire fractional volume minimization (γ1 = 0). (C) Spine volume u and (D) conditional probability P decrease
monotonically with increasing the exponent γ2. For all panels the same labels for curves corresponding to a given distribution were used, and they are
identical to the labels used in Fig 5A and 5C. The curves for Log-logistic and Log-normal correspond to different values of the parameters, respectively, β and
σ that yield the minimal ED for a given r or γ2. For all panels θ = 0.321 μm3.

doi:10.1371/journal.pcbi.1004532.g007
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Fig 8. Theminimal value of MD as a function the control parameter f for the combined “spine economymax and wire min” principle. Blue squares
correspond to Gamma (n = 2) distribution of spine sizes and red diamonds to Log-normal distribution. The notion of spine economy max is mixed with
different types of wire cost min principle: wire length in (A), wire surface area in (B), wire volume in (C), and conduction delays in (D). In almost all panels MD
has extremely shallow minima for f* 0.1–0.3, and then MD increases either weakly or abruptly as f increases further (for f = 1 MD is the same for both
distributions of spine sizes). The exception is the mixture of wire volumemin and spine max (panel C), where MD is practically constant. For all panels θ =
0.321 μm3.

doi:10.1371/journal.pcbi.1004532.g008
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worst results are found for the cases when wire minimization rule prevails (f 7! 1), and inter-
mediate results are obtained for the balanced case when spine economy max and wire min are
treated with equal weights, i.e. f* 0.5 (Fig 8 and Tables 4–6). However, there is an exception
to this tendency, namely, the mixture of wire volume minimization and spine economy maxi-
mization, which yields invariant results and good similarity with the data regardless of the
value of mixing ratio f (Fig 8C and Tables 4–6).

For the case when spine economy predominates (f = 0.1) in F, we obtain that mixing spine
max with a small fraction of any type of wire min rule (arbitrary γ1) gives essentially the same
results for MD (Table 4), and they are very similar to the results for pure wire volume minimi-
zation (Table 2) and pure spine economy maximization (Table 3). This means that for this par-
ticular scenario all kinds of wire minimization rule, such as length min, surface area min,
volume min, or delays min, are equally reasonable, but they are less important than spine econ-
omy. This, however, is not the case when wire minimization prevails in the mixing of notions,

Table 4. The best optimal theoretical fractional volumes and related parameters in the cortex for the combined “wire min + spinemax” principle
with control parameter f = 0.1. The optimal fractions correspond to the minimal Mahalanobis distance (MD) between theory and data.

Principle type/spine distr. Optimal parameters MD

x y s g c u P r γ2

Wire length min + spine max (γ1 = 2/3)

Exponential 0.399 0.396 0.097 0.098 0.010 0.655 0.612 0.99 1.00 5.885

Gamma (n = 1) 0.395 0.377 0.107 0.110 0.012 0.612 0.717 0.90 0.95 3.558

Gamma (n = 2) 0.393 0.368 0.110 0.117 0.013 0.569 0.759 0.85 0.95 2.416

Rayleigh 0.395 0.362 0.110 0.120 0.013 0.553 0.768 0.80 0.90 2.117

Log-logistic 0.400 0.344 0.116 0.126 0.015 0.544 0.844 0.65 0.90 1.277

Log-normal 0.386 0.353 0.112 0.134 0.015 0.480 0.825 0.80 0.80 1.565

Wire surface min + spine max (γ1 = 1/3)

Exponential 0.402 0.393 0.100 0.096 0.010 0.696 0.631 0.95 0.70 5.903

Gamma (n = 1) 0.394 0.377 0.108 0.109 0.012 0.629 0.728 0.90 0.70 3.549

Gamma (n = 2) 0.396 0.364 0.111 0.116 0.013 0.589 0.774 0.80 0.70 2.375

Rayleigh 0.399 0.358 0.111 0.118 0.013 0.576 0.784 0.75 0.65 2.105

Log-logistic 0.398 0.346 0.117 0.125 0.015 0.550 0.850 0.65 0.70 1.280

Log-normal 0.396 0.347 0.104 0.138 0.014 0.423 0.759 0.65 0.80 1.741

Wire volume min + spine max (γ1 = 0)

Exponential 0.399 0.396 0.099 0.096 0.010 0.692 0.629 0.98 0.45 5.898

Gamma (n = 1) 0.398 0.374 0.107 0.110 0.012 0.617 0.721 0.85 0.50 3.553

Gamma (n = 2) 0.395 0.365 0.112 0.115 0.013 0.598 0.781 0.80 0.50 2.371

Rayleigh 0.397 0.359 0.113 0.117 0.013 0.590 0.792 0.75 0.45 2.111

Log-logistic 0.399 0.345 0.117 0.125 0.015 0.548 0.848 0.60 0.55 1.277

Log-normal 0.400 0.343 0.110 0.133 0.015 0.474 0.798 0.60 0.45 1.409

Delays min + spine max (γ1 = 5/6)

Exponential 0.398 0.398 0.096 0.099 0.010 0.642 0.606 1.00 1.15 5.887

Gamma (n = 1) 0.390 0.382 0.106 0.111 0.012 0.597 0.708 0.95 1.10 3.588

Gamma (n = 2) 0.393 0.367 0.111 0.117 0.013 0.580 0.768 0.85 1.05 2.393

Rayleigh 0.392 0.366 0.108 0.121 0.013 0.537 0.755 0.85 1.05 2.164

Log-logistic 0.396 0.348 0.114 0.127 0.014 0.530 0.830 0.70 1.05 1.295

Log-normal 0.390 0.356 0.108 0.132 0.014 0.469 0.775 0.80 1.00 1.553

All the results correspond to θ = 0.321.

doi:10.1371/journal.pcbi.1004532.t004
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or when there is a balance between them (cases f = 0.9 and f = 0.5, respectively). In these scenar-
ios, wire volume min (and occasionally wire surface min) gives noticeably better results than
either wire length min or delays min (Tables 5 and 6). However, it has to be stressed that mix-
ing together spine economy rule with any of the wire cost rules with γ1 > 0 (wire length, wire
surface, delays), at any ratio, always gives better results than for these wire cost rules alone, i.e.,
for f = 1 (Fig 8A, 8B and 8D).

Another interesting feature of the results in Tables 4–6 is that the best agreements with the
data are almost always recorded for the distributions of spine sizes with long tails. This trend is
conserved for a large spectrum of the values of f, however, as f 7! 1 (the notion of wire min
dominates in F) the similarity to the data becomes weaker or even non-existent (see Fig 8 for
Log-normal distribution).

To summarize, mixing the rules of spine economy max with wire min does not give signifi-
cantly better results than for pure spine economy max or pure wire volume min. At best, such a

Table 5. The best optimal theoretical fractional volumes and related parameters in the cortex for the combined “wire min + spinemax” principle
with control parameter f = 0.5. The optimal fractions correspond to the minimal Mahalanobis distance (MD) between theory and data.

Principle type/spine distr. Optimal parameters MD

x y s g c u P r γ2

Wire length min + spine max (γ1 = 2/3)

Exponential 0.453 0.453 0.013 0.080 0.001 0.115 0.061 1.00 2.95 15.22

Gamma (n = 1) 0.421 0.433 0.036 0.107 0.004 0.212 0.195 1.05 2.75 11.75

Gamma (n = 2) 0.399 0.413 0.059 0.121 0.007 0.290 0.356 1.05 2.60 8.157

Rayleigh 0.393 0.407 0.065 0.127 0.008 0.299 0.405 1.05 2.55 7.047

Log-logistic 0.392 0.359 0.099 0.137 0.014 0.409 0.706 0.90 2.40 2.118

Log-normal 0.399 0.353 0.110 0.125 0.014 0.520 0.777 0.90 2.10 1.692

Wire surface min + spine max (γ1 = 1/3)

Exponential 0.421 0.421 0.040 0.114 0.005 0.215 0.225 1.00 2.00 10.94

Gamma (n = 1) 0.395 0.395 0.079 0.122 0.010 0.389 0.509 1.00 1.85 5.508

Gamma (n = 2) 0.380 0.380 0.109 0.118 0.013 0.558 0.751 1.00 1.70 2.566

Rayleigh 0.392 0.368 0.102 0.125 0.013 0.486 0.710 0.95 1.65 2.436

Log-logistic 0.404 0.336 0.114 0.131 0.015 0.500 0.835 0.85 1.60 1.350

Log-normal 0.395 0.347 0.110 0.133 0.015 0.475 0.804 0.90 1.40 1.414

Wire volume min + spine max (γ1 = 0)

Exponential 0.398 0.398 0.097 0.098 0.010 0.655 0.613 1.00 0.55 5.886

Gamma (n = 1) 0.403 0.369 0.107 0.109 0.012 0.617 0.721 0.95 0.60 3.566

Gamma (n = 2) 0.395 0.364 0.112 0.115 0.013 0.598 0.781 0.95 0.60 2.370

Rayleigh 0.394 0.363 0.111 0.119 0.013 0.567 0.777 0.95 0.55 2.107

Log-logistic 0.400 0.344 0.116 0.126 0.015 0.544 0.844 0.90 0.70 1.278

Log-normal 0.401 0.340 0.111 0.133 0.015 0.478 0.816 0.90 0.40 1.403

Delays min + spine max (γ1 = 5/6)

Exponential 0.463 0.463 0.008 0.065 0.001 0.097 0.036 1.00 3.40 16.15

Gamma (n = 1) 0.438 0.438 0.026 0.096 0.002 0.183 0.135 1.00 3.10 13.34

Gamma (n = 2) 0.419 0.419 0.045 0.113 0.005 0.249 0.257 1.00 2.95 10.36

Rayleigh 0.410 0.410 0.053 0.121 0.006 0.265 0.317 1.00 2.90 8.918

Log-logistic 0.396 0.345 0.105 0.139 0.015 0.420 0.765 0.85 2.50 1.761

Log-normal 0.405 0.337 0.100 0.144 0.014 0.383 0.732 0.80 2.40 2.124

All the results correspond to θ = 0.321.

doi:10.1371/journal.pcbi.1004532.t005
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mixing yields marginally better results, but only if the spine component prevails (f� 1) in the
meta fitness function F.

Discussion

Hierarchy in cortical composition and the rule “powers of 1/3”
Experimental data analyzed in this paper indicate that the distribution of the basic components
in the gray matter of cerebral cortex is relatively stable across mammalian species (Table 1; Fig
2). Axons and dendrites occupy on average similar fractions* 1/3 of cortex volume, spines
and glia/astrocytes take each about 1/10 of the cortex, and capillaries constitute roughly* 1/
100 of the cortical space. These numbers in themselves are interesting, because they form a spe-
cial hierarchy of dependencies, being approximately integer powers of 1/3 (Fig 1). Specifically,
the content of spines or glia/astrocytes is roughly equal to the square of axon (or dendrite) con-
tent, and capillary content in turn is approximately equal to the square of spine content

Table 6. The best optimal theoretical fractional volumes and related parameters in the cortex for the combined “wire min + spinemax” principle
with control parameter f = 0.9. The optimal fractions correspond to the minimal Mahalanobis distance (MD) between theory and data.

Principle type/spine distr. Optimal parameters MD

x y s g c u P r γ2

Wire length min + spine max (γ1 = 2/3)

Exponential 0.414 0.414 0.172 0.000 0.000 22077.8 1.000 1.00 0.10 18.45

Gamma (n = 1) 0.489 0.489 0.001 0.020 0.000 0.086 0.005 1.00 6.40 18.33

Gamma (n = 2) 0.484 0.484 0.003 0.029 0.000 0.118 0.012 1.00 6.20 17.88

Rayleigh 0.471 0.471 0.008 0.050 0.000 0.157 0.038 1.00 6.10 16.69

Log-logistic 0.414 0.414 0.172 0.000 0.000 22073.2 1.000 1.00 0.10 18.45

Log-normal 0.401 0.340 0.093 0.151 0.014 0.332 0.684 0.35 5.50 2.751

Wire surface min + spine max (γ1 = 1/3)

Exponential 0.487 0.487 0.001 0.025 0.000 0.060 0.005 1.00 5.20 18.13

Gamma (n = 1) 0.478 0.478 0.004 0.040 0.000 0.107 0.018 1.00 4.90 17.38

Gamma (n = 2) 0.468 0.468 0.009 0.054 0.001 0.146 0.040 1.00 4.65 16.51

Rayleigh 0.454 0.454 0.017 0.074 0.001 0.181 0.084 1.00 4.60 15.07

Log-logistic 0.402 0.339 0.095 0.150 0.014 0.341 0.696 0.75 4.20 2.622

Log-normal 0.402 0.347 0.092 0.145 0.013 0.348 0.664 0.85 3.80 2.670

Wire volume min + spine max (γ1 = 0)

Exponential 0.398 0.398 0.097 0.099 0.010 0.651 0.611 1.00 1.10 5.886

Gamma (n = 1) 0.386 0.386 0.108 0.109 0.012 0.628 0.728 1.00 1.20 3.591

Gamma (n = 2) 0.404 0.355 0.112 0.115 0.013 0.601 0.783 0.95 1.20 2.401

Rayleigh 0.403 0.354 0.111 0.119 0.013 0.568 0.779 0.95 1.00 2.126

Log-logistic 0.394 0.350 0.114 0.127 0.015 0.529 0.829 0.95 1.60 1.311

Log-normal 0.396 0.349 0.109 0.132 0.014 0.472 0.788 0.95 0.70 1.447

Delays min + spine max (γ1 = 5/6)

Exponential 0.425 0.403 0.171 0.001 0.000 2095.2 1.000 0.50 0.10 18.37

Gamma (n = 1) 0.425 0.403 0.171 0.001 0.000 2091.7 1.000 0.50 0.10 18.37

Gamma (n = 2) 0.487 0.487 0.002 0.024 0.000 0.111 0.008 1.00 6.70 18.15

Rayleigh 0.475 0.475 0.006 0.043 0.000 0.151 0.029 1.00 6.70 17.11

Log-logistic 0.425 0.403 0.171 0.001 0.000 2091.7 1.000 0.50 0.10 18.37

Log-normal 0.401 0.340 0.093 0.151 0.014 0.332 0.684 0.40 5.60 2.751

All the results correspond to θ = 0.321.

doi:10.1371/journal.pcbi.1004532.t006
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(Table 1). This component hierarchy may be somehow important for efficient cortical compu-
tation, and thus worth investigating.

Summary of the main theoretical results: The importance of spine
economy principle
Hierarchy in cortical composition was a motivation for theoretical considerations about princi-
ples governing organization of the cerebral cortex. The goal was to provide a theoretical expla-
nation of this hierarchy starting from a neurobiologically plausible yet simple principle. Two
basic principles are considered: different forms of a standard neural wire minimization [3, 7–9,
43], and the new one proposed here called spine economical maximization. The latter rule is
related to maximization of spine content in the cortex with simultaneous minimization of aver-
age spine size (which is supposed to reduce the metabolic cost). We also study a mixture of the
two principles as a meta principle. The optimal outcomes of these models are compared to the
experimental data, using two similarity measures (Euclidean and Mahalanobis distances).

This study shows that from many implementations of wire minimization concept, only the
minimization of wire fractional volume (γ1 = 0) can give reasonable results that are close to the
experimental data, if a free parameter (r in Eq 21) is chosen appropriately (compare Tables 1
and 2; Figs 5A and 6A). The other possibilities related to wire minimization (with γ1 > 0), such
as minimization of wire length, its area, or conduction delays, yield unrealistic results: zeros for
volume fractions of glia/astrocytes and capillaries (Fig 3A and 3C), resulting in relatively high
values of ED and MD (Figs 5B and 6B), and infinite values of the average spine volume, which
is clearly wrong. The last result follows from the fact that the minimal value of Fw in Eq (21) is
precisely zero, which takes place only for �u ¼ 1 (other possibility with vanishing of axonal x
and dendritic y fractions is forbidden, since that would imply that all fractions are zero, which
would violate the fractions normalization constraint represented by Eq (31)).

On the other hand, the principle of spine economic maximization produces the fractional
cortical volumes that are also close to the data (compare Tables 1 and 3), but they do not
require such a careful tuning of a free parameter (γ2 in Eq 24), especially for the distributions
of spine volume with heavy-tails (compare the scales in Fig 5C vs. 5A and in Fig 6C vs. 6A).
Thus, both principles provide quantitatively similar results, however, maximization of the sim-
ple benefit-cost function Fs with spine content in the centerpiece (see Eq 24) produces a more
robust outcome. This conclusion is consistent with suggestions that neural systems are not
exclusively optimized for minimal wiring length or component placement [15, 16], and other
factors or their combinations can be also involved [11–16]. This suggests that economic spine
content maximization can possibly provide an additional and/or alternative mechanism that is
used by evolution to regulate the efficiency of cortical circuits.

As a third possibility we consider the meta principle that combines spine economy with wir-
ing cost, with some mixing ratio f. This mixing scenario improves greatly the results associated
with minimization of wire length, wire surface area, and temporal delays (γ1 > 0), by making
MD distances much smaller, but only when the spine economy dominates in the mixing of
notions in the fitness function (Eq 1). Thus, clearly the presence of the principle of spine eco-
nomical maximization is necessary to make the concepts of wire length and temporal delays
minimizations to be relevant candidates for the explanation of cortical composition hierarchy
(Table 4). However, it must be emphasized that mixing of wire volume min (γ1 = 0) with spine
economy max does not produce noticeably better results (only a tiny improvement) in compar-
ison to the cases when these two principles act in isolation (Fig 8C).

Finally, for all three scenarios (either f = 0, f = 1, or f between 0 and 1 in Eq 1), the best theo-
retical fractional volumes are generally obtained for distributions of spine volume with heavy-
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tails (Tables 2–6). In addition, many of these best solutions give optimal average spine volumes
�u, which despite some variability, are in good agreement with experimental values, which are
0.35 μm3 for human [41], and 0.3–0.4 μm3 for macaque monkey [42]. Spine size correlates
with synaptic weight [19], and hence variability in spine size that is observed among the best
solutions is a positive feature, because it implies variability in synaptic weights, which in turn is
necessary for brain function.

The models for pure wire volume minimization and for pure spine economy differ strongly
in their predictions regarding the relationship between average spine size and conditional
probability of spine formation P (Fig 7A and 7B vs. Fig 7C and 7D). While for wire volume
minimization there is no clear one-to-one correspondence, for spine economy we obtain that
small spines are associated with small P (Fig 7C and 7D). This means that for the latter princi-
ple very small spines are unlikely to form and thus are highly stochastic, even when an axon
and dendrite are very close to each other. In contrast, large spines with sufficiently large energy
capacity have high probability of forming stable synapses. Mathematically, this effect is
achieved in the model by introducing the threshold θ for spine volume (see Eq 3 in the Meth-
ods). This theoretical result for spine economical maximization is in line with experimental
observations, indicating high stochastic motility of small spines and structural stability of larger
ones [19, 44–47].

Previous directly related work
In the past there was only one directly related work associated with cortical composition and
its theoretical basis [8]. In that study, the authors analyze only the combined optimal fractional
volume of axons and dendrites (called wire), which turns out to be close to the empirical value.
Chklovskii et al [8] used specific “thought experiments” to demonstrate that the optimal wire
fraction can be derived from several equivalent principles, such as minimization of conduction
delays, minimization of wiring length, and maximization of synaptic density. The present
study is similar in spirit, i.e. in the expectation that fractional volumes are the result of some
evolutionary optimization, but differs in the scope and details of what is actually optimized.
Apart from considering different forms of wire minimization, we also investigate a new princi-
ple of spine economy, and its combination with wire cost (meta principle represented by Eq 1),
and all three are analyzed in much more detail than in [8]. In particular, in this work we study
five cortical components both neuronal and non-neuronal, in contrast to [8], who considered
only a simple division wire vs. non-wire. Moreover, we provide explicit formulae for fractional
volumes of different components and their mutual couplings, based on a concept of geometric
probability, efficient transport for astrocytes, and some neuroanatomical observations.

Other formulations of the problem related to spine economy
One may wonder why in the fitness function related to spine economy (Eq 24), the spine pro-
portion (s) is maximized instead of (maybe more natural) numerical spine density (ρs)? In fact,
both possibilities are included in the fitness function, since these two quantities are linearly
related (s ¼ rs�u). Thus the fitness function (Eq 24) can be equivalently written as
Fs � rs=�u

g2�1, with the renormalized power of �u. However, since the best results are obtained
for γ2 < 1, this new formulation implies that spine density and average spine volume both
would have to be maximized, i.e., there would be no penalty on spine size. Thus, the original fit-
ness function with spine proportion s seems to better capture the energy constraint, which sug-
gests that s is a more primary variable than ρs.
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Organization of local vs global circuits
This study considers local cortical circuits, presumably corresponding to a cortical column in
size, and does not address the large-scale organization of the mammalian brain. In a present
mathematical formulation of local circuits the notion of spatial scale is not taken explicitly into
account. This is justified by the fact that locality means that all elements are sufficiently close to
each other so that there should not be large detrimental delays in their communication. That
temporal delays are not critical in local networks follows from a fact that diameters of intracor-
tical axons and dendrites, directly related to velocities of propagated signals along them [48],
are invariant with respect to brain size [14]. The situation is different for global long-range con-
nections via white matter, which show a slight increase in average axon diameter with brain
size [49]. Moreover these axons are myelinated, which enhances several-fold the speed of signal
propagation in comparison to unmyelinated intracortical axons. These empirical facts indicate
that for global brain organization the distance and delays are important constraints, and they
were repeatedly used by many researchers to model large-scale organization of brain connec-
tivity [7, 10, 15–17, 50]. Some of these studies initially showed that certain parts of the nervous
system in macaque monkey (prefrontal areas) and in the nematode C. elegans are optimized
for wiring length [7, 10, 50]. However, more recent studies demonstrated that wire length was
not fully minimized across macaque and cat visual areas [17], and more importantly, global
connections in the whole networks of macaque and C. elegans brains are far from being optimal
for wire cost [15, 16]. The latter studies indicate that there might be other constraints on global
brain organization, such as the requirement of short processing paths, which was proposed in
the past [51], or some other combinations [3, 11–14].

The important issue is how to relate local organization in the cortex to global cortico-corti-
cal connectivity. This is a challenging task, not only conceptually, but also from a methodologi-
cal point of view. The approach presented here for the description of local networks relies on
analytical optimization of Lagrange functions, and it differs considerably from the approaches
used for studying patterns of long-range connections, which use mainly numerical algorithms
of graph theory [13, 15, 16]. It is not clear how to combine the two approaches within a single
mathematical framework. However, despite these technical difficulties, there is at least one
quantity that can relate local and global organizations. This quantity is associated with the frac-
tion of axons in the cortex x, which is composed of two contributions: local intracortical axons
and endings of the long-range axons (via white matter). Empirical data indicate that the latter
component is substantial [52], and it seems to be possible to find a mathematical formula relat-
ing the two contributions. Since the long-range part of x should be somehow correlated with
the volume of axons in white matter, it may be feasible to make a connection between variables
operating locally with those operating globally. In particular, one might try to derive from “first
principles” the scaling relation between volumes of gray and white matters.

Generalization of the optimality models
The principle of spine economy maximization (as well as other principles) was defined locally
in this paper. This means that spatial correlations between different cortical components were
neglected. One natural extension of this work is to include spatial dependence in the fitness
functions (Eqs 1, 21 and 24), by considering more local circuits with slightly different proper-
ties that are coupled together. Such an approach would allow us, in principle, to model spatial
plasticity effects and competition for space in the cortex. For example, it is known that learning
modifies the structure of spines [19], and there are some indications that it also alters dendritic
and axonal processes [53]. The interesting question here is how these two types of modifica-
tions are related to one another, and how they influence neighboring circuits.
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Another possible extension is to include explicitly the temporal aspect in the equations. The
current approach, without time, describes a mature “average” brain. Time dependence of corti-
cal composition would allow us to model the effects associated with brain development. In par-
ticular, there are data on synaptic density development in different parts of the cortex across
species (references in [27]). Many of these dependencies show that synaptic density acquires a
maximum at some early developmental stage, and then it decays to adult (stable) values. It
would be interesting to see if spine economy rule combined with time can generate such non-
monotonic dependencies. The temporal aspect in the equations could formally be included in
analogy with a Hamiltonian approach known from classical mechanics [54], i.e. the fitness
function Fs could serve as a Hamiltonian of the local circuit.

Conclusions
This study shows that hierarchical composition of local cortical circuits can be best explained
by two different design principles. One is associated with a new proposition called here spine
economical maximization, and another with neural wire volume minimization, and both give
similar the best optimal solutions. In contrast, other principles related to wire minimization
such as: wire length, wire surface area, or conduction delays minimizations do not yield reason-
able results. Only when combined with spine economy rule, these other notions can equally
well be fitted to the data under some conditions (spine economy contribution must dominate
in the mixing of concepts in the meta-fitness function and/or spine size distribution must have
a long tail). These results imply that for the efficiency of local circuits (i) wire volume may be
more basic variable than wire length or temporal delays, (ii) spine economy principle may be
an important concept, and (iii) we should pay more attention to spines, especially in a broader
context of brain evolutionary design.

METHODS

Data gathering and analysis for cortical composition
The ethics statement does not apply to this study. Experimental data in Table 1 for corti-

cal composition come from different sources. They are either directly taken from a source or
calculated based on other related neuroanatomical data.

Mouse data. Data from [38], except for capillaries—data from [29].
Rat data. Data from [55], except for capillaries—data from [56].
Rabbit data. Fractional volumes are arithmetic means of the values for cortical spaces

between and within dendrite bundles in the visual cortex of layers 2 and 3 [57].
Cat data. Density of axon length and dendrite length near the layer 3/4 of visual cortex was

estimated as respectively 3.93 ± 0.8 μm/μm3 and 0.39 ± 0.08 μm/μm3 [52]. The fractional vol-
umes of axons and dendrites were obtained by assuming axon and dendrite diameters as
respectively 0.3 μm [38] and 1.0 μm [58]. Astrocyte data come from [59], and capillary data
from [60].

Macaque monkey data. The fractional volume of dendrites was estimated in prefrontal cor-
tex as 0.33 ± 0.19, based on the formula: (π/4)ρn ldd

2, where the neuron density ρn = (1.0 ± 0.2)
105 mm−3 [61], average total dendrite length per neuron ld = 3478 ± 99 μm [62], and average
dendrite diameter d = 1.1 ± 0.2 μm [63, 64]. The volume fraction of spines was estimated as a
product of average spine head volume 0.15±0.01 μm3 (probably an underestimate for a whole
spine volume) and spine density 0.30 ± 0.03 μm−3 in prefrontal cortex [65]. Capillary fraction
data come from visual cortex [30].

Human data Average spine volume (cingulate cortex) is 0.35±0.02 μm3 [41] and density of
asymmetric synapses (temporal cortex), presumably spines, is (4.23 ± 2.59)10−1 μm−3 [66].
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Average fraction of spine volume was estimated as the product of these two parameters. The
ratio of cortical volumes taken by dendrites and by spines is 2.39, which comes from dividing
total volumes of basal and apical dendrites (424.5 μm3) and spines (177.3 μm3) per neuron in
cingulate cortex of 40 years old human [41]. The volume fraction of dendrites was estimated as
a product of 2.39 and the volume fraction of spines. Astrocyte and capillary fractions data
come from parietal cortex [67].

Theoretical modeling
To find the optimal structural layout of the mature cerebral cortex we slightly simplify the anal-
ysis and consider its five major components that seem to be functionally important: axons,
dendrites, spines, glia/astrocytes, and capillaries. In the considerations below we rely on a con-
cept of geometric probability, which relates fractional volumes of cortical components with
average probabilities of their encountering. In this mean-field approach, the details of neuronal
or glial arborizations are not important.

Model of spine fractional volume. In a mature brain axons and dendrites are much more
structurally stable than synapses (spines), which can change volume or even disappear rela-
tively fast [44–47]. Consequently, it is assumed that axonal and dendritic fractions form two
primary independent variables that set to a large degree the cortical layout. A third, indepen-
dent variable is an average spine volume. Spine size is indirectly related to the amount of meta-
bolic energy it uses, through Na/K-ATPase pumps located on spine membrane [21]. Bigger
spines with larger surface area require more energy for pumping out Na+ ions and maintaining
their concentration gradient than smaller spines. There is some evidence that dendritic spines
are the major energy users in the cortex [25–27], and thus, their energy or alternatively their
volume, seems to be an important variable. In this study, we focus explicitly on spine volume
as an independent variable instead of spine energy, since there exist data on the distribution of
spine sizes [41, 68, 69] or spine EPSP [70], and no data on spine energy distribution.

A synaptic connection between excitatory neurons, which are majority in the cortex [38],
can potentially be generated in that cortical region where axonal and dendritic trees spatially
overlap [71]. However, a physical vicinity of axons and dendrites may not be sufficient for the
appearance of a spine in this location [72], which suggests an additional factor of possibly sto-
chastic nature involved [69]. It is assumed here that this factor is associated with energy. Specif-
ically, we require that a metabolic energy allocated to a spine must be above a certain threshold
to form a stable spine (or equivalently that potential spine volume must be large enough). This
requirement relates to the empirical fact that physiological processes need a minimal amount
of energy to be activated [73], which seems to apply to dendritic spines, since they disappear
during prolonged severe ischemia [74] and during excessive cooling of the tissue [75]. Thus,
the average probability of finding a spine at some location is equal to the product of two aver-
age probabilities: that axons and dendrites are present there, and that a potential spine is larger
than a certain threshold. On the other hand, based on the concept of geometric probability, the
probability of finding a spine in the cortex is approximately equal to the fractional cortical vol-
ume occupied by spines, which is denoted as s. Mathematically, this means:

s ¼ Pxy; ð2Þ
where the parameters x and y denote fractional volumes of axons and dendrites in the cortex or
probabilities of their occurrence (i.e. 0< x, y< 1). The product xy is the average probability
that both axon and dendrite are present in a small cortical space. The symbol P is the condi-
tional probability that a spine has volume u that is greater than the threshold θ. Formally, this
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probability is defined as

P ¼ R1
y HðuÞdu; ð3Þ

whereH(u) is the distribution (density of probability) of spine volumes u. One can view P as a
conditional probability of spine formation. We consider five different types of volume distribu-
tion functions H(u), for which we obtain different forms of the probability Pð�uÞ as a function
of average spine volume �u (see below).

Distributions of spine sizes. Empirical data show that spines can have widely different
sizes, from very small* 0.01 μm3 to quite large* 1.3 μm3 [41, 76]. The distribution of their
sizes has been fitted by two distinct functions with different asymptotic properties, either by
gamma function with short-tail [41], or by log-normal with heavy-tail [69]. This suggests that
there could also be other distributions, which are statistically indistinguishable from the above,
that would fit the data equally well. For this reason and for a larger generality we consider five
different distributions H(u) of spine volumes: three with short-tail and two with heavy-tail. For
each distribution we provide explicit forms of the conditional probability P in terms of the
average spine volume �u, which is defined as

�u ¼ R1
0
HðuÞudu: ð4Þ

Exponential distribution.
This type of spine volume distribution has the form:

HðuÞ ¼ ae�au ð5Þ

for u� 0, where α is some positive constant. The average spine volume is �u ¼ 1=a. The condi-
tional probability P (defined in Eq 3) that a spine is greater than the threshold θ is

Pð�uÞ ¼ e�y=�u ; ð6Þ

i.e. it can be expressed as a function of �u. The latter feature applies to all size distributions con-
sidered in this paper (see below). For �u=y � 1 the probability Pð�uÞ � 1, whereas for �u=y � 1

we have Pð�uÞ � 1.
Gamma distribution.
The distribution of spine volume H is:

HðuÞ ¼ anþ1

n!
une�au ð7Þ

for u� 0, where α is some positive constant. The average spine volume is �u ¼ ðnþ 1Þ=a. The
probability P ¼ G nþ 1; ðnþ 1Þy�uð Þ, where Γ is the standard Gamma function. In the paper
we consider two special cases, with n = 1 and n = 2, for which the probability P takes the follow-
ing forms:

Pð�uÞ ¼ 1þ 2
y
�u

� �
e�2y=�u ð8Þ

for n = 1, and

Pð�uÞ ¼ 1þ 3
y
�u
þ 9

2

y
�u

� �2
" #

e�3y=�u ð9Þ

for n = 2.
Rayleigh distribution.
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The distribution of spine volume is given by

HðuÞ ¼ u
s2

e�u2=ð2s2Þ ð10Þ

for u� 0. The average spine volume is �u ¼ ffiffi
p
2

p
s. The probability P that spine is larger than the

threshold θ is

Pð�uÞ ¼ e
�
p
4
ðy=�uÞ2

:
ð11Þ

Log-logistic distribution.
This type of distribution has a heavy tail and is represented by

HðuÞ ¼ b
a

ðu=aÞb�1

½1þ ðu=aÞb	2 ð12Þ

for u� 0, where α is a positive constant and β> 1. Note that H(u) decays as a power law for
asymptotically large u. The average spine volume is �u ¼ ap=ðb sin ðp=bÞÞ. The probability P in
terms of �u is given by

Pð�uÞ ¼ �ub

�ub þ ~yb
; ð13Þ

where ~y is the renormalized threshold, i.e. ~y ¼ y ðp=bÞ
sin ðp=bÞ. Eq (13) is known as Hill equation

and is often used in biochemistry when there are cooperative phenomena between different

molecules. Note that for sufficiently large exponent β, the probability P� 1 if �u < ~y, and

P* 1 if �u > ~y.
Log-normal distribution.
The distribution of spine volume in this case also has a heavy tail, and it is given by

HðuÞ ¼ 1ffiffiffiffiffiffi
2p

p
su

exp �ð lnu� mÞ2
2s2

� �
; ð14Þ

where μ and σ are some parameters (σ> 0). The average spine volume �u is �u ¼ exp ðmþ s2=2Þ.
The probability that a spine has larger volume than the threshold θ is

Pð�uÞ ¼ 1

2
1� erf

ln ðy=�uÞ þ s2=2ffiffiffi
2

p
s

� �� �
; ð15Þ

where erf(. . .) is the standard error function. Note that for σ� 1, we have P* 1 if �u=y � 1

and P� 1 if �u=y � 1.
Model of glia and capillary fractional volumes. The model of glia and capillary fractions

presented below relies on empirical evidence that cortical neurons with their synapses are spa-
tially coupled to glia (astrocytes) and microvasculature. Specifically, it was shown that neuron
density for mouse cortex and macaque monkey visual cortex correlate with vascular length
density [29, 30]. The changes in astrocyte density are to some extent related to changes in capil-
lary density across layers of mouse somatosensory cortex [31] (see below). Moreover, develop-
mental data for cat visual cortex show a strong spatio-temporal coupling between capillary
length density and synaptic density [77].

Extended branching processes of astrocytes resemble dendritic trees of neurons [78]. The
endings of these processes physically connect with spines by wrapping around their surface to
provide spines with metabolic substrates and glutamate from capillaries, and to remove waste
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products [78]. The transport of metabolites to and from spines along astrocytes should be
effective, i.e. sufficiently fast and the least energy consuming, otherwise spines and thus local
neural circuits would not get enough energy on time and as a result would underperform their
functions. (Although glia use much less energy than neurons [21], they nevertheless should
minimize their metabolic needs for the overall brain efficiency). This suggests that the total
length of astrocyte processes should be as small as possible. Consequently, we can treat an
astrocyte as a minimal spanning tree along its target points, i.e., spines. It can be shown mathe-
matically that in a minimal tree formalism, the total length of the tree connecting n target
points or branch points scales asymptotically as n2/3 [79, 80]. The important point is that this
result applies universally to any transportation network that works efficiently. Additionally,
because of the physical units consistency, the total length of the tree should scale with enclosing
volume V as V1/3. Thus, the total length L of processes of a single astrocyte connecting Ns

spines should be minimized when

L ¼ bN2=3
s V1=3; ð16Þ

where b is some constant. It can be shown theoretically under general conditions that b = (3/
(4π))1/3 [5]. This value was also found empirically for neural dendritic trees [5], and because of
the structural similarity between branching patterns of astrocytes and dendrites, this particular
value of b is also adopted here. The parameter V in Eq (16) is the cortical volume enclosing a
single astrocyte and Ns spines. This “domain volume” is defined by three-dimensional bound-
aries of an astrocyte, and it is much bigger than the actual volume of an astrocyte because it
includes also other cortical components (spines, dendrites, axons, etc) contained within these
boundaries. The critical feature of astrocyte domains is that neighboring astrocytes essentially
do not overlap, which means that each domain contains only one astrocyte cell that influences
synaptic spines only from that particular domain. This property of astrocytes spatial arrange-
ment is called domain organization ([78, 81]).

The main contribution to astrocyte volume comes from astrocyte free processes (astrocyte
soma and astrocyte perivascular sheath constitute only 28% and 7% of the total astrocyte vol-
ume; [67]). Assuming a cylindrical geometry for these extended processes, the total volume of
an astrocyte Vas can be approximated as Vas ¼ ðp=4ÞLd2

as, where das is the average diameter of
all free processes. The value of das can be estimated based on data for volume (Vpr = 350 μm3)
and surface area (Spr = 1650 μm2) of astrocyte processes (without soma) in the cat sensorimotor
cortex [59]. Using a familiar formula das = 4Vpr/Spr, we obtain das = 0.85 μm. One can expect
that the value of das only very weakly depends on brain size, as it is the case for diameters of the
thickest processes, which are 2.2 μm for mouse, and 2.9 μm for human [82], despite four orders
of magnitude difference in brain volumes of these mammals (e.g. [22]). For that reason, the
value das = 0.85 μm is kept constant for all computations performed in this study, and it is the
only parameter that is fixed in the model.

Because of the astrocyte domains segregation, the volume fraction of astrocytes can be
defined as g = Vas/V, which combined with Eq (16) yields

g ¼ ar2=3
s ¼ as2=3

�u2=3
; ð17Þ

where a ¼ ðp=4Þbd2
as ¼ 0:352mm2, spine density ρs = Ns/V, and in the last equality we used the

fact that density ρs, spine proportion s, and average spine volume �u are related by

s ¼ rs�u: ð18Þ
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The spatial separation between capillaries and spines, and between capillaries and astrocytes
is relatively small, which presumably ensures a high efficiency of energy delivery. For example,
a typical distance between capillaries and spines in mouse cortex is roughly 13 μm [74]. Many
astrocyte processes are either in the vicinity or directly touch capillaries [78]. Even astrocyte
somata is close to microvasculature, with mean spacing between them 6–10 μm in mouse
somatosensory cortex, which at some locations can be down to* 1 μm [31]. For a compari-
son, an intercapillary distance is generally much larger: 32–43 μm for mouse cortex [83], and
58 μm for human cortex [84]. These data suggest that capillaries cluster in those cortical places
where there are high densities of both astrocytes and spines. Mathematically, this means that
the probability of finding a capillary at some location (or equivalently, fraction of capillary vol-
ume c) is proportional to probability of finding both an astrocyte (equal to volume fraction g)
and a spine (equal to volume fraction s). The simplest form of such a probabilistic relationship
is their product, i.e.

c ¼ gs: ð19Þ

There is some additional empirical support for that “product formula” based on a laminar dis-
tribution of microvasculature and synapses both for rodents and for primates. For mouse
somatosensory cortex, capillary fraction and astrocyte density correlate across cortical layers
[31], but their relationship is clearly nonlinear, as local peaks in these two variables often do
not exactly match (compare Fig. 1 in [31]). It seems that inclusion of spine density in that rela-
tionship should improve the correlation with changes in capillary fraction variability. Specifi-
cally, capillary fraction exhibits a peak in cortical somatosensory layer 1, which is however
absent in the corresponding astrocyte density [31], but it correlates well with the fact that the
density of asymmetric synapses (mostly spines) is the largest in the layer 1 of mouse somato-
sensory cortex [85].

For primate visual cortex, capillary length density is the largest in the middle layers 4 and 2/
3, and the smallest in layers 1 and 5/6 [30, 86], which is similar to the laminar distribution of
synaptic density, although with some fluctuations [87, 88]. Taken together, these data suggest
that microvasculature is correlated with both synapses and astrocytes in the cortical gray
matter.

Capillary fraction c in Eq (19) can be expressed in terms of spine parameters using Eq (17)
for g, with the result

c ¼ as5=3

�u2=3
: ð20Þ

Note, that because s* g3/2, we have equivalently that c* g5/2, which indicates a strong nonlin-
ear dependence between capillary and astrocyte volume fractions, and suggests that generally
one can expect c/g� 1.

The fitness functions. We consider three different classes of fitness functions. The first
corresponds to the principle of neural “wire minimization” and the second to the proposed
here “spine economical maximization”. The third class is a combination of the first two.

Wire minimization principle.
The most general form of the fitness function Fw (benefit-cost or Lagrange function) for

wire minimization takes the form:

Fw ¼ rx þ y
�ug1

þ l1 x þ y þ sþ g þ c� 1ð Þ; ð21Þ

where the exponent γ1 > 0 corresponds to specific characteristics of neuronal wire one wants
to minimize (wire length, its surface area, its volume or conduction delays; see below). The free
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parameter r is a measure of the asymmetry between axons and dendrites. The parameter λ1 is
the Lagrange multiplier associated with the volume normalization constraint: x + y + s + g +
c = 1, i.e., fractional volumes of all considered cortical components must sum up to unity. The
fitness function Fwðx; y; �uÞ is the function of the three independent variables x, y, and �u,
because the fractions s, g, and c depend on these variables (see Eqs (2), (17) and (20)).

The form of the benefit-cost function in Eq (21) can be justified by taking neural wire length
minimization as an example. The other cases can be analyzed analogously. The total axonal
volume in the cortex is Va ¼ ðp=4ÞLad

2
a , where La is the total axon length in the cortex and da

is the average axon diameter. Similarly, for the total dendrite volume we have Vd ¼ ðp=4ÞLdd
2
d ,

where Ld is the total dendrite length and dd is its diameter. Now, consider the fitness function
Fw0 as a density of combined lengths of axons and dendrites with some proportion coefficient
r0:

Fw0 �
r0La þ Ld

V
; ð22Þ

where V is the volume of cortical gray matter. If we represent La and Ld in terms of Va and Vd,
and denote the fractional volumes of axons and dendrites respectively as x = Va/V and y = Vd/
V, then we obtain that

Fw0 �
ðdd=daÞ2r0x þ y

d2
d

: ð23Þ

The empirical data indicate that average spine heads (postsynaptic density PSD) and dendrites
have diameters of the same order of magnitude (fraction of micron), which do not seem to
depend significantly on brain size [14]. This suggests that these two diameters can be mutually
coupled, which implies that one can assume that d2

d � �ug1 , where the exponent γ1 � 2/3 (the
bulk of the spine has a spherical shape). Moreover, if we denote r = r0(dd/da)

2, then we obtain
Eq (21) for the full (with the Lagrange multiplier term) fitness function.

A similar analysis performed for wire surface minimization and wire volume minimization
yields the same formula but with different γ1, respectively 1/3 and 0. For the case of conduction
delays minimization, one can define a similar fitness function to Fw0 in Eq (22) with the substi-

tutions La 7! La=
ffiffiffiffiffi
da

p
and Ld 7! Ld=

ffiffiffiffiffi
dd

p
, which approximately correspond to temporal delays

along axons and dendrites, as the conduction velocity is proportional to a square root of unmy-
elinated wire diameter [48]. Performing the analysis analogously, one obtains Eq (21) with γ1 =
5/6 and r = r0(dd/da)

5/2.
Spine economical maximization principle.
The most general form of the fitness function Fs for spine proportion economical maximiza-

tion takes the form:

Fs ¼
s
�ug2

þ l2 x þ y þ sþ g þ c� 1ð Þ; ð24Þ

where the exponent γ2 > 0 characterizes the influence of spine size on the maximization pro-
cess (γ2 here is generally numerically different than γ1 in Eq (21)), and the parameter λ2 is the
Lagrange multiplier as before. This proposition can be justified as follows. The analysis of
experimental data on the developing cerebral cortex in several mammals indicate that the ratio
of cerebral metabolic rate CMR (the rate of glucose consumption per cortical volume) and syn-
aptic density ρs is approximately conserved from birth until adulthood for a given region of the
cortex, despite large variabilities in CMR and ρs [27]. This means that CMR/ρs � const. Synap-
tic density is comprised mostly of the density of spines (synapses in the cerebral cortex are in
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80–90% excitatory, most of which are axo-spinal [18], and this percentage does not depend on
brain size; [14]), which is related to spine fractional volume s via the formula s ¼ rs�u. This
implies that the ratio CMR�u=s is roughly conserved during development. The product in the
nominator can be identified as an average metabolic energy per spine, which should be propor-
tional to spine volume at some power γ2 � 0, i.e. CMR�u � �ug2 , because spine energy is associ-
ated mainly with the activity of Na/K-ATP pumps located on spine surface area [21, 89]. Thus,
we obtain that the ratio s=�ug2 should be developmentally approximately constant for a given
cortical area, which indicates that this ratio is probably important for cortical functioning.
Consequently, it is assumed here that there has been an evolutionary pressure on increasing
the proportion of spines in the cortex that would consume the least energy or take the smallest
size (spines are energy demanding [25–27]). These considerations lead to the maximization of
the benefit-cost function given by Eq (24).

Combined wire minimization and spine economical maximization as a meta principle.
The simplest fitness function F that generalizes both notions of wire minimization and

spine maximization, and includes them simultaneously is a linear combination of their corre-
sponding primary fitness functions Fw and Fs. If part of F associated with Fw is to be minimized,
and part of F related to Fs is to be maximized, then we must include Fw and Fs with opposite
signs. Therefore, we define the meta fitness function F, which we want to minimize, as

F ¼ f Fw � ð1� f ÞFs; ð25Þ

where f is the parameter controlling relative contributions of wire minimization and spine
economy maximization Lagrangians, with the condition 0� f� 1. As we gradually decrease f
from 1 to 0, then the meta fitness function F changes its character form dominated by wire
minimization to dominated by spine economy maximization. The case f = 1/2 corresponds to a
symmetric situation when both wire min and spine max rules are equally important. Note that
minimization of (−Fs) is mathematically equivalent to maximization of Fs. Eq (1) in the Results
section is obtained after substitution of Eqs (21) and (24) for Fw and Fs in Eq (25).

Optimization of the fitness functions. Optimal fractional volumes of axons x, dendrites
y, spines s, glia/astrocytes g, capillaries c, and optimal average spine volume �u are found by tak-
ing partial derivatives of F, i.e., @F=@x ¼ @F=@y ¼ @F=@�u ¼ @F=@l ¼ 0. As a result we obtain
a system of three basic equations (details are provided in Supp. Information S1 Text):

ð1� f Þsðy � xÞ þ f �ug2�g1 xyð1� rÞ þ ðy � rxÞ sþ g
3

2þ 5sð Þ
h ih i

¼ 0; ð26Þ

ð1� f Þs�ug1 þ f �ug2 sþ 2

3
g þ 5

3
c

� �� �
y�u
P
@P
@�u

¼

y þ sþ 2

3
g þ 5

3
c

� �
½ð1� f Þg2s�ug1 � f g1ðy þ rxÞ�ug2 	

þ 2

3
ðg þ cÞ ½fy�ug2 � ð1� f Þs�ug1 	;

ð27Þ

and

x þ y þ sþ g þ c ¼ 1: ð28Þ

In the case of pure wire minimization principle, i.e. when f = 1, the above system reduces to the
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following equations (with explicit dependencies of s, g, and c on x, y, and P:

ðrx � yÞ P þ a
3

P2

xy�u2

� �1=3

ð2þ 5PxyÞ
" #

¼ 1� r; ð29Þ

2

3
aPx2=3yð1þ PxyÞ � g1ðrx þ yÞP1=3 �u2=3y1=3ð1þ PxÞ þ a

3
ðPxÞ2=3ð2þ 5PxyÞ

h i

¼ �u
@P
@�u

P1=3�u2=3xy4=3 þ a
3
x2=3yð2þ 5PxyÞ

h i
;

ð30Þ

and

x þ y þ Pxy þ aðPxyÞ2=3
�u2=3

þ aðPxyÞ5=3
�u2=3

¼ 1: ð31Þ

In the case of pure spine economical maximization principle, i.e. when f = 0, the system of Eqs
(26–28) reduces to two equations:

�u2=3
@P
@�u

¼ P
�u

g2�u
2=3ð1þ PxÞ þ a

3
P2=3x1=3½2ðg2 � 1Þ þ ð5g2 � 2ÞPx2	

� �
ð32Þ

and

2x þ Px2 þ aðPx2Þ2=3
�u2=3

þ aðPx2Þ5=3
�u2=3

¼ 1; ð33Þ

since in this case x = y.
The above equations are solved numerically for each distribution of spine volumes, using

standard techniques [90]. In the case of pure wire minimization, the optimal solution corre-
sponds to a local minimum of Fw, whereas for pure spine economy maximization the optimal
solution is associated with a local maximum of Fs (see S1 Text). For a mixed case with 0<
f< 1, the optimal solution is a local minimum of F (S1 Text).

Comparison of the theoretical results to the data. The optimal theoretical fractional vol-
umes were compared to the empirical fractional volumes in the cerebral cortex using two
related measures of similarity: Euclidean distance (ED) and Mahalanobis distance (MD). The
major difference between these two measures is in their treatment of variance in the data. ED
measures a distance between theoretical points and mean values of data points ignoring their
variance, whereas MDmeasures such a normalized distance including standard deviations of
data points [91]. Thus MD is more general than ED. The best similarity with the data is
achieved for minimal values of MD and ED.

ED distance between theoretical and experimental points is defined as:

ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX5

i¼1

ðxi � xex;iÞ2
s

; ð34Þ

where xi and xex,i are respectively theoretical and mean empirical values of fractional volumes
of axons, dendrites, spines, glia/astrocytes, and capillaries in the cortex (experimental data cor-
respond to the next-to-last line in Table 1).

MD distance between theoretical and experimental points is defined as [91]:

MD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX5

i¼1

xi � xex;i
sdex;i

 !2
vuut ; ð35Þ
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where xi and xex,i are the same as in Eq (34), and sdex,i denotes the standard deviation associated
with each data point (the next-to-last line in Table 1). It is easy to see that MD defined above is
simply a variance-normalized ED distance. In a special case when all standard deviations sdex,i
are equal to unity, MD reduces to ED.

Supporting Information
S1 Text. This file contains Supporting Figure A and Supporting Tables A-E. It also provides
some details of the derivations, and proofs of minimum for Fw and F, and proof of maximum
for Fs.
(PDF)
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