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Abstract This paper studies an extended trust region subproblem (eTRS) in which
the trust region intersects the unit ball with m linear inequality constraints. When
m = 0, m = 1, or m = 2 and the linear constraints are parallel, it is known that the
eTRS optimal value equals the optimal value of a particular convex relaxation, which
is solvable in polynomial time. However, it is also known that, when m ≥ 2 and at
least two of the linear constraints intersect within the ball, i.e., some feasible point of
the eTRS satisfies both linear constraints at equality, then the same convex relaxation
may admit a gap with eTRS. This paper shows that the convex relaxation has no gap
for arbitrary m as long as the linear constraints are non-intersecting.

Keywords Trust-region subproblem · Second-order cone programming ·
Semidefinite programming · Nonconvex quadratic programming
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1 Introduction

The classical trust region subproblem minimizes a nonconvex quadratic objective over
the unit ball:
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254 S. Burer, B. Yang

v(T0) := min
x

{
xT Qx + cT x : ‖x‖ ≤ 1

}
. (T0)

(T0) is an important subproblem in trust region methods for nonlinear optimization
and has drawn intense research interest [4–7,10,13]. In particular, even though (T0) is
nonconvex, it can be solved efficiently both in theory and practice. Several extensions
of (T0) have been proposed that enforce additional constraints on the trust region, e.g.,
parallel linear constraints [14], or a second full-dimensional ellipsoidal constraint [3].
The paper [9] replaces ‖x‖ ≤ 1 with the more general constraint l ≤ q(x) ≤ u, where
q(x) is an arbitrary quadratic function. An important theoretical and practical issue is
whether such extensions can still be solved efficiently. In this paper, we investigate the
theoretical tractability of the following extension of (T0), which enforces m additional
linear inequality constraints:

v(Tm) := min
x

{
xT Qx + cT x : ‖x‖ ≤ 1

aT
i x ≤ bi (i = 1, . . . , m)

}
. (Tm)

A natural starting point is of course (T0), which has the following polynomial-time
solvable semidefinite programming (SDP) relaxation:

v(T0) ≥ v(R0) := min
x,X

{
Q • X + cT x : trace(X) ≤ 1, X � xxT

}
. (R0)

Here, X is a symmetric matrix, Q • X is the matrix inner product, X � xxT is
equivalent to the convex constraint

(
1 xT

x X

)
� 0

by the Schur complement theorem, and the constraint trace(X) ≤ 1 makes the feasible
region of (R0) compact. Let F(R0) denote the feasible region of (R0). One can show—
by appealing to Barvinok’s or Pataki’s theories concerning the rank of extreme points
of semidefinite feasibility systems [1,8], for example—that every extreme point of
F(R0) satisfies X = xxT , which guarantees that v(R0) actually equals v(T0) since
some optimal solution of (R0) must occur at an extreme point.

Sturm and Zhang [12] and Burer and Anstreicher [2] study the following
polynomial-time solvable relaxation of (T1), in this case (R0) with an added second-
order cone (SOC) constraint:

v(T1) ≥ v(R1) := min
x,X

{
Q • X + cT x : trace(X) ≤ 1, X � xxT

‖b1x − Xa1‖ ≤ b1 − aT
1 x

}
. (R1)

The SOC constraint is constructed [12] by relaxing the valid quadratic SOC constraint
‖(b1 − aT

1 x)x‖ = (b1 − aT
1 x)‖x‖ ≤ b1 − aT

1 x and is called an SOC-RLT constraint
[2] since its construction is closely related to the reformulation-linearization technique
of [11]. Sturm and Zhang prove v(T1) = v(R1), extending the case for m = 0,
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The trust region subproblem 255

while Burer and Anstreicher show further that every extreme point of F(R1) satisfies
X = xxT , where F(R1) is the feasible set of (R1).

Ye and Zhang [14] and Burer and Anstreicher [2] also studied (T2), which has the
following polynomial-time solvable relaxation:

v(T2) ≥ v(R2)

:=min
x,X

⎧⎨
⎩Q • X +cT x :

trace(X) ≤ 1, X � xxT

‖bi x − Xai‖ ≤ bi − aT
i x (i = 1, 2)

b1b2 − b2 aT
1 x − b1 aT

2 x + aT
1 Xa2 ≥ 0

⎫⎬
⎭ . (R2)

Extending (R1), this relaxation also contains the SOC-RLT constraint for aT
2 x ≤

b2 and a new linear RLT constraint reflecting the valid quadratic inequality (b1 −
aT

1 x)(b2 − aT
2 x) ≥ 0.

Ye and Zhang first showed that if the complementarity condition (b1 − aT
1 x)(b2 −

aT
2 x) = 0 is added to (T2), then the corresponding relaxation with b1b2 − b2aT

1 x −
b1aT

2 x +aT
1 Xa2 = 0 admits no gap. Based on this complementarity result, the authors

then showed that the case of (T2) with a1 ‖ a2 could be solved in polynomial-time via
several steps. Burer and Anstreicher also considered a1 ‖ a2 and extended the results
of Ye and Zhang by showing that the extreme points of F(R2) satisfy X = xxT . So
v(T2) = v(R2) in this case, thus providing a second proof that this special case of
(T2) is polynomial-time solvable—but this time in a single step.

On the other hand, Burer and Anstreicher gave a counter-example for whichv(T2) >

v(R2) when a1 ∦ a2. This example had the property that aT
1 x ≤ b1 and aT

2 x ≤ b2
intersected inside the unit ball—more precisely, some x in the unit ball simultaneously
made both linear constraints tight—leaving open the possibility that v(T2) = v(R2)

could still hold when the two inequalities are non-intersecting.
In this paper, we study the following polynomial-time solvable relaxation of (Tm),

which includes all possible SOC-RLT and RLT constraints:

v(Tm) ≥ v(Rm) : = min
x,X

Q • X + cT x

s. t. trace(X)≤1, X � xxT (Rm)

‖bi x − Xai‖ ≤ bi − aT
i x 1 ≤ i ≤ m

bi b j − b j a
T
i x − bi a

T
j x + aT

i Xa j ≥ 0 1 ≤ i < j ≤ m

In light of the results in [2], we focus only on the non-intersecting case, that is, when
there exists no x feasible for (Tm) satisfying aT

i x = bi and aT
j x = b j for some i < j .

Note that the RLT constraints corresponding to i = j are implied by X � xxT , and by
the symmetry of X , the RLT constraint for i > j is equivalent to the RLT constraint
for (ı̂, ĵ ) = ( j, i) with ı̂ < ĵ .

Let F(Rm) denote the feasible set of (Rm). For the non-intersecting case, we will
prove that every extreme point of F(Rm) satisfies X = xxT , which immediately
implies v(Tm) = v(Rm) and that (Tm) is polynomial-time solvable. This is our main
goal. Combined with the results of [2], we thus achieve a very clear demarcation of
when the relaxation (Rm) achieves v(Tm) = v(Rm) generally: precisely when the

123



256 S. Burer, B. Yang

linear constraints aT
i x ≤ bi are non-intersecting in the unit ball. We also discuss a

slight extension in the last section of the paper.

2 Ye and Zhang’s analysis revisited

As motivation for our result, we would first like to discuss how the original analyis of
Ye and Zhang [14], which solves the case of (T2) with a1 ‖ a2 in several polynomial-
time steps, extends naturally to the non-intersecting case of this paper. In other words,
the same steps solve the non-intersecting case of (T2) in polynomial time. Thus, at
least for m = 2, our result may not be surprising. On the other hand, we could not see
how to extend the approach of Ye and Zhang to general m, and so to the best of our
knowledge, our general approach in this paper contributes something new.

In Sect. 2.3 of their paper [14], Ye and Zhang proved that

v(T c
2 ) := min

x

⎧⎨
⎩xT Qx + cT x :

‖x‖ ≤ 1
aT

i x ≤ bi (i = 1, 2)

(b1 − aT
1 x)(b2 − aT

2 x) = 0

⎫⎬
⎭ (T c

2 )

is solved exactly by the SOCP-SDP relaxation

v(Rc
2) := min

x,X

⎧⎨
⎩Q • X + cT x :

trace(X) ≤ 1, X � xxT

‖bi x − Xai‖ ≤ bi − aT
i x (i = 1, 2)

b1b2 − b2 aT
1 x − b1 aT

2 x + aT
1 Xa2 = 0

⎫⎬
⎭ . (Rc

2)

In words, v(Rc
2) = v(T c

2 ).
In Sect. 4 of [14], Ye and Zhang then analyzed the following specific case of (T2),

which is essentially equivalent to (T2) with a1 ‖ a2:

min
x

{
xT Qx + cT x : ‖x‖ ≤ 1

−1 ≤ aT
0 x − b0 ≤ 1

}
. (1)

They argued that it could be solved in two steps. First, assume that either−1 ≤ aT
0 x−b0

or aT
0 x − b0 ≤ 1 is binding at optimality. Then (aT

0 x − b0 + 1)(1 − aT
0 x + b0) = 0

is valid at optimality, and hence solving an instance of (Rc
2) recovers the optimal

value. Second, if −1 < aT
0 x − b0 < 1 at optimality, then the various candidates

for the optimal solution of (T0), when both linear constraints are dropped, can be
examined. From the theory known for (T0), these candidates are solutions of

(Q + μI )x = − 1
2 c, ‖x‖ = 1,

where μ varies over a list of three potential optimal values that can be pre-computed
separately. However, it is not enough for a candidate x to be optimal for (T0). It must
also be feasible, i.e., it must satisfy

(Q + μI )x = − 1
2 c, ‖x‖ = 1, −1 ≤ aT

0 x − b0 ≤ 1
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The trust region subproblem 257

simultaneously. To find such candidates, Ye and Zhang suggest to solve

max
x

{(
aT

0 x − b0 + 1
) (

1 − aT
0 x + b0

)
: (Q + μI )x = − 1

2 c
‖x‖ = 1

}
, (2)

which is polynomial-time solvable because, after restricting to the affine subspace
(Q + μI )x = − 1

2 c, it is an instance of the equality-constrained trust-region sub-
problem. This optimization can be interpreted as examining the optimal solutions of
(T0) corresponding to μ, while simultaneously trying to make x feasible with respect
to the constraints −1 ≤ aT

0 x − b0 ≤ 1. In particular, if the optimal value of (2) is
nonnegative, then the associated optimal solution has met both constraints and is thus
feasible for (1). This uses the fact that the linear constraints are parallel and cannot
both be violated simultaneously. After considering all three μ values, the candidates
can be judged one-by-one for feasibility and global optimality.

If the constraints −1 ≤ aT
0 x − b0 ≤ 1 are replaced by the more general non-

intersecting aT
1 x ≤ b1 and aT

2 x ≤ b2, Ye and Zhang’s analysis carries through. The
first case of binding (b1 − aT

1 x)(b2 − aT
2 x) = 0 works the same by solving (Rc

2). For
the second case, one analogously solves

max
x

{
(b1 − aT

1 x)(b2 − aT
2 x) : (Q + μI )x = − 1

2 c
‖x‖ = 1

}
. (3)

Here again, a nonnegative optimal value guarantees that the associated associated
optimal solution x̄ satisfies both aT

i x̄ ≤ bi (i = 1, 2), which can be argued as follows.
We need only eliminate the possibility that, without loss of generality, aT

1 x̄ > b1.
We consider two subcases. First, assume for contradiction that aT

1 x̄ > b1 and
aT

2 x̄ = b2, and let x̂ be feasible for (T2) with aT
1 x̂ < b1 and aT

2 x̂ = b2. Such
a point exists when both linear constraints are non-redundant and, as assumed, non-
intersecting. Then some convex combination y of x̄ and x̂ has aT

1 y = b1 and aT
2 y = b2,

which contradicts the non-intersecting property. Now assume for contradiction that
aT

1 x̄ > b1 and aT
2 x̄ > b2. Let x̂ be any feasible point of (T2). Then some convex

combination y of x̄ and x̂ has aT
1 y > b1 and aT

2 y = b2 (or possibly the indices 1
and 2 are switched). So we are back to the previous subcase, providing the desired
contradiction.

3 Preliminaries

With the result of Sect. 2 as motivation, we now discuss some preliminary items in
preparation for Sect. 4. In terms of notation, F(Tm) and F(Rm) denote the feasible
sets of (Tm) and (Rm), respectively. In addition, given (x, X), we define

Y (x, X) :=
(

1 xT

x X

)
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258 S. Burer, B. Yang

and remark that X = xxT if and only if Y (x, X) is rank-1. Accordingly, we also say
that (x, X) is rank-1 if X = xxT .

We assume throughout that F(Tm) �= ∅ and formally state our assumption that no
two hyperplanes defined by aT

i x = bi and aT
j x = b j intersect within the unit ball.

Assumption 1 For all i < j , there exists no x ∈ F(Tm) such that aT
i x = bi and

aT
j x = b j .

Note that Assumption 1 can be verified in polynomial time by checking a polynomial
number of convex feasibility problems. We will also need the following result, which
has been discussed in the introduction:

Lemma 1 Every extreme point (x, X) ∈ F(R0) satisfies X = xxT .

Another important result for Sect. 4 demonstrates how any (x, X) ∈ F(Rm) with
aT

i x < bi gives rise to a special vector zi ∈ F(Tm).

Lemma 2 Suppose (x, X) ∈ F(Rm) with aT
i x < bi for some i. Define

zi := (bi − aT
i x)−1(bi x − Xai ) (4)

Then zi ∈ F(Tm).

Proof First, the i th SOC-RLT constraint of (Rm) guarantees ‖zi‖ ≤ 1. Furthermore,
X � xxT implies

(bi − aT
i x)(bi − aT

i zi ) = (bi − aT
i x)bi − aT

i (bi x − Xai ) = b2
i − 2bi a

T
i x + aT

i Xai

≥ b2
i − 2bi a

T
i x + aT

i xxT ai = (bi − aT
i x)2 > 0.

Finally, for all j �= i , the RLT constraints of (Rm) and symmetry of X imply

(bi − aT
i x)(b j − aT

j zi ) = (bi − aT
i x)b j − aT

j (bi x − Xai )

= bi b j − b j a
T
i x − bi a

T
j x + aT

i Xa j

≥ 0.

This completes the proof. 	

Finally, Sect. 4 requires a simple fact about the extreme points of the intersection

of a compact convex set with a half-space.

Lemma 3 Let C be a compact convex set, and let H be a half-space. Every extreme
point of C ∩ H may be expressed as the convex combination of at most two extreme
points in C.

Proof Suppose that H is defined by the linear inequality αT x ≤ β, and let x̄ ∈ C ∩ H
be extreme. Since x̄ ∈ C , we may write x̄ = ∑

k∈K λ̄k x̄k , where K is some index set,
each x̄k is extreme in C , each λ̄k > 0, and

∑
k∈K λ̄k = 1.
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The trust region subproblem 259

For a vector variable λ with the same length as λ̄, define the linear function x(λ) :=∑
k∈K λk x̄k . In words, x(λ) outputs the linear combination

∑
k∈K λk x̄k of the fixed

x̄k . For example, x(λ̄) = x̄ . Also define the polytope L := {λ ≥ 0 : αT x(λ) ≤
β,

∑
k∈K λk = 1}, which has two features. First, because λ ≥ 0 and the sum of its

entries equals 1, x(λ) defines a convex combination of the vectors x̄k ; so x(λ) ∈ C .
Second, the constraint αT x(λ) ≤ β ensures x(λ) ∈ H . Overall, λ ∈ L implies
x(λ) ∈ C ∩ H . In addition, after adding a slack variable, one can recast L as a
standard-form polytope with the general structure {z ≥ 0 : Az = b}, where the
number of rows in A is 2, i.e., the basis size is 2. Then every extreme point z has at
most two positive entries, which also ensures that every extreme point λ ∈ L has at
most two positive entries.

It holds that λ̄ > 0 is feasible for L since x̄ = x(λ̄) ∈ C ∩ H . Hence, we can write
λ̄ = ∑

j ρ jλ
j , where

∑
j ρ j = 1, each ρ j > 0, and each λ j is extreme in L . By

expanding, this means x̄ = ∑
j ρ j x(λ j ) with each x(λ j ) ∈ C ∩ H . Since x̄ is extreme

in C ∩ H , it holds that every x(λ j ) = x̄ . Since λ j has at most two positive entries,
this completes the proof. 	


4 The result

We would like to prove v(Rm) = v(Tm) under Assumption 1, and we will accomplish
this by showing that every extreme point (x, X) of the compact F(Rm) satisfies X =
xxT . Our proof is by induction on m, where Lemma 1 with m = 0 serves as the base
case, i.e., every extreme (x, X) ∈ F(R0) satisfies X = xxT . The induction hypothesis
is thus as follows:

Assumption 2 Given 1 ≤ i ≤ m, every extreme point (x, X) ∈ F(Ri−1) satisfies
X = xxT .

Furthermore, our proof is broken down into two cases:

Case 1 Some constraint aT
i x ≤ bi is redundant for F(Tm).

Case 2 No constraint aT
i x ≤ bi is redundant for F(Tm).

Case 1 can be handled immediately.

Theorem 1 For Case 1, every extreme (x, X) ∈ F(Rm) satisfies X = xxT .

Proof Without loss of generality, assume aT
m x ≤ bm is redundant. Because F(Rm−1)

is a relaxation of F(Rm), (x, X) ∈ F(Rm−1). Hence, by Assumption 2, Y (x, X) may

be expressed as the convex combination of rank-1 matrices of the form
(1

x̄

)(1
x̄

)T
, where

each x̄ ∈ F(Tm−1). Such x̄ also satisfy aT
m x̄ ≤ bm by redundancy, and so (x, X) is

the convex combination of points (x̄, x̄ x̄ T ) ∈ F(Rm). Since (x, X) is extreme, this
implies X = xxT . 	


Now assume Case 2. Propositions 1 and 2 are the key results leading to Theorem 2
below, but first we state a critical lemma that applies in Case 2.
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Lemma 4 For Case 2, suppose x satisfies ‖x‖ ≤ 1 and aT
i x = bi for some i. Then

x ∈ F(Tm).

Proof Because aT
i x ≤ bi is non-redundant and F(Tm) is convex, there exists x̄ ∈

F(Tm) such that aT
i x̄ = bi . Now suppose x �∈ F(Tm), i.e., aT

j x > b j for all j ∈
J , where J �= ∅ is some collection of indices not including i . Then some convex
combination of x̄ and x , say x̂ , is feasible for (Tm) and satisfies aT

i x̂ = bi and aT
j x̂ = b j

for some j ∈ J . However, this contradicts Assumption 1, so x is in fact feasible for
(Tm). 	

Proposition 1 For Case 2, let (x, X) ∈ F(Rm) be extreme such that some SOC-RLT
constraint is active. Then X = xxT .

Proof Assume without loss of generality that ‖b1x − Xa1‖ = b1 − aT
1 x , and con-

sider (R1) based on the single constraint aT
1 x ≤ b1. Since (x, X) is also in F(R1),

Assumption 2 implies

Y := Y (x, X) =
∑

k

λk
( 1

xk

)( 1
xk

)T
,

where
∑

k λk = 1 and, for each k, xk ∈ F(T1) and λk > 0. Note that

(
b1 − aT

1 x

b1x − Xa1

)
= Y

(
b1

−a1

)
=

∑
k

λk

(
1

xk

)(
1

xk

)T (
b1

−a1

)

=
∑

k

λk(b1 − aT
1 xk)

(
1

xk

)
. (5)

Since the left-hand side of (5) is on the boundary of the SOC, each summand λk(b1 −
aT

1 xk)
( 1

xk

)
on the right is either 0 or parallel to

( b1−aT
1 x

b1x−Xa1

)
(which itself could be 0). As

λk > 0 and
( 1

xk

) �= 0, we can thus separate the indices k into two groups (using new
indices j and � to distinguish the groups):

Y =
∑

j : aT
1 x j =b1

λ j
( 1

x j

)( 1
x j

)T +
∑

� : aT
1 x�<b1

λ�

( 1
x�

)( 1
x�

)T
.

Each x�, if there exist any, must be equal to z1 := (b1−aT
1 x)−1(b1x−Xa1) since

( 1
x�

)
is

parallel to
( b1−aT

1 x
b1x−Xa1

)
. Note that the existence of at least one � implies aT

1 x < b1 so that
z1 is well-defined. By (4) and Lemma 2, z1 ∈ F(Tm). In addition, each x j ∈ F(Tm)

by Lemma 4. Overall, we see that Y is the convex combination of rank-1 solutions to
(Tm). Therefore, Y is rank-1 because (x, X) is extreme. 	

Proposition 2 For Case 2, let (x, X) ∈ F(Rm) be extreme such that no SOC-RLT
constraint is active. Then X = xxT .
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The trust region subproblem 261

Proof Suppose that all RLT constraints corresponding to the pairs (1, m), . . . ,

(m − 1, m) are inactive at (x, X). Then (x, X) is also extreme for (Rm−1), and so
X = xxT by Assumption 2. On the other hand, suppose the (i, m)th RLT constraint is
tight; say i = 1 without loss of generality. We will derive a contradiction that (x, X)

is extreme to complete the proof.
We first claim that the other RLT constraints corresponding to (2, m), . . . ,

(m − 1, m) are inactive. Let zm be given by (4); it is feasible for (Tm) by Lemma 2.
Moreover, the proof of Lemma 2 shows that aT

k zm = bk if and only if the (k, m)th
RLT constraint is tight. Since at most one aT

k zm ≤ bk can be tight by Assumption 1,
at most one of the (k, m)th RLT constraints can be active, as claimed.

Let G denote the intersection of F(Rm−1) with the single RLT constraint b1bm −
bmaT

1 x − b1aT
m x + aT

1 Xam ≥ 0. So (x, X) is extreme for G. Then Lemma 3 implies
(x, X) can be expressed as a convex combination of at most two extreme points of
(Rm−1). By Assumption 2, this means rank(Y ) ≤ 2, where Y := Y (x, X).

Defining s := ( b1−a1

)
and t := ( bm−am

)
, we see

sT Y s =
(

b1

−a1

)T (
1 xT

x X

)(
b1

−a1

)
= b2

1 − 2b1aT
1 x + aT

1 Xa1

≥ b2
1 − 2b1aT

1 x + aT
1 xxT a1 = (b1 − aT

1 x)2

> 0

and similarly t T Y t > 0. Notice also that the tight RLT constraint can be expressed as
sT Y t = 0. Next consider the equation

W :=
⎛
⎝

sT

tT

I

⎞
⎠ Y

(
s t I

) =
⎛
⎝

sT Y s sT Y t sT Y
tT Y s tT Y t tT Y
Y s Y t Y

⎞
⎠ =

⎛
⎝

sT Y s 0 sT Y
0 t T Y t tT Y

Y s Y t Y

⎞
⎠ .

We have W � 0 and rank(W ) ≤ rank(Y ) ≤ 2. Then the Schur complement theorem
implies M := Y − (sT Y s)−1(Y ssT Y ) − (t T Y t)−1(Y ttT Y ) � 0 and rank(M) =
rank(W ) − 2 ≤ 2 − 2 = 0, i.e., M = 0 or

Y = (sT Y s)−1(Y s)(Y s)T + (t T Y t)−1(Y t)(Y t)T .

We now prove several properties of

Y s =
(

1 xT

x X

) (
b1

−a1

)
=

(
b1 − aT

1 x

b1x − Xa1

)
.

First, Y s lies in the interior of the SOC because ‖b1x −Xa1‖ < b1−aT
1 x . In particular,

z1 in (4) is well-defined with ‖z1‖ < 1. Furthermore, t T Y s = 0 implies t T
( 1

z1

) = 0, or

equivalently aT
m z1 = bm . Hence, Lemma 4 implies z1 ∈ F(Tm). In a similar manner,

we can prove from Y t that zm defined by (4) is feasible for (Tm) with aT
1 zm = b1.

Also, we see z1 �= zm by Assumption 1.
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Summarizing, Y = α
( 1

z1

)( 1
z1

)T + β
( 1

zm

)( 1
zm

)T
for appropriate positive scalars α, β

and z1, zm ∈ F(Tm) with z1 �= zm . Since the top-left entry in Y equals 1, this is a
proper convex combination of points in F(Rm). However, this contradicts that (x, X)

is extreme. 	

We are now ready to state the desired theorem regarding Case 2 and the main result

of the paper (Corollary 1).

Theorem 2 For Case 2, every extreme (x, X) ∈ F(Rm) satisfies X = xxT .

Proof Proposition 1 covers the case when (x, X) has an active SOC-RLT constraint,
while Proposition 2 handles when (x, X) has no such active constraint. 	

Corollary 1 Under Assumption 1, v(Rm) = v(Tm).

Proof Theorem 1 covers Case 1, and Theorem 2 covers Case 2. 	

In [2], Burer and Anstreicher gave a counter-example for which v(R2) < v(T2)

when Assumption 1 is violated:

Q =
⎛
⎝

2 3 12
3 −19 6

12 6 0

⎞
⎠ , c =

⎛
⎝

14
14
9

⎞
⎠ , −x1 ≤ 1

2 , x1 + 6
5 x2 ≤ 0.

In this instance, v(T2) ≈ −12.9419 with x∗ ≈ (−0.8536, 0.2947, 0.4294)T , while
v(R2) ≈ −13.8410 with optimal

x̄ ≈
⎛
⎝

−0.3552
0.3881

−0.2119

⎞
⎠, X̄ ≈

⎛
⎝

0.2595 −0.2248 −0.0913
−0.2248 0.4495 −0.0694
−0.0913 −0.0694 0.2911

⎞
⎠,

and the numerical rank of X̄ is 3. We wish to examine this counter-example from the
viewpoint of our proof. One can verify that Y (x̄, X̄) makes both SOC-RLT constraints
active in (R2), and so considering that (x̄, X̄) is likely to be extreme in (Rm) from the
numerical point of view, Proposition 1 is violated in this case. Of course, Proposition 1
is based on Lemma 4, which heavily uses Assumption 1.

5 An extension

Consider the following assumption, which is slightly relaxed compared to Assump-
tion 1.

Assumption 3 For all i < j , there exists no x ∈ F(Tm) such that ‖x‖ < 1, aT
i x = bi ,

and aT
j x = b j .

In comparison to Assumption 1, Assumption 3 allows the linear constraints to intersect
on the boundary of the unit ball. Every such intersection point on the boundary must
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clearly be an extreme point of the polyhedron P := {x : aT
i x ≤ bi (i = 1, . . . , m)}.

For example, when the dimension of x is 2, Assumption 3 allows (Tm) to model
polytopes P inscribed in the unit disk.

We have the following extension of Corollary 1.

Proposition 3 Under Assumption 3, v(Rm) = v(Tm).

Proof For ε > 0 small, tighten the constraint ‖x‖ ≤ 1 of (Tm) to ‖x‖ ≤ 1 − ε

in order to form a new extended trust region subproblem (eTRS) (T ε
m) satisfying

Assumption 1. Relative to (Rm), a suitably modified convex relaxation (Rε
m) can

be derived such that v(Rε
m) = v(T ε

m) by Corollary 1. The result follows because
v(Rm) = limε→0 v(Rε

m) = limε→0 v(T ε
m) = v(Tm) as all involved feasible sets are

compact. 	

We end with an application of Proposition 3. Consider min{xT Qx +cT x : x ∈ P},

where P is the regular pentagon inscribed in the unit disk with (1, 0) as an extreme
point and

Q =
(−8 8

8 −14

)
, c =

(−1
−1

)
.

For example, P could be represented by the system

⎛
⎜⎜⎜⎜⎝

1.3764 1
−0.3249 1
−1.0000 0
−0.3249 −1
1.3764 −1

⎞
⎟⎟⎟⎟⎠

(
x1
x2

)
≤

⎛
⎜⎜⎜⎜⎝

1.3764
0.8507
0.8090
0.8507
1.3764

⎞
⎟⎟⎟⎟⎠

.

Since the redundant constraint ‖x‖ ≤ 1 is not given explicitly, a reasonable approach
would be to solve the following relaxation that only contains the RLT constraints:

min
x,X

Q • X + cT x

s. t. X � xxT

bi b j − b j a
T
i x − bi a

T
j x + aT

i Xa j ≥ 0 i < j.

This yields optimal

x̄ ≈
(

0
0

)
, X̄ ≈

(
0.8090 0

0 0.8090

)
, Q • X̄ + cT x̄ ≈ −17.7984.

Note that the numerical rank of X̄ is 2. According to Proposition 3, however, we can
obtain the exact optimal value by solving (Rm). Doing so yields

x∗ ≈
(

0.3090
−0.9511

)
, X∗ ≈

(
0.0955 −0.2939

−0.2939 0.9045

)
,

Q • X∗ + cT x∗ ≈ −17.4873.
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Indeed, the numerical rank of X∗ is 1, showing that x∗ is a global minimizer of
xT Qx + cT x over P .
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