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Abstract Network routing problems generally involve multiple objectives which

may conflict one another. An effective way to solve such problems is to generate a

set of Pareto-optimal solutions that is small enough to be handled by a decision

maker and large enough to give an overview of all possible trade-offs among the

conflicting objectives. To accomplish this, the present paper proposes an adaptive

method based on compromise programming to assist decision makers in identifying

Pareto-optimal paths, particularly for non-convex problems. This method can pro-

vide an unbiased approximation of the Pareto-optimal alternatives by adaptively

changing the origin and direction of search in the objective space via the dynamic

updating of the largest unexplored region till an appropriately structured Pareto

front is captured. To demonstrate the efficacy of the proposed methodology, a case

study is carried out for the transportation of dangerous goods in the road network of
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Hong Kong with the support of geographic information system. The experimental

results confirm the effectiveness of the approach.
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JEL Classification C44 � C61 � L91

1 Introduction

Shortest path is a major stand-alone model or a subproblem of a complex model for

practical network routing in a wide variety of contexts. Being an extension of the

conventional shortest path problem, the multi-objective shortest path problem

(MOSP) is concerned with finding a set of optimal paths with respect to multiple

conflicting objectives. A good example is the search for efficient routes passing

through densely populated regions that simultaneously minimize the travel cost and

population exposure. MOSP is one of the core problems in multi-objective

optimization (Ehrgott 2005) with numerous applications. In reality, a unique

solution that can simultaneously optimize every single objective hardly exists in a

MOSP involving conflicting objectives (Zitzler et al. 2003). Consequently, the focus

should be on finding solutions that are near optimal or giving the best trade-offs

among the conflicting objectives (Malczewski 1999).

The MOSP is known as NP-complete (Garey and Johnson 1979; Balas 1989).

Many MOSPs are reduced to classic shortest path problems by using cost functions

with a positively weighted linear combination of all objectives, where the weights

stipulate the decision makers’ preferences for individual objectives (White 1982;

Cherkassky et al. 1996). However, only a few of such MOSPs have satisfactory

performance. In practice, it can be very difficult to precisely and accurately specify

these weights, even for someone familiar with the problem domain. Compounding

this drawback is the fact that scaling among the objectives is needed and small

perturbations in the weights can sometimes lead to quite different solutions.

Besides, given a set of weights, this method generates a single solution rather than a

set of solutions for the examination of trade-offs. More importantly, it fails to

capture the efficient solutions that fall within the non-convex parts of the Pareto set.

Li and Leung (2011) developed a compromise programming (CP) method for

multi-objective shortest path routing problem with a priori weights assignment. Built

upon this effort, this paper proposes an adaptive method to determine the weights in

an automatic and adaptive manner for similar routing problems. Compared to the CP-

based approach, the adaptive method does not require one to determine weights in

advance for each objective. It automatically calculates the weights based on the

known information. Hence, a subset of efficient solutions can be generated without

prior knowledge of the relative importance of/preferences for the objectives in

question. Huang et al. (2008) devised an approach to generate a set of well-

distributed Pareto candidates for a multi-objective spatial optimization problem. This

approach approximates the Pareto front by gradually ‘‘learning’’ its shape and
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investing computational effort in the unexplored regions of the objective space.

However, since the reference point is fixed at the origin, that is, (0, 0, …, 0), their

method might yield an unadjusted Pareto front. In our approach, the starting point of

the search direction is made dynamic. It is adaptively changed to locate the utopian

point of the largest unexplored feasible region at which the new search direction is

determined. This significant improvement, though making the problem particularly

challenging, allows a more evenly distributed set of points to be generated to

appropriately capture the Pareto front. We also employ a node-labeling algorithm,

rather than the branch-and-bound method used by Huang et al. (2008), to solve the

reformulated minimization problem. The labeling algorithms are specifically

designed to make use of the network configuration. They process the links in an

optimal order and run more efficiently than a standard linear program solver.

Being equipped with heuristics such as ant algorithms and genetic algorithms,

geographic information system (GIS) has been widely employed to solve various

optimization problems (Xiao et al. 2002; Li and Yeh 2005; Huang et al. 2006; Liu

et al. 2006; Murray 2010; Delmelle et al. 2012). In this study, a GIS is used to

facilitate multi-objective path optimization. To exploit the spatial-analytical

capabilities of GIS, the proposed methodology is applied to solve the MOSP in a

GIS environment. A case study involving dangerous goods (DG) transportation is

carried out to search for optimal routes for multi-objective DG transportation in

Hong Kong. Besides facilitating the implementation of the algorithm to derive

optimal-route recommendations, GIS serves the multi-objective optimization

problem by providing the road network and information about its surrounding

environment.

The remainder of this paper is organized into several sections. An overview of

the methods used to solve the MOSPs is given in Sect. 2. The formulation of MOSP

and relevant notations are then outlined in Sect. 3, followed by a discussion of the

proposed methodology. Details of the experimental analysis are provided in Sect. 4.

Finally, Sect. 5 provides some concluding remarks.

2 Background of research

A wide variety of algorithms and methods have been developed to implement the

MOSP (Ehrgott and Gandibleux 2000), such as dynamic programming, label

setting, label correcting, interactive methods, approximation algorithms, genetic

algorithms (GAs), and evolutionary algorithms (EAs).

Martins (1984) and Hartley (1985) propose several node-labeling algorithms, the

exact algorithms based on dynamic programming, to generate the entire set of

Pareto-optimal paths for a multi-criteria shortest path problem. Due to the NP-

complete nature of the problem, these algorithms are non-polynomial and thus lead

to considerable computational effort, even for moderately sized networks, because

the set of non-dominated paths could be enormous. Martins and Santos (1999)

outline a labeling algorithm for the multi-objective shortest path problem and

present an analysis in terms of finiteness and optimality. Mooney and Winstanley

(2006) argue that Martins’ labeling algorithm works well in theory but is prohibitive
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to implement in practice due to memory costs. Skriver and Andersen (2000) employ

a label-correcting method for a bi-criterion shortest path problem. Although

efficient, their approach appears to be limited to relatively smaller networks. A

study by Gandibleux et al. (2006) reports a concise description of a MOSP and

clearly elucidates the most significant issues to its solution. They extend Martins’

algorithm by introducing a procedure that can solve MOSP which have multiple

linear functions and a max–min function. Coutinho-Rodrigues et al. (1999)

introduce an interactive method for a bi-objective shortest path problem, which

makes use of an efficient k-shortest path algorithm in identifying Pareto-optimal

paths. A different interactive procedure for the MOSP based on a reference point

labeling algorithm is suggested in Granat and Guerriero (2003). The multi-objective

problem is converted to a parametric single-objective problem whereby the efficient

paths are found. Hallam et al. (2001) design an approximation algorithm for

MOSPs. The Pareto-optimal paths are selected on the basis of their selection-

function value which contains heuristic and constraint information. Tsaggouris and

Zaroliagis (2006) outline an improved fully polynomial time approximation scheme

(FPTAS) for MOSPs, along with a generic approach to constructing FPTAS for the

multi-objective optimization problem with quasi-polynomial nonlinear objectives.

Their algorithm resembles the Bellman-Ford method, but it implements the label

sets as arrays of polynomial size by relaxing the requirements for strict Pareto-

optimality.

The linear or integer programming methods are generally straightforward and

powerful, yet they often require extensive additional effort in recasting the problem

in a feasible framework, and might fail in capturing the non-convex optimal

solutions. As alternatives to the mathematical programming approaches, genetic

algorithms (GAs) and evolutionary algorithms (EAs) have seen wide applications to

various types of routing problems (Leung et al. 1998; Mooney and Winstanley

2006). However, few systematic attempts have been made to apply them directly to

MOSP. Ahn and Ramakrishna (2002) present a GA for solving a single criterion

shortest path routing problem. A population-sizing equation is developed to give the

solutions with quality desired. Davies and Lingras (2003) implement a GA-based

approach to routing shortest paths in dynamic and stochastic networks where the

network information changes over time. Mooney and Winstanley (2006) propose an

EA for multi-criteria path optimization problems. The EA is designed to generate

MOSP solutions without the classic shortest path algorithms.

Despite a large variety of methods and algorithms that can either generate all

Pareto-optimal solutions or directly generate the user-optimal solution, only a few

of them deal specifically with the problem of generating a subset of the Pareto-

optimal solutions without making assumptions about the decision makers’

preferences. The main difficulty lies in generating a number of efficient solutions

small enough to be handled by a human operator but also large enough to provide an

overview of all possible trade-offs among conflicting objectives.

The transportation of dangerous goods (DGs) involves multiple stakeholder

groups playing different roles and having different objectives that are generally

conflicting. Designing the routes with the best possible trade-offs for conflict

resolution among different objectives is of great importance for safe and efficient
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DG transportation. Given the multi-objective nature of the DG routing problem,

multi-objective optimization (MOP) provides a sound framework for analysis and

decision making (Huang et al. 2004; Meng et al. 2005; Erkut et al. 2007; Li and

Leung 2011). However, rigorous MOP methods have seldom been developed to

seek optimal routes for DG transportation. This paper makes an attempt in this

regard.

3 Mathematical formulation and search procedure for approximate Pareto-
optimal solutions

3.1 Formulation of MOSP

Denote G = (N, A, C) as a directed network, where N = {1, 2,…, n}, A = {(i, j)|i,

j [ N}, and C = {ck
ij | k = 1, …, m and (i, j) [ A} are the sets of nodes, arcs, and m-

dimensional arc costs, respectively. It is assumed that G does not comprise any

cycles with negative cost, and that the costs ck
ij are additive along the arcs. Given a

source node s and a sink node t, a path is a sequence of nodes and arcs from s to t.
The cost vector for linear functions of path p is the sum of the cost vectors of its

arcs. The multi-objective shortest path problem can be formulated as:

min FðxÞ ¼

f1ðxÞ ¼
P
ði;jÞ2A c1

ijxij;

f2ðxÞ ¼
P
ði;jÞ2A c2

ijxij;
. . .
fmðxÞ ¼

P
ði;jÞ2A cm

ij xij:

8
>><

>>:
ð1Þ

s.t
X

ði;jÞ2A

xij �
X

ði;jÞ2A

xji ¼
1; if i ¼ s;
0; if i 6¼ s; t;
�1; if i ¼ t:

8
<

:
ð2Þ

xij ¼
1; if arc ði; jÞ belongs to the shortest path;
0; otherwise;

8 arcs ði; jÞ 2 A

�

: ð3Þ

The objectives in a MOSP are generally conflicting. Therefore, unless a well-

defined utility function exists, there is no single optimal solution but rather a set of

non-dominated or non-inferior solutions from which a best compromise solution can

be selected (Malczewski 1999). Denote Rp ¼ ðr1
p ; . . .; rm

p Þ and Rq ¼ ðr1
q; . . .; rm

q Þ as

two feasible routing paths, where ri
p and ri

q; i ¼ 1; . . .;m, are the ith objective value

for Rp the Rq, respectively, m is the number of objectives. Rp is Pareto-optimal or

non-dominated if there is no other route Rq such that fkðRqÞ� fkðRpÞ; k ¼ 1; . . .;m
and fkðRpÞ 6¼ fkðRqÞ for at least one k. In addition, Rp is weakly Pareto-optimal if

there is no other feasible solution Rq such that fkðRqÞ\fkðRpÞ; k ¼ 1; . . .;m. Under

the concept of Pareto-optimality, the efficient solutions for a MOSP are equivalent:

a gain in one objective is at the cost of another. The globally optimal solution to a

MOSP with conflicting objectives rarely, if ever, exists. Weakly Pareto-optimal

solutions, on the other hand, are also of importance to MOSP. Although they do not
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strictly optimize any objective, they offer useful trade-offs among the objectives to

decision makers, who can then keep or discard such solutions by comparing them

with the genuine Pareto-optimal.

3.2 A framework to explore the Pareto front

Various optimization methods have been proposed to solve the multi-objective path

optimization problems. By and large, these methods can be classified into two major

categories: preference-based approaches and generating approaches. The prefer-

ence-based approaches have been developed to allow decision makers to state their

preferences a priori for all the objectives or interactively during the search

procedure. Based on these preferences, different objectives are assigned different

weights and aggregated into a single objective. The optimal solutions of the original

multi-objective problem can then be obtained by solving the weighted sum single-

objective optimization problem.

In many multi-objective decision-making processes, however, it is difficult for

decision makers to state their preferences among objectives before they have an

explicit notion of the actual trade-offs involved. As Zionts and Wallenius (1976)

stated, decision makers in general are accustomed to responding to the trade-off

questions in the context of a concrete situation (i.e., the trade-offs that are attainable

from realizable situations) rather than in abstraction. Consequently, it is often

desirable to generate the efficient solutions first and subsequently let decision makers

select the most preferred or the best compromise solution from this set. This is the

so-called generating method. A generating approach attempts to obtain a set of Pareto-

optimal solutions for a given problem, with the ultimate goal of sampling a well-

extended and uniformly diversified Pareto front. Various generating methods have

been developed, from the exact methods such as multi-objective linear programming

and dynamic programming to a series of heuristic approaches such as simulated

annealing and tabu search. However, many of these methodologies are incapable of

searching for the non-convex part of a Pareto front that may be of interest to decision

makers. Some of them also suffer from excessive computational complexity or

generating too many solutions for a straightforward choice (Huang et al. 2008).

An alternative to both the generating techniques and preference-based techniques

is to define a parametric objective function that behaves like a utility function and

can generate multiple Pareto-optimal paths for MOSP by varying the parameters. A

careful choice of these parameters makes it possible to directly generate reasonably

good paths, which provide an approximation of the set of optimal paths without

much redundancy. As a result, decision makers are presented with a small set of

solutions for the final choice, but they can also be reasonably confident that the key

options have not been overlooked.

The best possible outcome of a multi-objective (minimization) problem would be

the ideal point FI , or the utopian point defined as FU ¼ FI � e; e� 0 with small

components, where all considered objectives achieve their optimal values simul-

taneously. However, when the objectives are conflicting, it is impossible to reach

the ideal point or the utopian point in spite of its existence. Nevertheless, this point
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can serve as a reference point for the search of a feasible solution closest to it. This

forms the basic notion of compromise programming (CP) (Zeleny 1973; Yu and

Leitmann 1974). Based on this, a parametric objective function is adopted. This

function is commonly used in CP to measure the distance between an efficient

solution point and the reference point F0; F0 2 fFI ; FUg. According to the

definition, a general formulation of the CP problem can be expressed as:

min FðXÞ � F0
�
�

�
�: ð4Þ

The metric F(X)� F0
�
�

�
� is a measure of the distance between the solution point and

the known reference point. Whether a solution of (4) is Pareto-optimal depends on

the properties of the distance measure and therefore on the properties of the norm

�k k. A norm �k k is called monotone, if ak k� bk k holds for all a, b 2 Rm with

aij j � bij j, i = 1,…, m, and moreover ak k\ bk k if aij j\ bij j, i = 1,…, m. A norm

�k k is called strictly monotone, if ak k\ bk k holds whenever aij j � bij j, i = 1,…, m,

and aj

�
�
�
� 6¼ bj

�
�
�
� for some j. With this definition of monotone, it is easy to prove that

for an optimal solution x̂ of (4), the followings hold (Ehrgott 2005):

1. If �k k is monotone, then x̂ is weakly Pareto-optimal. If x̂ is a unique optimal

solution of (4), then x̂ is Pareto-optimal.

2. If �k k is strictly monotone, then x̂ is Pareto-optimal.

The main idea of CP is to search for a feasible solution closest to the ideal point.

As a measure of distance between points in multi-dimensional space, the Lp-metric

is used to estimate the degree of closeness. Generally, the weighted metric Lp ¼
�k kkp with p� 1 is adopted, so that the CP problem is expressed as

min
x2X

Xm

k¼1

kk fkðXÞ � f 0
k

� �p

 !1
p

; kk [ 0; 1� p�1; ð5Þ

for general p, and

min
x2X

max
k¼1;...;m

kk fkðXÞ � f 0
k

� �� �
; kk [ 0 ð6Þ

for p = ?, where kk designates the kth positive weighting coefficient, representing

the relative preference/importance attached to objective k; p is the parameter gov-

erning the distance between FðXÞ and F0, which acts as a weight attached to the

deviation of a solution from the reference point reflecting the decision maker’s

perspective. Lp is strictly monotone for 1 B p \? and monotone for p = ?.

Since the structure of the CP problem depends on the choice of the metric, we use

the notation CP (p, k). When p = 1, the CP (1, k) is equivalent to the weighted sum

(WS) formulation. Hence, the WS scalarization can be treated as a special case of

the weighted compromise programming. When 2 B p \?, the objective function

of the CP (p, k) is nonlinear and does not have explicit physical meaning. When

p = ?, the CP (?, k) becomes a min–max problem formulated as (6). The CP (?,

k), referred to as the weighted Tchebycheff approach, is very useful in generating

Pareto solutions. Bowman (1976) shows that for every Pareto solution, there exists a
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positive vector of weights so that the corresponding CP (?, k) is solved by this

Pareto point. Therefore, the weighted Tchebycheff approach is applied, in this paper,

to solve a multi-objective path optimization problem, which guarantees that a set of

efficient solutions can be generated.

It should be noted that the solutions obtained by solving (6) are weakly Pareto-

optimal (i.e., weakly non-dominated) when F0 ¼ FU . The proof is as follows:

Proposition A feasible solution x̂ 2 X is weakly non-dominated , there exists a
weight vector k[ 0 such that x̂ is an optimal solution of the problem (6)

Proof ‘‘(’’ Suppose x̂ is an optimal solution of the problem (6) and x̂ is not

weakly non-dominated. Then, for a strictly positive weight vector k[ 0, there is

some x0 2 X, such that 0\kkðfkðx0Þ � f U
k Þ\kkðfkðx̂Þ � f U

k Þ. Divided by kk, we get

fkðx0Þ � f U
k \fkðx̂Þ � f U

k for all k = 1,…, m, which contradicts the optimality of x̂.

‘‘)’’ The necessity property can be proved by defining appropriate weights. Let

kk = 1/(fk(x̂) - f U
k ), k = 1,…, m. Since (f U

1 ; . . .; f U
m ) is the utopian point, kk is

strictly positive for all k = 1,…, m. Suppose x̂ is not optimal for (6) with these

weights. Then, there is a feasible x0 2 X such that

max
k¼1;...;m

kk fkðx0Þ � f U
k

� �

¼ max
k¼1;...;m

1

fkðx̂Þ � f U
k

f kðx0Þ � f U
k

� �

\ max
k¼1;...;m

1

fkðx̂Þ � f U
k

f kðx̂Þ � f U
k

� �
¼ 1

and therefore

kkðfkðx0Þ � f U
k Þ\1 forall k ¼ 1; . . .;m:

Divided by kk we get fkðx0Þ � f U
k \fkðx̂Þ � f U

k for all k = 1,…, m and thus

f(x0) \ f(x̂), contradicting the fact that x̂ is weakly non-dominated. h

In summary, any Pareto-optimal solution can satisfy the min–max formulation

(6) for a given positive vector k. On the other hand, by solving (6), a weakly non-

dominated solution can be obtained. Furthermore, if this optimal solution is unique,

it is then Pareto-optimal.

A geometrical interpretation shows that in two-dimensional space, the isolines of

the function maxðk1f
0
1; k2f

0
2Þ ¼ C form a square wedge and that the inner part of the

wedge corresponds to the set of solutions dominating the summit of the square angle

(Fig. 1). The shape of the isolines is ideally suited for the exploration of both the

‘‘convex’’ and ‘‘concave’’ parts of the Pareto front, while ensuring the Pareto-

optimality of the points encountered. Hence, an approximation of the Pareto front

can be obtained by solving several instances of the min–max problem

min max
k¼1;...;m

kkðfkðxÞ � f 0
k Þ

� �
; kk [ 0;

where (f 0
1 ; . . .; f 0

m) defines the search origin, and the reciprocal of the weight’s vector

(1/k1, 1/k2, …, 1/km) designates the search direction. Figuratively, solving an
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instance of this problem is equivalent to exploring the Pareto front along the specific

line joining the reference point and the nadir point (i.e., the anti-ideal point, which is

defined in such a way that it is composed of the worst values obtained for each

objective) of the current exploration region. This approach can be considered as an

application of the theory of achievement scalarizing function developed by Wie-

rzbicki (1982).

3.3 Approximating the Pareto front

A significant problem in the design of our method is how to alter the weight

vector k, so that a good approximation of the Pareto front can be efficiently

generated with an acceptable amount of the solutions. Studies have shown that an

approximation of the Pareto front without prior knowledge of the actual one can

be achieved by means of heuristic methods. In order to improve the efficiency, an

adequate heuristics should seek a balance between the amount of information

provided and the computational time required to obtain it. Therefore, an ideal

algorithm should effectively combine the exploration of the largest unexplored

regions of the objective space and the exploitation of the previously encountered

solutions (Hughes 2003). In our method, once a Pareto-optimal is obtained, the

search space will be partitioned into smaller pieces, and the regions that are either

dominated by the known optimal solutions or without optimal solutions will be

discarded. The origin and direction of search are then adjusted based on the

largest unexplored space that may contain efficient solutions. The notion of

volume is simply used to compare unexplored regions. A list of unexplored

regions is carefully maintained in implementing the method. In this list, every

unexplored region is described by its utopian point and nadir point, its estimated

volume, and the known solutions lying on its boundaries. The utopian point and

the nadir point of an unexplored region are defined as the lowest point and the

O 

U 

U’’ 

U’ 

isolines of Cf,fmax =)( '
22

'
11 λλ

objective f1

objective f2

Pareto-optimal solution 

dominated solution 

Fig. 1 Isolines of formulation (6) used to derive both the convex and concave parts of Pareto front
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furthest summit of the region, respectively. Each time when a new efficient

solution is found, the list will be subsequently updated. The proposed procedure

works as follows:

Step 1: For each objective k, search for the optimal solution fk, and thus define the

utopian point U = (f U
1 ; f

U
2 ; . . .; f U

m ) and the nadir point V = (f V
1 ; f

V
2 ; . . .; f V

m ).

Based on U, V, and the optimal solutions obtained for each individual objective,

the region to be explored can be identified. Initialize the list of the unexplored

regions.

Step 2: Remove the largest unexplored region from the list and define the new

search origin and the new search direction k based on the attributes of U and V as

k = (k1, k2,…, km), where kk = 1/(f V
k � f U

k ), k = 1,…, m.

Step 3: Solve the min–max problem (6).

Step 4: If the solution found is already known, resume at Step 2; else a new

solution is found. Calculate the new unexplored regions lying between this new

solution and its neighbors according to their objective values, then update the list

of unexplored regions and resume at Step 2.

In Step 1, the utopian point U = (f U
1 ; f

U
2 ; . . .; f U

m ) is computed as a result of m
single-objective optimizations with each objective serving as a single-objective

function. Once the utopian point is determined, the information found is then used

to compute an estimate of the nadir point V = (f V
1 ; f

V
2 ; . . .; f V

m ). An approximation

of V is defined in such a way that for each criterion k, f V
k represents the worst value

obtained during the computation of the utopian point. Except for the first iteration,

the attributes of U and V in Step 2 need to be updated in each iteration according

to the known Pareto-optimal lying on the largest unexplored region. To solve the

min–max problem in Step 3, a tailor-made node-labeling algorithm is employed,

which modifies the classic Dijkstra’s algorithm (1959) by taking into account

multiple attributes in the cost calculation for each link. The cost of traversing link

is not the value of any single criterion but rather the largest element of the

weighted ‘‘distance’’ between the point being explored and the reference point

among all the objectives examined, that is, cij ¼ maxði;jÞ2A;k¼1;...;m kk fk � f 0
k

� �� �
.

The procedure of solving the min–max problem by means of the modified

Dijkstra’s algorithm is similar to that of the conventional Dijkstra’s working on

shortest path problems. The recursive steps of the algorithm can be described as

follows:

Find an arc (i, j) 2 A, so that the cost f(i) of traveling from the origin to node

i increased with the cost cij of traveling along (i, j) is less than the present cost

of traveling from origin to node j: f(i) ? cij \ f(j). If such an arc exists, then

node i becomes the predecessor of node j in the shortest path and the

procedure resumes, otherwise the present cost of traveling from the origin to

node j is the minimum cost.

The iterative search procedure terminates when a subset of Pareto-optimal solutions

of the desired size has been obtained or when the proportion of the remaining

unexplored subregions is sufficiently small.
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4 Case study

DG route planning can be considered as a multi-objective issue as it involves

various factors, such as the safety of the surrounding population and properties

along the road and the safety of travelers in the road network. At the same time, the

operation cost of transporting DG should not be overlooked. Hence, to design

appropriate routes for DG transportation that can make a rational compromise

between costs and risks is of significance to decision makers (Li and Leung 2011).

To test the applicability of the proposed method in DG routing analysis and to

examine the effectiveness of the methodology, we employ the proposed algorithm

to solve a real-life routing problem for transporting liquefied petroleum gas (LPG)

on the road network in Hong Kong. The algorithm is used to search Pareto-optimal

routes for transporting LPG from Tsing Yi LPG Terminal to the designated LPG

filling stations. To benefit from the data manipulation and visualization techniques

of GIS, the method is implemented in a GIS environment.

4.1 Formation of the objectives

Li and Leung (2011) proposed a set of criteria for route planning for LPG

transportation in Hong Kong road network with the consideration of cost, safety,

and exposure, including (1) travel time, (2) probability of an incident with release of

LPG, (3) road users at risk, (4) off-road population at risk, (5) people with special

needs at risk, and (6) possible negative impact on the economy. In the present study,

an extra criterion with reference to the emergency response capabilities has been

added. Given these criteria, up to seven different objectives aiming at the

minimization of the magnitude of the aforementioned attributes were included in the

routing analysis. These objectives were quantified using the framework suggested in

the US DOT guidelines for DG routing (FHWA 1994). GIS is used to facilitate the

quantification of objectives by creating buffer area for the identification of the

impact zone in the event of a DG incident. ArcGIS 9.3 is employed as the GIS

platform to support routing analysis. In ArcGIS, a buffer zone is created to simulate

the potential impact area. The potential impact zone for petrochemicals is typically

taken at 800 meters in all directions (FHWA 1994). Therefore, a buffer of 800 m

width is generated for each road segment. Various exposures, such as the off-road

population exposure, along a road segment are then calculated from the exact

number of buildings (residential and commercial) within the potential impact zone.

Through ArcGIS, the appropriate attributes are queried and the respective risk

values are calculated.

4.2 Results and interpretations

By applying the proposed algorithm, a set of routes rendering various trade-offs

between risk and cost have been generated. Of the numerous route alternatives,

twelve Pareto-optimal routes from Tsing Yi LPG terminal to Tai Po station are

selected for illustration purpose. These routes are presented in Fig. 2 to offer some

insight into the trade-offs between different solutions. Routes 1–7 are ‘‘extreme’’
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ones which individually minimize each of the seven objectives, while routes 8–12

are MOSP routing solutions. It is unsurprising to find that the first six ‘‘extreme’’

solutions are identical to those which are reported in Li and Leung (2011), as the

adaptive method employed in the present study is actually the special case of

Fig. 2 Efficient routes from Tsing Yi terminal to Tai Po LPG filling station (routes 1–7 are ‘‘extreme’’
solutions, routes 8–12 are MOSP solutions)
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compromise programming with the parameter p taking the value of infinity. With

respect to MOSP solutions, however, they are somewhat different from the results

of Li and Leung (2011) due to the nature of multi-objective optimization. Table 1

summarizes the attributes of the twelve routing alternatives. The rows correspond to

the optimal routes and the columns to the objectives. All the values in the table are

unit-free due to data normalization.

Fig. 2 continued
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Route 1 has the shortest travel time. However, the risks of special population

exposure and on-road exposure with this solution are quite high, resulting in the

maximum exposure risks among the 12 alternatives. Although route 2 minimizes the

accident probability, the large detour from Tsing Yi to Tai Po following the links

with low accident rate leads to the longest travel time. Route 3 has minimum off-

road exposure risk. Route 4 is the best in terms of the risk of exposure of

populations with special needs. However, it bears the highest accident probability,

more than 100 % greater than the minimum obtained by route 2. Route 5 minimizes

Table 1 Normalized objective function values of optimal solutions (1–7 are ‘‘extreme’’ solutions and 8–

12 are MOSP solutions)

Criterion-based

solution

Travel

time

Accident

probability

Off-road

exposure

risk

Population

with special

needs at risk

Damage

on

economy

Road

users

at risk

Emergency

response

capabilities

1. Min (travel

time)

3.70 2.97 0.75 1.80 1.09 6.55 2.66

2. Min (accident

probability)

7.12 2.74 0.86 1.48 0.66 5.56 2.42

3. Min (off-road

population

exposure)

4.03 3.08 0.42 1.46 0.60 4.58 2.72

4. Min

(population

with special

needs at risk)

6.29 5.62 0.67 0.80 0.67 3.73 3.41

5. Min (expected

damage on the

economy)

4.42 3.47 0.43 1.70 0.51 4.63 3.18

6. Min (road

users at risk)

5.26 4.80 1.02 1.67 1.35 3.19 3.87

7. Min (risk from

emergency

response)

3.92 3.07 0.54 1.46 0.70 5.52 2.19

8. Focusing on

societal risk

5.43 4.85 0.70 1.20 0.96 3.28 3.29

9. Focusing on

both travel

time and

societal risk

5.07 4.56 0.89 1.47 1.04 3.36 3.52

10. Considering

all criteria

impartially

3.92 2.99 0.49 1.49 0.67 4.43 2.51

11. Considering

all criteria

impartially

5.19 4.73 0.91 1.59 1.15 3.33 3.87

12. Considering

all criteria

impartially

3.74 2.84 0.48 1.32 0.66 5.14 2.45

All the values in the table are unit-free due to data normalization
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the expected damage to the economy in the event of an accident. Route 6 minimizes

the on-road exposure risk by following secondary roads with lighter traffic, at the

cost of the highest risk of off-road exposure. Moreover, should a DG accident occur,

the expected damage on the economy of this solution will be more than doubled

compared to the minimum obtained by solution 5. Route 7 is the most desirable

from the perspective of emergency response capabilities.

Routes 8–12 are a subset of ‘‘compromise’’ solutions containing comparatively

milder trade-offs than the ‘‘extreme’’ solutions among different objectives. Route 8

considers simultaneously the road users at risk, off-road population at risk, and

people with special needs at risk for the generation of optimal routes for DG

shipments. While effectively addressing the government’s major concerns in DG

route planning, this routing solution is not equally desirable from the perspective of

accident probability, which is over 70 % higher than the minimum obtained under

solution 2. Route 9 incorporates operating cost with public safety, which produces a

shorter travel time and a lower accident probability than route 8. On the other hand,

this solution causes deterioration ranging from 2 to 21 % over route 8 on the other

objectives. Routes 10–12 are obtained by taking all the criteria into consideration.

Like the other two MOSP solutions, these three routes involve various trade-offs

between different objectives, which, however, are not as significant as those

reflected in the ‘‘extreme’’ ones.

4.3 Assessing the theoretical validity of the algorithm

To assess the theoretical validity of the proposed algorithm, a couple of aspects of

the results have been examined. The first criterion is to estimate the goodness of the

approximation, which can be measured by the proportion of the objective space that

is covered by the approximate set of solutions. In practice, this notion is controlled

by the size of the unexplored regions remaining for exploration. In the calculation

process, it is observed that when the algorithm stops, the size of the unexplored

regions accounts for less than 20 % of the whole objective space. Another criterion

is to examine the efficiency of the method by estimating the dissimilarity of the

generated routes, which is of importance in routing DG shipments. A dissimilarity

index is calculated for every pair of routes selected. The dissimilarity of two routes

Ri and Rj is defined as the symmetrical function (Akgün et al. 2000):

DðRi;RjÞ ¼ 1� LðRi \ RjÞ
2LðRiÞ

þ LðRi \ RjÞ
2LðRjÞ

� �

;

where Ri \ Rj denotes the portion of shared arcs by the route pair Ri and Rj, and L(�)
denotes the length of quantity, �, in brackets. The results are displayed in Table 2. It

shows that there are very few instances of high similarities between the generated

routes. Most of them are quite dissimilar with each other. In particular, more than

10 % of resultant routes present extremely high dissimilarity, with the dissimilarity

index higher than 90 %. Among the presented twelve routes, the minimum and

maximum dissimilarities are 8.4 and 99.4 %, respectively, while the average is

65.8 % with a standard deviation of 31.5 %.
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To further check the effectiveness of the proposed methodology, the same

routing problem was also analyzed using the compromise programming-based (CP)

approach outlined in Li and Leung (2011). It is found that solutions obtained by the

suggested method are, at times, very close to the routes generated by CP with a

certain weights assignment. For example, given the criteria of travel time, accident

probability, off-road exposure risk, people with special needs at risk, expected

damage on the economy, on-road exposure risk, and emergency response

capabilities, under the weight structure of (0.06, 0.11, 0.21, 0.20, 0.10, 0.22,

0.10) which places a higher importance on population exposure risks, the route

produced by the CP method exhibits high similarity with Route 8 shown in Fig. 2,

while for another weight assignment (0.22, 0.01, 0.25, 0.25, 0.01, 0.25, 0.01), which

emphasizes both operating cost and public safety, the resulting route of CP closely

resembles Route 10. CP is often used to directly generate the user-optimal solutions.

The high similarity in the solutions of CP and the suggested approach indicates that

the latter is capable of identifying a set of efficient solutions for decision making.

This will enable us to cover all bases in multi-objective path optimization.

5 Conclusion

This paper has presented a novel perspective on multi-objective path optimization

problem aiming at the search for a subset of efficient paths for the determination of

an optimal solution. To avoid the pitfalls of preference-based techniques and the

burden of generating a complete set of possible solutions, the proposed method

adopts a weighted min–max formulation and the notion of adaptive optimization,

and focuses at each time the search for optimal solutions on a particular region of

Table 2 Dissimilarity value of every pair of routes (the lower-left part of the matrix is identical to the

transpose of the upper-right corner)

Route Dissimilarity with route (%) Mean (%)

1 2 3 4 5 6 7 8 9 10 11 12

1 0.0 99.1 36.2 98.9 45.9 87.4 30.6 87.7 87.3 32.8 89.5 18.9 64.95

2 0.0 98.3 73.2 99.0 88.9 99.4 89.3 88.8 98.9 88.9 98.9 92.97

3 0.0 98.0 18.4 86.9 35.6 87.3 86.8 29.0 88.9 29.8 63.20

4 0.0 98.8 43.0 99.3 32.7 42.3 98.8 42.7 98.7 75.14

5 0.0 82.2 39.5 82.6 81.9 30.6 84.0 29.2 62.92

6 0.0 87.7 21.9 11.5 85.5 8.4 83.0 62.40

7 0.0 85.8 85.3 20.3 82.8 13.7 61.83

8 0.0 20.3 85.8 22.6 83.4 63.58

9 0.0 85.3 11.4 82.8 62.16

10 0.0 80.6 14.2 60.16

11 0.0 85.1 62.26

12 0.0 57.99
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the Pareto front. By adaptively altering the weights according to the largest

unexplored feasible region and solving the corresponding min–max problem

through tailor-made labeling algorithm, a set of relatively well-distributed Pareto-

optimal solutions can be obtained. These solutions provide decision makers with an

unbiased overview of the possible trade-offs among different objectives. An

application in LPG route planning in Hong Kong illustrates the adaptation of the

proposed framework in a GIS environment. The final results justify the effectiveness

of the suggested approach.

A main challenge in implementing a multi-objective optimization problem is the

accommodation of more objectives. This paper has hammered out a method for this

curse-of-dimensionality issue through the calculation of all unexplored region

volumes. However, further efforts need to be made to improve the computational

efficiency. In addition, the node-labeling algorithm employed also needs to be

refined in order to more effectively handle nonlinear objective functions and,

possibly, the constraints in real-time operations.
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