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� In this article, we extend the definition of �-active constraints for linear semi-infinite
programming to a definition applicable to convex semi-infinite programming, by two approaches.
The first approach entails the use of the subdifferentials of the convex constraints at a point,
while the second approach is based on the linearization of the convex inequality system by means
of the convex conjugates of the defining functions. By both these methods, we manage to extend
the results on �-active constraints from the linear case to the convex case.
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1. INTRODUCTION

Since its appearance in the 1960s, semi-infinite programming (SIP) has
grown to become an independent research branch. The first case of SIP
studied was linear semi-infinite programming, which gained the interest
of scientists of diverse backgrounds due to its theoretic beauty and wide
variety of applications in probability, statistics, control, and assignment
games (see [2, 15, 17, 18]). One of the best known applications of semi-
infinite programming, Chebyshev approximation, has been the starting
point of many important results such as those presented in [6, 8, 11] to
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name a few. Other applications of linear semi-infinite programming in the
areas of risk theory, urban planning and environmental policymaking are
mentioned in [7].

In this article, we focus on convex semi-infinite programming, where
problems are of the form

Inf h(x) (1)

s�t � ft(x) ≤ 0, t ∈ T ,

where h and ft are finite valued convex functions defined on �n , for all
t ∈ T , T is an arbitrary set of indices. F and F opt denote the feasible and
solution set, respectively, of ( 1), considering F �= ∅ if necessary. T (x̄) :=
�t ∈ T | ft(x̄) = 0� is the set of active indices at x̄ . f ∗(u) := supx∈�n �u ′x −
f (x)� represents the convex conjugate of the function f . It is evident that
linear semi-infinite programming (LSIP) is a particular case of (1) when
h and ft are affine functions for all t ∈ T . In [3], under the assumption
that ft(x) : X −→ � ∪ �+∞� be a proper lower semi-continuous convex
function for all t ∈ T , where X is a locally convex Hausdorff topological
vector space, the constraint system ft(x) ≤ 0, t ∈ T , is linearized by means
of the convex conjugate function of ft for all t ∈ T , using the fact that
under this assumption f ∗∗

t = f . This linearization is then used in the
presentation of new generalized consistency and optimality theorems for
convex infinite programming (CIP) and convex semi-infinite programming
(CSIP) when dimX < ∞. The use of the convex conjugate function for the
linearization of a CSIP system of inequalities is also used in section 4 of this
article as an approach to extending the LSIP results presented in [20].

Because analytical solutions to CSIP problems are rare, researchers
have studied different numerical methods for an effective, polynomial
time algorithm that converges to an optimal or nearly optimal solution.
Among the methods used for the solving of CSIP problems are interior
methods, proximal interior methods, logarithmic barrier methods, cutting
plane methods, and affine scaling, as shown in [1, 5, 21, 22]. Some of
these numerical methods require many assumptions, as are the methods
presented in [1], where nine assumptions are required to assure the
convergence of the logarithmic barrier method, one of which is the Slater
condition, which is substituted by a weaker assumption for the second
numerical method presented. Two articles [21, 22] present a proximal
interior point method and relaxed cutting plane method, respectively.
Both present CSIP problems specific to an area of application, asset
pricing and the general capacity problem, respectively. In [5], a method
combining affine scaling and universal barrier functions is proposed and
compared to other algorithms such as the primal dual LP algorithm,
classical affine scaling, and the dual problem, using a universal barrier
function with favorable results in computational time.
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Sufficient and necessary optimality conditions under different
assumptions have also been studied for CSIP. Dinh et al. [4] present
optimality conditions for CIP, assuming Farkas–Minkowski and that
the condition epi h∗ + clK is weak∗-closed (where K represents the
characteristic cone of F ) holds for the inequality system that defines the
feasible set. In [13], the authors present a sufficient optimality condition
for CSIP by means of Lagrange multipliers and the concept of immobile
indices, under the assumption that the immobility order of the inequality
system that defines the feasible set is finite. The authors compare this
new optimality condition to a sufficient optimality criterion based on the
dual equivalent of the problem and necessary and sufficient optimality
conditions, under the assumptions that the functions ft possess the
uniform mean value property for all t ∈ T . In [14], a comparison is made
among the different assumptions that can be made of the inequality system
of a CSIP and the consequences they have on optimality conditions of
the CSIP problem and the linearization and consistency of the inequality
system. Among the assumptions that can be made on an inequality system
are the Abadie and basic constraint qualifications, Pshenichnyi-Levin-
Valadier and weak Pshenichnyi-Levin-Valadier properties, and Slater and
Strong–Slater conditions, all of which are studied and compared in their
CSIP generalizations in [14]. Hassouni and Oettli [12] present the convex
generalization of the regularity condition presented in [11] as part of
the necessary hypotheses for the Karush-Kuhn-Tucker conditions to be
necessary and sufficient for optimality in an LSIP problem.

Following the approach taken in classical optimization problems
(defined in �n and with a finite number of constraints), researchers have
studied the relationship between the active constraints of a point x ∈ bd F
and the feasible and solution sets, F and F opt , respectively, in semi-infinite
programming. However, in semi-infinite programming the fact that a point
x̄ is on the boundary of the feasible set F does not assure the existence of
an active constraint, that is, supt∈T ft(x̄) = 0 and ft(x̄) < 0 for all t ∈ T . To
illustrate this, we present the following example.

Example 1. Let t ∈ �

ft(x1, x2) :=
{

−(tx1 + x2), ifx1 ≤ 0
−( x1t + x2), ifx1 > 0�

The functions ft are convex, and the solution set F of the system

� := �ft(x1, x2) ≤ 0,∀t ∈ ��

is

F := �(x1, x2) ∈ �2 | x1 ≥ 0, x2 ≥ 0��
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It is important to note that the points of bd F \�0� have no active constraint
in the conventional sense, despite the fact that they are in bd F .

Due to this drawback, two new approaches have been proposed [9, 10]
for the linear semi-infinite programming case. In this article, we extend
the following definition of �-active constraints presented in [9, 10] for
the linear semi-infinite programming case to the convex semi-infinite
programming case.

Definition 2. Let x̄ ∈ �n and � > 0. We define

W (x̄ , �) := �at | a ′
t y = bt for some t ∈ T and y ∈ x̄ + �Bn� , (2)

where at ∈ �n and bt ∈ � describe the inequality constraints of the (LSIP)
problem

inf c ′x (3)

s�t � � := �a ′
t x ≤ bt , t ∈ T �

and Bn denotes the open unit ball in �n .

Our first approach to extend Definition 2 to the CSIP case is by means
of the following definition:

Definition 3. Let x̄ ∈ �n and � > 0. We define the set of
(subdifferentially) �-active indices at x̄ as

T (x̄ , �) := �t ∈ T | ft(y) = 0 for some y ∈ x̄ + �Bn� (4)

and the corresponding set of �-active constraints as

W�(x̄ , �) := �g ∈ �n | g ∈ �ft(y) for some y ∈ x̄ + �Bn and t ∈ T (y)�, (5)

where

�f (x0) := �u ∈ �n | f (x) ≥ f (x0) + u ′(x − x0)�

is the subdifferential of a function f at x0.

Using the linearization of the convex inequality system of (1) as
presented in [3], we formulate the following definition as our second
approach to extending the results of [10] to CSIP.
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Definition 4. Let x̄ ∈ �n and � > 0. We define the set of (linearization)
�-active indices of (1) as

TL(x̄ , �) := �t ∈ T | ∃y ∈ x̄ + �Bn , ∃u ∈ dom f ∗
t such that u ′y = f ∗

t (u)�, (6)

and the set of �-active constraints as

WL(x̄ , �) := �u ∈ �n |u ′y = f ∗
t (u) for some t ∈ T and y ∈ x̄ + �Bn�� (7)

Note that we use the subindex L to distinguish between the definition
of �-active indices based on the convex constraints given in (4) and the
definition based on the linearization of the convex constraints as presented
above.

The article is organized as follows. Section 2 contains known results
that are used in the proofs of later sections as well as the results from
[10] that we extend to the CSIP case. Sections 3 and 4 present the results
obtained by extending the definition of �-active constraints to the CSIP
case by Definitions 3 and 4, respectively.

2. PRELIMINARIES

Throughout this article, we make use of the following notation: Cone S
denotes the convex cone generated by the set S , and K + and K − denote
the positive and negative polar cones of the cone K . D(F , x̄) := �d ∈
�n | ∃� > 0, such that x̄ + �d ∈ F � is the set of feasible directions of F
at x̄ . We denote by f ′(x̄ ; d) := lim�→0+ f (x̄+�d)−f (x̄)

�
the one-sided directional

derivative of f at x̄ in the direction d . In addition, we present the following
known results of convex analysis that will be used later on in section 3.

Proposition 5. Let f : �n −→ � be a convex function, F := �x ∈
�n | f (x) ≤ 0�, x̄ ∈ F and d ∈ �n be such that f ′(x̄ ; d) < 0; then d ∈ D(F , x̄).

Lemma 6. Let f : �n −→ � be a convex function, F := �x ∈ �n | f (x) ≤
0�, x̄ ∈ F and d ∈ �n. If x̄ is not a global minimum of f and f ′(x̄ ; d) ≤ 0, then
d ∈ clD(F , x̄).

Proof. If f ′(x̄ ; d) < 0, by Proposition 5 we get that d ∈ D(F , x̄). Now, let
f ′(x̄ ; d) = 0. Since x̄ is not a global minimum of f , we can find l ∈ �n

such that f ′(x̄ ; l) < 0. Since f ′(x̄ ; ·) is convex, for every � ∈]0, 1] we have
f ′(x̄ ; (1 − �)d + �l) < 0. Hence, by Proposition 5, (1 − �)d + �l ∈ D(F , x̄);
therefore d ∈ clD(F , x̄). �

The following proposition is the basis under which we formulate
Definition 4 of section 4.
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Proposition 7. Let f : �n −→ � be a proper lower semi-continuous convex
function. Then, given x ∈ �n, one has f (x) ≤ 0 if and only if u ′x ≤ f ∗(u) for
all u ∈ dom f ∗.

Proof. This equivalence comes directly from the fact that f = f ∗∗ for
proper lower semi-continuous convex functions. �

We also use other well-known results of convex analysis in section 3.
The details and proofs of these results are found in [16].

In this section, we use the definition of �-active constraints in LSIP
along with some lemmas and propositions. The concepts and results that
are presented in this section come from [10] for LSIP problems that gave
a feasible set F defined by a linear inequality system � := �a ′

t x ≤ bt , t ∈ T �.
Obviously, �at | t ∈ T (x̄)� ⊂ W (x̄ , �). Moreover, if x̄ ∈ int F there exists

�0 > 0 sufficiently small such that W (x̄ , �)\�0n� = ∅ for all � such that 0 <

� < �0. Next, we enunciate without proofs the propositions and lemmas
presented in [10].

The following lemma provides basic characteristics of Definition 3.

Lemma 8. Given x̄ ∈ bd F , the following statements hold:

(i) W (x̄ , �) contains at least a nonzero vector for all � > 0.
(ii) If T (x̄) = ∅, then W (x̄ , �) is an infinite set for all � > 0.
(iii) If T is finite, then W (x̄ , �) = �at | t ∈ T (x̄)� for sufficiently small � > 0.

The following lemmas show that the �-active constraints at x̄ ∈ F allow
us to check the feasibility of points in the open ball x̄ + �Bn and of given
directions at x̄ .

Lemma 9. Let x̄ ∈ F and y ∈ x̄ + �Bn , � > 0. Then y ∈ F if and only if a ′
t y ≤

bt for all at ∈ W (x̄ , �).

Lemma 10. Given x̄ ∈ F and d ∈ �n, the following statements hold:

(i) If for a certain � > 0 we have a ′
t d ≤ 0 for all at ∈ W (x̄ , �), then d ∈ D(F , x̄).

Hence, D(F , x̄)− ⊂ cl coneW (x̄ , �) for all � > 0.
(ii) If d ∈ D(F , x̄) and T is finite, then there exists some �0 > 0 such that a ′

t d ≤
0 for all at ∈ W (x̄ , �) and all positive � < �0. In such a case, D(F , x̄)− =
coneW (x̄ , �).

The following proposition provides necessary conditions for optimality
and for certain characteristics of the feasible set.
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Proposition 11. Given x̄ ∈ F and � > 0, the following statements hold:

(i) If F = �x̄�, then 0n ∈ int coneW (x̄ , �).
(ii) If x̄ ∈ F opt , then −c ∈ cl coneW (x̄ , �).
(iii) If x̄ ∈ extr F , then dim coneW (x̄ , �) = n.

These definitions and results have been studied only in the LSIP case;
in the following sections, they will be extended to the CSIP case with proofs
that will hold for both the CSIP and the LSIP cases.

3. �-ACTIVE CONSTRAINTS IN CSIP VIA THE
SUBDIFFERENTIAL

As seen in the previous section, the concept of �-active constraints
in LSIP is useful in determining characteristics of a given point x̄ ∈ �n

with respect to the feasible set. Unfortunately, the definition of �-active
constraints used in [9] is not valid in the general context of CSIP since the
inequalities are not of the form a

′
t x ≤ bt . In order to extend this definition

to the convex case, we make use of the subdifferential, a very important
tool in convex analysis, in the formulation of Definition 3.

Remark 12. It is easy to see the equivalence between problems of the
form 1 and 3 when ft and h are affine functions for all t ∈ T , by simply
converting the system of linear constraints �1 := �a ′

t x ≤ bt , t ∈ T � to the
form �1 = �ft(x) := a ′

t x − bt ≤ 0, t ∈ T �. Definition 3 can be applied, and
the set W�(x̄ , �) coincides with 2.

3.1. 0n as a �-Active Constraint

An important characteristic of the definitions of �-active constraints
is the set of consequences that come from 0n being a �-active constraint
for some x ∈ �n and � > 0. In LSIP, the fact that 0n ∈ W (x , �) for some
x ∈ �n and � > 0 implies that (3) contains a trivial inequality; however, in
CSIP this condition can be used as an indicator that there exist immobile
indices, which may lead to the use of the optimality conditions presented
in [13].

Proposition 13 proves that 0n ∈ W�(x̄ , �) for some x̄ ∈ �n and � >
0 is a sufficient condition for the existence of immobile indices. We
also comment on the relationship that this condition has with the Slater
condition.

Proposition 13. If 0n ∈ W�(x̄ , �) for some x̄ ∈ �n and � > 0, then there exists
s ∈ T such that s ∈ T (x) for all x ∈ F .



�-Active Constraints 1085

Proof. For all x ∈ F and t ∈ T , we have ft(x) ≤ 0. On the other hand, if
0n ∈ W�(x̄ , �) for some x̄ ∈ �n and � > 0, then there exist y ∈ x̄ + �Bn and
s ∈ T such that fs(y) = 0 and 0n ∈ �fs(y). Since fs is convex, then fs(y) ≤
fs(z) for all z ∈ �n , in particular for all x ∈ F . So we have that 0 = fs(y) ≤
fs(x) ≤ 0 = fs(y) for all x ∈ F . Hence, for all x ∈ F , fs(x) = 0, which implies
that s ∈ T (x). �

From the previous proposition one can easily deduce that if 0n ∈
W�(x̄ , �) for some x̄ ∈ �n and � > 0 then the inequality system � does not
satisfy the Slater condition. We, thus, have

Corollary 14. If � satisfies the Slater condition then 0n �W�(x , �) for all x ∈
�n and � > 0.

Proof. This is an immediate consequence of Proposition 13, since the
existence of s ∈ T such that s ∈ T (x) for all x ∈ F is incompatible with the
Slater condition. �

The following example, where the Slater condition is not satisfied and
0n �W�(x , �) for all x ∈ �n and � > 0, shows that the converse of Corollary
14 does not hold.

Example 15. Let � be the system �−x1 ≤ 0,−x2 ≤ 0, x1 + x2 ≤ 0� in �2.
One can easily see that its solution set is

F = �(0, 0)�,

and, therefore, the Slater condition fails. However, we also note that for all
x ∈ �n and � > 0, one has 0n �W�(x , �).

With this counterexample we have seen that the failure of the Slater
condition is not sufficient for 0n ∈ W�(x̄ , �) for some x̄ ∈ �n and � > 0.

3.2. �-Active Indices

The following lemma provides information about the set of �-active
indices T (x̄ , �) with respect to a point x̄ ∈ bd F and is the generalization
of Lemma 8 to the CSIP case.

Lemma 16. Given x̄ ∈ bd F , the following statements hold:

i) T (x̄ , �) �= ∅ for all � > 0.
ii) If T (x̄) = ∅ then T (x̄ , �) is an infinite set for all � > 0.
iii) If T is finite then T (x̄ , �) = T (x̄) for sufficiently small � > 0.
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Proof. i) Given an arbitrary z ∈ (x̄ + �Bn)\F , there exists s ∈ T such
that fs(z) > 0. Since fs(x̄) ≤ 0, then there exists y ∈ [x̄ , z[⊂ x̄ + �Bn such
that fs(y) = 0. Then T (x̄ , �) �= ∅.

ii) Given � > 0, assume that T (x̄ , �) is a finite set. Since T (x̄) = ∅,
then fti (x̄) < 0 for all i = 1, � � � ,m. For each i = 1, � � � ,m there exist �i ∈
]0, �] such that fti (x) < 0 for all x ∈ x̄ + �iBn . Let

�0 := min��i | i = 1, � � � ,m�;

then, for all x ∈ x̄ + �0Bn and i = 1, � � � ,m, we have fti (x) < 0.
On the other hand, for all t ∈ T \�t1, t2, � � � , tm� and x ∈ x̄ + �0Bn , we

have ft(x) ≤ 0. To prove this last assertion, suppose there exist x̂ ∈ x̄ +
�0Bn and t̂ ∈ T \�t1, t2, � � � , tm� such that ft̂(x̂) > 0. Then there exists x̃ ∈
]x̂ , x̄[⊂ x̄ + �Bn such that ft̂ (̃x) = 0. Then t̂ ∈ �t1, t2, � � � , tm�, which is a
contradiction.

Therefore, for all x ∈ x̄ + �iBn we have ft(x) ≤ 0 for all t ∈ T , which
implies that x̄ �bd F , but this is a contradiction.

iii) If T is finite then T (x̄ , �) is finite and, hence, by (ii), T (x̄) �= ∅.
This leads to two possible cases.

(Case 1) If T (x̄) = T , then T (x̄ , �) = T = T (x̄) for all � > 0.

(Case 2) If T (x̄) �= T , let T (x̄ , �)\T (x̄) = �t1, t2, � � � , tm�. Then, for all
ti ∈ T (x̄ , �)\T (x̄), there exist �i ∈]0, �] such that, for all x ∈ x̄ + �iBn , one
has fti (x) < 0. Let

�0 := min��i | i = 1, � � � ,m�;

then, for all x ∈ x̄ + �0Bn and t ∈ T (x̄ , �)\T (x̄), we have ft(x) < 0.
Therefore, T (x̄ , �0) = T (x̄). �

3.3. �-Active Constraints and the Feasible Set

Lemma 17. Let x̄ ∈ F , � > 0 and y ∈ x̄ + �Bn. Then y ∈ F if and only if
ft(y) ≤ 0 for all t ∈ T (x̄ , �).

Proof. Suppose y ∈ F , then ft(y) ≤ 0 for all t ∈ T , in particular for all t ∈
T (x̄ , �). To prove the converse statement suppose y � F ; then there exists
s ∈ T such that fs(y) > 0. Since fs(x̄) ≤ 0, then there exists z ∈ [x̄ , y[ such
that fs(z) = 0. Therefore s ∈ T (x̄ , �), which yields a contradiction. �

Next we formulate and prove the extension of Lemma 9.
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Lemma 18. Let x̄ ∈ F , d ∈ �n and � > 0. If f ′
t (x̄ ; d) < 0 for all t ∈ T (x̄ , �),

then d ∈ D(F , x̄).

Proof. Suppose d �D(F , x̄), ‖d‖ ≤ 1 and take � ∈]0, �[ such that there
exists s ∈ T with fs(x̄ + �d) > 0. Since fs is continuous, then there exists
y ∈]x̄ + �d , x̄] such that fs(y) = 0 and fs(x) > 0 for all x ∈]y, x̄ + �d]. Since
s ∈ T (x̄ , �), we have f ′

s (x̄ ; d) < 0. Therefore, we have through Proposition
5 that d ∈ D(Fs , y), where Fs = �x ∈ �n | fs(x) ≤ 0�, which is a contradiction
since fs(x) > 0 for all x ∈]y, x̄ + �d]. Hence, d ∈ D(F , x̄). �

The next two results complement Proposition 5 and Lemma 18.

Theorem 19. Let x̄ ∈ F , d ∈ �n and � > 0 and assume that the Slater
condition is fulfilled. If f ′

t (y; d) ≤ 0 for all y ∈ x̄ + �Bn and t ∈ T (y), then d ∈
D(F , x̄).

Proof. Suppose that d �D(F , x̄) and let x̂ be a Slater point. Without loss
of generality, we will assume that ‖d‖ < 1. Since x̄ + �d � F , there exists
t ∈ T such that ft(x̄ + �d) > 0. Given that ft(x̄) ≤ 0, by continuity we have
ft(y) = 0 for some y ∈ [x̄ , x̄ + �d[⊂ x̄ + �Bn , hence, there exists 	 ≥ 0 such
that y = x̄ + 	d . Since t ∈ T (y), we have f ′

t (y; d) ≤ 0. Assume that x̂ − x̄ =
�d for some � ∈ �. As d �D(F , x̄), we have � ≤ 0. Notice that 	 − � > 0,
since otherwise we would have 	 = 0 and � = 0, that is, y = x̄ = x̂ , which
is impossible because ft(y) = 0 > ft(x̂). We thus have f ′

t (y;−d) ≤ ft (x̂)−ft (y)
	−�

=
ft (x̂)
	−�

< 0, but this is impossible because, as ft is convex, one has f ′
t (y;−d) ≥

−f ′
t (y; d) ≥ 0. Therefore, x̂ − x̄ and d must be linearly independent. By

continuity, there exists � ∈]0, 1] such that, for z := (1 − �)(x̄ + �d) + �x̂ ,
one has z ∈ x̄ + �Bn and ft(z) > 0. By convexity, we also have ft((1 − �)x̄ +
�x̂) ≤ (1 − �)ft(x̄) + �ft(x̂) < 0. Hence, again by continuity, there exists

 ∈]0, 1[ such that, for y := (1 − 
)((1 − �)x̄ + �x̂) + 
z = (1 − �)x̄ + �x̂ +

(1 − �)�d , one has ft(y) = 0; moreover, without loss of generality we
assume that � is small enough so as to have (1 − �)x̄ + �x̂ ∈ x̄ + �Bn . This
implies that y ∈ x̄ + �Bn and, therefore, by our assumption, f ′

t (y; d) ≤ 0. On
the other hand, we have f ′

t (y; x̄ − y) ≤ ft(x̄) − ft(y) = ft(x̄) ≤ 0 and f ′
t (y; x̂ −

y) ≤ ft(x̂) − ft(y) = ft(x̂) < 0, but this is impossible because, as ft is convex,
one has f ′

t (y; x̂ − y) ≥ −f ′
t (y; y − x̂) = −f ′

t (y; (
1
�
− 1)(x̄ − y + 
�d)) ≥ −( 1

�
−

1)(f ′
t (y; x̄ − y) + 
�f ′

t (y; d)) ≥ 0. Thus we cannot have d �D(F , x̄). �

Corollary 20. Let x̄ ∈ bd F , � > 0 and d ∈ �n be such that u ′d ≤ 0 for all
u ∈ W�(x̄ , �), and assume that the Slater condition is fulfilled. Then d ∈ D(F , x̄).

Proof. Let y ∈ x̄ + �Bn and t ∈ T (y). Since f ′
t (y; d) = maxu∈�ft (y) u

′d ≤
maxu∈W�(x̄ ,�) u

′d ≤ 0, the conclusion immediately follows from Theorem 19.
�
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Corollary 21. Let x̄ ∈ bd F and � > 0, and assume that the Slater condition is
fulfilled. Then D(F , x̄)− ⊆ cl coneW�(x̄ , �).

Proof. This is an immediate consequence of Corollary 20, in view of the
definition of the negative polar of a convex cone K and the fact that
(K −)− = clK . �

The following example shows that the Slater condition is not a
superfluous assumption in the preceding results:

Example 22. Let � be the system �x2 ≤ 0� in �. It can be easily seen
that the solution set F reduces to �0� and that, for every � > 0, one has
W�(0, �) = �0�. Then cl coneW�(0, �) = �0�. However, D(F , 0) = �0� and
hence D(F , 0)− = �. Therefore the inclusion D(F , x̄)− ⊆ cl coneW�(x̄ , �)
fails in this example. It can also be easily seen that every d ∈ � satisfies the
assumptions of Theorem 19 and Corollary 20, even though D(F , 0) = �0�.

Corollary 23. Let x̄ ∈ bd F and � > 0, and assume that the Slater condition is
fulfilled. Then

(i) If F = �x̄�, then D(F , x̄)− = coneW�(x̄ , �) = �n.
(ii) If x̄ ∈ F opt , then (−�h(x̄)) ∩ D(F , x̄)− �= ∅ and, hence, (−�h(x̄)) ∩

cl coneW�(x̄ , �) �= ∅.

Proof. Assertion (i) is an immediate consequence of Cor. 21 and
the fact that D(F , x̄) = �0n�, that is, D(F , x̄)− = �n . To prove (ii),
let x̄ ∈ F opt . By Sion’s minimax theorem [19, Corollary 3.3], we have
maxg∈�h(x̄) infd∈D(F ,x̄) g ′d = infd∈D(F ,x̄) maxg∈�h(x̄) g ′d = infd∈D(F ,x̄) h ′(x̄ , d) ≥ 0.
Hence, there exists g ∈ �h(x̄) such that g ′d ≥ 0 for every d ∈ D(F , x̄),
that is, −g ∈ D(F , x̄)−. We thus have −g ∈ (−�h(x̄)) ∩ D(F , x̄)−, which
shows that this set is nonempty. By Cor. 21, it follows that the set
(−�h(x̄)) ∩ cl coneW�(x̄ , �) is nonempty, too. �

4. �-ACTIVE CONSTRAINTS IN CSIP VIA THE LINEARIZATION
OF THE INEQUALITY SYSTEM

In this section, we propose an alternative to the definition of �-active
constraints given in (5), which will allow us to extend to the convex setting
some useful results [20, Proposition 104] for linear problems.

Definition 4 is the application of the definition of �-active constraints in
the LSIP case to a linearization of the convex constraint system by means
of the conjugates f ∗

t of the functions ft that define the feasible set. From
Proposition 7, it will immediately follow that the convex system and its
linearization have the same solution set.
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Next we show the relationship that exists between �-active constraints
resulting from Definitions 3 and 4.

Proposition 24. Let x̄ ∈ bd F and � > 0. Then T (x̄ , �) ⊆ TL(x̄ , �).

Proof. Let t ∈ T (x̄ , �). Then there exists y ∈ x̄ + �Bn such that ft(y) = 0.
If y is a global minimum of ft , then 0′

ny = 0 = ft(y) = f ∗
t (0n); hence, t ∈

TL(x̄ , �). If y is not a global minimum of ft , then it is not a local maximum
either, so there exists x̂ ∈ x̄ + �Bn such that ft(x̂) > 0. Since ft(x̂) = f ∗∗

t (x̂) =
supu∈�n �u ′x̂ − f ∗

t (u)�, there exists û ∈ �n such that û ′x̂ > f ∗
t (û)� On the

other hand, û ′y ≤ ft(y) + f ∗
t (û) = f ∗

t (û); hence, by continuity of the scalar
product, there exists z ∈ [y, x̂[⊂ x̄ + �Bn such that û ′z = f ∗

t (û), which shows
that t ∈ TL(x̄ , �). �

The following proposition shows that the set W�(x̄ , �) is generally
smaller than the set WL(x̄ , �) considered in the preceding subsection.

Proposition 25. Let x̄ ∈ bd F and � > 0. Then

W�(x̄ , �) ⊆ WL(x̄ , �)� (8)

Proof. Suppose g ∈ W�(x̄ , �). Then there exists y ∈ x̄ + �Bn and s ∈ T (y)
such that g ∈ �fs(y). We, thus, have

g ′y = fs(y) + f ∗
s (g ) = f ∗

s (g )�

Therefore, g ∈ WL(x̄ , �). �

As shown by the following example, the reverse inclusion does not hold
in general, even if the Slater condition is fulfilled.

Example 26. Let � be the system � 1
2x

2
1 − x2 ≤ 0� in �2. Obviously, the

Slater condition is fulfilled. Straightforward calculations show that, for
every � > 0, one has

W� ((0, 0) , �) =
{
(x1,−1) : ∣∣x1∣∣ < √

2
(√

1 + �2 − 1
)}

and

WL ((0, 0) , �) =
{
(x1,−1) : ∣∣x1∣∣ < √

2�
(
� + √

1 + �2
)}

�
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One can easily prove that√
2

(√
1 + �2 − 1

)
<

√
2�

(
� + √

1 + �2
)
;

hence, in this example, WL((0, 0), �) � W�((0, 0), �). Even more, we have
cl coneWL((0, 0), �) � cl coneW�((0, 0), �), since

cl coneW�((0, 0) , �) =

(x1, x2) ∈ �2 : x2 ≤ − 1√
2

(√
1 + �2 − 1

) ∣∣x1∣∣


and

cl coneWL((0, 0) , �) =

(x1, x2) ∈ �2 : x2 ≤ − 1√
2�

(
� + √

1 + �2
) ∣∣x1∣∣

 �

4.1. 0n as a �-Active Constraint

Next we study the consequences of 0n ∈ WL(x̄ , �) for some x̄ ∈ �n and
� > 0. As in the case of the definition of the preceding subsection, we
can also relate 0n being a �-active constraint to the Slater condition. The
following proposition is a version of Proposition 13 for our new definition
of �-active constraints.

Proposition 27. If 0n ∈ WL(x̄ , �) for some x̄ ∈ �n and � > 0, then there exists
s ∈ T such that s ∈ T (x) for all x ∈ F .

Proof. If 0n ∈ WL(x̄ , �) for some x̄ ∈ �n and � > 0, then there exists y ∈
x̄ + �Bn and s ∈ T such that f ∗

s (0n) = 0, and hence

inf
x∈�n

fs(x) = −f ∗
s (0n) = 0�

Therefore, fs(x) = 0 for all x ∈ �n such that fs(x) ≤ 0, in particular for all
x ∈ F . �

Remark 28. It is a straightforward consequence of the previous
proposition that 0n ∈ WL(x̄ , �) for some x̄ ∈ �n and � > 0 is a sufficient
condition for the Slater condition to be violated; however, as it happens
with W�(x̄ , �), it is not a necessary condition. To show this, we reanalyze
Example 15.
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Example 29. Let � be the linear system �−x1 ≤ 0,−x2 ≤ 0, x1 + x2 ≤ 0� in
�2. Since

F = �(0, 0)�,

the Slater condition fails. To study this example in more detail, let
f1(x1, x2) := −x1, f2(x1, x2) := −x2 and f3(x1, x2) := x1 + x2. The conjugate
functions f ∗

i are as follows:

f ∗
1 (u1,u2) =

{
0 if (u1,u2) = (−1, 0)
+∞, otherwise

,

f ∗
2 (u1,u2) =

{
0 if (u1,u2) = (0,−1)
+∞, otherwise

,

f ∗
3 (u1,u2) =

{
0 if (u1,u2) = (1, 1)
+∞, otherwise

�

Note that 0n ∈ WL(x̄ , �) for some x̄ ∈ �n and � > 0 if and only if there
exists y ∈ x̄ + �Bn and s ∈ T such that f ∗

s (0n) = 0, and, as we can see, this
condition is not satisfied. Therefore 0n �WL(x , �) for all x ∈ �n and � > 0.

4.2. Properties of the �-Active Indices

Next we proceed to extend Lemma 8 to the linearized convex case.

Proposition 30. Given x̄ ∈ bd F , the following statements hold:

(i) TL(x̄ , �) �= ∅ for all � > 0.
(ii) If T (x̄) = ∅, then TL(x̄ , �) is infinite for all � > 0.
(iii) If T is finite, then TL(x̄ , �) = T (x̄) for sufficiently small � > 0.

Proof. Statements (i) and (ii) are immediate consequences of
Proposition 24 and Lemma 16. To prove (iii), suppose T is finite; then
TL(x̄ , �) is finite for all � > 0. Therefore, by (ii) we have that T (x̄) �= ∅,
which gives us two cases.

Case 1. If T (x̄) = T , then TL(x̄ , �) = T for all � > 0 by
Proposition 24.

Case 2. If T (x̄) �= T , assume that for some � we have
TL(x̄ , �)\T (x̄) = �t1, t2, � � � , tm�. By the continuity of ft for all t ∈ T , we have
that for each i = 1, � � � ,m there exists �i ∈]0, �] such that supu∈�n �u ′x −
f ∗
ti
(u)� = fti (x) < 0 for all x ∈ x̄ + �iBn . Let

�0 := min��i | i = 1, � � � ,m��
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Then, for all x ∈ x̄ + �0Bn and i = 1, � � � ,m, we have supu∈�n �u ′x −
f ∗
ti
(u)� = fti (x) < 0, which implies that for all u ∈ �n , i = 1, � � � ,m, and x ∈

x̄ + �0Bn , one has u ′x < f ∗
ti
(u). In other words, we have ti �TL(x̄ , �0) for all

i = 1, � � � ,m. Therefore TL(x̄ , �) ⊆ TL(x̄ , �0) ⊆ T (x̄) for all � ∈]0, �0], and
hence TL(x̄ , �) = T (x̄) by Proposition 24. �

4.3. �-Active Constraints and the Feasible Set

Proposition 31. Let x̄ ∈ bd F , � > 0 and y ∈ x̄ + �Bn. Then y ∈ F if and only
if u ′y ≤ f ∗

t (u) for all u ∈ WL(x̄ , �) and t ∈ TL(x̄ , �)

Proof. (Only if). Trivial.

(If). Suppose y � F ; then there exists s ∈ T such that fs(y) > 0. Since
supu∈dom f ∗

s
�u�y − f ∗

s (u)� = f ∗∗
s (y) = fs(y) > 0, there exists û ∈ �n such that

û ′y > f ∗
s (û). Hence, since û ′x̄ ≤ f ∗

s (û) (by Proposition 7 and x̄ ∈ F ), there
exists x̂ ∈ [x̄ , y[⊂ x̄ + �Bn such that û ′x̂ = f ∗

s (û). Therefore, û ∈ WL(x̄ , �)
and s ∈ TL(x̄ , �), which contradicts the hypothesis, thereby proving the “if”
statement. �

Proposition 32. Let x̄ ∈ bd F , � > 0 and d ∈ �n be such that u ′d ≤ 0 for all
u ∈ WL(x̄ , �). Then d ∈ D(F , x̄).

Proof. Without loss of generality, assume ||d || = 1. Let � ∈]0, �[. Since x̄ ∈
F , we have u ′(x̄ + �d) = u ′x̄ + �u ′d ≤ u ′x̄ ≤ f ∗

t (u) for all u ∈ WL(x̄ , �) and
t ∈ TL(x̄ , �), and by Lemma 9 we have that x̄ + �d ∈ F , i.e., d ∈ D(F , x̄). �

Corollary 33. Let x̄ ∈ bd F and � > 0. Then D(F , x̄)− ⊆ cl coneWL(x̄ , �).

Proof. This is an immediate consequence of Proposition 32, in view of
the definition of the negative polar of a convex cone K and the fact that
(K −)− = clK . �

Proposition 34. Given x̄ ∈ bd F and � > 0, the following statements hold:

(i) If F = �x̄�, then coneWL(x̄ , �) = �n.
(ii) If x̄ ∈ F opt , then �h(x̄) ∩ (−cl coneWL(x̄ , �)) �= ∅.
(iii) If x̄ ∈ extr F , then dim coneWL(x̄ , �) = n.

Proof. (i) Since F = �x̄�, we have D(F , x̄) = �0n�, which means that
D(F , x̄)− = �n . Therefore, by Corollary 33, we have cl coneWL(x̄ , �) = �n ,
which implies that coneWL(x̄ , �) = �n .
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(ii) Suppose x̄ ∈ F opt , then there exists ĥ ∈ �h(x̄) such that −ĥ ∈
NF (x̄). On the other hand, since F is a closed convex set, we have that

NF (x̄) = TF (x̄)− = (clD(F , x̄))− = D(F , x̄)−;

therefore −ĥ ∈ D(F , x̄)−. By Corollary 33, we have then that −ĥ ∈
cl coneWL(x̄ , �).

(iii) Assume dim coneWL(x̄ , �) < n. Take d ∈ [span[coneWL(x̄ , �)]]⊥
\�0n�. Then u ′d = 0 for all u ∈ WL(x̄ , �). Hence, by Proposition 32, ±d ∈
D(F , x̄). Therefore x̄ � extr F , which is a contradiction. �
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