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Abstract We provide Completely Positive and Copositive Optimization formulations
for the Constrained Fractional Quadratic Problem (CFQP) and Standard Fractional
Quadratic Problem (StFQP). Based on these formulations, Semidefinite Programming
relaxations are derived for finding good lower bounds to these fractional programs,
which can be used in a global optimization branch-and-bound approach. Applications
of the CFQP and StFQP, related with the correction of infeasible linear systems and
eigenvalue complementarity problems are also discussed.
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1 Introduction

Copositive optimization is an emerging field in optimization. The success of this topic
is due, not only to the elegance of the theory, but also to the good results obtained
in tighter semidefinite relaxations for hard combinatorial optimization problems. For
recent papers with a survey flavor see, e.g., [12,17,22], and for a clustered bibliography
[13].
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326 P. Amaral et al.

The lower bounds based on this technique can be favorably compared with bounds
obtained by other methods. For instance, a study with the standard quadratic prob-
lem reveals the dominance of copositivity based bounds over alternative techniques
[11]. Although copositive matrices have been studied for long in linear algebra [27],
direct applications in optimization are relatively recent. The idea of reformulating
some combinatorial optimization problems, such as the maximum clique problem, as
an optimization problem over the copositive cone was first proposed in [9]. This refor-
mulation does not, of course, drain out the difficulty of the problems. The hard compo-
nent of the optimization problems is cast into a feasibility condition with respect to the
copositive or completely positive cone, allowing for a remaining linear representation
of the problem. The major drawback has to do with algorithmic aspects. Verification
of copositivity or complete positivity is (co-)NP-hard [20,35]. While more results for
dealing with this problem are emerging, such as those of Bundfuss and Dür for adap-
tive approximations of the copositive cone [16], and copositivity detection [14,15],
the existent theory already enables and justifies copositivity-based approaches. Com-
putational results certify this statement.

In this paper, we consider the problem of minimizing a fractional problem involving
the ratio of two quadratic functions, over a polytope. The challenge in addressing this
problem arises from the nonconvexity of the objective function, while the motivation
lies on its many applications, such as the Constrained Total Least Squares Problem
(CTLSP). The unconstrained Total Least Squares Problem (TLSP) is concerned with
the Least Squares Problem (LSP) with the additional assumption of corruptness of the
data as well as the output. The CTLSP is a TLSP with additional constraints. There
are some important subclasses of the CTLSP, such as the Regularized Total Least
Squares Problem (RTLSP), where an additional quadratic constraint (Tikhonov reg-
ularization) is considered to ensure solution stability. The application of Tikhonov
regularization to the TLS problem was introduced by Golub et al. [24], where a
parameter-dependent direct algorithm for an augmented Lagrangian formulation was
proposed. Most of the efficient methods to solve this problem appeared in the last
ten years. Simma, Van Huffel and Golub [45] presented an iterative computational
approach based on the solution of a quadratic eigenvalue problem (QEP) in each iter-
ation. In [41] an approach also based on an eigenproblem for the RTLSP is solved
by an iterative inverse power method. Later the authors improved their work using
an alternative derivation of the eigenproblem that allowed the construction of more
efficient algorithmic approaches [42]. As pointed out by Beck, Ben-Tal and Teboulle
in [7], those methods are guaranteed only to converge to a point satisfying first order
necessary optimality conditions. In the paper, the authors presented a parameterized
ε—optimal method consisting of the solution of a sequence of convex minimization
problems.

There is a generalization of the TLSP that is related with the minimal correction of
inconsistent linear systems. In particular, when the minimal correction is defined by the
minimization of the Frobenius norm of the perturbations of the matrix of coefficients
and the independent term, then this problem can be formulated as a fractional quadratic
program (FQP) [2]. When only equalities exist, then the problem is equivalent to the
TLSP [23]. The introduction of inequalities in the linear system makes the problem
much harder [1]. A branch-and-bound approach was introduced for such a purpose
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Constrained fractional quadratic problems 327

in [2], which includes a Reformulation Linearization Technique (RLT) for finding
lower bounds.

Another interesting application of the FQP is the Eigenvalue Complementary
Problem (EiCP) with symmetric real matrices. Finding a complementary eigenvalue
reduces to finding a stationary point of the Rayleigh quotient on the simplex [40].
Hence, the computation of the largest complementary eigenvalue is equivalent to find-
ing a global minimum of a Standard Fractional Quadratic Program (StFQP). This
problem has several applications in engineering and physics, as for instance, in the
study of resonance frequency of structures and stability of dynamical systems [19].

Regarding other related contributions, Beck and Teboulle [8] suggested a convex
optimization approach for minimizing the ratio of indefinite quadratic functions over
an ellipsoid. A main result of the paper is that, under some conditions the problem can
be recast as a semidefinite optimization problem with no gap, whose optimal solution
can be used to extract the optimal solution of the original problem. This problem can
be seen as a generalization of the RTLSP, as the assumptions regarding the quadratic
forms in the objective function are mild, but in order to guarantee the existence of a
minimum, the matrix of the constraint set must be non-singular. However, in a general
RTLSP this matrix is not even necessarily square.

For the general quadratic fractional problem, Gotoh and Konno [25] were able
to globally solve small-scale problems using a method that combines the classical
Dinkelbach method and a branch-and-bound approach for the nonconvex quadratic
problem. Yamamoto and Konno [48] proposed an exact algorithm combining the
classical Dinkelbach approach and an integer optimization formulation for solving a
nonconvex quadratic optimization problem.

Quadratically constrained quadratic problems are equivalent to a particular subclass
of constrained fractional quadratic problems [39]. In fact, if B is a symmetric positive-
definite (pd) matrix then the problem

min

{
x�Cx
x� Bx

: Ax = o , x ∈ R
n+
}

is equivalent to

min
{

y�Cy : Ay = o , y� By = 1 , y ∈ R
n+
}
.

In this context it is appropriate to refer some of the recent work on quadratically con-
strained quadratic problems [5,6,33,39] as valid approaches for the FQP. However, it
seems that departure from homogeneity in the constraints Ax = o, that is, considering
Ax = a with a ∈ R

m\{o} instead, yields more complications, at least if m > 1.
Studying this latter type of problem is the main purpose of the present paper.

To the best of our knowledge, Preisig’s article [39] is the only reference where
copositivity is explicitly used for finding the global solution to the FQP. This paper
deals with the Standard FQP (StFQP, where the feasible set is the standard simplex)
and contains two algorithms; the first is a basic line search procedure which uses an
unspecified copositivity test as a subroutine, and seems to be not very effective even
for medium-scaled problems (n ≥ 20). This procedure requires basically only strict
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copositivity of B. To also cope with larger problem dimensions (n ≤ 200), Preisig
suggests in [39] an iterative procedure for which convergence to a KKT point of the
StFQP can be proved, provided that B is both positive-semidefinite (psd) and strictly
copositive. However, no information was provided on the quality of the solution found
by this algorithm, and thus even for StFQP this method cannot be considered complete
from a global optimization perspective.

1.1 Contributions of the paper

Following the ideas presented in [9] for finding a global minimum of a quadratic non-
convex program over the standard simplex, in this paper an exact completely positive
formulation for the CFQP is first introduced. The completely positive condition is
relaxed, and a convex semidefinite lower bounding problem is obtained. We prove
that dual attainability is impossible for this formulation, and we propose a second
dual formulation, based on a more general cone, for which this property is verified.
Applications of the CFQP and in particular of the StFQP on the correction of linear
systems and symmetric eigenvalue complementarity problem are discussed. Prelim-
inary computational experience with a set of randomly generated CFQPs is reported
which illustrates the quality of the lower-bounds as compared with those given by
a more traditional approach, such as BARON [43]. We also compare our approach
with the performance of GloptiPoly 3, a general-purpose SDP-based method to
optimize rational functions over a semi-algebraic set.

1.2 Outline of the paper

The paper is organized as follows. In Sect. 2 we introduce the Constrained Fractional
Quadratic Problem over a polytope, CFQP, along with some model properties and
assumptions.

An exact Completely Positive (CP) Optimization formulation for the CFQP, some
theoretical results regarding primal and dual attainability and a SDP relaxation based
on the CP formulation are discussed in Sect. 3.

Section 4 studies the Standard Quadratic Fractional Problem (StFQP), that is, a
CFQP whose constraint set is the unit simplex. The interest of this study is corroborated
by the description of two particular applications of the StFQP, namely the Eigenvalue
Complementary Problem (EiCP) and the Constrained Total Least Squares (CTLS).
Dimensionality reduction, dual attainability results and lower bounding problems are
also discussed in this section.

Computational experience showing the quality of the lower-bounds, of the SDP
relaxation of the conic formulation is reported in Sect. 5. Finally, Sect. 6 contains
some conclusions.

1.3 Notation, matrix cones and duality

Vectors are denoted by lowercase boldface letters (e.g., o is the zero vector) and matri-
ces by uppercase letters (e.g., O is the zero matrix, or In the n × n identity matrix, the
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Constrained fractional quadratic problems 329

columns of which are denoted by e1, . . . , en). N denotes the set of nonnegative inte-
gers, R

n denotes n-dimensional Euclidean space and R
n+ the positive orthant therein,

and the standard simplex is denoted by

� = conv (e1, . . . , en) =
{

x ∈ R
n+ : e�x = 1

}
(1)

with e = ∑
i ei = [1, . . . , 1]� ∈ R

n . The notation A � B is used for the condition
that A − B is psd, while A ≥ B means that A − B has no negative entries. The
transpose of A is A� and A • B = trace(AB) represents the Frobenius inner product
of two matrices A and B in

Mn =
{

A an n × n matrix : A� = A
}
.

With respect to this duality, the dual cone of the copositive matrices

Cn =
{

C ∈ Mn : x�Cx ≥ 0 for all x ∈ R
n+
}

is the cone of completely positive matrices

C∗
n =

{
D ∈ Mn : D = Y Y �,Y an n × k matrix with Y ≥ O

}
.

Let Pn ⊂ Mn be cone of symmetric psd n × n matrices and Nn ⊂ Mn be the
cone of nonnegative symmetric matrices. It is known that K0 = Pn + Nn provides a
approximation of the copositive cone Cn in the sense of K0 ⊆ Cn . Since Pn and Nn

are self-dual cones we have

C∗
n ⊆ K∗

0 = (Pn + Nn)
∗ = Pn ∩ Nn .

The latter matrix cone is also called the cone of doubly nonnegative matrices, and
sometimes denoted by Dn . Given a general closed, pointed convex cone K ⊆ M and
its dual cone

K∗ = {S ∈ M : S • Z ≥ 0 for all Z ∈ K}

the following programs form a pair of primal-dual conic optimization problems:

max
{
C • X : Ai • X = bi , 1 ≤ i ≤ m , X ∈ K∗} (2)

and

min

{
b�y : C −

m∑
i=1

yi Ai ∈ K
}
. (3)
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We will mostly deal with the cases K = Cn and K = D∗
n = Pn + Nn , but any choice

K = Kr
n for usual SDP- or LP-based approximation hierarchies (Kr

n)r∈N would do,
where Kr

n is in some sense close to Cn for large r ; see [10,21,26,37,38,49], who
all more or less follow the ideas first put forward in [32,36]. Recall that checking
membership of Kr

n in any such hierarchy usually involves psd matrices of order nr+1,
rendering these approximations computationally intractable for large r and n.

2 The constrained fractional quadratic problem

2.1 Problem formulation and model assumptions

In this section we consider the CFQP

ψ = min

{
f (x) = x�Cx + 2c�x + γ

p(x)
: x ∈ T

}
(4)

where

T = {
x ∈ R

n+ : Ax = a
}

and p(x) = x� Bx + 2b�x + β.

For simplicity of exposition, let us assume here that there are 0 < δ < η < +∞ such
that

p(x) ∈ [δ, η] for all x ∈ T . (5)

For an in-depth discussion of this and related conditions occurring, e.g., in [29], we
refer to the next subsection.

The Standard Quadratic Optimization Problem (StQP),

min
{

f (x) = x�Cx : x ∈ �
}

(6)

is a special case of the CFQP when p(x) ≡ 1 and the polytope T = � is the standard
simplex. This problem is known to be NP-hard and thus the same applies to the CFQP
(4).

For convenient notation, we introduce

A =
[

a�a −a� A
−A�a A� A

]
, B =

[
β b�
b B

]
, C =

[
γ c�
c C

]
. (7)

Using Schur complements, it is easy to see that condition (5) holds if βB − bb� is pd
and T is bounded, but (5) may hold in relevant cases even if βB − bb� is singular;
see Subsect. 4.3 below.

Note that A = [−a , A]�[−a , A] ∈ Pn+1 is psd but, typically, singular:

Ax = a ⇐⇒ Az = [−a , A]z = o ⇐⇒ z� Az = 0,
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where z = [1 , x�]� ∈ R
n+1. Hence we may rephrase (4) as

ψ = min

{
z�Cz

z� Bz
: z ∈ R

n+1+ , z1 = 1 , z� Az = 0

}
. (8)

Problems of this kind appear in context of repair of inconsistent linear (inequality)
systems, see Subsect. 4.3 below. In the sequel, we will always assume A �= O , which
implies trace(A) > 0.

The feasible set T is compact if and only if T �= ∅ and

ker A ∩ R
n+ = {o},

which amounts to require that Ay = o and y ∈ R
n+ together already imply y = o.

Further, we introduce the polyhedral cone generated by the constraints

	A =
{

z ∈ R
n+1+ : Az = o

}
. (9)

As usual, we say that B is strictly 	A -copositive if and only if z ∈ R
n+1+ \{o} and

Az = o imply z�Bz > 0.

Lemma 1 If T is compact, strict positivity of p over T is equivalent to strict 	A
-copositivity of B, and this implies condition (5).

Proof If z =
[ 1

x

]
then z� Bz = p(x) and z ∈ 	A implies that x ∈ T . Hence strict

	A -copositivity of B is sufficient for positivity of p over T . To see necessity, let

z =
[
ζ

v

]
∈ 	A with ζ > 0. Then x = 1

ζ
v ∈ T and z�Bz = ζ 2 p(x) > 0. However, if

ζ = 0, then v ∈ R
n+ must satisfy Av = o, by the construction of A. Hence v = o and

strict 	A -copositivity of B follows. ��
Compactness of T and strict positivity of p over this set implies that problem (4)

always has an optimal solution (primal attainability).
For further convenient reference, we repeat our overall model assumptions here:

T = {
x ∈ R

n+ : Ax = a
} �= ∅ ;

ker A ∩ R
n+ = {o}⇐⇒ Ay �= o if y ∈ R

n+\{o} ;
B is strictly 	A-copositive: z�Bz > 0 if Az = o , z ∈ R

n+\{o}.

⎫⎬
⎭ (10)

2.2 SDP approach for general rational optimization

In the paper [29], SDP-based methods for optimization of general rational polynomial
functions f (x) = n(x)

p(x) with polynomials n(x) and p(x) over feasible sets S are studied,
where either S = R

n (the unconstrained case) or else S is a semi-algebraic set which
is the (partial) closure of an open set.
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Here we are dealing with the constrained case min { f (x) : x ∈ T }, where n and
p are of degree two, but typically T has no interior points. So the assumptions on
T here and on S in [29] are incompatible. But there are further assumptions on the
problems which need discussion. Before proceeding to them, note that a closer look
at the arguments in [29] reveals that the above-mentioned assumption on S can be
replaced with the following assumption on S and p:

for any pair {x+, x−} ⊆ S , there is a path x(t) ∈ S
linking x+ and x− , i.e., x(0) = x− and x(1) = x+ ,
such that χ(t) = p(x(t)) is a polynomial in t.

⎫⎬
⎭ (11)

Obviously, this condition is satisfied if S is a convex set, a property our feasible set
T enjoys, and is also implied if existence of polynomial paths x(t) linking any two
points in S is guaranteed. A study of this latter condition falls into the field of real
algebraic geometry and therefore is beyond the scope of this paper. So let us proceed
to two further assumptions stated in [29]:

(a) the polynomials p and n have no common real polynomial factor which is non-
constant;

(b) the polynomials p and n have no common (real) root in S.

It is easily seen that (a) and (b) are not implied by each other, take, e.g., p(x) =
2x2

1 + x2
2 − 1 and n(x) = x2

1 + 2x2
2 − 1 with S the unit disc (or T some polytope

containing S), or else n(x) = p2(x) = (x2
1 + x2

2 )
2 and S = T = �.

Assumption (a) can also be easily enforced for the CFQP. Otherwise we would
arrive at the fractional linear case for which of course there is the LP reformulation,
going back to Charnes and Cooper (a referee kindly pointed out that there is also a
(nonlinear) SDP formulation in [47, Section 7.1]). However, while seemingly quite
natural, assumption (a) is not needed in the following auxiliary result which deals
with boundedness of the constrained rational optimization problem. Also, S can be an
arbitrary set satisfying (11), e.g., any convex set.

Proposition 2.1 Suppose that (11) holds and that the polynomials p and n have no
common (real) root in S. Then f (x) = n(x)

p(x) can be bounded (from below and/or
above) over S only if p(x) does not change sign strictly over S. To be more precise:
if S0 = {x ∈ S : p(x) = 0}, then

sup { f (x) : x ∈ S\S0} = +∞ and inf { f (x) : x ∈ S\S0} = −∞,

provided that there are {x+, x−} ⊆ S such that p(x−) < 0 < p(x+).

Proof Suppose p(x−) < 0 < p(x+) for some {x+, x−} ⊆ S and link these points
by a polynomial path x(t) ∈ S as in assumption (11). Then, as χ(t) = p(x(t)) is a
univariate polynomial withχ(0) < 0 < χ(1), it is well known (and quite elementary to
prove) that there must be a transversal real root t̄ ∈ [0, 1] ofχ :χ(t̄−ε) < 0 < χ(t̄+ε)
must hold for sufficiently small ε > 0. Since x̄ = x(t̄) is a root of p in S, we must
have n(x̄) �= 0, by assumption (b) above. Suppose for the moment that n(x̄) > 0; then
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along the two sequences x±
ε = x(t̄ ± ε), we have evidently lim

ε↘0
f (x±

ε ) = ±∞, and

the result follows. The same argument holds in the opposite case n(x̄) < 0, switching
signs. ��

So apparently the common root assumption (b) plays a key role in investigating
boundedness. However, for the CFQP the procedure suggested in [29] to check this,
namely to certify

inf
{

p2(x)+ n2(x) : x ∈ S
}
> 0,

requires bounding a quartic optimization problem over T which may be even more
difficult than establishing copositivity to enforce the model assumptions (10). For
sure there are non-convex instances for this quartic objective function. For instance
consider arbitrary B and b with β = 1 and select any x in the interior of R

n+. Next pick
a vector v �= o with v ⊥ Bx + b, then select A such that Av = o and such that (10) is
satisfied, but arbitrary else, and put a = Ax so that x ± tv ∈ T for sufficiently small
t > 0. Now choose C = B−ρ I and c = b+ρx where ρ ∈ R is to be determined later,
and γ = 1−ρx�x, so that p(x) = n(x), and, by construction, v ⊥ {Bx + b,Cx + c}.
Finally let ρ be such that v�[p(x)B + n(x)C]v = 2p(x)v�(2B − ρ I )v < 0. Then a
straightforward calculation shows

v� D2[p2(x)+ n2(x)]v = 2v�[p(x)B + n(x)C]v < 0.

3 Copositivity and CFQP

3.1 Completely positive formulation

As stated before, the fractional quadratic problem (4) can be rewritten in homogeneous
form (8). Putting Z = zz�, rewriting z� Az = A • Z , with A psd and observing that
Z11 = z2

1 and z ∈ R
n+1+ , we have

ψ = min

{
C • Z

B • Z
: Z11 = 1 , A • Z = 0 , rank(Z) = 1 , Z ∈ C∗

n+1

}
. (12)

By homogeneity, for any Z feasible to (12) we can replace the constraint Z11 = 1
by Z11 > 0. We may also define X = 1

B•Z
Z ∈ C∗

n+1 which also has rank one with

X11 > 0 and satisfies B • X = 1, to obtain the following equivalent problem

ψ = min
{
C • X : B • X = 1, A • X = 0, rank(X) = 1,

X11 > 0, X ∈ C∗
n+1

}
. (13)

This problem is non-standard in two aspects. First, it includes a strict linear inequality
for defining feasibility; second, and probably more familiar in the context of SDP
relaxations, it contains a (non-convex) rank-one constraint. Next we prove that we
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still obtain an equivalent problem by dropping the rank condition and the constraint
X11 > 0, so that (13) turns out to be equivalent to the following problem

min
{
C • X : B • X = 1, A • X = 0, X ∈ C∗

n+1

}
. (14)

To prove this statement we must introduce the following lemma, which parallels an
important result on the CP representation of mixed-binary quadratic optimization
problems [18]; see also [3].

Lemma 2 Under the model assumptions (10),

{
X ∈ C∗

n+1 : B • X = 1, A • X = 0
}

= conv
{

zz� : z ∈ R
n+1+ : z1 > 0 , z� Bz = 1 , Az = o

}
.

Proof The inclusion ⊇ is immediate given the definition of C∗
n+1. For the ⊆ part, first

note that any X ∈ C∗
n+1 with B • X = 1 satisfies X �= O . Let X ∈ C∗

n+1\{O}. Then
there is the representation

X =
r∑

i=1

yi y�
i with yi ∈ R

n+1+ \{o} , for all i,

for some r ≥ 1. Since A is psd,

0 ≤ y�
i Ayi ≤

r∑
j=1

y�
j Ay j = A • X = 0 �⇒ Ayi = o. (15)

Hence yi ∈ 	A\{o} and we can define

λi = y�
i Byi

which is strictly positive by (10) for all i = 1, . . . , r . Let

zi = 1√
y�

i Byi

yi ∈ 	A.

Then by construction z�
i Bzi = 1 and Azi = o. For all i , the first coordinate ζi of

zi =
[
ζi
vi

]
must not vanish. Otherwise Azi = o would imply Avi = o, and vi ∈ R

n+
would by (10) yield vi = o or zi = o or yi = o, which is absurd. Then
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r∑
i=1

λi =
r∑

i=1

y�
i Byi =

r∑
i=1

B • yi y�
i = B • X = 1. (16)

So X can be written as X = ∑r
i=1 λi zi z�

i , and the result follows. ��
Theorem 1 Under the model assumptions (10), problems (13) and (14) are equivalent.
Moreover, there is always an optimal solution of the form Z∗ = Z∗

11zz� to (14) with
z� = [1 , (x∗)�] which encodes in x∗ ∈ T an optimal solution to (4).

Proof Any optimal solution X∗ to (14) is a convex combination of rank-one matrices
like Z∗, due to Lemma 2. Hence (13) and (14) must have the same minimal objective
value by convexity (in fact, linearity) of the objective function. Therefore this and the
remaining assertion follow from standard convex optimization arguments. ��

3.2 Duality and copositive optimization

By weak duality of (14)

ψ ≥ λ∗ = sup
{
λ : C − λB − μA ∈ Cn+1

}
. (17)

Slater’s condition is always violated for (14). Indeed, if Z ∈ int C∗
n+1 is feasible to

(14), then Z − α In+1 ∈ C∗
n+1 for a small α > 0, and in particular this matrix is psd.

But

A • (Z − α In+1) = 0 − α trace(A) < 0,

is a contradiction to the fact of A ∈ Pn+1\ {O}. Therefore it is not possible to infer
strong duality (in particular, dual attainability) from standard arguments. However,
under our assumptions, the dual problem is strictly feasible, which implies attainability
of the primal (14) (this was already established in Sect. 2 before) and zero duality gap,
that is ψ = λ∗. To establish this result, we need to introduce another lemma.

Lemma 3 If a symmetric matrix D is strictly 	A -copositive and A is psd, then there
is ρ > 0 such that D + ρA is strictly copositive (w.r.t. the whole R

n+).

Proof Letω = − minx∈� x� Dx. By continuity of the quadratic form and compactness
of �, there exist δ > 0 and η > 0 such that x� Dx ≥ δ whenever dist(x, ker A) < η

and x ∈ �. On the other hand, the set P = {x ∈ � : dist(x, ker A) ≥ η} is
either empty (the trivial case) or compact. In the latter case, by construction, we have
ν = minx∈P x� Ax > 0. Finally let

ρ = max

{
1,

2ω

ν

}
≥ 1 > 0.

Then x�(D + ρA)x ≥ x� Dx ≥ δ > 0 for all x ∈ �\P by the above construction.
But for any x ∈ P we have x�(D + ρA)x ≥ −ω + 2ω = ω. Now the result follows
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if ω > 0. If ω ≤ 0 then x� Dx ≥ 0 and x�(D + ρA)x ≥ 0 + 1ν = ν > 0. Hence
D + ρA is strictly copositive. ��
Theorem 2 Under the model assumptions (10), the dual problem (17) is strictly fea-
sible (i.e., Slater’s condition is satisfied). Hence the duality gap is zero, and the primal
problem (14) has always an optimal solution, that is, ψ = λ∗ = C • Z∗ for some Z∗
feasible to (14).

Proof Lemmas 1 and 3 imply that there is a ρ > 0 such that B + ρA is strictly
copositive. By continuity, this is still true for γC + B +ρA for small γ > 0. Also, by
positive homogeneity, we may divide by γ and still C − λB −μA ∈ int C∗

n+1, where
λ = − 1

γ
and μ = − ρ

γ
. ��

For a slightly modified dual program we present an attainability result.

Theorem 3

ψ = max
{
λ : C − λB is 	A -copositive

}
. (18)

Proof Suppose that C−λB is	A -copositive. For any x ∈ T , we have z = [1 , x�]� ∈
	A, so that

z�Cz − λz�Bz ≥ 0.

As z� Bz > 0, this implies λ ≤ z�Cz
z� Bz

= f (x), and therefore λ ≤ ψ . To establish

the result, we consider a solution x̄ to (4) and show that λ̄ = ψ = f (x̄) satisfies that
C − λ̄B is 	A -copositive. Let z = [1 , x�]� ∈ 	A. For any x ∈ T

z�Cz − λ̄z� Bz = z�Bz [ f (x)− f (x̄)] ≥ 0.

Now 	A -copositivity follows as in the proof of Lemma 1. ��
To use (18) directly we should have an algorithm for checking 	A -copositivity.

While there were some algorithms designed for this task, procedures to check classical
R

n+-copositivity are much more popular [14,16].
The equality (18) would imply dual attainability if we could prove that for a 	A-

copositive matrix D and a psd matrix A there is ρ ∈ R such that D +ρA is copositive.
Unfortunately, this property does not hold, as the following example shows.

Example Let D =
[

0 −1
−1 0

]
and A =

[
1 0
0 0

]
.

Then D is 	A -copositive, but there is no ρ ∈ R such that D + ρA is a copositive
matrix.

Since the primal problem is never strictly feasible, dual attainability is still not estab-
lished and remains an open question. However, for some special cases it is possible to
have dual attainability, as it is the case of the StFQP analyzed in Sect. 4.
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3.3 Lower bounds based on copositive relaxations

Previously we proved that

ψ = min

{
f (x) = x�Cx + 2c�x + γ

x� Bx + 2b�x + β
: Ax = a, x ∈ R

n+
}

(19)

= min
{
C • X : B • X = 1, A • X = 0, X ∈ C∗

n+1

}
. (20)

Checking condition X ∈ C∗
n+1 is (co-)NP-hard [20,35], but it is possible to exploit

this equality to get a lower bound for the CFQP, using the inclusion C∗
n+1 ⊆ Dn+1 =

Pn+1 ∩ Nn+1. So by solving

ψcop = min
{
C • X : B • X = 1, A • X = 0, X ∈ Dn+1

}
, (21)

we obtain a lower bound for (19). In addition, given that

X =
[

1 x�
x xx�

]

for any rank-one completely positive matrix X , we may reinforce the lower bound by
requiring in addition an upper bound uu� in the variable X , where the components of
u ∈ R

n+1 are given by

ui+1 = max
{

xi : Ax = a , x ∈ R
n+
}

for i = 1, . . . , n and u1 = 1.

Hence the following SDP gives a tighter lower bound for the CFQP:

ψ+
cop = min

{
C • X : B • X = 1, A • X = 0, X � 0, 0 ≤ X ≤ uu�} . (22)

The remainder of this subsection investigates the boundedness of the feasible set
of the relaxed problem (21).

Lemma 4 Suppose that assumption (10) holds, and

X =
[

X11 x�
x Y

]
∈ Dn+1.

(a) If X �= O satisfies A • X = 0 then X11 > 0.
(b) If X11 > 0 and A • X = 0, then A� A • (X11Y − xx�) = 0 and x̄ = 1

X11
x ∈ T .

Proof (a) If X11 = 0, then also x = o, and 0 = A • X = (A� A) • Y . But Y ∈ Pn

as X ∈ Dn+1. Hence Y (Rn) ⊆ ker A and in particular Y w ∈ ker A for all w ∈ R
n+.

Since Y ∈ Nn , then Y w ∈ R
n+, too. Hence Y w ∈ ker A ∩R

n+ = {o}, or Y (Rn+) = {o},
which entails Y = 0 and thus X = O , contradicting the assumption.
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(b) Since X ∈ Pn+1, also the Schur complement X11Y −xx� ∈ Pn . Therefore we get

0 ≤ (A� A) • (X11Y − xx�) = X11(A
� A) • Y − ‖Ax‖2

and by consequence

0 ≤ ‖X11a − Ax‖2

= ‖Ax‖2 − 2(X11a)�(Ax)+ ‖X11a‖2

≤ X11(A
� A) • Y − 2(X11a)�(Ax)+ ‖X11a‖2

= X11(A • X) = 0,

which establishes both assertions. ��
For the next auxiliary result we resort on the condition B ∈ Pn which was also

employed in [39].

Lemma 5 Assume (10) B psd. Then there is a finite M > 0 such that X11 +‖x‖ ≤ M
for all X feasible to (21).

Proof Suppose that Xν11 ↗ ∞ along a sequence Xν of (21)-feasible points. Since T
is compact, we may assume without loss of generality that x̄ν = 1

Xν11
xν → x̄ ∈ T as

ν → ∞. Since we have

1 = X11 + 2b�x + B • Y ≥ X11 + 2b�x + 1

X11
x� Bx

due to the fact that both B and the Schur complement Y − 1
X11

xx� are psd for any

feasible X , it follows for z̄ν = [1, x̄�
ν ]� ∈ 	A\{o} that

1

Xν11
≥ 1 + 2b�x̄ν + (x̄ν)� B(x̄ν) = (z̄ν)�B(z̄ν)

for all ν. Hence in the limit z̄� Bz̄ = 0, contradicting z̄ = limν→∞ z̄ν ∈ 	A\{o}. Then
X11 must be bounded (and positive). Now x̄ = 1

X11
x ∈ T must be bounded too, since

T is compact. So x = X11x̄ must be bounded. ��
Finally we sharpen the assumption on B to be positive-definite, to derive bounded-

ness of the feasible region.

Corollary 3.1 If B is positive-definite, then under the assumption (10) the feasible
set of (21) is bounded.

Proof If B • X = 1, then B • Y = 1 − βX11 − 2b�x must be bounded by Lemma 5.
Now choose ρ > 0 such that B − ρ I ∈ Pn . Then ρY j j ≤ ρ I • Y ≤ B • Y must be
bounded, and therefore Y , too, since Y ∈ P implies |Y jk | ≤ √

Y j j Ykk for all j, k. ��
Note that all above results hold a fortiori for the higher-order relaxations Kr

n+1 ⊆
Dn+1.
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4 Standard fractional quadratic problem

4.1 Formulation

The Standard Fractional Quadratic Problem (StFQP) is a CFQP where the constraint
set is the standard simplex � as defined in (1). The StFQP is NP-hard as the StQP is
also NP-hard. Despite the constraints being simpler, this problem class retains most of
the complexity of the previous polyhedron case. It is possible to transform a bounded
CFQP into an equivalent StFQP using a vertex based representation. This reduction
is not useful in practice if the number of vertices is large, but in any case it helps to
establish theoretical results. The importance of the StFQP is well established from the
fact that it can be used to formulate some combinatorial optimization problems. Also
in branch-and-bound methods for global fractional quadratic optimization, a simplex
partition of the domain is often used, such that each node in the branch-and-bound
tree corresponds to a StFQP.

Nonhomogeneous quadratic expressions q(x) = x�Ĉx+2c�x+γ over the simplex
� can be made homogeneous by defining C = Ĉ + ce� + ec� + γ ee� so that
x�Cx = q(x) for all x ∈ �. So in this section we consider, without loss of generality,
the problem

min

{
x�Cx
x� Bx

: x ∈ �
}
. (23)

In this context, Lemma 1 reduces to the evident fact that x� Bx > 0 for all x ∈ � if
and only if B is strictly copositive. In turn, this condition is equivalent to our overall
model assumption (10) in context of StFQP.

In the particular case of a StFQP, dual attainability was implicitly already established
in [39, Theorem 3.5]:

min

{
x�Cx
x� Bx

: x ∈ �
}

= min
{
C • X : B • X = 1 , X ∈ C∗

n

}
= max {λ : C − λB ∈ Cn} .

(24)

In the paper [39], Preisig has developed a bisection method based upon the last refor-
mulation, using a copositivity test as a black box. In view of recent developments
in copositivity testing, see in particular [14,15], it may be worth while to revisit this
approach, but in this paper we follow a different one.

Comparing the resulting pair in (24) to the original CP formulation in (14) and in
(17), we obtain a dimension reduction from n + 1 as in the general CFQP case to n in
the StFQP case. Based on this formulation, we proceed to lower bounds based on the
SDP relaxation of (24). Let

ψ = max {λ : C − λB ∈ Cn} .

As in the general description of Subsect. 3.3, we again employ the cone of doubly
nonnegative matrices Dn = (Pn ∩Nn) ⊇ Cn with its dual cone D∗

n = Pn +Nn ⊆ C∗
n ,
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and define, following [4] and [11],

ψcop = max {λ : C − λB ∈ Pn + Nn} ≤ ψ. (25)

By strong duality

ψcop = min {C • X : B • X = 1, X ∈ Dn} (26)

= min {C • X : B • X = 1, X � 0, X ≥ 0} (27)

Hence ψcop is a lower bound for (23). In analogy to (22), a stronger lower bound can
be found by solving

ψ+
cop = min {C • X : B • X = 1, X ∈ Pn, 0 ≤ X ≤ E}, (28)

where E = ee� is the n × n all-ones matrix. Here we use the fact that for all x ∈ �,
we have xi x j ≤ 1, all i, j , so that X = xx� ≤ E . Therefore

ψcop ≤ ψ+
cop ≤ ψ. (29)

4.2 Application of StFQP: symmetric eigenvalue complementarity problem

Given matrices
{

Â, B̂
} ⊂ M with B̂ pd, the Symmetric Eigenvalue Complementarity

Problem (EiCP) [40,44] consists in finding

λ > 0 and x ∈ R
n+\{o} such that w := (λB̂ − Â)x ∈ R

n+ and x�w = 0.

For any solution (λ, x) of EiCP, the value of λ is called Complementary Eigenvalue
of the matrices ( Â, B̂) and x is the corresponding Complementary Eigenvector. The
symmetric EiCP can be reduced to the problem of finding a stationary point of the
Rayleigh function on the simplex [40], for which a number of efficient global nonlinear
optimization algorithms can be useful [30]. This problem has found applications in the
study of resonance frequency of structures and stability of dynamical systems [19]. In
practice, it is important to find the maximum complementary eigenvalue for the EiCP.
A sequential algorithm for this purpose has been introduced in [31]. Alternatively,
such an eigenvalue can be computed as a global minimum of the StQFP (23) with
C = − Â and B = B̂.

4.3 Inconsistent systems of linear constraints

The repair of an inconsistent system is an important application of the CFQP. Suppose
that we are given a convex set X ⊆ R

n , an m ×n matrix A, and a vector a ∈ R
n which

form a system of linear (in)equalities Ax
( =

≤
)

a that has no solution x ∈ X .
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An interesting formulation of this inconsistent problem consists of minimizing the
Frobenius norm correction [H,p] of the matrix [A, a], that is,

(PI ) : φ = min ‖[H,p]‖2
F

subject to (A + H)x
( =

≤
)

a + p
H ∈ R

m×n, p ∈ R
m, x ∈ X .

(30)

The interest in formulating this correction problem lies not only in a direct diagnosis
and correction of the infeasible model, but also in an insight into the nature of the
infeasibility, that is provided by the “near” feasible solution of problem (30).

Problem (30) was shown [1] to be equivalent to the following CFQP, where without
loss of generality we assume that

( =
≤
)

represents m − r initial equalities, followed by
r inequalities.

(PF ) : φ = min
‖v‖2

1 + ‖x‖2 (31)

subject to Ax − v
( =

≤
)

a (32)

vi ≥ 0 for i = m − r + 1, . . . ,m (33)

x ∈ X. (34)

Suppose that X = R
n+. Accordingly to the m−r initial equalities, and r inequalities,

let A =
[ Am−r

Ar

]
and v =

[ vr

vr

]
. Introducing a vector of r slack variables s ∈

R
r+ in the inequality constraints, problem (PF ) is a particular case of problem (4)

with

C =
⎡
⎣ 0 0 0

0 Im 0
0 0 0

⎤
⎦ , c = o, γ = 0, B =

⎡
⎣ In 0 0

0 0 0
0 0 0

⎤
⎦ ,b = o, β = 1

and

T =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎣ x

v
s

⎤
⎦ ∈ R

n+m+r+ :
[

Am−r −Im−r 0 0
Ar 0 −Ir Ir

]⎡⎢⎢⎣
x

vm−r

vr

s

⎤
⎥⎥⎦ = a

⎫⎪⎪⎬
⎪⎪⎭
.

Now consider a special case of (30) with no restrictions on x (so X = R
n) and only

equality constraints:

(PE ) min ‖[H,p]‖2
F

subject to (A + H)x = a + p
H ∈ R

m×n, p ∈ R
m, x ∈ R

n .
(35)

This problem is relatively easy to solve, as it can be reduced to a Total Least Squares
Problem (TLSP). If additional constraints, such as x ≥ o are introduced, then a more
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difficult problem has to be tackled. There are many applications of this problem,
for instance, in regression analysis when the coefficients of the model must be non-
negative, and noise is assumed both in the input as in the output data.

An unconstrained formulation for this problem exists [1], and is given by

(PNL0) φ = inf

{‖Ax − a‖2

1 + ‖x‖2 : x ∈ R
n+
}
. (36)

We can rephrase (36) as a homogeneous quadratic fractional problem

(PNL1) ψ = inf
{

g(z) : z ∈ R
n+1+ , z1 > 0

}
(37)

where g(z) = z� Az
zT z

, and, as before,

A = [−a A]T [−a A] =
[

a�a −a� A
−A�a A� A

]
. (38)

Note that A replaces C in the general StFQP formulation (23), and that A plays a
different role in the general CFQP formulation.

We use (37) and introduce some results that, under a sufficient condition easily
verifiable, allows to drop constraint z1 > 0 in favor of the more manageable constraint
z1 ≥ 0. Under the same assumptions, we prove that (36) is equivalent to a StFQP.

Theorem 4 Let

(PNL2) ψ = min {g(z) : z ∈ �}, (39)

and

(PNL3) ς = inf
{
g(z) : z ∈ R

n+
}
. (40)

Then ψ = ς .

Proof The existence of an optimal solution of (PNL2) is obvious. By inclusion we
know that ς ≤ ψ . Now suppose that ς < ψ . Then there exists a vector z0 ∈ R

n+\{o}
and an optimal solution z1 ∈ � of (39) such that

z�
0 Az0

z�
0 z0

<
zT

1 Az1

z�
1 z1

.

Since z0
z�

0 e
is also a feasible solution of (39), then z1 cannot be an optimal solution of

(39). Hence ψ = ς . ��
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Theorem 5 Let x be a global solution to

min

{
x� A� Ax

x�x
: x ∈ �

}
. (41)

If

(A�a)�x > 0, (42)

then

(PNL1) : inf
{
g(z) : z1 > 0 , z ∈ R

n+
}

(43)

is equivalent to

(PNL2) : min {g(z) : z ∈ �}. (44)

Proof By Theorem 4, (PNL2) is equivalent to (PNL3), so it is sufficient to show that

z =
(

0
x

)
cannot be an optimal solution of (PNL2). Supposing the contrary, then

z =
(

0
x

)
satisfies the KKT conditions

∇g(z) = λe + w

w ≥ o, z ≥ o

z�w = 0

e�z = 1

where ∇g(z) represents the gradient of g at z. But

∇g(z) = 2

z�z

[
Az − μz

]
,

where μ = g(z). Furthermore, by Euler’s homogeneity theorem,

0 = z̄�∇g(z̄) = λe�z̄ + 0 = λ.

Then z =
(

0
x

)
satisfies

Az̄ − μz̄ = 2(z̄�z̄)∇g(z̄) = 2(z̄�z̄)w ≥ o,

that is
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[
a�a −a� A

−A�a A� A

] [
0
x

]
− μ

[
0
x

]
≥ 0.

Therefore, −(A�a)�x ≥ 0, which is impossible by hypothesis. ��
In practice, the following condition

min
j

[A�a] j > 0 (45)

is sufficient for the equivalence of problems (PNL2) and (PNL3). In fact, as x ∈ �, then

(A�a)�x ≥ min
j

[A�a] j

n∑
i=1

xi = min
j

[A�a] j > 0.

Although more restrictive, this condition (45) is easily verifiable.

5 Computational experience

In this section we report encouraging numerical experience for a set of randomly
generated CFQPs. Lower bounds obtained by the SDP relaxation of the completely
positive conic formulation are presented. To solve the SDP problems, the self-dual
SDP code SeDuMi [46] was used, with the interface code YALMIP [34].

These values were compared with the lower bound obtained by Gloptipoly 3
[28], a software for the Generalized Problem of Moments (GPM) [32]. Any rational
polynomial optimization problem over a semialgebraic set can be formulated as a
linear moment problem [29]. textttGloptipoly 3 allows to build up a hierarchy of
SDP relaxations of the GPM, to generate a monotonic sequence of optimal values
converging to the global optimum.

In addition, we present a comparison with the lower bound at the root node, obtained
by the well-known and robust global optimization code BARON (Branch And Reduce
Optimization Navigator) [43], which combines constraint propagation, interval analy-
sis, and duality in an enhanced branch-and-reduce framework. The optimal value
obtained by BARON was used to establish the gaps of the lower bounds.

When generating instances of program (19), some specific remarks seem to be
in order. A naive direct implementation of the copositive relaxation (21) introduces
numerical difficulties when solving the SDP problem, due to the homogeneous con-
straint A• X = 0; c.f. [5], where it is mentioned that the “SDP may be unbounded even
though all of the original variables have finite upper and lower bounds” (albeit for a
possibly indefinite A there); note that the latter difficulty is excluded under additional
assumptions, as shown in Corollary 3.1.

Here we propose a simple transformation which even results in immediate size
reduction, basically from n2 to (n − m)2. So let A be psd but singular, so that
dim ker A = k + 1 for some k ∈ N. First we describe an orthonormal basis of
this kernel. Remember that A is supposed to be an m × n matrix with full row rank
m < n (to allow for a non-trivial feasible set T ). Then A� A is psd but has a kernel
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of dimension k = n − m, spanned by the orthonormal vectors u1, . . . ,uk , say. So
the m × m matrix AA� is nonsingular, and it is easy to see that ui = [0,u�

i ]� form
an orthonormal system in ker A ⊆ R

n+1, as detailed, e.g., in the proof of Lemma 4.
Next, denote by

ũ0 =
[

1
A�(AA�)−1a

]
and u0 = 1

‖ũ0‖ ũ0.

Then the orthonormal system {u0, . . . ,uk} spans ker A, as can be checked in a straight-
forward manner, using again arguments from the proof of Lemma 4.

Now let Q be a (k + 1) × (n + 1) matrix, collecting the above system as rows:
Q� = [u0, . . . ,uk]. It follows that, for any X ∈ Dn+1, we have A • X = 0 if and
only if AX = O if and only if

X = Q�Y Q for some Y ∈ Pk+1 satisfying Q�Y Q ∈ Nn+1. (46)

Hence, using C • X = (QC Q�) • Y etc., we arrive at the reduced SDP

min
{
(QC Q�) • Y : (Q B Q�) • Y = 1 , Q�Y Q ≥ O ,Y ∈ Pk+1

}
, (47)

working on smaller psd matrices, but retaining O(n2) linear inequalities.
For β = γ = 1 and for selected values of n and m = � n

2 �, we have generated
instances of program (4) as follows:

1. a symmetric psd n × n matrix B is randomly generated, along with a suitably
scaled vector b ∈ int(Rn+) such that B given by (7) need not be psd, and can have
negative entries (but obviously B ∈ D∗

n+1). Observe that by construction, B is
strictly R

n+-copositive and therefore, for any choice of A, strictly 	A-copositive
for sure.

2. a (possibly indefinite) symmetric n × n matrix C is randomly generated with
entries of varying sign, along with a randomly drawn vector c ∈ R

n (again, no
sign restrictions on the coordinates).

3. an m × n matrix A with a strictly positive first row, but varying sign of entries
elsewhere, is randomly generated;

4. an arbitrary vector x ∈ � is drawn at random. Then the choice a = Ax ensures
that T is compact, so the model assumptions (10) are guaranteed.

5. Finally, based on (A, a), the matrix Q is determined and a solution Y to (47) is
calculated. As stated before, X = Q�Y Q solves (21). The objective C • X =
(QC Q�) • Y is used as a relaxation bound.

Instances of sizes n ∈ {4, 9, 49, 79} were generated, resulting in SDP instances of
dimensionality 5, 10, 50 and 80, which numbers appear in the instance name as the first
number after ABJ. The nonnegativity constraint X ≥ O pose a notorious impediment
on the problem size to allow for satisfactory handling by any SDP solver. The maximum
size of 80 was possible due to the size reduction achieved in (47). The clear impact
of this reduction is depicted in the three last columns of Fig. 1. For two problems of
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Fig. 1 Sizes of SDP relaxations

size 5 (ABJ5_0) and 10 (ABJ10_0), the SeDuMi output reports the size of the SDP
problems, for the GPM approach, the direct copositive relaxation (21) and with (47).

All the tests have been performed on a Pentium Intel(R) Core(TM)i7, with CPU
E8400, 2.8GHz, 4,00 GB RAM, and 64-bit operating system Windows. A tolerance
parameter 10−4 was considered for BARON and SeDuMi.

Table 1 reports for each instance the information,

• Instance—Instance name;
• Cop R—Value of the lower bound obtained by the SDP relaxation of the copositive

formulation (47);
• Time1(s)—CPU time in seconds to obtain Cop R;
• Gap—The relative gap provided by Cop R,

∣∣∣∣Cop R-BARONOptimal value

BARONOptimal value

∣∣∣∣ ;

• GPM—Value of the lower bound obtained by Gloptipoly 3;
• Time2(s)—CPU time in seconds to obtain the GPM lower bound;
• St—Status of Gloptipoly 3 solution for the default relaxation order;
• root B—Value of the lower bound obtained at the root node by BARON;

An analysis of Table 1 reveals that the lower bounds provided by solving the SDP
relaxation of the Copositive formulation are very good, as the gaps show, and outper-
forms the initial lower bound of BARON, and of the GPM relaxation. For problems of
size 50 and 80, Gloptipoly 3 ran out of memory (out of m.), as expected given
the size of the corresponding SDP problem (as the results in Fig. 1 suggested). As the
status for Gloptipoly 3 indicates, increasing the relaxation order has no effect.
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Table 1 Copositive relaxation versus Gloptipoly 3 and BARON

Instance Cop R Time1(s) Gap GPM R Time2(s) St. Root B.

ABJ5_0 −0.7865 2.700e−02 0.4837 −0.5275 1.045e+00 1 −26.1028

ABJ5_1 −0.4923 3.400e−02 1.8293 −0.5414 1.014e+00 1 −11.8308

ABJ5_2 −0.7693 2.700e−02 0.6771 −0.5089 9.672e−01 1 −11.9631

ABJ5_3 −0.3603 2.900e−02 0.9907 −0.2207 1.310e+00 1 −3.9613

ABJ5_4 −1.2562 2.700e−02 0.5467 −0.9428 9.984e−01 1 −0.8123

ABJ5_5 +0.4643 3.000e−02 0.1552 +0.2225 1.108e+00 1 −2.2940

ABJ5_6 −0.5768 3.100e−02 0.5831 −0.3671 9.828e−01 1 −8.6291

ABJ5_7 −0.0815 3.300e−02 15.2108 −0.0657 8.892e−01 1 −5.1034

ABJ5_8 −0.5946 2.600e−02 0.4752 −0.3708 9.516e−01 1 −0.4031

ABJ5_9 −0.8705 3.100e−02 0.9123 −0.5753 6.708e−01 1 −0.4553

ABJ10_0 −0.3095 3.500e−02 0.5090 −0.1962 7.010e+02 1 −23.9325

ABJ10_1 −0.6779 3.100e−02 0.4781 −0.4882 5.737e+02 1 −0.4587

ABJ10_2 +0.4144 3.400e−02 0.0533 +0.4288 6.395e+02 1 −3.4076

ABJ10_3 −0.3105 3.500e−02 1.2843 −0.1840 6.298e+02 1 −12.3357

ABJ10_4 −0.3885 3.900e−02 0.4746 −0.2689 5.122e+02 1 −0.2635

ABJ10_5 −0.7710 4.300e−02 0.2028 −0.6198 6.619e+02 1 −55.5414

ABJ10_6 −1.2861 3.100e−02 0.5562 −0.8749 7.123e+02 1 −0.8265

ABJ10_7 −0.1154 3.900e−02 1.1720 −0.0760 6.219e+02 1 −25.4559

ABJ10_8 −0.6486 3.100e−02 0.2828 −0.4558 6.239e+02 1 −0.5056

ABJ10_9 −0.3070 4.800e−02 0.5997 −0.1794 6.183e+02 1 −0.1919

ABJ50_0 −0.7435 3.238e+00 0.3552 Out of m. – −502.4740

ABJ50_1 −0.9606 2.731e+00 0.2229 Out of m. – −0.7856

ABJ50_2 −0.7844 3.192e+00 0.2786 Out of m. – −0.6135

ABJ50_3 −0.4022 2.983e+00 0.3630 Out of m. – −1,463.1800

ABJ50_4 −0.2677 3.001e+00 0.8199 Out of m. – −451.7790

ABJ50_5 −0.6484 2.981e+00 0.6369 Out of m. – −0.3962

ABJ50_6 −0.5760 3.498e+00 0.3702 Out of m. – −989.5200

ABJ50_7 −0.6486 2.993e+00 0.3201 Out of m. – −0.4914

ABJ50_8 −0.5985 3.221e+00 0.3456 Out of m. – −490.0360

ABJ50_9 −0.3730 3.244e+00 0.3215 Out of m. – −626.8870

ABJ80_0 −0.4427 5.049e+01 0.5019 Out of m. – −1,394.8500

ABJ80_1 −0.5806 5.532e+01 0.2984 Out of m. – −0.4472

ABJ80_2 −0.8597 5.532e+01 0.2869 Out of m. – −0.6681

ABJ80_3 −0.4345 5.519e+01 0.3302 Out of m. – −1,849.5000

ABJ80_4 −0.8625 5.101e+01 0.3214 Out of m. – −0.6528

ABJ80_5 −0.4670 5.117e+01 0.3301 Out of m. – −0.3511

ABJ80_6 −0.3473 5.539e+01 0.6090 Out of m. – −2,488.4700

ABJ80_7 −0.5883 5.105e+01 0.3607 Out of m. – −1,487.1000

ABJ80_8 −0.4181 5.532e+01 0.5004 Out of m. – −736.0130

ABJ80_9 −0.7023 5.099e+01 0.3568 Out of m. – −0.5177
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Moreover, the results show that the reduction proposed in (47) is crucial as the size of
the problem increases.

In our opinion, the numerical results show that the SDP ideas discussed in this paper
are promising to be incorporated in a robust branch-and-bound algorithm for dealing
with the CFQP.

6 Conclusions

In this paper we present copositive exact formulations for the CFQP and the StFQP.
The practical interest in these problems is discussed, with emphasis on the eigenvalue
complementarity problem and the correction of inconsistent linear systems. For the
StFQP we proved that dual attainability holds, while a more specific copositivity con-
dition is needed for this result to hold for a general CFQP. Based on these formulations
SDP relaxations are proposed providing good lower bounds. Theoretical results pre-
sented in this paper have important implications in the computation of lower bounds
for the CFQP. Computational experience with SDP relaxation of the CFQP is presented
showing small relative gaps. When compared with the initial lower bound given by
BARON and Gloptipoly 3, the SDP relaxation of the copositive formulation pro-
duces better lower bounds, particularly when the size of problems increases. These
SDP-based lower bounds seem useful to be included in a branch-and-bound approach
to be developed in the future.

Acknowledgments The authors are indebted to two anonymous referees and an anonymous Asso-
ciate Editor for valuable remarks which led to several improvements of a previous version; for instance,
Subsect. 2.2 was added upon the suggestions of a referee.
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