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In this paper, we propose a new Mehrotra-type predictor–corrector interior-point algorithm for semidefinite
programming. This algorithm is an extension of the variant of Mehrotra-type algorithm that was pro-
posed by Salahi et al. [On Mehrotra-type predictor–corrector algorithms, SIAM J. Optim. 18 (2007),
pp. 1377–1397] for linear programming problems. We modify the step sizes lightly in the predictor step
of Koulaei and Terlaky [On the complexity analysis of a Mehrotra-type primal–dual feasible algorithm
for semidefinite optimization, Optim. Methods Softw. 25 (2010), pp. 467–485]. In such a way, we obtain
O(n log(Tr(X0S0)/ε)) iteration complexity of the algorithm, where (X0, y0, S0) is the initial feasible point
and ε is the required precision.
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1. Introduction

Semidefinite programming (SDP) is a generalization of linear programming (LP). It has received
considerable attention and has been one of the most active research areas in mathematical
programming. SDP has been applied in many areas, such as combinatorial optimization [2,3]
and system and control theory [5]. Due to the success of interior-point methods (IPMs) in
solving LP, most IPM variants were extended to SDP. The first IPMs for SDP were indepen-
dently developed by Alizadeh [2] and Nesterov and Nemirovskii [19]. Alizadeh [2] extended
Ye’s [29] projective potential reduction algorithm from LP to SDP and argued that many
known interior-point algorithms for LP could be transformed into algorithms for SDP. On the
other hand, Nesterov and Nemirovskii [19] and Nesterov and Todd [20] presented a deep and
unified theory of IPMs for solving the more general conic optimization problems using the
notation of self-concordant barriers. Other IPMs for solving SDP can be found, for example,
in [4,6,8,12,14,17,18,21,22].

In LP, the most computationally successful IPMs have been primal–dual methods using
Mehrotra’s [16] predictor–corrector (MPC) steps. MPC algorithms for SDP have been
implemented in the softwares SeDuMi by Sturm [24], SDPT3 by Toh et al. [27] and SDPA
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by Fujisawa et al. [7]. In spite of the extensive use of this variant in IPM-based optimiza-
tion packages, not much was known about its complexity before the recent paper by Salahi
et al. [23], which presents a new variant of the Mehrotra-type predictor–corrector algorithm
for LP. This variant incorporates a safeguard in the algorithm that keeps the iterates in the
prescribed neighbourhood and allows us to get a reasonably large step size. This safeguard
strategy is used also when the affine scaling step performs poorly, which effectively forces the
algorithm to take pure centring steps. They proved that the modified algorithm, in the worst
case, will terminate after at most O(n2L) iterations, where n is the number of variables and L
is the input data length. By slightly modifying the Newton system in the corrector step, the
iteration complexity was reduced to O(nL). Their numerical results also show that the safeguard-
based algorithm has a superior computational performance in real applications. Based on Ai and
Zhang’s work [1], Liu et al. [15] proposed a Mehrotra-type primal–dual second-order correc-
tor algorithm with a fixed centre parameter. They proved that the algorithm stops after at most
O(

√
nL).

Recently, Koulaei and Terlaky [13] extended the Mehrotra-type algorithm of Salahi et al. [23] for
SDP, based on the Nesterov–Todd (NT) direction [20,21], and showed that the iteration complexity
bound of the algorithm is of the same order as that of the corresponding algorithm for LP. However,
it needs to be pointed out that the proof of the O(nL) iteration complexity in [13] is incorrect. In fact,
one cannot get Lemma 4.2, which is the key lemma in the proof of the O(nL) iteration complexity,
by using Theorem 4.1 in [13]. In this paper, we propose a new Mehrotra-type predictor–corrector
algorithm by slightly modifying the maximum step size in the predictor step of Koulaei and
Terlaky [13]. However, in the case of LP, the new predictor step size is still identical with that
used in [23]. We prove that the iteration complexity of the new algorithm is O(nL) based on the
NT direction, which is analogous to the case of LP.

We organize our paper as follows. In Section 2, we review the so-called similar symmetrization
operator introduced by Zhang [30], which leads to a class of search directions. Among these
directions, we would like to highlight the one originally proposed by Nesterov and Todd [20,21]
which is a member of this class. Based on the NT direction, we proposed a modified Mehrotra-
type predictor–corrector algorithm by slightly modifying the maximum step size in the predictor
step of [13]. In Section 3, by using the machinery of the Lyapunov operator, we first demonstrate
several technical lemmas, and then give the O(n log(Tr(X0S0)/ε)) iteration complexity of this
new algorithm. Finally, some conclusions are given in Section 4.

The following notations are used throughout the paper. Rn denotes the n-dimensional Euclidean
space. The set of all m × n matrices with real entries is denoted by R

m×n. AT denotes the transpose
of A ∈ R

m×n. The set of all symmetric n × n real matrices is denoted by Sn. For M ∈ Sn, we
write M � 0 (M � 0) if M is positive definite (positive semidefinite). Sn++ (Sn+) denotes the set
of all matrices in Sn which are positive definite (positive semidefinite). For a matrix M with
all real eigenvalues, we denote its eigenvalues by λi(M), i = 1, 2, . . . , n, and its smallest and
largest eigenvalues by λmin(M) and λmax(M), respectively. The Hermitian part of M is denoted
by H(M) := 1

2 (M + M∗), where M∗ = M̄T denotes the Hermitian adjoint. Given G, H ∈ R
m×n,

the inner product between them is defined as 〈G, H〉 := Tr(GTH), the trace of the matrix GTH.
The Frobenius norm of M ∈ R

n×n is ‖M‖F := 〈M, M〉1/2.

2. SDP problem and preliminary discussions

We consider the following SDP problem:

(P) min〈C, X〉 s.t. 〈Ai, X〉 = bi, i = 1, 2, . . . , m, X � 0, (1)
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where C, X ∈ Sn, b ∈ R
m and Ai ∈ Sn, i = 1, 2, . . . , m, are linearly independent. We call problem

(P) the primal form of SDP problem, and X is the primal variable.
Corresponding to every primal problem (P), there exists a dual problem (D)

(D) max bTy s.t.
m∑

i=1

yiAi + S = C, S � 0, (2)

where y ∈ R
m and S ∈ Sn are the dual variables.

The set of primal dual feasible solutions is denoted by

F :=

⎧⎪⎨
⎪⎩(X , y, S) ∈ Sn

+ × R
m × Sn

+ :

〈Ai, X〉 = bi, i = 1, 2, . . . , m
m∑

i=1

yiAi + S = C

⎫⎪⎬
⎪⎭

and the relative interior of the primal–dual feasible set is

F0 :=

⎧⎪⎨
⎪⎩(X , y, S) ∈ Sn

++ × R
m × Sn

++ :

〈Ai, X〉 = bi, i = 1, 2, . . . , m
m∑

i=1

yiAi + S = C

⎫⎪⎬
⎪⎭ .

It is well known [11] that under the assumptions that F0 is non-empty and the matrices Ai,
i = 1, 2, . . . , m, are linearly independent, then X∗ and (y∗, S∗) are optimal if and only if they
satisfy the optimality conditions

〈Ai, X〉 = bi, i = 1, 2, . . . , m, X � 0,
m∑

i=1

yiAi + S = C, S � 0,

XS = 0, (3)

where the last equality is called the complementarity equation. The central path consists of points
(Xμ, yμ, Sμ) satisfying the perturbed system

〈Ai, X〉 = bi, i = 1, 2, . . . , m, X � 0,
m∑

i=1

yiAi + S = C, S � 0,

XS = μI , (4)

where μ ∈ R, μ > 0. It is proved in [12,19] that there is a unique solution (Xμ, yμ, Sμ) to the
central path equations (4) for any barrier parameter μ > 0, assuming that the F0 is non-empty and
the coefficient matrices Ai, i = 1, 2, . . . , m, are linearly independent. Moreover, the limit point
(X∗, y∗, S∗) as μ goes to zero is a primal–dual optimal solution of the corresponding SDP problem.

Since for X, S ∈ Sn, the product XS is generally not in Sn, the left-hand side of (4) is a map
from Sn × R

m × Sn to R
n×n × R

m × Sn. Thus, the system (4) is not a square system when X and
S are restricted to Sn, which it is needed for applying Newton-like methods. A remedy for this
is to make the perturbed optimality system (4) square by modifying the left-hand side to a map
from Sn × R

m × Sn to itself. To this end, we use the so-called similar symmetrization operator
HP : R

n×n → Sn introduced by Zhang [30] defined as

HP(M) := 1
2 [PMP−1 + (PMP−1)T] ∀M ∈ R

n×n,
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where P ∈ R
n×n is some non-singular matrix. In particular, when P = I ,

H(M) := HI(M)

is the Hermitian part of M. Zhang [30] also observed that

HP(M) = μI ⇔ M = μI ,

for any non-singular matrix P and any matrix M with real spectrum. Thus, for any given non-
singular matrix P, system (4) is equivalent to

〈Ai, X〉 = bi, i = 1, 2, . . . , m, X � 0,
m∑

i=1

yiAi + S = C, S � 0,

HP(XS) = μI . (5)

A Newton-like method applied to system (5) leads to the following linear system:

〈Ai, X〉 = 0, i = 1, 2, . . . , m,
m∑

i=1

Aiyi + S = 0,

HP(XS + XS) = μI − HP(XS), (6)

where (X, y, S) ∈ Sn × R
m × Sn is the search direction. Todd et al. [26] proved that sys-

tem (6) has a unique solution for any (X , y, S) ∈ Sn++ × R
m × Sn++ and for the scaling matrix P

which satisfies PXSP−1 ∈ Sn. In particular, as was shown in [20,21,26], the choice of P = W1/2

in (6), where

W = S1/2(S1/2XS1/2)−1/2S1/2 = X−1/2(X1/2SX1/2)1/2X−1/2

leads to the NT direction. It is easier to show that PXSP−1 ∈ Sn whenever X and S are positive
definite and P is NT scaling matrix. In fact, for NT scaling, we have PXP = P−1SP−1 [18]. We
mention that the NT direction can also be interpreted by the v-space notion, as was analysed by
Sturm and Zhang [25], which provides a possibility of deriving many more search directions other
than the NT direction.

In what follows, we describe a Mehrotra-type predictor–corrector interior-point algorithm.
Most efficient IPM solvers work in the so-called negative infinity neighbourhood that is a wide
neighbourhood, defined by

N −
∞(γ ) := {(X , y, S) ∈ F0 : λmin(XS) ≥ γμg},

where γ ∈ (0, 1) is a constant independent of n and μg = 〈X, S〉/n is the normalized duality gap
corresponding to (X , y, S). In this paper, we consider algorithms that are working in N −∞(γ ). The
Mehrotra-type algorithm, in the predictor step, computes the affine scaling search direction, that is,

〈Ai, Xa〉 = 0, i = 1, 2, . . . , m,



Optimization Methods and Software 1183

m∑
i=1

Aiya
i + Sa = 0,

HP(XSa + XaS) = −HP(XS), (7)

then it computes the maximum step size αa ∈ (0, 1] that ensures

HP((X + αaXa)(S + αaSa)) � 0. (8)

However, the algorithm does not take such a step right away. We use the information from the
predictor step to compute the corrector direction that is defined as follows:

〈Ai, X〉 = 0, i = 1, 2, . . . , m,
m∑

i=1

Aiyi + S = 0,

HP(XS + XS) = μI − HP(XS) − αaHP(XaSa), (9)

where the centring parameter μ is defined adaptively by

μ =
( 〈X + αaXa, S + αaSa〉

〈X , S〉
)3

μg.

Since 〈Xa, Sa〉 = 0, the previous relation implies

μ = (1 − αa)
3μg. (10)

From (10) it is obvious that if only a small step in the affine scaling direction can be made, then
we only improve the centrality of the iterate. Finally, the new iterate is given by

(X(αc), y(αc), S(αc)) := (X , y, S) + αc(X, y, S), (11)

where αc ∈ (0, 1] is the maximum step size that keeps (X(αc), y(αc), S(αc)) in N −∞(γ ), where
μg(αc) = 〈X(αc), S(αc)〉/n.

In the case of LP, it has been shown in [23] by an example that Mehrotra’s heuristic may force
the algorithm to make very small steps to keep the iterates in a certain neighbourhood of the
central path, which may cause too many iterations to converge. This may also happen when the
affine scaling step size is very small, in which case the algorithm might make pure centring steps
that only marginally reduce the duality gap. Therefore, Mehrotra’s adaptive updating scheme of
the centring parameter has to be combined with certain safeguards to get a warranted step size at
each iteration. This variant of the Mehrotra’s algorithm for SDP can be stated as follows.

Algorithm 1 (Mehrotra-type predictor–corrector algorithm) Input an accuracy parameter ε >

0, a neighbourhood parameters γ ∈ (0, 1
2 ), and an initial point (X0, y0, S0) ∈ N −∞(γ ). Set

μ0
g = 〈X0, S0〉/n and k := 0.

while 〈Xk , Sk〉 > ε do:

(1) Compute the NT scaling matrix Pk.
(2) (Predictor step) Solve (7) and compute the maximum step size αk

a by (8).
(3) (Corrector step) If αk

a ≥ 0.1, then solve (9) with μk = (1 − αk
a )

3μk
g and compute the max-

imum step size αk
c such that (X(αk

c ), y(αk
c ), S(αk

c )) ∈ N −∞(γ ); If αk
c < 3γ /(5n) or αk

a < 0.1,
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then solve (9) with μk = γμk
g/(1 − γ ) and compute the maximum step size αk

c such that
(X(αk

c ), y(αk
c ), S(αk

c )) ∈ N −∞(γ ).
(4) Let (Xk+1, yk+1, Sk+1) = (X(αk

c ), y(αk
c ), S(αk

c )), μk+1
g = 〈Xk+1, Sk+1〉/n, and set k := k + 1.

end while

Remark 1 Our new algorithm is different from the modified algorithm of Koulaei and Ter-
laky [13] only in the computation of the step size αa in the predictor step. The motivation for this
variant is based on the following lemma.

Lemma 2.1 Suppose that (X , y, S) ∈ F0 and non-singular matrix P satisfies PXSP−1 ∈ Sn. Let
(Xa, ya, Sa) be the solution of (7) and denote

X̄(α) := X + αXa, S̄(α) := S + αSa.

If αa ∈ (0, 1] is the step size such that HP(X̄(αa)S̄(αa)) � 0, then we have

HP(X̄(α)S̄(α)) � 0 ∀α ∈ [0, αa). (12)

Moreover, we have

X̄(α) � 0, S̄(α) � 0 ∀α ∈ [0, αa) and X̄(αa) � 0, S̄(αa) � 0. (13)

Proof We first note

HP(X̄(0)S̄(0)) = HP(XS) � 0.

In fact, since PXSP−1 ∈ Sn, we have HP(XS) = PXSP−1. By similarity,

λmin(HP(XS)) = λmin(XS) = λmin(X
1/2SX1/2) > 0.

By the third equation of system (7), we have

HP(X̄(α)S̄(α)) = (1 − α)HP(XS) + α2HP(XaSa).

Then, for all α ∈ (0, αa), we have

HP(X̄(α)S̄(α)) = α2

(
1 − α

α2
HP(XS) + HP(XaSa)

)

= α2

(
1 − α

α2
− 1 − αa

α2
a

)
HP(XS) + α2

α2
a

HP(X̄(αa)S̄(αa)).

Let f (t) = (1 − t)/t2, t ∈ (0, 1], then f (t) is a strict monotone decreasing function in (0, 1].
For all α ∈ (0, αa), denote δ(α) = f (α) − f (αa), then we have δ(α) > 0 and

HP(X̄(α)S̄(α)) = α2δ(α)HP(XS) + α2

α2
a

HP(X̄(αa)S̄(αa)).

Using the fact that λmin(·) is a homogeneous concave function on the space of symmetric matrices,
one has

λmin(HP(X̄(α)S̄(α))) ≥ α2δ(α)λmin(HP(XS)) + α2

α2
a

λmin(HP(X̄(αa)S̄(αa))) > 0,

which gives the required result of (12).
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By Lemma A.1, that

λmin(H(PX̄(α)S̄(α)P−1)) = λmin(HP(X̄(α)S̄(α))) > 0

reveals PX̄(α)S̄(α)P−1 is non-singular, and further implies that X̄(α) and S̄(α) are non-singular
as well. By using continuity of the eigenvalues of a symmetric matrix (see [11, p. 231], Theorem
A.5), it follows that X̄(α), S̄(α) � 0 for all α ∈ [0, αa), and X̄(αa), S̄(αa) � 0, since X, S � 0. �

We note that, the maximum αa that satisfies the condition (13) is the maximum feasible step
size used in [13]. In general, for two symmetric matrixes A and B, the condition A � 0 and B � 0
does not implicate H(AB) � 0. Therefore, the step size αa computed by (8) may be smaller than
that used in [13]. However, it is obvious that, in the case of LP, the step size αa computed by (8)
is identical with that used in [13,23].

3. Complexity analysis of the algorithm

In this part, we present the convergence and complexity proofs for Algorithm 1. First, we scale
problems (P) and (D) as Li and Terlaky proposed in [14] in order to simplify the proofs of
the main results. At the end of this section, after demonstrating several technical lemmas, we
prove that Algorithm 1 has an iteration-complexity bound of O(n log(Tr(X0S0)/ε)) based on the
NT direction.

3.1 Scaling procedure

For the scaling matrix P satisfying PXSP−1 ∈ Sn, we scale the primal and dual variables of
problems (P) and (D) in the form of

X̂ := PXP, (ŷ, Ŝ) := (y, P−1SP−1). (14)

Hence, one has X̂Ŝ = ŜX̂ , that is, X̂ and Ŝ become commutable after scaling. To keep consistency,
we also have to apply the same scaling to the other data in (P) and (D) as well, that is,

Ĉ := P−1CP−1, (Âi, b̂i) := (P−1AiP
−1, bi) for i = 1, 2, . . . , m.

From now on, we use � to denote the diagonal matrix � = diag(λ1, λ2, . . . , λn), where λi for
i = 1, 2, . . . , n are the eigenvalues of X̂Ŝ with increasing order, that is,

λ1 ≤ λ2 ≤ · · · ≤ λn.

We should emphasize that the matrices X̂Ŝ, ŜX̂ , XS, SX, X1/2SX1/2 and S1/2XS1/2 have the same
eigenvalues, since they are all similar to each other.

The search directions based on system (7) and (9) correspond to the scaled directions defined as

X̂a = PXaP, ŷa = ya, Ŝa = P−1SaP−1,

X̂ = PXP, ŷ = y, Ŝ = P−1SP−1.
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The directions (X̂a, ŷa, Ŝa) and (X̂ , ŷ, Ŝ) are readily verified to be solutions of the scaled
Newton systems

〈Âi, X̂a〉 = 0, i = 1, 2, . . . , m,
m∑

i=1

Âiŷa
i + Ŝa = 0,

H(X̂Ŝa + X̂aŜ) = −X̂Ŝ, (15)

and

〈Âi, X̂〉 = 0, i = 1, 2, . . . , m,
m∑

i=1

Âiŷi + Ŝ = 0,

H(X̂Ŝ + X̂Ŝ) = μ̂I − X̂Ŝ − αaH(X̂aŜa). (16)

The iterates are updated as follows:

(X̂(α), ŷ(α), Ŝ(α)) := (X̂ , ŷ, Ŝ) + α(X̂, ŷ, Ŝ). (17)

Since HP((X + αaXa)(S + αaSa)) = H((X̂ + αaX̂a)(Ŝ + αaŜa)), condition (8)
becomes

H((X̂ + αaX̂a)(Ŝ + αaŜa)) � 0. (18)

By applying similarity, we have

μ̂g(α) = 〈X̂(α), Ŝ(α)〉
n

= μg(α), (19)

and moreover,

(X(α), y(α), S(α)) ∈ N −
∞(γ ) if and only if (X̂(α), ŷ(α), Ŝ(α)) ∈ N −

∞(γ ).

3.2 Lyapunov operator

Let A ∈ R
n×n be given, and define a linear operator LA : Sn → Sn as

LA(X) = AX + XAT,

which is called the Lyapunov operator. We note the following well-known property (see [11,
p. 250], Theorem E.2).

Lemma 3.1 Let A ∈ R
n×n and B ∈ Sn. The Lyapunov equation

LA(X) = B

has a unique symmetric solution if A and −A have no eigenvalues in common.
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Let A ∈ Sn++, then the Lyapunov operator LA is guaranteed to be invertible. Use L−1
A (B) to

denote the unique symmetric solution X to the equation LA(X) = B. It is easy to show that, for
A ∈ Sn++, we have

L−1
A (A2) = 1

2 A, L−1
A (A) = 1

2 I , L−1
A (I) = 1

2 A−1.

Note that since Tr((AX + XA)Y) = Tr(X(AY + YA)), it follows that LA is symmetric with respect
to 〈·, ·〉, that is,

〈LA(X), Y〉 = 〈X, LA(Y)〉.
We show that L−1

A is also symmetric with respect to 〈·, ·〉. In fact, for L−1
A (B1) = X, L−1

A (B2) = Y ,
we have

〈L−1
A (B1), B2〉 = 〈X , LA(Y)〉 = 〈LA(X), Y〉 = 〈B1, L−1

A (B2)〉.

Lemma 3.2 Let A ∈ Sn++. If B � 0, then L−1
A (B) � 0.

Proof Suppose L−1
A (B) = X , that is, LA(X) = AX + XA = B. Then, by similarity and

Lemma A.2, we have

λmin(A
1/2XA1/2) = λmin(AX) ≥ λmin(H(AX)) = 1

2λmin(B) ≥ 0.

Let A1/2XA1/2 = Y , and therefore Y � 0. Thus,

X = A−1/2YA−1/2 � 0,

which is the required result. �

We observed that for NT scaling, we have X̂ = Ŝ := V [18]. Hence, in terms of the Lyapunov
operator, the third equations of systems (15) and (16) become

LV (X̂a + Ŝa) = −2V 2,

LV (X̂ + Ŝ) = 2(μ̂I − V 2 − αaH(X̂aŜa)).

Therefore, by V ∈ Sn++, we have

X̂a + Ŝa = −L−1
V (2V 2) = −V , (20)

X̂ + Ŝ = μ̂V−1 − V − 2αaL−1
V (H(X̂aŜa)). (21)

3.3 Technical results

Before proceeding to the complexity result, we have to prove some technical lemmas. Throughout
this section, we consider P as the NT scaling matrix.

The difficulty in analysing Mehrotra-type algorithms arises from the second-order term
H(X̂aŜa) in the corrector step of the algorithm, which is one of the main differences of
this algorithm and other interior-point algorithms. To overcome this difficulty, we present some
important technical lemmas that give the relationship between this term and the matrix X̂Ŝ. Before
doing so, we need to present some notations.
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Let M := H(X̂aŜa)) ∈ Sn with the eigenvalue decomposition M = QDQT, where D =
diag{d1, d2, . . . , dn} is a diagonal matrix with all the eigenvalues of M along its diagonal, Q is an
orthonormal matrix, that is, QQT = I . Let the eigenvalues be arranged in increasing order, that is,

d1 ≤ d2 ≤ · · · ≤ dk−1 ≤ 0 ≤ dk ≤ · · · ≤ dn.

Then, we define the negative part and the positive part as

M− = QD−QT, M+ = QD+QT,

where D− = diag{d1, d2, . . . , dk−1, 0, . . . , 0}, D+ = diag{0, . . . , 0, dk , . . . , dn}. Apparently, M =
M− + M+, where −M−, M+ � 0.

Lemma 3.3 Let (X̂, ŷ, Ŝ) ∈ F0, (X̂a, ŷa, Ŝa) be the solution of (15), and αa be the maximum
step size defined by (18). Then

H(X̂aŜa) � 1
4 V 2

and

−α2
a H(X̂aŜa) � V 2.

Proof It is trivial to verify that

H(X̂aŜa) = 1
4 ((X̂a + Ŝa)2 − (X̂a − Ŝa)2).

Hence, by (20), we have

H(X̂aŜa) = 1
4 (V 2 − (X̂a − Ŝa)2)

from which the former result follows.
By (18) and (15), one has

X̂Ŝ + αa(−X̂Ŝ) + α2
a H(X̂aŜa) � 0.

This is equivalent to

(1 − αa)V
2 + α2

a H(X̂aŜa) � 0

from which the letter statement follows. �

Lemma 3.4 Let (X̂, ŷ, Ŝ) ∈ F0 and (X̂a, ŷa, Ŝa) be the solution of (15), then

k−1∑
i=1

(−di) =
n∑

i=k

di ≤ 1

4
nμg.

Proof By Lemma 3.3, we have

H(X̂aŜa) − 1

4
V 2 � 0.

Thus, by Lemma A.3, we have

di ≤ 1
4λi, i = k, . . . , n,

and hence,
n∑

i=k

di ≤ 1

4
(λ1 + λ2 + · · · + λn) = 1

4
nμg.

By using Tr(H(X̂aŜa)) = Tr(X̂aŜa) = 0, we complete the proof. �
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Lemma 3.5 Let (X̂, ŷ, Ŝ) ∈ F0 and (X̂a, ŷa, Ŝa) be the solution of (15), then

(L−1
V )2(H(X̂aŜa)) � 1

16 I

and

−(L−1
V )2(α2

a H(X̂aŜa)) � 1
4 I .

Proof Since (L−1
V )2(V 2) = 1

4 I , by Lemma 3.2, the proof is a direct consequence of
Lemma 3.3. �

The following lemma gives an upper bound for the second-order term on the right-hand side
of (21).

Lemma 3.6 Let (X̂, ŷ, Ŝ) ∈ F0 and (X̂a, ŷa, Ŝa) be the solution of (15), then

‖2αaL−1
V (H(X̂aŜa))‖2

F ≤ 5
16 nμ̂g.

Proof Since L−1
A is symmetric with respect to 〈·, ·〉, it follows that

‖2αaL−1
V (H(X̂aŜa))‖2

F = 〈2αaL−1
V (H(X̂aŜa)), 2αaL−1

V H(X̂aŜa)〉
= 〈4α2

a (L
−1
V )2(H(X̂aŜa)), H(X̂aŜa)〉.

By using

M := H(X̂aŜa) = QDQT,

we have

‖2αaL−1
V (H(X̂aŜa))‖2

F = 〈4α2
a QT(L−1

V )2(M)Q, D〉.
Let

H := 4α2
a QT(L−1

V )2(M)Q,

and from Lemma 3.5, we obtain

−I � H � 1
4 I .

Hence, the diagonal elements of H satisfy −1 ≤ Hii ≤ 1
4 , and consequently,

‖2αaL−1
V (H(X̂aŜa))‖2

F = 〈H, D−〉 + 〈H, D+〉

=
k−1∑
i=1

Hiidi +
n∑

i=k

Hiidi

≤
k−1∑
i=1

(−di) +
n∑

i=k

(
di

4

)

≤ 5

16
nμ̂g,

where the last inequality follows from Lemma 3.4. �

The following technical lemma will be used in the next theorem, which estimates the maximum
step size in the corrector step.
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Lemma 3.7 Let (X̂, ŷ, Ŝ) ∈ N −∞(γ ). Then, we have

‖H(X̂Ŝ)‖F ≤ 1

2

⎡
⎣

(
1

γ

(
μ̂

μ̂g

)2

+ 1 − 2μ̂

μ̂g

)1/2

+
√

5

4

⎤
⎦

2

nμ̂g.

Proof By using (21) and 〈X̂ , Ŝ〉 = 0, we have

‖X̂‖2
F + ‖Ŝ‖2

F = ‖μ̂V−1 − V − 2αaL−1
V (H(X̂aŜa))‖2

F

≤ [‖μ̂V−1 − V‖F + ‖2αaL−1
V (H(X̂aŜa))‖F]2.

By (X̂, ŷ, Ŝ) ∈ N −∞(γ ), it has

λi(V
−1) = 1√

λi
≤ 1√

γ μ̂g

.

Hence,

‖μ̂V−1 − V‖2
F = ‖μ̂V−1‖2

F + ‖V‖2
F − 2nμ̂

≤ nμ̂2

(γ μ̂g)
+ nμ̂g − 2nμ̂

=
(

1

γ

(
μ̂

μ̂g

)2

+ 1 − 2μ̂

μ̂g

)
nμ̂g.

Therefore, by using Lemma 3.6, we obtain

‖H(X̂Ŝ)‖F ≤ ‖X̂Ŝ‖F

≤ ‖X̂‖F‖Ŝ‖F

≤ 1

2
(‖X̂‖2

F + ‖Ŝ‖2
F)

≤ 1

2

⎡
⎣(

1

γ

(
μ̂

μ̂g

)2

+ 1 − 2μ̂

μ̂g

)1/2

+
√

5

4

⎤
⎦

2

nμ̂g,

which completes the proof. �

The following corollary, which follows from Lemma 3.7, gives an explicit upper bound for a
specific value of μ̂.

Corollary 3.8 If μ = γμg/(1 − γ )μ̂g, where 0 ≤ γ ≤ 1
2 , then

‖H(X̂Ŝ)‖F ≤ 5
4 nμ̂g.

Theorem 3.9 Suppose that the current iterate (X̂, ŷ, Ŝ) ∈ N −∞(γ ), where γ ∈ (0, 1
2 ), and let

(X̂, ŷ, Ŝ) be the solution of (16) with μ = γμg/(1 − γ )μ̂g. Then, the maximum step size αc,
that keeps (X̂(αc), ŷ(αc), Ŝ(αc)) ∈ N −∞(γ ), satisfies

αc ≥ 3γ

5n
.
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Proof We need to estimate the maximum non-negative α that keeps the next iterate in N −∞(γ ),
that is, X̂(α), Ŝ(α) ∈ Sn++ and

λmin(X̂(α)Ŝ(α)) ≥ γ μ̂g(α). (22)

By Equation (16), we have

H(X̂(α)Ŝ(α)) = X̂Ŝ + αH(X̂Ŝ + X̂Ŝ) + α2H(X̂Ŝ)

= X̂Ŝ + α(μ̂I − X̂Ŝ − αaH(X̂aŜa)) + α2H(X̂Ŝ)

= αμ̂I + (1 − α)X̂Ŝ − ααaH(X̂aŜa) + α2H(X̂Ŝ). (23)

Hence, by using Tr(H(M)) = Tr(M), we obtain

μ̂g(α) = Tr(H(X̂(α)Ŝ(α)))

n
=

(
1 − α + α

μ̂

μ̂g

)
μ̂g. (24)

Let

G(α) := (1 − α)X̂Ŝ − ααaH(X̂aŜa),

then by Lemma 3.3, we have

G(α) � (
1 − α − 1

4ααa
)

X̂Ŝ � (
1 − 5

4α
)

X̂Ŝ.

If α ≥ 4
5 , we are done. Otherwise, by Lemma A.3, we have

λmin(G(α)) ≥ (
1 − 5

4α
)
λ1 ≥ (

1 − 5
4α

)
γ μ̂g.

It follows from Equation (23) and from the fact that λmin(·) is a homogeneous concave function
on the space of symmetric matrices, that

λmin(H(X̂(α)Ŝ(α))) ≥ αμ̂ + λmin(G(α)) + α2λmin(H(X̂Ŝ))

≥ αμ̂ +
(

1 − 5

4
α

)
γ μ̂g − α2‖H(X̂Ŝ)‖F

≥
(

α
μ̂

μ̂g
+

(
1 − 5

4
α

)
γ − 5

4
α2n

)
μ̂g,

where the last inequality follows from Corollary 3.8. Using the specific value of μ̂, we have

λmin(H(X̂(α)Ŝ(α))) ≥
(

αγ

1 − γ
+

(
1 − 5

4
α

)
γ − 5

4
α2n

)
μ̂g

=
(

αγ 2

1 − γ
+ (1 − α)γ + 3

4
αγ − 5

4
α2n

)
μ̂g

= μ̂g(α) +
(

3

4
αγ − 5

4
α2n

)
μ̂g.

Thus, for all 0 ≤ α ≤ 3γ /(5n), it holds that

λmin(H(X̂(α)Ŝ(α))) ≥ μ̂g(α) > 0,
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which reveals X̂(α)Ŝ(α) is non-singular by Lemma A.1, and further implies that X̂(α) and Ŝ(α)

are non-singular as well. By using continuity of the eigenvalues of a symmetric matrix (see [11]
Theorem A.5), it follows that X̂(α) � 0 and Ŝ(α) � 0 for all α ∈ [0, 3γ /(5n)], since X̂, Ŝ � 0.
Moreover, by Lemma A.2, we have

λmin(X̂(α)Ŝ(α)) ≥ λmin(H(X̂(α)Ŝ(α))) ≥ μ̂g(α) ∀α ∈
[

0,
3γ

5n

]
.

Hence, we can conclude that αc ≥ 3γ /(5n). �

3.4 Polynomial complexity

In this section, we present our main complexity result.

Theorem 3.10 Algorithm 1 terminates in at most O(n log(Tr(X0S0)/ε)) iterations with a solution
for which Tr(XS) ≤ ε.

Proof If αa < 0.1 or αc < 3γ /(5n), then the algorithm uses the safeguard strategy, and by
Theorem 3.9 and relation (24) one has

μ̂g(α) =
(

1 − α
1 − 2γ

1 − γ

)
μ̂g ≤

(
1 − 3γ (1 − 2γ )

5(1 − γ )n

)
μ̂g.

If αa ≥ 0.1 and αc ≥ 3γ /(5n), then the algorithm uses Mehrotra’s updating strategy, and thus
one has

μ̂g(α) = (1 − α(1 − (1 − αa)
3))μ̂g ≤

(
1 − 3γ

20n

)
μ̂g.

Therefore, by (19), there have a positive constant δ < 1 such that

μg(α) ≤
(

1 − δ

n

)
μg,

which completes the proof conforming to Theorem 3.2 of [28]. �

4. Conclusions

In this paper, we have discussed the polynomiality of Mehrotra-type predictor–corrector algorithm
for SDP. In fact, this algorithm is an extension of the recent variant of Mehrotra’s predictor–
corrector algorithm of Salahi et al. [23] for LP problems. Based on the NT directions [20,21], we
show that the iteration complexity of the algorithm is O(n log(Tr(X0S0)/ε)), which is analogous
to the case of LP.
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Appendix 1

In this section, we prove two technical lemmas that have been used frequently during the
analysis.
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The following lemma follows from the fact that the real part of the spectrum of a real matrix is
contained between the largest and the smallest eigenvalues of its Hermitian part (see [10, p. 187],
Mirsky’s theorem).

Lemma A.1 For any M ∈ R
n×n, the following relations hold:

max
i=1,...,n

Re[λi(M)] ≤ λmax(H(M)), min
i=1,...,n

Re[λi(M)] ≥ λmin(H(M)).

Lemma A.2 Suppose that X ∈ Sn++ and S ∈ Sn, then λmin(XS) ≥ λmin(H(XS)).

Proof By similarity, we have λi(XS) = λi(X1/2SX1/2) ∈ R. Hence, the result follows from
Lemma A.1. �

We show the following Weyl theorem (see [9, p. 181], Theorem 4.3.1).

Lemma A.3 Let A, B ∈ R
n×n be symmetric and let the eigenvalues λi(A), λi(B) and λi(A + B)

be arranged in increasing order. For each k = 1, 2, . . . , n, we have

λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B).
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