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Abstract In this paper, we propose a duality theory for semi-infinite linear program-
ming problems under uncertainty in the constraint functions, the objective function,
or both, within the framework of robust optimization. We present robust duality by
establishing strong duality between the robust counterpart of an uncertain semi-infinite
linear program and the optimistic counterpart of its uncertain Lagrangian dual. We
show that robust duality holds whenever a robust moment cone is closed and convex.
We then establish that the closed-convex robust moment cone condition in the case
of constraint-wise uncertainty is in fact necessary and sufficient for robust duality.
In other words, the robust moment cone is closed and convex if and only if robust
duality holds for every linear objective function of the program. In the case of uncer-
tain problems with affinely parameterized data uncertainty, we establish that robust
duality is easily satisfied under a Slater type constraint qualification. Consequently,
we derive robust forms of the Farkas lemma for systems of uncertain semi-infinite
linear inequalities.
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1 Introduction

Duality theory has played a key role in the study of semi-infinite programming [13,15,
16,23] which traditionally assumes perfect information (that is, accurate values for the
input quantities or system parameters), despite the reality that such precise knowledge
is rarely available in practice for real-world optimization problems. The data of real-
world optimization problems are often uncertain (that is, they are not known exactly)
due to estimation errors, prediction errors or lack of information [3–6].

Robust optimization [2] provides a deterministic framework for studying mathe-
matical programming problems under data uncertainty. It is based on a description of
uncertainty via sets, as opposed to probability distributions which are generally used
in stochastic approaches [7,25]. A successful treatment of the robust optimization
approach to linear programming problems as well as convex optimization problems
under data uncertainty has been given by Ben-Tal and Nemirovski [3–5], and El Ghaoui
[12].

The present work was motivated by the recent development of robust duality theory
[1,21] for convex programming problems in the face of data uncertainty. To set the
context of this work, consider a standard form of linear semi-infinite programming
(SIP in brief) problem in the absence of data uncertainty:

(SP) inf 〈c, x〉
s.t. 〈at , x〉 ≥ bt , ∀t ∈ T,

where T is an arbitrary (possible infinite) index set, c, at ∈ R
n , and bt ∈ R, t ∈ T . The

primal linear SIP problem in the face of input-parameter uncertainty in the constraints
can be captured by the parameterized linear SIP model problem

(USP) inf 〈c, x〉
s.t. 〈at , x〉 ≥ bt , ∀ t ∈ T,

where the parameters at and bt are uncertain, and the couple (at , bt ) belongs to an
uncertainty set Ut ⊂ R

n+1 for all t ∈ T .

As an illustration of the model, consider the uncertain linear SIP problem:

inf
(x1,x2)∈R2

{x1 : a1
t x1 + a2

t x2 ≥ bt , t ∈ T }

where the data a1
t , a2

t are uncertain, and for each t ∈ T := [0, 1], a1
t ∈ [−1−2t,−1+

2t], a2
t ∈ [1/(2 + t), 1/(2 − t)] and bt ≡ −1. Then, this uncertain problem can be

captured by our parameterized model as

inf x1

s.t. a1
t x1 + a2

t x2 ≥ bt , ∀t ∈ T,

where ut := (a1
t , a2

t , bt ) ∈ R
3 is the uncertain parameter and ut ∈ Ut := Vt × Wt

with Vt := [−1 − 2t,−1 + 2t] × [1/(2 + t), 1/(2 − t)] and Wt = {−1}.
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Robust linear semi-infinite programming 187

Let ut = (at , bt ), for t ∈ T . The uncertain set-valued mapping U : T ⇒ R
n+1, is

defined as U(t) := Ut for all t ∈ T . We represent by ut := (at , bt ) ∈ Ut an element of
Ut or a variable ranging on Ut . So, gph U = {(t, ut ) : ut ∈ Ut , t ∈ T } and u ∈ U means
that u is a selection of U , i.e., that u : T → R

n+1 and ut ∈ Ut for all t ∈ T (u can be
also represented as (ut )t∈T ). In stochastic programming [7,25] each set Ut is equipped
with a probability distribution and each selection of U determines a scenario for (S P).

The robust counterpart of (U S P) [1,3,5] is

(RSP) inf 〈c, x〉
s.t. 〈at , x〉 ≥ bt , ∀ (at , bt ) ∈ Ut , ∀ t ∈ T,

where the uncertain constraint is enforced for all realizations of the uncertainties within
the uncertainty set Ut . The robust feasible set F is defined by

F := {x : 〈at , x〉 ≥ bt , ∀ (at , bt ) ∈ Ut , ∀ t ∈ T }
= {x : 〈at , x〉 ≥ bt , ∀ (t, ut ) ∈ gph U} .

Therefore, the robust counterpart of (U S P) can simply be written as

(RSP) inf 〈c, x〉
s.t. 〈at , x〉 ≥ bt , ∀ (t, ut ) ∈ gph U ,

(1)

where ut = (at , bt ) for all t ∈ T . Obviously, F is a closed convex set, and we assume
throughout this paper that it is nonempty.

The robust counterpart (RSP) provides us with a worst-case solution for the uncer-
tain SIP and the value of the robust counterpart, inf(RSP), represents the “primal
worst value”. Now, for each fixed selection u = (at , bt )t∈T ∈ U , the Lagrangian
dual of (USP) is

(DP) sup
λ∈R

(T )
+

{∑
t∈T

λt bt : −c +
∑
t∈T

λt at = 0n

}
,

where R
(T )
+ denotes the set of mappings λ : T → R+ (also denoted by (λt )t∈T ) such

that λt = 0 except for finitely many indexes), and sup ∅ = −∞ by convention.
The optimistic counterpart [1,21] of the Lagrangian dual of (DP) is given by

(ODP) sup
u=(at ,bt )t∈T ∈U

λ∈R
(T )
+

{∑
t∈T

λt bt : −c +
∑
t∈T

λt at = 0n

}
.

The solution of the optimistic counterpart (RSP) gives us a best-case solution of
the uncertain Lagrangian dual problem and the value of the optimistic counterpart,
sup(ODP), represents the “dual best value”.

The purpose of this paper is to present a robust duality theory for linear (SIP)
in the face of data uncertainty by examining strong duality between the robust
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188 M. A. Goberna et al.

counterpart (RS P) and the optimistic counterpart (O D P). Robust duality means
that

inf {〈c, x〉 : x ∈ F} = max
u=(at ,bt )t∈T ∈U

λ∈R
(T )
+

{∑
t∈T

λt bt : −c +
∑
t∈T

λt at = 0n

}

and it describes the relation “primal worst equals dual best” with the dual attainment
in (ODP). Thus, inf(RSP) = max(ODP).

In this paper, we make the following key contributions: Firstly, we establish that
robust duality holds for (USP) whenever the robust moment cone,

M :=
⋃

u=(at ,bt )t∈T ∈U
co cone {(at , bt ), t ∈ T ; (0n,−1)},

is closed and convex. We further show that the closed-convex robust moment cone
condition in the case of constraint uncertainty is in fact necessary and sufficient for
robust duality. In other words, the robust moment cone is closed and convex if and
only if robust duality holds for every linear objective function of the program.

On the other hand, the robust counterpart (RSP) can also be viewed as an ordinary
linear semi-infinite programming problem. Thus, its standard (or Haar) dual problem
of (RSP) is given by:

(DRSP) sup
λ∈R

(gph U)
+

∑
(t,ut )∈gph U λ(t,ut )b(t,ut )

s.t. −c +
∑

(t,ut )∈gph U λ(t,ut )a(t,ut ) = 0n . (2)

By construction, inf(RSP) ≥ sup(DRSP) ≥ sup(ODP). We also derive strong duality
between the robust counterpart (RS P) and its standard (or Haar) dual problem [15] in
terms of a robust characteristic cone, illustrating the link between the Haar dual and
the optimistic dual.

Secondly, for the important case of affinely parametrized data uncertainty [2], we
show that the convexity of the robust moment cone always holds and that it is closed
under a robust Slater constraint qualification together with suitable topological require-
ments on the index set and the uncertainty set of the problem.

Thirdly, we derive robust forms of Farkas’ lemma [10,11,17] for systems of uncer-
tain semi-infinite linear inequalities in terms of the robust moment cone and the robust
characteristic cones.

The organization of the paper is as follows. Section 2 provides robust duality theo-
rems under geometric conditions in terms of robust moment and characteristic cones.
Section 3 shows that these cone conditions are satisfied if and only if robust duality
holds for every linear objective function. Section 4 presents robust versions of the
Farkas lemma for uncertain semi-infinite linear inequalities. Section 5 provides some
conclusions of the work.
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Robust linear semi-infinite programming 189

2 Robust duality

Let us introduce the necessary notation. We denote by ‖·‖ and Bn the Euclidean
norm and the open unit ball in R

n . By 0n we represent the null vector of R
n . For

a set C ⊂ R
n, we define its convex hull co C and conical hull cone C as co C =

{∑m
i=1 λi ci : λi ≥ 0,

∑m
i=1 λi = 1, ci ∈ C, m ∈ N} and cone C = ⋃

λ≥0 λC,

respectively. The topological closure of C is cl C. Given h : R
n → R ∪ {+∞}, such

that h �= +∞, the epigraph of h is

epih := {(x, r) ∈ R
n+1 : h(x) ≤ r}

and the conjugate function of h is h∗ : R
n → R ∪ {+∞} such that

h∗(v) := sup {〈v, x〉 − h(x) : x ∈ domh} .

The indicator and the support functions of C are denoted respectively by δC and δ∗
C .

Let C ⊂ R
n be a convex set and h : C → R. Identifying h with its extension to

R
n by defining h (x) := +∞ for any x /∈ C, h is called convex when epih is convex,

concave when −h is convex, and affine when it is both convex and concave on C. We
define the robust moment cone of (RSP) as

M =
⋃

u=(at ,bt )t∈T ∈U
co cone{(at , bt ), t ∈ T ; (0n,−1)}. (3)

Note first that if inf(RSP) = −∞, then (ODP) has no feasible solution, i.e.

c /∈
⋃

u=(at ,bt )t∈T ∈U
cocone{at , t ∈ T },

where cocone{at , t ∈ T } denotes the convex cone generated by {at , t ∈ T }. In this
case, inf(RSP) = sup(ODP) = −∞
Theorem 1 If the robust moment cone M is closed and convex and inf(RSP) �= −∞,

then

inf(RSP) = max(ODP).

Proof Let α := inf(RSP) ∈ R. Then,

[〈at , x〉 ≥ bt , ∀ (t, ut ) ∈ gph U] ⇒ 〈c, x〉 − α ≥ 0, (4)

where ut = (at , bt ). Define g : R
n → R by

g(x) = sup
(t,ut )∈gph U

{− 〈at , x〉 + bt }.
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190 M. A. Goberna et al.

Then, g is convex, F = {x : g(x) ≤ 0} and (4) is equivalent to

g(x) ≤ 0 ⇒ 〈c, x〉 − α ≥ 0.

Let f (x) := 〈c, x〉 + δF (x). This implies that f (x) ≥ α for all x ∈ R
n . So,

(0n,−α) ∈ epi f ∗ = cl (epi(〈c, .〉)∗ + epiδ∗
F )

= epi(〈c, .〉)∗ + epiδ∗
F

= ({c} × R+
)+ epiδ∗

F .

On the other hand,

epiδ∗
F = epi

(
sup
λ≥0

(λg)

)∗
= clco

⎛
⎝⋃

λ≥0

epi(λg)∗
⎞
⎠

(see, e.g., [9] and [24]) and

clco

⎛
⎝⋃

λ≥0

epi(λg)∗
⎞
⎠ = −cl co

⎛
⎝⋃

λ≥0

⋃
(t,ut )∈ gph U

[
λ(at , bt ) + {0n} × R−

]⎞⎠
= −cl co M. (5)

As M is closed and convex by our assumption, we have epiδ∗
F = −M , and so,

(0n,−α) ∈ ({c} × R+) − M. This implies that there exists û = (̂at , b̂t )t∈T ∈ U
and λ̂ ∈ R

(T )
+ such that

c =
∑
t∈T

λ̂t ât and − α ≥ −
∑
t∈T

λ̂t b̂t .

So, we see that α ≤ ∑
t∈T λ̂t b̂t ≤ max(ODP). Thus the conclusion follows from the

weak duality, and we also conclude that (̂u, λ̂) is optimal for (ODP ). ��
For the sake of self-containment, we have provided a short and direct proof for

Theorem 1 using convex analysis. Recall, on the other hand, that the Haar dual of
(RS P) was given in (2) by

(DRSP) sup
λ∈R

(gph U)
+

∑
(t,ut )∈ gph U λ(t,ut )b(t,ut )

s.t. −c +
∑

(t,ut )∈gph U λ(t,ut )a(t,ut ) = 0n .

Now consider the so-called characteristic cone of (RSP)

K = co cone{(at , bt ), (t, ut ) ∈ gph U; (0n,−1)}, (6)
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Robust linear semi-infinite programming 191

where ut = (at , bt ) for all t ∈ T . Then the ordinary dual problem (DRSP) is equivalent
to sup {γ : (c, γ ) ∈ K } in the sense that both problems have the same optimal value
and are simultaneously solvable or not. It is worth observing that K = co M. In fact,
co M ⊂ K because M ⊂ K trivially and K is convex. To show the reverse inclusion,
take an arbitrary generator of K different of (0n,−1) ∈ M, say us = (as, bs), with
(s, us) ∈ gph U . As

(as, bs) ∈ co cone{(at , bt ), t ∈ T ; (0n,−1)},

we have (as, bs) ∈ M. Thus, K ⊂ co M and so K = co M.

From the linear SIP strong duality theorem, inf(RS P) = max(DRS P) whenever
K is closed (see, e.g., [15, Chapter 8]). If M is closed and convex, then K = co M = M
is closed and so

inf(RS P) = max(DRSP)

= max {γ : (c, γ ) ∈ K }
= max {γ : (c, γ ) ∈ M}
= max(ODP).

Thus, we have obtained an alternative proof of Theorem 1 appealing to linear SIP
machinery.

The next two examples show that M can be neither convex nor closed. Robust
duality fails in the first example due to the existence of an infinite duality gap between
(RSP) and (ODP) and also in the second example, where (ODP) is not solvable.

Example 1 Consider the simple uncertain linear SIP problem

(SP) inf −x1 − x2
s.t. 〈at , x〉 ≥ bt , ∀t ∈ T,

where T = [0, 1], a0 is uncertain on the set

V0 = {(cos α, sin α) : α ∈ [0, 2π ] ∩ Q}

(a dense subset of the circle {x : ‖x‖ = 1}) whereas the remaining data are determin-
istic: b0 = −1 and (at , bt ) = (02,−1) for t ∈ ]0, 1]. This uncertain problem can be
modeled as

(USP) inf −x1 − x2
s.t. 〈at , x〉 ≥ bt ,∀t ∈ T,

with uncertain mapping U such that U0 = V0 × {−1} and Ut = {(02,−1)} for
all t ∈ ]0, 1]. Observe that there exists a one-to-one correspondence between the
selections of U and the elements of V0 because the unique uncertain constraint is
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192 M. A. Goberna et al.

〈a0, x〉 ≥ b0. So, the robust counterpart and the robust moment cone are

(RSP) inf −x1 − x2
s.t. −〈v0, x〉 ≥ −1,∀v0 ∈ V0,

〈02, x〉 ≥ −1,∀t ∈ ]0, 1] ,

and

M =
⋃

v0∈V0

co cone{(−v0,−1) , (02,−1)},

respectively. Thus M is the union of countable many 2-dimensional convex cones hav-
ing a common edge on the vertical axis. Obviously, M is neither convex nor closed.

As F = cl B, the unique optimal solution is
(√

2/2,
√

2/2
)

and min(RSP) = −√
2.

Concerning the robust dual problem (ODP), it is inconsistent because (1, 1) /∈
cocone{v0, 02} = R+{v0} whichever v0 ∈ V0 we consider (cos α �= sin α for any
α ∈ [0, 2π ] ∩ Q), so that sup(ODP) = −∞ by convention, i.e., there is an infinite
duality gap.

Example 2 Let us replace the set V0 in Example 1 by the set obtained eliminating
from the square [−1, 1]2 the relative interior of its edges. Then the robust moment
cone

M = cone{
(

]−1, 1[2 ∪ {(1, 1) , (−1, 1) , (−1,−1) , (1,−1)}
)

× {−1}}

is neither closed nor convex and F = co {± (1, 0) ,± (0, 1)} , so that min(RSP) =
−1 = sup(ODP), i.e., there is no duality gap but (ODP) is not solvable.

In Example 1, the characteristic cone

K = co cone{(−v0,−1) , v0 ∈ V0; (02,−1)}
=
{

x ∈ R
3 : x3 < −

√
x2

1 + x2
2

}
∪ cone {V0 × {−1}}

is not closed, (DRSP) is not solvable and

inf(RSP) = −√
2 = sup(DRSP) > sup(ODP) = −∞.

(The equality inf(RSP) = sup(DRSP) comes from [15, Theorem 8.1(v)].)
In Example 2, the characteristic cone

K = co cone{(1, 1,−1), (−1, 1,−1), (−1,−1,−1), (1,−1,−1)}

is finitely generated and so it is closed, even though M is neither closed nor convex.
Moreover,

inf(RSP) = −1 = max(DRSP) = sup(ODP).
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Robust linear semi-infinite programming 193

3 Robust moment cones: convexity and closure

We say that (RSP) satisfies the convexity condition if for every t ∈ T,

Ut = {(at (zt ), bt (zt )) : zt ∈ Zt },

where Zt is a convex set in R
q for some q ∈ N , at (·) is affine, i.e., at = (a1

t , . . . , an
t )

and each a j
t (·) is an affine function, j = 1, . . . , n, and bt (·) is concave.

Proposition 1 Suppose that (RS P) satisfies the convexity condition. Then the robust
moment cone M is convex.

Proof Let a1, a2 ∈ M and μ ∈ [0, 1]. Let a := μa1 + (1 − μ)a2 and denote
a = (y, γ ) ∈ R

n × R, with a1 = (y1, γ1) ∈ R
n × R and a2 = (y2, γ2) ∈ R

n × R.
Then, there exist z1

t ∈ Zt for all t ∈ T, λ1 = (λ1
t )t∈T ∈ R

(T )
+ , and α1 ≤ 0 such that

(y1, γ1) =
∑
t∈T

λ1
t (at (z

1
t ), bt (z

1
t )) + (0n, α1).

Similarly, there exist z2
t ∈ Zt for all t ∈ T, λ2 = (λ2

t )t∈T ∈ R
(T )
+ and α2 ≤ 0 such

that

(y2, γ2) =
∑
t∈T

λ2
t (at (z

2
t ), bt (z

2
t )) + (0n, α2).

Then, we have

μy1 + (1 − μ)y2 =
∑
t∈T

(
μλ1

t at (z
1
t ) + (1 − μ)λ2

t at (z
2
t )
)

and

μγ1 + (1 − μ)γ2 =
∑
t∈T

(
μλ1

t bt (z
1
t ) + (1 − μ)λ2

t bt (z
2
t )
)

+ μα1 + (1 − μ)α2.

We associate with t ∈ T the scalar λt := μλ1
t + (1 − μ)λ2

t and the vector

zt :=
{

z1
t , if λt = 0,

μλ1
t

λt
z1

t + (1−μ)λ2
t

λt
z2

t , if λt > 0.

Then zt ∈ Zt for all t ∈ T , and

μλ1
t z1

t + (1 − μ)λ2
t z2

t = λt zt .

By our convexity assumption, we see that, for each t ∈ T ,

μλ1
t at (z

1
t ) + (1 − μ)λ2

t at (z
2
t ) = λt at (zt ), (7)

123
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and

μλ1
t bt (z

1
t ) + (1 − μ)λ2

t bt (z
2
t ) ≤ λt bt (zt ). (8)

Then, there exists ρ ≤ 0 such that

a = (y, γ ) = μ(y1, γ1) + (1 − μ)(y2, γ2)

= (μy1 + (1 − μ)y2, μγ1 + (1 − μ)γ2)

=
(∑

t∈T

λt at (zt ),
∑
t∈T

λt bt (zt )

)
+ (0n, μα1 + (1 − μ)α2 + ρ)

=
∑
t∈T

λt (at (zt ), bt (zt )) + (−μα1 − (1 − μ)α2 − ρ)(0n,−1),

and this implies that a = (y, γ ) ∈ M . ��
In particular, the robust moment cone M is convex in the important affinely data

parametrization case [2], i.e.

Ut =
⎧⎨
⎩(at , bt ) = (a0

t , b0
t ) +

q∑
j=1

z j
t

(
a j

t , b j
t

)
: zt = (z1

t , . . . , zq
t ) ∈ Zt

⎫⎬
⎭ ,

where Zt is closed and convex for each t ∈ T . In this case, U is convex-valued and
the convexity condition holds with bt (·) being also affine.

It is easy to see from Example 1 that M may not be convex when the convexity
condition fails. In fact, in this example, V0 cannot be the image of certain convex set
by an affine mapping (because V0 is not even connected).

The set-valued mapping U : T ⇒ R
n+1, with (T, d) being a metric space, is said

to be (Hausdorff) upper semicontinuous at t ∈ T if for any ε > 0 there exists η > 0
such that

Us ⊂ Ut + εBn+1 ∀ s ∈ T with d(s, t) ≤ η.

In particular, U is uniformly upper semicontinuous on T if for any ε > 0 there exists
η > 0 such that

Us ⊂ Ut + εBn+1 ∀ s, t ∈ T with d(s, t) ≤ η.

If, additionally, T is compact, then there exists a finite set {t1, . . . , tm} ⊂ T such that
d (t, {t1, . . . , tm}) < η for all t ∈ T . Then, Us ⊂ ⋃

i=1,...,m

(Uti + εBn+1
)∀ s ∈ T,

so that gph U is bounded whenever U is compact-valued, i.e., for each t ∈ T,Ut is a
compact set.

We say that (RSP) satisfies the Slater condition when there exists x0 ∈ R
n (called

Slater point) such that 〈at , x0〉 > bt for all (t, ut ) ∈ gph U , i.e. when there exists a
strict solution of the constraint system of (RSP).
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Robust linear semi-infinite programming 195

Proposition 2 Suppose that the following three assumptions hold:

(i) T is a compact metric space;
(ii) U is compact-valued and uniformly upper semicontinuous on T ;

(iii) (RS P) satisfies the Slater condition.

Then, the robust moment cone M is closed.

Proof Let

(zk, rk) ∈ M =
⋃
u∈U

co cone{(at , bt ), t ∈ T ; (0n,−1)}, k = 1, 2, . . . ,

such that (zk, rk) → (z, r). Then, for each k, there exists uk ∈ U , with uk
t = (ak

t , bk
t ) ∈

Ut for all t ∈ T , such that

(zk, rk) ∈ co cone{(ak
t , bk

t ), t ∈ T ; (0n,−1)}.

From the Carathéodory theorem, we can find λk
i ≥ 0, i = 1, . . . , n + 1, μk ≥

0, {tk
1 , . . . , tk

n+1} ⊂ T and (atk
i
, btk

i
) ∈ Utk

i
, i = 1, . . . , n + 1, such that

(zk, rk) =
n+1∑
i=1

λk
i (atk

i
, btk

i
) + μk(0n,−1). (9)

As T is compact, we may assume that tk
i → ti ∈ T, i = 1, . . . , n + 1.

Fix i = 1, . . . , n + 1. Since we are assuming that U is uniformly upper semicon-
tinuous and so, for any ε > 0, there exists η > 0 such that

Ut ⊆ Uti + εBn+1, for all t such that d(t, ti ) ≤ η.

It follows that

d((atk
i
, btk

i
),Uti ) → 0 as k → ∞.

Since Uti is compact, we may assume the existence of (ati , bti ) ∈ Uti such that

(atk
i
, btk

i
) → (ati , bti ) as k → ∞. (10)

Now, we show that lk := ∑n+1
i=1 λk

i + μk is bounded. Granting this, by passing to
subsequence if necessary, we may assume that

λk
i → λi ∈ R+ and μk → μ ∈ R+,
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196 M. A. Goberna et al.

as each λk
i and μk are non-negative. Then, passing to the limit in (9) we have

(z, r) =
n+1∑
i=1

λi (ati , bti ) + μ(0n,−1) ∈ M.

Therefore, the robust moment cone M is closed.
To show the boundedness of lk , we proceed by the method of contradiction and

assume without loss of generality that lk := ∑n+1
i=1 λk

i + μk → +∞. By passing to

subsequence if necessary, we may assume that
λk

i
lk

→ λi ∈ R+,
μk

lk
→ μ ∈ R+ and

n+1∑
i=1

λi + μ = 1. (11)

Dividing by lk both members of (9) and passing to the limit, we obtain that

(0n, 0) =
n+1∑
i=1

λi (ati , bti ) + μ(0n,−1).

So, we have
∑n+1

i=1 λi ati = 0n and
∑n+1

i=1 λi bti = μ and so, taking a Slater point x0,

we have

n+1∑
i=1

λi
(〈

ati , x0
〉− bti

) = −μ ≤ 0.

On the other hand, since (ati , bti ) ∈ Uti , assumption (iii) implies that
〈
ati , x0

〉 −
bti > 0 for all i = 1, . . . , n + 1. Note that (λ1, . . . , λn+1) �= 0n+1 (otherwise,
μ = ∑n+1

i=1 λi ri = 0 and so, (λ1, . . . , λn+1, μ) = 0n+2 which contradicts (11)). This
implies that

n+1∑
i=1

λi
(〈

ati , x0
〉− bti

)
> 0.

This is a contradiction and so, {lk} is a bounded sequence. ��
Example 1 violates assumptions (ii) in Proposition 2 because U0 is neither compact

nor convex and U is not upper semicontinuous at 0. In fact, if we consider the sequence
(tk, utk ) = (1/k, (02,−1)) which converges to (0, (02,−1)), we have (atk , btk ) =
(02,−1) which does not converge to (a0, b0) as 02 /∈ V0.

As an immediate consequence of the previous results, we obtain the following
sufficient condition for robust duality. In the special case when |T | < +∞, this result
collapses to the robust strong duality result for linear programming problems in [1].
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Corollary 1 Suppose that the following assumptions hold:

(i) T is a compact metric space;
(ii) U is compact-convex-valued and uniformly upper semicontinuous on T ;

(iii) (RSP) satisfies the convexity and the Slater conditions.

Then, the robust duality holds, i.e. inf(RSP) = max(ODP).

Proof The conclusion follows from Theorem 1, Propositions 1 and 2. ��
We now present an example verifying Corollary 1.

Example 3 Let T = [0, 1] and consider the following uncertain linear SIP problem:

infx∈R x
s.t. at x ≥ bt , t ∈ T,

where the data at , bt are uncertain, at ∈ [−1 − 2t,−1 + 2t] and bt ≡ −1. This
uncertain problem can be captured by our model as

inf x
s.t. at x ≥ bt , t ∈ T,

where (at , bt ) ∈ Ut = [−1 − 2t,−1 + 2t] × {−1}. Setting ut = (at , bt ), t ∈ T, the
robust counterpart is

inf x
s.t. at x ≥ bt , ∀ (t, ut ) ∈ gph U .

It can be verified that the feasible set is [−1, 1/3] . So, the optimal value of the robust
counterpart is −1. The optimistic counterpart of the dual problem is

(ODP) sup
λ∈R

(T )
+ , u=(at ,bt )t∈T ∈U

{
−
∑
t∈T

λt : −1 +
∑
t∈T

λt (−1 + 2at ) = 0

}
.

Let λ∈R
(T )
+ be such that λ1 = 1 and λt = 0 for all t ∈T \{1}. Let u =(at ,−1)t∈T ∈U

be such that a1 = 1. Then −1 +∑
t∈T λt (−1 + 2at ) = −1 + λ1(−1 + 2a1) = 0

and −∑t∈T λt = −1. So, max(O D P) = −1 and robust strong duality holds. In fact,
M = cocone {(−3,−1) , (−1,−1)} is closed and convex. Finally, one can see that all
the conditions in the preceding corollary are satisfied.

The following theorem shows that our assumption is indeed a characterization for
robust strong duality in the sense that “the convexity and closedness of the robust
moment cone” hold if and only if the robust strong duality holds for each linear
objective function of (RSP).

Theorem 2 The following statements are equivalent to each other:
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(i) For all c ∈ R
n,

inf{〈c, x〉 : x ∈ F} = max
λ∈R

(T )
+ , u=(at ,bt )t∈T ∈U

{∑
t∈T

λt bt : −c +
∑
t∈T

λt at = 0n

}
.

(ii) The robust moment cone M is closed and convex.

Proof [(ii) ⇒ (i)] It follows by Theorem 1.
[(i) ⇒ (ii)] We proceed by contradiction and let (c0, r0) ∈ (clcoM ) \ M. So, (5)

implies that (−c0,−r0) ∈ epiδ∗
F where F := {x : g(x) ≤ 0} and

g(x) = sup
(t,ut )∈gph U

{− 〈at , x〉 + bt }.

Thus, we have δ∗
F (−c0) ≤ −r0. So, for every x ∈ F, 〈c0, x〉 ≥ r0. It now follows that

r0 ≤ inf{〈c0, x〉 : 〈at , x〉 ≥ bt , ∀ (t, ut ) ∈ gph U}.

Thus, the statement (i) gives us that

r0 ≤ max
λ∈R

(T )
+ ,u∈U

{∑
t∈T

λt bt : −c0 +
∑
t∈T

λt at = 0n

}
,

and so, there exists λ ∈ R
(T )
+ and (at , bt ) ∈ Ut for all t ∈ T, with −c0 +∑t∈T λt at =

0n and such that r0 ≤ ∑
t∈T λt bt . This shows that

(c0, r0) ∈ co cone{(at , bt ), t ∈ T ; (0n,−1)} ⊂ M,

which constitutes a contradiction. ��
Now, we show that the more general case, i.e., linear SIP problems where uncer-

tainty occurs in both objective function and in the constraints can also be handled by
our approach. Indeed, this situation can be modeled as the parameterized linear SIP
problem

(ŨSP) infx∈Rn 〈c, x〉
s.t. 〈at , x〉 ≥ bt , ∀t ∈ T,

(12)

where the data (c, at , bt ) are uncertain, (at , bt ) ∈ Ut ⊂ R
n+1 and c ∈ Z where

Z ⊂ R
n . Fix a s /∈ T and define Us = Z . The problem (ŨSP) can be equivalently

rewritten as

inf(y,x)∈R×Rn y
s.t. 〈at , x〉 ≥ bt , (at , bt ) ∈ Ut , ∀t ∈ T,

y − 〈c, x〉 ≥ 0, c ∈ Us .

(13)
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So, the robust (or pessimistic) counterpart of (ŨSP) can be formulated as

(̃RSP) inf(y,x)∈R×Rn y
s.t. 0 · y + 〈at , x〉 ≥ bt , ∀ (t, ut ) ∈ gph U ,

y − 〈c, x〉 ≥ 0, ∀c ∈ Us,

(14)

whose decision space is R × R
n . In other words, the robust counterpart (̃RSP) is indeed

a linear SIP problem with n + 1 decision variables y, x1, . . . , xn and deterministic
objective function as follows:

(̃RSP) inf(y,x)∈R×Rn 〈(1, 0n) , (y, x)〉
s.t. 〈̃at , (y, x)〉 ≥ b̃t , ∀ (t, ũt ) ∈ gph Ũ ,

(15)

where x = (x1, . . . , xn) , ũt = (̃at , b̃t ) ∈ Ũt for all t ∈ T̃ := T ∪ {s} (as s /∈ T ), and
Ũ : T̃ ⇒ R

n+2 is the extension of U : T ⇒ R
n+1 to T̃ which results by defining, for

each t ∈ T̃ ,

Ũt :=
{ {1} × (−Z) × {0}, if t = s,

{0} × Ut , otherwise.

The constraint system of the optimistic counterpart for (̃RSP), say (ÕDP), is

∑
t∈T

λt

(
0
at

)
+ μ

(
1

−c

)
=
(

1
0n

)
,

where (at , bt ) ∈ Ut , t ∈ T, c ∈ Z = Us, λ ∈ R
(T )
+ , and μ ∈ R+. Eliminating μ = 1

we get

(ÕDP) sup
(at ,bt )t∈T ∈U ,c∈Z ,λ∈R

(T )
+

{∑
t∈T

λt bt : −c +
∑
t∈T

λt at = 0n

}
.

Finally, the robust moment cone of (̃RSP) is

M̃ =
⋃
u∈Ũ

co cone{(̃at , b̃t ), t ∈ T̃ ; (0n+1,−1)}

=
⋃

u=(at ,bt )t∈T ∈U
c∈Z

co cone{(0, at , bt ), t ∈ T ; (1,−c, 0) , (0n, 0,−1)}.

��
Therefore, we have the following robust duality result for linear SIP problems where

uncertainty occurs in both objective function and in the constraints.

Corollary 2 Suppose that the following assumptions hold:
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(i) T is a compact metric space;
(ii) U is compact-convex-valued and uniformly upper semicontinuous on T, and Z

is a compact and convex subset of R
n;

(iii) for every t ∈ T,

Ut = {(at (zt ), bt (zt )) : zt ∈ Zt } and Z = {c(v) : v ∈ W }
where Zt , W are closed and convex sets in R

q for some q ∈ N, each component
of at (·) and c(·) are affine, and bt (·) is concave;

(iv) There exists x0 ∈ R
n such that 〈at , x0〉 > bt for all (t, ut ) ∈ gph U .

Then, robust duality holds, i.e. inf (̃RSP) = max(ÕDP).

Proof The conclusion follows from Theorem 2. ��

4 Robust semi-infinite Farkas’ lemma

In this Section, as consequences of robust duality results of previous Sections, we
derive two forms of robust Farkas’ lemma for a system of uncertain semi-infinite
linear inequalities. Related results may be found in [8,18–21].

Corollary 3 (Robust Farkas’ Lemma: Characterization I) The following statements
are equivalent to each other:

(i) For all c ∈ R
n, the following statements are equivalent:

1)
[〈at , x〉 ≥ bt , ∀ (t, ut ) ∈ gph U] ⇒ 〈c, x〉 ≥ r

2) ∃λ = (λt )t∈T ∈ R
(T )
+ and (at , bt ) ∈ Ut , t ∈ T,

such that

{−c +∑t∈T λt at = 0n,

and
∑

t∈T λt bt ≥ r.

(ii) The robust moment cone M is closed and convex.

Proof Fix an arbitrary c ∈ R
n . Consider the robust counterpart (RS P) and optimistic

counterpart (O D P) given respectively by

(RSP) inf 〈c, x〉
s.t. 〈at , x〉 ≥ bt , ∀ (t, ut ) ∈ gph U

and

(ODP) max
λ∈R

(T )
+ , u=(at ,bt )t∈T ∈U

{∑
t∈T

λt bt : −c +
∑
t∈T

λt at = 0n

}
.

Then, statement (i) is equivalent to inf(RSP) ≥ r ⇔ max(ODP) ≥ r for every
c ∈ R

n which is, in turn, equivalent to

inf(RSP) = max(ODP) for all c ∈ R
n .

So, the conclusion follows from Theorem 2. ��
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Next we compare the previous results with similar ones involving the characteristic
cone K defined in (6) and the standard dual (DRSP) introduced in (2) instead of M
and (ODP), respectively.

Recall that the assumptions in Propositions 1 and 2 guarantee that the robust
moment cone M is convex and closed (and so, the characteristic cone K is also
closed). In the following, we show that the assumptions in Proposition 2 alone ensure
that a robust form of the Farkas lemma holds. This is achieved by first establishing
that the characteristic cone K is closed.

Theorem 3 Under the same assumptions as in Proposition 2, the following statements
are equivalent:

1)
[〈at , x〉 ≥ bt , ∀ (t, ut ) ∈ gph U] ⇒ 〈c, x〉 ≥ r.

2) ∃λ = (λt )t∈T ∈ R
(gph U)
+

such that

{−c +∑(t,ut )∈gph U λ(t,ut )a(t,ut ) = 0n,

and
∑

(t,ut )∈gph U λ(t,ut )b(t,ut ) ≥ r.

Proof We first prove that the characteristic cone K of the robust linear SIP problem is
closed. Condition (i i) in Proposition 2 guarantees the closedness of the index set gph U .

In fact, let {(tr , ar , br )} ⊂ gph U be a sequence such that (tr , ar , br ) → (t, a, b) ∈
T × R

n+1. Then (ar , br ) ∈ Utr for all r ∈ N, tr → t, and (ar , br ) → (a, b) .

Assume that (t, a, b) /∈ gph U , i.e. that (a, b) /∈ Ut . Since Ut is closed, there exists
ε > 0 such that (a, b) /∈ Ut + εBn+1. Let η > 0 be such that Us ⊂ Ut + ε

2 Bn+1 for
any s ∈ T with d(s, t) ≤ η. We have d(tr , t) ≤ η and d ((ar , br ) , (a, b)) < ε

2
for sufficiently large r, so that (ar , br ) ∈ Utr ⊂ Ut + ε

2 Bq and (a, b) ∈ Ut + εBq

(contradiction). We have also seen that condition (ii) implies the boundedness of
gph U , which turns out to be compact. As we are assuming that the Slater condition
holds, K is closed by [15, Theorem 5.3 (ii)]. Finally, the closedness of K and [15,
(8.5)–(8.6)] imply inf(RS P) = max(DRS P). As in the proof of Corollary 3, the
equality inf(RS P) = max(DRS P) guarantees the desired conclusion. ��
Corollary 4 (Robust Farkas’ Lemma: Characterization II) The following statements
are equivalent to each other:

(i) For all c ∈ R
n, the following statements are equivalent:

1)
[〈at , x〉 ≥ bt , ∀ (t, ut ) ∈ gph U] ⇒ 〈c, x〉 ≥ r.

2) ∃λ = (λt )t∈T ∈ R
(gph U)
+

such that

{−c +∑(t,ut )∈gph U λ(t,ut )a(t,ut ) = 0n,

and
∑

(t,ut )∈gph U λ(t,ut )b(t,ut ) ≥ r.

(ii) The characteristic cone K is closed.

Proof It is straightforward consequence of [15, Theorem 8.4]. ��
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5 Conclusion

In this paper, we presented a duality theory for linear semi-infinite programming prob-
lems in the face of data uncertainty via robust optimization. We established robust
duality for uncertain linear (SIP) by proving strong duality between the robust coun-
terpart of an uncertain linear semi-infinite program and the optimistic counterpart of
its uncertain Lagrangian dual. The duality theorems were given in terms of a robust
moment cone. As a consequence, we also provided characterizations of robust versions
of the Farkas lemma for infinite linear inequality systems under data uncertainty. Our
theory suggests that a worst-case solution of an uncertain linear (SIP) can be obtained
by finding a dual best solution. This provides a way of solving a robust optimization
problem by finding a solution of its optimistic counterpart.
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suggestions.
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