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In this paper, an efficient implementation of aggregate homotopy method for nonconvex nonlinear program-
ming problems is proposed. Adopting truncated aggregate technique, only a small subset of the constraints
is aggregated at each iteration, hence the number of gradient and Hessian calculations is reduced dra-
matically. The subset is adaptively updated with some cheaply implementable truncating criterions, to
guarantee the locally quadratic convergence of the correction process with as few computation cost as pos-
sible. Numerical tests with comparison to some other methods show that the new method is very efficient,
especially for the problems with large amount of constraints and computationally expensive gradients or
Hessians.
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1. Introduction

Consider the following nonlinear programming problem:

min f (x)

s.t. x ∈ � = {x ∈ Rn | gj(x) ≤ 0, j ∈ q}, (1)

where f , gj ∈ Cr(r > 2) and q = {1, . . . , q}.
It is well-known that if x∗ ∈ � is a local solution of (1), and linear independence constraint

qualification or Mangasarian–Fromovitz constraint qualification (MFCQ) holds, then there exists
ξ ∗ = (ξ ∗

1 , . . . , ξ ∗
q ) ∈ Rq, such that (x∗, ξ ∗) is a solution of the Karush–Kuhn–Tucker (KKT)

point system

∇f (x) +
∑
j∈q

ξj∇gj(x) = 0,

ξjgj(x) = 0, ξj ≥ 0, gj(x) ≤ 0.

(2)
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If (x̂, ξ̂ ) is a solution of (2), then x̂ is called a KKT point of (1) and ξ̂ is called the Lagrangian
multiplier vector corresponding to x̂.

In [4,5,15], a combined homotopy interior point (CHIP) method was presented for (1). Under a
normal cone condition of the constraints, it was proved that a smooth interior path from an interior
point of the feasible set to a KKT point of (1) exists. However, the dimension of the linear systems
arising in the process of numerically tracing the CHIP path is n + q + 1. In [25], by using the
aggregate function (also known as exponential penalty function, see [8]), which is induced from the
Jayne’s maximum entropy principle by Li in [10] and has been used to solve linear programming,
nonlinear programming, nonsmooth programming and generalized complementarity problems,
etc. (see [11–14,17,18,20,21]), an aggregate constraint homotopy (ACH) method was given for
solving (1). Let g(x) = max{g1(x), . . . , gq(x)} and �0 = {x ∈ Rn : g(x) < 0}. The ACH is as
follows:

H(x, y, t) ≡
(

(1 − t)(∇xf (x) + y∇xg(x, θ t)) + t(x − x0)

yg(x, θ t) − ty0g(x0, θ)

)
= 0, (3)

where x0 ∈ �0, y0 > 0 and θ ∈ (0, 1] are chosen sufficiently small, and

g(x, t) = t ln

⎛
⎝∑

j∈q

exp

(
gj(x)

t

)⎞⎠ , (4)

called the aggregate function of g(x), is a smooth uniform and monotonic approximation of
g(x) with g(x) ≤ g(x, t) ≤ g(x) + t ln q. In [25], under a weak normal cone condition with some
standard constraint qualifications, it was proved that the ACH determines a smooth interior path
from the given interior point to a KKT point of (1). Because the dimension of the linear systems
arising in the process of numerically tracing the ACH path is n + 2 and not n + q + 1 as in CHIP
methods, it is reasonable that theACH method is more efficient for solving nonlinear programming
problems with large amount of constraints.

Notice that although g(x, t) is a single smooth function, it is composed of large number of
functions gj(x). Hence, calculation of its gradient and Hessian

∇xg(x, t) =
∑
j∈q

λj(x, t)∇gj(x),

g′
t(x, t) = 1

t

⎛
⎝g(x, t) −

∑
j∈q

λjgj(x)

⎞
⎠ ,

∇2
x g(x, t) =

∑
j∈q

λj(x, t)∇2gj(x) + 1

t

∑
j∈q

λj(x, t)∇gj(x)(∇gj(x))
T

− 1

t

⎛
⎝∑

j∈q

λj(x, t)∇gj(x)

⎞
⎠
⎛
⎝∑

j∈q

λj(x, t)(∇gj(x))

⎞
⎠

T

,

∇2
xtg(x, t) = 1

t2

⎛
⎝∑

j∈q

λj(x, t)∇gj(x)
∑
j∈q

λj(x, t)gj(x) −
∑
j∈q

λj(x, t)gj(x)∇gj(x)

⎞
⎠ ,

(5)

where

λj(x, t) = exp(gj(x)/t)∑
j∈q exp(gj(x)/t)

∈ (0, 1),
∑
j∈q

λj(x, t) = 1, (6)



162 Y. Xiao et al.

is very expensive when q is very large, and we need more effort to gain efficient performance of
the ACH method.

In [24], we proposed a truncated aggregate smoothing stabilized Newton method for uncon-
straint minimax problem. To reduce the computation cost, in each iteration point x̄ = xk,i, choose
parameter ε > 0, denotes

q(x̄, ε) = {j | g(x̄) − gj(x̄) ≤ ε, j ∈ q}. (7)

The truncated aggregate function with respect to q(x̄, ε) was defined as

gε(x, t) = t ln

⎛
⎝ ∑

j∈q(x̄,ε)

exp

(
gj(x)

t

)⎞⎠ , (8)

where the parameter ε was adaptively updated in each iteration point with some criterions to
guarantee the convergence. For conciseness, we write qε = q(x̄, ε).

In this paper, using the truncated aggregate function, we propose a truncated aggregate homo-
topy (TAH) algorithm to implement the ACH method for (1). At each iteration, only a small
subset of components in max-function is aggregated, hence the number of gradient and Hessian
calculations is dramatically reduced, and hence the computation cost is greatly reduced especially
for the problems with large q and computationally expensive gradients or Hessians. Moreover,
we give some new truncating criterions, concerning only with computation of function values
and not their gradients or Hessians, for adaptively updating the subset to guarantee the locally
quadratic convergence of the correction process with as few computational cost as possible.

The paper is organized as follows. In Section 2, the ACH method and generic path following
algorithm are restated, and some necessary propositions are given. In Section 3, the TAH algorithm
and the convergence are presented. Some test results are given in Section 4. The paper ends with
concluding remarks.

In the following, Rn, Rn+ and Rn++ denote the n-dimensional Euclidean space, the nonneg-
ative orthant of Rn and the positive orthant of Rn, respectively. Let G(x) : Rn → Rq be a
smooth map, denote DG(x) = (∇G1(x), . . . , ∇Gq(x))T, where ∇Gj(x) ∈ Rn is the gradient of
Gj(x), j = 1, . . . , q. A point x ∈ Rn is called a regular point of G if the Jacobian DG(x) has
maximal rank min{n, q}. A value z ∈ Rq is called a regular value of G if x is a regular point
of G for all x ∈ G−1(z). V(z, δ) means the set {x | ‖x − z‖ < δ} and V̄(z, δ) means the set
{x | ‖x − z‖ ≤ δ}. f (h) = O(hm) means that ‖f (h)‖ ≤ C|h|m for small h and a constant C > 0.
�θ(t) = {x ∈ Rn | g(x, θ t) ≤ 0}. Finally, the symbol ‖ · ‖ denotes the Euclidean norm.

2. Aggregate homotopy method

We first restate the ACH method in [25]. Given the following assumptions [25]:

(C1) f (x) and gj(x) are three times continuously differentiable functions.
(C2) �0 is nonempty and bounded.
(C3) For any x ∈ ∂�, the matrix {∇gj(x) : j ∈ J(x) = {j : gj(x) = g(x)}} has a full column rank

(regularity of ∂�).
(C4) There exists a closed subset �̂ ⊂ �0 with nonempty interior �̂0, such that � satisfies the

weak normal cone condition w.r.t. �̂.
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Definition 2.1 (The weak normal cone condition of � w.r.t. �̂, see [25]) Let �̂ be a closed
subset of �0, if the normal cone of � at any x ∈ ∂� does not meet �̂, i.e.

⎧⎨
⎩x +

∑
j∈J(x)

λj∇gj(x) : λj ≥ 0,
∑

j∈J(x)

λj > 0

⎫⎬
⎭ ∩ �̂ = ∅,

then � is said to satisfy the weak normal cone condition w.r.t. �̂.

Theorem 2.2 ([25], Theorem 2.9) Suppose that assumptions (C1)–(C4) hold, then for any x̃ ∈
�̂0, there exists a neighbourhood N(x̃) of x̃ such that N(x̃) ⊂ �̂0, and there exists a θ ∈ (0, 1] such
that N(x̃) ⊂ �(1)0, ∂�(t) is regular and �(t) satisfies the normal cone condition w.r.t. N(x̃) for
any t ∈ (0, 1]. Furthermore, for almost all x(0) ∈ N(x̃) and y(0) > 0,

H−1(0) = {(x, y, t) ∈ � × R1
+ × (0, 1] : H(x, y, t) = 0}

contains a smooth curve 	 which starts from (x(0), y(0), 1) and terminates in approaches to the
hyperplane at t = 0. Moreover, let (x∗, y∗, 0) be any limit point of 	 on the hyperplane at t = 0, and
ξ ∗

i = y∗λi(x∗, 0) (where λi(x, t) is defined as (6)), i = 1, . . . , q, then y∗ is finite and (x∗, ξ ∗
1 , . . . , ξ ∗

q )

is a solution of (2), x∗ is a KKT point of (1) and ξ ∗
1 , . . . , ξ ∗

q are corresponding Lagrangian
multipliers.

Remark 1 Assumptions (C1)–(C4) are sufficient conditions for aggregate homotopy method to
solve nonconvex smooth programming (see [25]). Actually, (C1) and (C2) are common assump-
tions to make the problem solvable. Assumption (C3) is given for bounded Lagrange multiplier.
Moreover, after publication of the paper [25], authors found that the assumption (C3) can be weak-
ened as: (C∗

3) For any x ∈ ∂�, {∇gj(x) : j ∈ J(x) = {j : gj(x) = g(x)}} are positively independent,
i.e.

∑
j∈J(x) ξj∇gj(x) = 0, ξj ≥ 0 ⇒ ξj = 0, which is an equivalent formulation of MFCQ. In the

later related works, the assumption was changed to (C∗
3) (see [26]). In the rest of this paper, we

will use the weaker assumption (C∗
3) too. (C4) is specialized to guarantee the existence of smooth

interior point homotopy path for nonconvex programming. If the problem is convex, (C4) holds
naturally.

By numerically tracing the smooth path 	, a globally convergent algorithm can be established.
The predictor–corrector (PC) method (see [2]) is usually adopted to numerically trace the homo-
topy path 	 by generating a sequence of points (xk , yk , tk), k = 1, 2, . . . , along the curve satisfying
a chosen tolerance criterion, say ‖H(xk , yk , tk)‖ ≤ Htol for some Htol > 0. Here, the Euler_Newton
method for tracing ACH is outlined briefly as follows. For conciseness, we write v = (x, y, t).

Algorithm 1 (Euler_Newton method for tracing aggregate constraint homotopy)
Data. θ∈ (0, 1], x0 ∈ �̂0, y0 > 0, t0 = 1, initial predictor direction d0.
Parameters. Initial steplength h > 0.

k = 0.
repeat

Predictor step
Compute unit predictor vector dk satisfying the following system

DH(vk)d = 0,
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‖d‖ = 1, (9)

sign

(
det

[
DH(vk)

dT

])
= sign

(
det

[
DH(v0)

d0T

])
.

Set vk,0 = vk + hdk;
Corrector step
Let vk,∗ solve the following corrector equation

Rk(v) =
[

H(v)

dkT
(v − vk,0)

]
= 0, (10)

with Newton iteration vk,i+1 = vk,i − DRk(vk,i)−1Rk(vk,i);
Set vk+1 = vk,∗, k = k + 1;
Choose a new steplength h > 0;
until traversing is stopped.

Remark 2 The initial predictor direction d0 is

d0 = −d

‖d‖sign(dn+2)
, (11)

where d is the tangent vector satisfying DH(v0)d = 0. In predictor step, predictor direction is
usually taken as the unit tangent vector at the preceding point vk (see [9,16]). Another popular
choice is unit scant vector dk = (vk − vk−1)/‖vk − vk−1‖ which is able to avoid solving system
(9) (see [6]). In corrector step, the predictor point is usually drawn back to H−1(0) satisfying
additional equation dkT

(v − vk,0) = 0 or ‖v − vk‖2 − h2 = 0 (see [7,16]). In some other papers,
the corrector point is obtained by approximately solving minv{‖v − vk,0‖|H(v) = 0} (see [2]).
Moreover, an efficient algorithm needs to incorporate an automatic strategy for controlling the
steplength h. In [2], some strategies are outlined in detail. Here, we adopt a simple and heuristic
strategy introduced in [6]: if, for various reasons, a predictor step with its subsequent corrector
step is not accepted, then the steplength is reduced by a factor ᾱ < 1; if the corrector step with
Newton iterations succeeds fast, the steplength is increased by the factor ᾱ > 1. For extensive
literature on these methods, see [2,6,9,16]. Under the assumptions that H is a smooth map having
zero as a regular value and the step size hmax > 0 is sufficiently small, the convergence discussions
are fairly classical and may be found in [2,7,16,19].

Since zero is a regular value of H and vk ∈ H−1(0), then DH(vk) has full row rank, and hence

DRk(vk) =
[

DH(vk)

dk T

]
is nonsingular if stepsize h is small which can be controlled by choosing

small hmax. Now, some necessary preliminaries are stated firstly. Substitute vk,0 with vk + hdk in
correction equation (10) and use ‖dk‖ = 1, we can rewrite the correction equation as follows:

Rk(v) =
[

H(v)

dkT
(v − vk) − h

]
= 0. (12)

Proposition 2.3 Assume vk ∈ H−1(0) and DRk(vk) is nonsingular. Then there exists h1 > 0,
0 < δ1 < 1, such that DRk(v) is nonsingular in the neighborhood Vk = V(vk , δ1) and the corrector
equation (12) has unique solution vk+1(h) ∈ V̄k for any h ∈ [0, h1]. Moreover, vk+1 : (0, h1) →
Rn+2 is continuous.
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Proof Take h as a variable in (12) and denote (12) as Rk(v, h) = 0. Since Rk(vk , 0) = 0 and

the partial derivative DvRk(vk , 0) =
[

DH(vk)

dk T

]
is nonsingular, then the assertion follows from the

implicit function theorem. �

It follows directly from Proposition 2.3 that

Proposition 2.4 For any 0 < δ2 < δ1/2, there exists 0 < h2 < h1, such that for any h ∈ (0, h2],
it has V(vk+1(h), δ2) ⊂ Vk.

Proposition 2.5 Let Uk = ⋃
h∈(0,h2] V(vk+1(h), δ2). Denote

ᾱ = max{‖DRk(v)
−1‖ | v ∈ Ūk},

γ̄ = max{‖D2Rk(v)‖ | v ∈ Ūk},

δ̄ = min

{
δ2

2
,

1

5ᾱγ̄

}
.

Then, there exists an h̄k < h2 such that for any 0 < h < h̄k , it has ‖vk+1 − vk,0‖ < δ̄.

Proof It’s easy to see that

‖vk+1 − vk,0‖ =
√

‖vk+1(h) − vk‖2 − h2.

Then from the continuity of vk+1(h) and vk+1(0) = vk , we know the proposition holds. �

3. Truncated aggregate homotopy algorithm

As shown in (5), the gradient and Hessian calculations of aggregate function g(x, t) are time-
consuming, hence, we consider to use the truncated aggregate technique to trace the homotopy
path 	 efficiently. Set V	 = ⋃

v∈	 V̄(v, 1) such that
⋃

vk∈	 Vk is contained in V	 . Denote �	 =
{x | (x, y, t) ∈ V	}. Since the homotopy curve 	 is bounded (see Theorem 2.2), it is obvious that
V	 and �	 are bounded. Denote A0(x) = maxj∈q |gj(x)|, A1(x) = maxj∈q ‖∇gj(x)‖ and A2(x) =
maxj∈q ‖∇2gj(x)‖, then Ai(x), i = 0, 1, 2, are bounded in �	 .

Algorithm 2 (Truncated aggregate homotopy algorithm)
Data. θ > 0, x0 ∈ �̂0, y0 = 1, t0 = 1.
Parameters. Initial steplength h0 > 0; tolerance ttol = 10−7, tc = 10−6, Htol = 10−3; maximum
steplength hmax; maximum inner iteration number Nin; A1, A2 are big numbers such that Ai ≥
max{Ai(x) | x ∈ �	}, i = 1, 2; error parameters {ηk,i}∞k,i=0, {μk,i}∞k,i=0.

Step 0. Unit tangent vector d0, k = 0, i = 0.

(Predictor step)

Step 1. If 0 ≤ tk ≤ ttol, end the procedure; else go to Step 2.
Step 2. If k > 0, compute dk = (vk − vk−1)/‖vk − vk−1‖. If tk > tc, go to Step 3, else go to

Step 4.
Step 3. Set vk,0 = vk + hkdk , i = 0, go to Step 5.
Step 4. Let hk = (ttol − tk)/dk

n+2 and vk,0 = vk + hkdk , then correct vk,0 on the hyperplane t = ttol.
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(Corrector step)

Step 5. If vk,i /∈ � × R1+ × [0, 1], set hk = 0.5hk , go to Step 2; else, let v = (x, y, t) =
(xk,i, yk,i, tk,i), η = ηk,i, μ = μk,i, calculate

ε = εk,i = max{ε̄, ¯̄ε}, (13)

where

ε̄ = θ t ln

(
max

{
(q − 1)

η
y(2(1 − t)A1 + θ t), 1

})
,

¯̄ε = θ t ln

(
max

{
q − 1

μ

(
(1 − t)y

(
2A2 + 6A0(x)A1

θ t2
+ 6A2

1

θ t

)

+ 2(2y + 1 − t)A1 + θ(t + y) + 2yA0(x)

t

)
, 1

})
,

(14)

update qε according to (7) with x̄ = xk,i, then go to Step 6.
Step 6. Compute ‖Rk,ε(v)‖, where

Rk,ε(v) =
[

Hε(v)

dkT
(v − vk,0)

]
,

with

Hε(v) =
[
(1 − t)(∇xf (x) + y∇xgε(x, θ t)) + t(x − x0)

ygε(x, θ t) − ty0g(x0, θ)

]
.

If ‖Rk,ε(v)‖ ≤ Htol, go to Step 7; else go to Step 8.

Step 7. Set vk+1 = vk,i, hk+1 =
{

min{1.5hk ,hmax}, i<3,
hk , else, k = k + 1, go to Step 1.

Step 8. If i ≥ Nin, set hk = 0.5hk , go to Step 3; else, obtain vk,i+1 using truncated aggregate
iteration,

vk,i+1 = vk,i − DRk,ε(v
k,i)−1Rk,ε(v

k,i), (15)

set i = i + 1 and go to Step 5.

At first, we give some estimates of difference between the aggregate function (4) and the
truncated aggregate function (8), which are induced from Proposition 2.2 in [24] and important
for the efficient implementation of the aggregate homotopy method.

Corollary 3.1 Suppose that assumption (C1) holds. For any given x̄ ∈ Rn, 0 < t ≤ 1, ε > 0, let
g(x, θ t), qε and gε(x, θ t) be defined as in (4), (7) and (8). Then the following error estimates hold

(i) 0 ≤ g(x̄, θ t) − gε(x̄, θ t) ≤ θ t(q − 1)exp(−ε/θ t);

(ii) ‖∇xg(x̄, θ t) − ∇xgε(x̄, θ t)‖ ≤ 2(q − 1)exp(−ε/θ t)A1(x̄);

(iii) ‖g′
t(x̄, θ t) − (gε)

′
t(x̄, θ t)‖ ≤ (q − 1)exp(−ε/θ t)(θ + (2/t)A0(x̄));

(iv) ‖∇2
x g(x̄, θ t) − ∇2

x gε(x̄, θ t)‖ ≤ 2(q − 1)exp(−ε/θ t)(A2(x̄) + (3/θ t)A2
1(x̄));

(v) ‖∇2
xtg(x̄, θ t) − ∇2

xtgε(x̄, θ t)‖ ≤ (6/θ t2)(q − 1)exp(−ε/θ t)A0(x̄)A1(x̄).

Proof Here we give the proof for items (iii) and (v), and others can be found in [24].
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(iii)

‖g′
t(x, θ t) − (gε)

′
t(x, θ t)‖ = 1

t

∥∥∥∥∥∥g(x, θ t) −
∑
j∈q

λj(x, θ t)gj(x) − gε(x, θ t)

+
∑
j∈qε

ζj(x, θ t)gj(x)

∥∥∥∥∥∥ , (16)

where

ζj(x, θ t) = exp(gj(x)/θ t)∑
j∈qε

exp(gj(x)/θ t)
∈ (0, 1),

∑
j∈qε

ζj(x, θ t) = 1. (17)

For conciseness, we write ζj(x, θ t), λj(x, θ t), ζj(x̄, θ t) and λj(x̄, θ t) as ζj, λj, ζ̄j and λ̄j,
respectively. From (i) and the following inequality which has been proved in [24],

∑
j∈qε

|ζ̄j − λ̄j| =
∑
j/∈qε

λ̄j ≤ (q − 1) exp
(
− ε

θ t

)
, (18)

it has

‖g′
t(x̄, θ t) − (gε)

′
t(x̄, θ t)‖ ≤ 1

t

⎛
⎝‖g(x̄, θ t) − gε(x̄, θ t)‖ +

∥∥∥∥∥∥
∑
j∈q

λ̄jgj(x̄) −
∑
j∈qε

ζ̄jgj(x̄)

∥∥∥∥∥∥
⎞
⎠

≤ 1

t

⎛
⎝‖g(x̄, θ t) − gε(x̄, θ t)‖ +

∥∥∥∥∥∥
∑
j∈qε

(λ̄j − ζ̄j)gj(x̄)

∥∥∥∥∥∥+
∥∥∥∥∥∥
∑
j/∈qε

λ̄jgj(x̄)

∥∥∥∥∥∥
⎞
⎠

≤ 1

t

(
θ t(q − 1)exp

(
− ε

θ t

)
+ 2(q − 1) exp

(
− ε

θ t

)
A0(x̄)

)

= (q − 1)exp
(
− ε

θ t

)(
θ + 2

t
A0(x̄)

)
. (19)

(v) Since

∇2
xtg(x, θ t) − ∇2

xtgε(x, θ t)

= 1

θ t2

⎛
⎝
⎛
⎝∑

j∈q

λjgj(x)

⎞
⎠
⎛
⎝∑

j∈q

λj∇gj(x)

⎞
⎠−

∑
j∈q

λjgj(x)∇gj(x)

⎞
⎠

− 1

θ t2

⎛
⎝
⎛
⎝∑

j∈qε

ζjgj(x)

⎞
⎠
⎛
⎝∑

j∈qε

ζj∇gj(x)

⎞
⎠−

∑
j∈qε

ζjgj(x)∇gj(x)

⎞
⎠

= 1

θ t2

⎛
⎝
⎛
⎝∑

j∈qε

λjgj(x)

⎞
⎠
⎛
⎝∑

j∈qε

λj∇gj

⎞
⎠−

⎛
⎝∑

j∈qε

ζjgj(x)

⎞
⎠
⎛
⎝∑

j∈qε

λj∇gj(x)

⎞
⎠

+
⎛
⎝∑

j∈qε

ζjgj(x)

⎞
⎠
⎛
⎝∑

j∈qε

λj∇gj(x)

⎞
⎠−

⎛
⎝∑

j∈qε

ζjgj(x)

⎞
⎠
⎛
⎝∑

j∈qε

ζj∇gj(x)

⎞
⎠
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+
⎛
⎝∑

j∈qε

λjgj(x)

⎞
⎠
⎛
⎝∑

j/∈qε

λj∇gj(x)

⎞
⎠+

⎛
⎝∑

j/∈qε

λjgj(x)

⎞
⎠
⎛
⎝∑

j∈q

λj∇gj(x)

⎞
⎠

+
⎛
⎝∑

j∈qε

ζjgj(x)∇gj(x) −
∑
j∈qε

λjgj(x)∇gj(x)

⎞
⎠−

∑
j/∈qε

λjgj(x)∇gj(x)

⎞
⎠ , (20)

then together with (18),
∑

j∈qε
ζ̄j = 1 and

∑
j∈q λ̄j = 1, we have

‖∇2
xtg(x̄, θ t) − ∇2

xtgε(x̄, θ t)‖ ≤ 6

θ t2
(q − 1)exp

(
− ε

θ t

)
A0(x̄)A1(x̄). �

From Corollary 3.1, the following proposition holds.

Proposition 3.2 Suppose that assumption (C1) holds. In Algorithm 2, for any v ∈ V	 with y ≥ 0,
and any error parameters η, μ > 0, if ε is set as (13) and (14), it has

‖H(v) − Hε(v)‖ ≤ η, (21)

‖DH(v) − DHε(v)‖ ≤ μ. (22)

Proof For concise, denote

H1(x, y, t) = (1 − t)(∇xf (x) + y∇xg(x, θ t)) + t(x − x0),

H2(x, y, t) = yg(x, θ t) − ty0g(x0, θ).
(23)

Since

ε ≥ ε̄ = θ t ln

(
max

{
(q − 1)

η
y(2(1 − t)A1 + θ t), 1

})
, (24)

the following inequality holds

(q − 1)y(2(1 − t)A1 + θ t) exp
(
− ε

θ t

)
≤ η. (25)

According to Corollary 3.1, we have

‖H1(v) − H1,ε(v)‖ = (1 − t)‖y(∇xg(x, θ t) − ∇xgε(x, θ t))‖
≤ 2(1 − t)(q − 1)yA1(x) exp

(
− ε

θ t

) (26)

and

‖H2(v) − H2,ε(v)‖ = ‖y(g(x, θ t) − gε(x, θ t))‖ ≤ yθ t(q − 1) exp
(
− ε

θ t

)
. (27)

Now, since Ai ≥ Ai(x), i = 1, 2, it immediately follows from (25)–(27) that

‖H(v) − Hε(v)‖ ≤ ‖H1(v) − H1,ε(v)‖ + ‖H2(v) − H2,ε(v)‖ ≤ η. (28)

Similarly, the assertion ‖DH(v) − DHε(v)‖ ≤ μ also holds. Since ε ≥ ¯̄ε, it has

(q − 1)

(
(1 − t)y

(
2A2 + 6A0(x)A1

θ t2
+ 6A2

1

θ t

)

+ 2(2y + 1 − t)A1 + θ(t + y) +2yA0(x)

t

)
exp

(
− ε

θ t

)
≤ μ. (29)
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According to Corollary 3.1, we have

∥∥∥∥∂H1(v)

∂x
− H1,ε(v)

∂x

∥∥∥∥ ≤ 2(q − 1)(1 − t)y

(
A2 + 3

θ t
A2

1

)
exp

(
− ε

θ t

)
,

∥∥∥∥∂H1(v)

∂y
− H1,ε(v)

∂y

∥∥∥∥ ≤ 2(q − 1)(1 − t)A1exp
(
− ε

θ t

)
,

∥∥∥∥∂H1(v)

∂t
− H1,ε(v)

∂t

∥∥∥∥ ≤ (q − 1)yA1

(
2 + (1 − t)

6A0(x)

θ t2

)
exp

(
− ε

θ t

)
,

∥∥∥∥∂H2(v)

∂x
− H2,ε(v)

∂x

∥∥∥∥ ≤ 2(q − 1)yA1exp
(
− ε

θ t

)
,

∥∥∥∥∂H2(v)

∂y
− H2,ε(v)

∂y

∥∥∥∥ ≤ (q − 1)θ texp
(
− ε

θ t

)
,

∥∥∥∥∂H2(v)

∂t
− H2,ε(v)

∂t

∥∥∥∥ ≤ (q − 1)y

(
θ + 2

t
A0(x)

)
exp

(
− ε

θ t

)
.

(30)

Then from (29) and (30), the assertion ‖DH(v) − DHε(v)‖ ≤ μ holds. �

Under the assumptions that H is a smooth map having zero as a regular value and the step
size hmax > 0 is sufficiently small, the global convergence proofs for PC algorithms have been
given in [2,7,16,19] and some other papers. Compared with those existing algorithms, the main
difference in our algorithm is the adopting of truncated aggregate technique in Newton-corrector
steps. Here, we only discuss the convergence of corrector steps. The notations used in the following
theorem are the same as in Propositions 2.3–2.5 if no special explanation is given.

Theorem 3.3 Suppose that assumptions (C1), (C2), (C∗
3) and (C4) hold. In Algorithm 2, assume

vk ∈ H−1(0), Rk(v) = 0 is defined as (12) with h < h̄k and DRk(vk) nonsingular. Then

(i) Rk(v) = 0 has unique solution vk+1 in the neighborhood Vk with DRk(vk+1) nonsingular and
‖vk+1 − vk,0‖ < δ̄;

(ii) Denote

α = max{‖DRk(v)
−1‖ | v ∈ V̄(vk+1, δ2)} and β = max{‖DRk(v)‖ | v ∈ V̄(vk+1, δ2)}.

If ηk,i ≤ min{1/30αβ, 1/2}Htol, μk,i ≤ 1/5α, then the sequence {vk,i} generated by the cor-
rector step in Algorithm 2 is well defined and finite, i.e. there exists ik ∈ N such that
‖Rk,εk,ik (vk,ik )‖ ≤ Htol holds for i = ik;

(iii) For sufficiently small Htol, if ηk,i ≤ min{Htol/30αβ, O(H2
tol)} and μk,i ≤ min{1/5α, O(Htol)},

then for vk,i sufficiently close to vk+1, it has ‖vk,i+1 − vk+1‖ = O(‖vk,i − vk+1‖2).

Proof (i) The assertion holds from Propositions 2.3–2.5.
(ii) From Propositions 2.3–2.4, we have that DRk(v) is nonsingular for v ∈ S0 = V(vk+1, δ2).

Define γ = max{‖D2Rk(v)‖ | v ∈ S̄0}. Let δ = min{δ2/2, 1/5αγ } and S = V(vk+1, δ). For all
v ∈ S, we have

‖Rk(v) − Rk(v
k+1)‖ ≤ β‖v − vk+1‖,
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‖DRk(v) − DRk(v
k+1)‖ ≤ γ ‖v − vk+1‖ ≤ γ δ ≤ 1

5α
,

‖Rk(v) − Rk(v
k+1) − DRk(v

k+1)(v − vk+1)‖ ≤ γ

2
‖v − vk+1‖2 ≤ 1

10α
‖v − vk+1‖. (31)

Since S0 ⊂ Uk , hence α ≤ ᾱ and γ ≤ γ̄ , and then δ ≥ δ̄. From Proposition 2.5, we obtain vk,0 ∈
S. Suppose vk,i ∈ S, then by S ⊂ Vk , we have Aj(xk,i) ≤ Aj, j = 1, 2. According to Proposition 3.2,
the following inequalities hold

‖Rk(v
k,i) − Rk,εk,i(vk,i)‖ = ‖H(vk,i) − Hεk,i(vk,i)‖ ≤ ηk,i, (32)

‖DRk(v
k,i) − DRk,εk,i(vk,i)‖ = ‖DH(vk,i) − DHεk,i(vk,i)‖ ≤ μk,i. (33)

Hence, it follows from (33) that DRk,εk,i(vk,i) is nonsingular and

‖(DRk,εk,i(vk,i))−1‖ ≤ α

1 − αμk,i
, (34)

i.e. {vk,i} is well-defined.
Next, we would like to prove there exists a ik ∈ N such that ‖Rk,εk,ik (vk,ik )‖ ≤ Htol holds. For

‖Rk,εk,i(vk,i)‖ > Htol from (32), it has

‖Rk(v
k,i)‖ ≥ ‖Rk,εk,i(vk,i)‖ − ‖Rk(v

k,i) − Rk,εk,i(vk,i)‖ ≥ Htol

2
, (35)

and hence

‖Rk,εk,i(vk,i) − Rk(v
k,i)‖ ≤ Htol

30αβ
≤ ‖Rk(vk,i)‖

15αβ
,

then, together with (31)–(34), it has

‖vk,i+1 − vk+1‖ = ‖vk,i − (DRk,εk,i(vk,i))−1Rk,εk,i(vk,i) − vk+1‖
= ‖(DRk,εk,i(vk,i))−1(Rk(v

k,i) − Rk(v
k+1) − DRk(v

k+1)(vk,i − vk+1)

+ Rk,εk,i(vk,i) − Rk(v
k,i) + (DRk(v

k,i) − DRk,εk,i(vk,i))(vk,i − vk+1)

+ (DRk(v
k+1) − DRk(v

k,i))(vk,i − vk+1))‖

≤ ‖(DRk,εk,i(vk,i))−1‖
(

‖Rk(v
k,i) − Rk(v

k+1) − DRk(v
k+1)(vk,i − vk+1)‖

+ 1

15αβ
‖Rk(v

k,i) − Rk(v
k+1)‖ + ‖(DRk(v

k,i) − DRk,εk,i(vk,i))(vk,i − vk+1)‖

+ ‖(DRk(v
k+1) − DRk(v

k,i))(vk,i − vk+1)‖
)

≤ α

1 − αμk,i

(
1

15α
+ 1

5α
+ 1

5α
+ 1

10α

)
‖vk,i − vk+1‖.

Since
α

1 − αμk,i

(
1

15α
+ 1

5α
+ 1

5α
+ 1

10α

)
<

5

6
,

we obtain ‖vk,i+1 − vk+1‖ < 5
6‖vk,i − vk+1‖. Then, from

‖Rk,εk,i(vk,i)‖ ≤ ‖Rk(v
k,i)‖ + ‖Rk(v

k,i) − Rk,εk,i(vk,i)‖ ≤ ‖Rk(v
k,i)‖ + Htol

2
,

there exists ik ∈ N such that ‖Rk,εk,i(vk,i)‖ ≤ Htol holds for i = ik;
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(iii) For sufficiently small Htol > 0, when vk,i sufficiently close to vk+1, since

‖Rk(v
k,i) − Rk,εk,i(vk,i)‖ ≤ O(H2

tol), (36)

‖DRk(v
k,i) − DRk,εk,i(vk,i)‖ ≤ O(Htol), (37)

‖Rk,εk,i(vk,i)‖ ≥ Htol, ∀ i < ik , (38)

and

‖Rk,εk,i(vk,i)‖ = O(‖Rk(v
k,i)‖),

which can be induced from (36) and (38), it has

‖Rk(v
k,i) − Rk,εk,i(vk,i)‖ ≤ O(‖Rk(v

k,i)‖2) = O(‖vk,i − vk+1‖2) (39)

and

‖DRk(v
k,i) − DRk,εk,i(vk,i)‖ ≤ O(‖Rk(v

k,i)‖) = O(‖vk,i − vk+1‖). (40)

Now, from (39) and (40), we have

‖vk,i+1 − vk+1‖ = ‖(DRk,εk,i(vk,i))−1(Rk(v
k,i) − Rk(v

k+1) − DRk(v
k+1)(vk,i − vk+1)

+ Rk,εk,i(vk,i) − Rk(v
k,i) + (DRk(v

k,i) − DRk,εk,i(vk,i))(vk,i − vk+1)

+ (DRk(v
k+1) − DRk(v

k,i))(vk,i − vk+1))‖
= O(‖vk,i − vk+1‖2).

This completes the proof of the theorem. �

4. Numerical experiment

In this section, we give some numerical results, comparing Algorithm 2 (TAH) with some other
algorithms, such as the SQP method with active set strategy (SQP_AS) implemented by calling
matlab function fmincon, CHIP method in [5] and ACH method in [25], to show the efficiency
of our algorithm.

During the computation, we set parameters h0 = 0.1, hmax = 0.3, θ = 0.1 or 0.01, A1 = A2 =
1e2, ηk,i = 1e − 1, μk,i = 1e2 for all k, i ∈ N .All the computations are done by running MATLAB
7.6.0 on a laptop withAMD Turion(tm) 64 × 2 Mobile Technology TL-58 CPU 1.9 GHz and 896M
memory.

The numerical results reported below were obtained on discretized versions of three semi-
infinite programming test problems and two general nonlinear programming problems. Exam-
ple 4.4 is taken from [27], Example 4.5 from [22], and others are artificial. In Example 4.2, by
setting si = 0.5 + (π − 0.5)(i − 1)/(q − 1), the semi-infinite problem is discretized into finite
programming. In Example 4.3, s in region [0, 1] × [0, 1] is discretized by setting (s1i, s2j) =
((i − 1)d, (j − 1)d) with d equal to 0.11, 0.03 and 0.01, respectively. In Example 4.4, we discretize
s in interval [0, 1] by setting si = (i − 1)/(q − 1).

In Tables 1–5, q is the constraints number, x∗ denotes the final approximate solution point, f ∗
is the value of the objective function at x∗, g∗ is the constraint value at x∗, time is the CPU time in
seconds. In Table 6, Iter and Ngrad denote the total number of iterations and the average gradient
evaluations, respectively.

Example 4.1 Let x = (x1, . . . , x6)
T ∈ R6,

min
∑

1≤k≤6

(xk − 1)2
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Table 1. The numerical results of Example 4.1, x0 = (2, 2, 7, 0, −2, 1)T.

q n Method x∗ f ∗ g∗ Time

1000 6 CHIP (0.999994, . . . , 1.000000) 2.079e−09 −0.459 1.798
ACH (0.999999, . . . , 1.000000) 5.639e−10 −0.459 0.828
TAH (0.999999, . . . , 1.000000) 6.770e−11 −0.459 0.350
SQP−AS (0.999959, . . . , 0.999803) 6.471e−8 −0.460 2.594

5000 6 CHIP (0.999999, . . . , 1.000000) 1.993e−11 −0.459 20.727
ACH (0.999999, . . . , 1.000000) 2.847e−10 −0.459 3.339
TAH (0.999999, . . . , 1.000000) 5.006e−10 −0.459 0.760
SQP−AS (0.999958, . . . , 0.999808) 6.284e−8 −0.460 2.792

10,000 6 CHIP (1.000000, . . . , 1.000000) 9.548e−12 −0.459 59.566
ACH (0.999999, . . . , 1.000000) 1.083e−9 −0.459 7.070
TAH (0.999999, . . . , 1.000000) 1.477e−10 −0.459 1.296
SQP−AS (0.999958, . . . , 0.999802) 6.486e−8 −0.460 3.411

Table 2. The numerical results of Example 4.2, x0 = −(1, . . . , 1)T.

q n Method x∗ f ∗ g∗ Time

100 10 CHIP (−0.521488, . . . , −0.521488) 2.314925 −2.999e−5 6.333
ACH (−0.521475, . . . , −0.521475) 2.314887 −7.753e−8 1.441
TAH (−0.521475, . . . , −0.521475) 2.314887 −8.170e−8 0.266
SQP−AS (−0.521476, . . . , −0.521475) 2.314887 −3.627e−12 1.801

100 30 CHIP (−0.348206, . . . , −0.348206) 1.817659 −1.001e−4 13.634
ACH (−0.348192, . . . , −0.348192) 1.817621 −1.758e−7 2.821
TAH (−0.348192, . . . , −0.348192) 1.817621 −1.804e−7 0.354
SQP−AS (−0.521476, . . . , −0.521475) 1.817620 −2.007e−7 2.356

100 50 CHIP (−0.287732, . . . , −0.287732) 1.658255 −5.565e−4 61.496
ACH (−0.287666, . . . , −0.287666) 1.658084 −5.827e−7 4.613
TAH (−0.287666, . . . , −0.287666) 1.658084 −5.828e−7 0.469
SQP−AS (−0.285098, . . . , −0.285098) 1.691913 −2.163e−8 2.481

50 20 CHIP (−0.404592, . . . , −0.404592) 1.972878 −8.348e−6 3.916
ACH (−0.404590, . . . , −0.404590) 1.972874 −4.052e−8 1.230
TAH (−0.404590, . . . , −0.404590) 1.972874 −4.129e−8 0.276
SQP−AS (−0.404592, . . . , −0.404591) 1.972874 −1.927e−11 1.797

500 20 CHIP (−0.404671, . . . , −0.404671) 1.973101 −5.055e−4 193.530
ACH (−0.404590, . . . , −0.404590) 1.972875 −1.445e−7 9.889
TAH (−0.404590, . . . , −0.404590) 1.972874 −1.493e−7 0.451
SQP−AS (−0.404028, . . . , −0.405195) 1.972872 −1.105e−9 2.051

1000 20 CHIP (−0.419417, . . . , −0.419417) 2.014746 −9.571e−2 739.025
ACH (−0.404590, . . . , −0.404590) 1.972874 −8.445e−9 17.499
TAH (−0.404590, . . . , −0.404590) 1.972874 −1.406e−8 0.538
SQP−AS (−0.399028, . . . , −0.409021) 1.972677 −2.131e−7 2.701

1000 500 CHIP Stop for time >6000
ACH (−0.118473, . . . , −0.118473) 1.250982 −5.661e−6 5.033e+3
TAH (−0.118473, . . . , −0.118473) 1.250982 −6.261e−6 51.907
SQP−AS (−0.664474, . . . , −0.664474) 2.770472 −7.335e+1 74.431

s.t. x1 exp(−x2sj) cos(x3sj + x4)

+ x3

x2
exp(−sjx1) sin(sjx2) + x5 exp(−x6sj) − 2 ≤ 0, j = 1, . . . , q,

where sj = 10q(j − 1)/(q − 1).
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Table 3. The numerical results of Example 4.3, x0 = (2, 2, 2, 2, 2, 2)T.

q n Method x∗ f ∗ g∗ Time

100 6 CHIP (2.613440, −4.146074, . . . , 4.240281) 2.412662 −1.226e−6 1.033
ACH (2.613445, −4.146085, . . . , 4.240283) 2.412660 −1.120e−7 0.261
TAH (2.613445, −4.146085, . . . , 4.240283) 2.412660 −1.032e−7 0.292
SQP−AS (2.613445, −4.146085, . . . , 4.240283) 2.412660 2.670e−10 1.913

1156 6 CHIP (2.512639, −3.953905, . . . , 4.149019) 2.417476 −1.041e−6 31.197
ACH (2.512664, −3.953951, . . . , 4.149036) 2.417474 −1.904e−7 0.548
TAH (2.512663, −3.953948, . . . , 4.149035) 2.417474 −5.117e−7 0.406
SQP−AS (2.512665, −3.953953, . . . , 4.149037) 2.417474 1.399e−14 2.040

10,201 6 CHIP (2.503407, −3.974211, . . . , 4.189137) 2.435911 −2.781e−5 1.097e+3
ACH (2.547929, −4.052878, . . . , 4.223231) 2.435643 −1.746e−9 4.293
TAH (2.547929, −4.052878, . . . , 4.223231) 2.435643 −1.746e−9 1.400
SQP−AS (2.547927, −4.052879, …, 4.223226) 2.435643 8.882e−15 3.517

Table 4. The numerical results of Example 4.4, x0 = (3, 3, 3, 5)T.

q n Method x∗ f ∗ g∗ Time

100 4 CHIP (0.993302, 0.673475, −0.389950, 0.000049) 4.897e−5 −4.111e−6 0.916
ACH (0.995705, 0.668208, −0.388173, 0.000019) 1.856e−5 −1.102e−7 0.445
TAH (0.995705, 0.668208, −0.388846, 0.000019) 1.856e−5 −1.104e−7 0.396
SQP−AS (0.995697, 0.668237, −0.388378, 0.000018) 1.842e−5 9.154e−8 2.361

1000 4 CHIP (0.991845, 0.676942, −0.387670, 0.000332) 3.323e−4 −2.658e−4 15.583
ACH (0.995703, 0.668210, −0.388846, 0.000019) 1.856e−5 −9.764e−8 1.140
TAH (0.995703, 0.668210, −0.388847, 0.000019) 1.856e−5 −1.007e−7 0.558
SQP−AS (0.995684, 0.668276, −0.388828, 0.000018) 1.838e−5 2.467e−7 4.492

10,000 4 CHIP (0.991752, 0.677103, −0.387668, 0.000757) 7.569e−4 −6.889e−4 8.530e+2
ACH (0.995702, 0.668212, −0.388847, 0.000019) 1.856e−5 −8.014e−8 10.051
TAH (0.995702, 0.668212, −0.388847, 0.000019) 1.856e−5 −8.022e−8 2.642
SQP−AS (0.995708, 0.668171, −0.388858, 0.000018) 1.842e−5 9.796e−8 69.155

Table 5. The numerical results of Example 4.5, x0 = (−1.5, 1.5, 2.5, 1.5)T, h0 = 9.

q n Method x∗ f ∗ g∗ Time

100 5 CHIP Stop for time >6000
ACH (−0.997280, 0.983042, 1.975640, 0.995934) 0.543863 −2.437e−8 0.656
TAH (−0.997280, 0.983042, 1.975640, 0.995934) 0.543863 −4.704e−9 0.428
SQP−AS (−0.997280, 0.983042, 1.975640, 0.995934) 0.543863 1.611e−13 2.104

1000 5 CHIP Stop for time >6000
ACH (−0.985203, 0.828095, 1.988116, 1.022360) 1.075140 −7.059e−9 3.898
TAH (−0.985203, 0.828095, 1.988116, 1.022360) 1.075140 −4.518e−7 0.460
SQP−AS (−0.985203, 0.828095, 1.988116, 1.022360) 1.075140 1.177e−14 1.762

10,000 5 CHIP Stop for time >6000
ACH (−0.965716, 0.974188, 1.968446, 0.988166) 1.301831 −9.662e−9 49.366
TAH (−0.965716, 0.974188, 1.968446, 0.988166) 1.301831 −2.487e−9 0.764
SQP−AS (−0.965716, 0.974188, 1.968446, 0.988166) 1.301831 9.368e−13 2.980

Table 6. The numerical results of Example 4.1, x0 = (2, 2, 7, 0, −2, 1)T.

q = 1000 q = 5000 q = 10, 000

Method Iter Ngrad Iter Ngrad Iter Ngrad

TAH 56 25 57 135 57 281
ACH 56 1000 57 5000 57 10,000
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Example 4.2 Let x = (x1, . . . , xn)
T ∈ Rn,

min
∑

1≤k≤n

(xk − 1)2

n

s.t.
∏

1≤k≤n

cos(sxk) + s
∑

1≤k≤n

x3
k ≤ 0, for s ∈ [0.5, π ].

Example 4.3 Let x = (x1, x2, x3, x4, x5, x6)
T ∈ R6,

min x1 + 1

2x2
+ 1

2x3
+ 1

3x4
+ 1

4x5
+ 1

3x6

s.t. exp(s2
1 + s2

2) − x1 − x2s1 − x3s2 − x4s2
1 − x5s1s2 − x6s2

2 ≤ 0, for s ∈ [0, 1] × [0, 1].

Example 4.4 Let x = (x1, x2, x3, x4)
T ∈ R4,

min x4

s.t.

(
exp(s) − x1 + sx2

1 + sx3

)2

− x4 ≤ 0, for s ∈ [0, 1].
(41)

Example 4.5 The problem of fitting enclosing cylinders to data in Rn has been presented by
many literatures [1,3,22]. Let data points zj ∈ Rn, j = 1, . . . , q, be given and let a d-dimensional
linear manifold be sought by l∞ orthogonal distance regression, so that the Chebyshev norm of
the vector of orthogonal distance from the data points to the manifold is minimized. In [22], a
special case for n = 3 and d = 1 was considered. The linear manifold is given by

l(x, s) =
⎡
⎣x1s + x2

x3s + x4

s

⎤
⎦ , (42)

where x ∈ R4 fixes the line and s is a scalar parameter. For any data point zj, sj(x), the parameter
which gives the nearest point on the line defined by x, is given by

sj(x) = (x1, x3, 1)zj − x1x2 − x3x4

x2
1 + x2

3 + 1
, j = 1, . . . , q,

and the orthogonal distance vectors are defined by

dj(x) = zj − l(x, sj(x)), j = 1, . . . , q.

Then the problem to be solved is

min h

s.t. ‖dj(x)‖2
2 ≤ h, j = 1, . . . , q.

(43)

The data points zj, j = 1, . . . , q were generated as follows:

rj = −5 + 10(j − 1)

q − 1
, z1

j = −rj + 1 + σ 1
j , z2

j = 2rj + 1 + σ 2
j , z3

j = rj + σ 3
j ,

where the residuals σ 1, σ 2, σ 3 ∼ N(0, 0.32).
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Table 7. The CPU time of Example 4.1 with changeable A1, A2, ηk,i, μk,i.

A1 A2 ηk,i μk,i Time

1e2 1e2 1e−1 1e2 0.760
1e1 1e1 1e−1 1e2 0.652
1e0 1e0 1e−1 1e2 0.616
1e0 1e0 1e0 1e2 0.614
1e0 1e0 1e1 1e2 0.613
1e0 1e0 1e0 1e1 0.614
1e0 1e0 1e0 1e0 0.642

To show the effect of the truncation more clearly, the total number of iterations and the average
gradient evaluations during all iterations in TAH and ACH for Example 4.1 are listed in Table 6.
It can be seen that the adopting of truncation does not increase the number of iterations, but
dramatically reduce the gradient calculations.

In the following, a test on Example 4.1 (q = 5000) for different parameter values is given, and
the result is listed in Table 7.

Result in Table 7 shows that the performance of our algorithm moderately depends on the
values of parameters A1, A2, ηk,i and μk,i. In our experience, these parameters can generally take
values in a rather considerable range. This may be caused by that ε is moderately dependent on
these parameters because of the ln operation (see (13) and (14)).

5. Concluding remarks

We have proposed an efficient implementation of aggregate homotopy method for nonconvex
nonlinear programming problems. Instead of aggregating all the constraints, truncated aggregate
technique was adopted such that only a small adaptively updated subset of the constraints is
aggregated at each iteration, and hence the number of gradient and Hessian calculations is reduced
dramatically. Moreover, the truncating criterions, concerning only with computation of function
values, can adaptively update the subset to guarantee the locally quadratic convergence of the
correction process with as few computation cost as possible. It can be seen from the above test
results that the TAH method is very efficient, especially for the problems with large number of
constraints and computationally expensive gradients or Hessians. Though some parameters are
involved in truncating criterions, our algorithm is comparatively stable for moderate change of
parameter value.

Assumptions (C1), (C2), (C∗
3) and (C4) are sufficient for convergence analysis of aggregate

homotopy method. We did not verify whether the numerical examples satisfy these assumptions.
It should be noted that if assumption (C∗

3) does not hold, some potential ill-condition of coefficient
matrix at inner iteration maybe arised. Some discussions on ill-conditioning arising from interior
point methods have been given by Wright et al. [23]. It will be one of our on-going work based
on existing researches to make more further consideration on potential ill-conditioning caused by
degeneracy.
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