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Abstract We present semidefinite relaxations for unconstrained non-convex qua-
dratic mixed-integer optimization problems. These relaxations yield tight bounds and
are computationally easy to solve for medium-sized instances, even if some of the
variables are integer and unbounded. In this case, the problem contains an infinite
number of linear constraints; these constraints are separated dynamically. We use this
approach as a bounding routine in an SDP-based branch-and-bound framework. In
case of a convex objective function, the new SDP bound improves the bound given
by the continuous relaxation of the problem. Numerical experiments show that our
algorithm performs well on various types of non-convex instances.

Mathematics Subject Classification 90C10 · 90C11 · 90C20 · 90C22 · 90C26

1 Introduction

Nonlinear mixed-integer optimization has recently moved to the focus of mathematical
programming. While linear mixed-integer programming problems have been investi-
gated for many decades, leading to a tremendous progress in their practical solution,
fast algorithms for solving nonlinear problems are still rare and often restricted to
special classes of objective functions or variable domains.

Even in the case of a quadratic objective function, state-of-the-art optimization tech-
niques still perform weakly compared to those designed for linear problems. In contrast
to the linear case, quadratic optimization is hard even in the absence of constraints:
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436 C. Buchheim, A. Wiegele

while the problem is tractable in the convex, purely continuous case, it becomes hard
in general both by non-convexity of the objective function and by the presence of
integrality constraints. More precisely, the problem is known to be NP-hard for box-
constrained continuous variables in the non-convex case and for unbounded integer
variables in the convex case, the latter being equivalent to the closest vector problem.

Most algorithms and software tools for quadratic mixed-integer optimization are
restricted to convex objective functions, or they can handle non-convex objective func-
tions but do not guarantee optimality in this case [3,6,9]. This is due to the fact that
these approaches mainly rely on dual bounds given by the global continuous minima of
the respective objective functions. In case of a non-convex objective function, even the
computation of these bounds is NP-hard. If bounds are given by local minima instead
of global ones, the resulting solutions are suboptimal in general. Most methods for
exactly solving non-convex mixed-integer optimization problems are based on the idea
of convex estimators, combined with branching and range reduction techniques [2,15].

A well-studied NP-hard special case of quadratic mixed-integer optimization is
unconstrained quadratic binary optimization. In this case, convexity of the objective
function can be assumed without loss of generality. The problem is known to be equiv-
alent to the maximum cut problem, which can easily be modeled as an unconstrained
quadratic minimization problem over variables with domain {−1, 1}. A well-known
and very successful method for solving such problems relies on a strong dual bound
given by an SDP relaxation of the problem. This relaxation results from an exact prob-
lem formulation by dropping a (non-convex) rank-one constraint [8]; combining this
approach with additional cutting planes yields a very fast algorithm for solving the
maximum cut problem [13].

In the following, our aim is to generalize this approach to unconstrained non-convex
quadratic minimization problems where variable domains are arbitrary closed subsets
of R. By this, we get a common framework for SDP relaxations of various NP-hard
problems: for the maximum cut problem (domains {−1, 1}), the closest vector prob-
lem (domains Z), and quadratic minimization with box constraints (domains [0, 1]).
The basic observation motivating our approach is that this general problem can still be
modeled as an SDP plus a rank-one constraint. This SDP can have an infinite number
of linear constraints, but under very mild conditions separation can be done quickly.
Moreover, it turns out that very few separation steps are necessary in practice for
solving the SDP relaxation.

We embedded this SDP relaxation into a branch-and-bound framework in order to
obtain an exact algorithm for general quadratic optimization problems. Experiments
with various types of instances show that this approach, though very general, is com-
petitive with other methods for mixed-integer quadratic optimization, or even yields
significantly faster running times.

This paper is organized as follows. In the remainder of Sect. 1, we review the
recent literature on non-convex quadratic programming and discuss our contribution.
In Sect. 2, we describe our new approach to mixed-integer quadratic optimization.
The basic SDP relaxation is introduced in Sect. 2.1, while in Sect. 2.2 we explain how
to embed this SDP relaxation into a branch-and-bound scheme. In Sect. 2.3, we dis-
cuss the case of unbounded relaxations. Experimental results are presented in Sect. 3.
Section 4 concludes.
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1.1 Related work

Most of the literature on non-convex quadratic optimization does not consider any
integrality constraints on the variables. In this case, one may assume that all variable
domains are [0, 1]. The resulting problem is often called BoxQP; this problem is NP-
hard. In order to address this problem, one usually tries to construct hopefully tight
convex relaxations. The most successful types of relaxations are based on semidefinite
programming or on RLT inequalities.

The standard SDP approach consists in linearizing the objective function by intro-
ducing a matrix Y and by relaxing the desired equation Y = xx� to the convex
constraint Y � xx�. Equivalently, one can replace the matrix

(
1
x

) (
1
x

)�

by a matrix X satisfying X � 0, X00 = 1 and rank(X) = 1, and then remove the
non-convex rank constraint [18].

In the same linearized model of the original quadratic problem, the connection
between Xi j and xi , x j can be described by linear inequalities called RLT inequali-
ties [10,17]. These take the bounds on both variables into account; in the BoxQP case
they can be written as Xi j ≥ 0, Xi j ≥ xi + x j − 1, Xi j ≤ xi , x j . Anstreicher [1]
showed that SDP and RLT relaxations do not contain each other and that a combination
of both can yield significantly better bounds than both relaxations alone.

From a practical point of view, the combination of SDP and RLT relaxations is
difficult, since solving semidefinite programs with a large number of constraints is
time-consuming. For this reason, Qualizza et al. [12] propose to approximate the con-
straint X � 0 by linear inequalities, so-called psd inequalities. The main drawback of
this approach is the fact that a large number of psd inequalities is needed to obtain a
relaxation that is close to the SDP relaxation.

For the case of discrete variables, the literature on non-convex quadratic optimiza-
tion is more limited. Most work is concentrated on the special case of binary variables.
In this case, the problem is equivalent to the well-studied max-cut problem, and the
above linearized model coincides with the standard max-cut model with edge vari-
ables. Both integer programming and SDP approaches for max-cut and binary qua-
dratic programming have been investigated intensively; see e.g. [13] and the references
therein.

In the case of general integers, Saxena et al. [16] present a cutting-plane approach
for non-convex mixed-integer quadratically constrained programming based on the
idea of disjunctive cuts. These cuts are not only derived from integrality constraints,
but also from the non-convex constraint Y � xx�. In other words, this approach does
not explicitly use the constraint X � 0 in an SDP-framework, but rather uses cutting
planes derived from this constraint inside an integer programming approach. By the
idea of disjunctive programming, however, these cutting planes implicitly take into
account also problem information beyond X � 0.

The special case of convex integer quadratic programming has also been studied
recently. If variables are unbounded, it is equivalent to the well-known closest vector
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problem, but applications arise also in the case of bounded variables. See Buchheim
et al. [6] for a recent branch-and-bound approach.

1.2 Our contribution

The main focus of our approach is on discrete optimization problems. We present
SDP relaxations that do not only model the non-convexity of the objective function,
but also non-convexity of the variable domains. The strength of our approach lies in
the fact that we address both types of non-convexity simultaneously: if we deal with
the non-convexity of the objective function in an appropriate way, we can model the
variable domains by convex constraints. We show that both types of non-convexity
can be accommodated by a single non-convex rank constraint.

Experimentally, we show that this approach clearly outperforms Couenne [2], a
software for non-convex optimization, on integer or mixed-integer instances. In our
evaluation, we are also interested in the dependance of performance on the degree of
non-convexity of the problem, i.e., on the percentage of positive eigenvalues of the
quadratic matrix in the objective function. Our algorithm turns out to be particularly
strong for instances that are convex or nearly convex. For these instances, modeling the
non-convexity of variable domains is crucial, so we are led to the conclusion that our
method of addressing discrete variables is appropriate and leads to very good results
in practice.

Another conclusion of our experiments is the observation that adding more linear
inequalities to our relaxation does not pay off in terms of running time. In our model, we
need very few inequalities per variable to obtain a rather tight relaxation. Even adding
only RLT inequalities leads to a much slower solution of the SDP relaxations, which
cannot be compensated by the improvement of lower bounds due to tighter models.
Our method therefore differs significantly from approaches based on cutting-planes
such as [16].

2 The new approach

In the following, let Q ∈ Sn denote a symmetric, but not necessarily positive semi-
definite matrix of dimension n ∈ N. Moreover, let l ∈ R

n and c ∈ R. We consider the
problem

min f (x) = x�Qx + l�x + c
s.t. x ∈ D1 × · · · × Dn ,

(1)

where each Di is a closed subset of R. For example, we can choose Di = {−1, 1}
to obtain the maximum cut problem, or Di = Z and a convex objective function to
obtain the closest vector problem. However, Problem (1) is more general, e.g., one
can define Di = {0} ∪ [1,∞). This type of domain appears in portfolio optimization
problems with buy-in thresholds [5]. Note that it is allowed to choose all Di differently,
so that Problem (1) also contains the mixed-integer case.
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Fig. 1 The set P(D) for D = Z, D = {−1, 0, 1} and D = [0, ∞)

2.1 SDP relaxation

We aim at deriving an SDP relaxation of Problem (1). The first steps of the construc-
tion are folklore; see e.g. [1,18]. We first linearize the problem using the function
� : R

n → Sn+1 defined as

�(x) =
(

1
x

) (
1
x

)�
,

and the matrix

Q̃ =
(

c 1
2 l�

1
2 l Q

)
,

which is indexed over {0, . . . , n} in the following. We can rewrite Problem (1) as

min 〈Q̃, �(x)〉
s.t. x ∈ D1 × · · · × Dn

(2)

where 〈A, B〉 = ∑
i, j ai j bi j is the inner product of A and B.

Since the objective function in Problem (2) is linear in �(x), solving (2) reduces to a
linear optimization problem over the convex set conv �(D1 ×· · ·× Dn). To investigate
this set, we first define P(Di ) as the closure of conv {(x, x2) | x ∈ Di } in R

2. See
Fig. 1 for some examples. Notice that taking the closure is necessary in case D is
bounded to exactly one side, e.g. for D = [0,∞).

Theorem 1 Let X ∈ Sn+1. Then X ∈ �(D1 × · · · × Dn) if and only if

(a) (x0i , xii ) ∈ P(Di ) for all i = 1, . . . , n,
(b) x00 = 1,
(c) rank(X) = 1, and
(d) X � 0.

Proof Let X satisfy (a)–(d). From X � 0, rank(X) = 1, and x00 = 1, we derive X =
�(x) for some x ∈ R

n . Hence, xii = x2
0i . With (x0i , xii ) ∈ P(Di ), this implies x0i ∈

Di , using the strict convexity of the function x0i → x2
0i . Thus (x01, . . . , x0n) is a

feasible solution for Problem (1). On the other hand, if x is a feasible solution for
Problem (1), then �(x) satisfies (a)–(d). ��
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Note that the only non-convex constraint in Theorem 1 is the rank-constraint. In par-
ticular, not only the non-convexity of the objective function but also the potential
non-convexity of the domains Di is accommodated in the rank-constraint. We derive

Corollary 1 Let X ∈ conv �(D1 ×· · ·× Dn). Then X � 0, x00 = 1, and (x0i , xii ) ∈
P(Di ) for all i = 1, . . . , n.

Corollary 1 suggests to consider the following SDP relaxation of Problem (1):

min 〈Q̃, X〉
s.t. (x0i , xii ) ∈ P(Di ) ∀i = 1, . . . , n

x00 = 1
X � 0 .

(3)

It is easy to see that (x0i , xii ) ∈ P(R) already follows from the positive semidefinite-
ness of X :

Fact 1 Let X ∈ S+
n+1 with x00 = 1. Then xii ≥ x2

0i for all i = 1, . . . , n. Moreover, if
xii = x2

0i for all i = 1, . . . , n, then X = �(x) for x = (x01, . . . , x0n)�.

Proof Let i, j ∈ {1, . . . , n}. Substituting x00 = 1, the determinant of the submatrix
of X given by the rows and columns 0 and i is xii − x2

0i , so X � 0 implies xii ≥ x2
0i .

Moreover, substituting x00 = 1, xii = x2
0i , and x j j = x2

0 j , the determinant of the subm-

atrix of X given by the rows and columns 0, i , and j turns out to be −(xi j − x0i x0 j )
2.

From X � 0 we derive xi j = x0i x0 j . ��
If Di is a proper subset of R, we need further linear constraints to model (x0i , xii ) ∈
P(Di ). In general this requires an infinite number of inequalities. However, we can
easily devise an exact separation algorithm for P(Di ) provided that the following
tasks can be accomplished efficiently:

1. given x ∈ R ∪ {−∞}, find the smallest element of Di ∩ [x,∞)

2. given x ∈ R ∪ {∞}, find the largest element of Di ∩ (−∞, x]
The sets Di ∩ [x,∞) and Di ∩ (−∞, x] are closed by assumption, so that the cor-
responding minima and maxima exist (though they can be ±∞). Algorithm SepP
describes the separation procedure for P(Di ).

The point to be separated is a pair (x0i , xii ) from a positive semidefinite matrix X .
By Fact 1, it follows that xii ≥ x2

0i , meaning that it belongs to the epigraph of the func-
tion x → x2, see Fig. 2a. If x0i belongs to Di it follows that (x0i , xii ) is in P(Di ) and
we are done. Otherwise, if x0i is not in Di , we determine the nearest points u, l ∈ Di

to the left and right of x0i , respectively (see Fig. 2b). If u and l are finite we only have
to check the secant through the points (u, u2) and (l, l2) as a potential cutting plane
for (x0i , xii ), see Fig. 2c. If one of the two is infinite, we generate either the cutting
plane x ≥ l or x ≤ u, see Fig. 3a. If Di is bounded, we finally have to check whether
(x0i , xii ) lies above P(Di ), as in Fig. 3b.

This rises the question of how many iterations of the separation procedure are nec-
essary until all constraints are satisfied. As we will see later, the number of iterations
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Algorithm SepP: separation algorithm for P(D)

Input: a closed non-empty set D ⊆ R and a pair (x, y) ∈ R
2 with y ≥ x2

Output: a valid inequality a�x ≤ b for P(D) violated by (x, y), if one exists
compute l = min

(
D ∩ [x,∞)

)
;

compute u = max
(
D ∩ (−∞, x]);

if l ∈ R and u ∈ R then
if y < (u + l)x − ul then

return y ≥ (u + l)x − ul;
end

end
if u = −∞ then

return x ≥ l;
end
if l = ∞ then

return x ≤ u;
end
compute l̃ = max D = max

(
D ∩ (−∞,∞]);

compute ũ = min D = min
(
D ∩ [−∞, ∞));

if l̃ ∈ R and ũ ∈ R then
if y > (ũ + l̃)x − ũl̃ then

return y ≤ (ũ + l̃)x − ũl̃;
end

end
return “no violated inequality exists”;

(a)

(c)

(b)

Fig. 2 Separating inequalities

remains very small in practice, even in the pure integer case. It is thus a feasible
approach to solve the SDP relaxation (3) by calling an interior-point algorithm after
each iteration of Algorithm SepP.
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(a) (b)

Fig. 3 Separating inequalities, part 2

In case of a convex objective function, we can compare the optimum of (3) with the
global continuous minimum of f . Clearly, the latter is obtained when relaxing each
Di to R.

Fact 2 If f is a convex function with a continuous minimizer x̄ , then the value of (3)
is at least f (x̄).

Proof The convexity of f implies xii = x2
0i for all optimal solutions X of (3), for

all i = 1, . . . , n. In particular, for Di = R, condition (a) of Theorem 1 holds. More-
over, Fact 1 yields X = �(x), so that conditions (b)–(d) are also satisfied. Hence the
continuous minimum f (x̄) can be computed as

min 〈Q̃, X〉
s.t. x00 = 1

X � 0 .

(4)

The latter is a relaxation of (3), hence the result. ��
Finally, note that (3) is a generalization of the well-known SDP relaxation for the
maximum cut problem: choosing Di = {−1, 1} for all i = 1, . . . , n, the set P(Di ) is
essentially given by the equation xii = 1.

2.2 Branch-and-bound algorithm

Our aim is to solve Problem (1) to proven optimality. To this end we use the SDP
relaxation (3) in a branch-and-bound framework. For branching, we choose a variable
xi , having value x̄0i in the solution of (3), and produce two subproblems by splitting
up the domain Di into Di ∩(−∞, x̄0i ] and Di ∩[x̄0i ,∞). See Fig. 4 for two examples.

The choice of the branching variable is motivated by Fact 1: we can choose the
variable i that maximizes xii − x2

0i . Note that Fact 1 guarantees feasibility as soon
as xii = x2

0i for all i . However, under the presence of continuous variables, we will
never reach equality in practical computations after a finite number of branching steps.
Therefore we use the following variant of Fact 1.

Lemma 1 Let Di ⊆ [0, 1] for all i = 1, . . . , n and let x∗ be an optimal solution of
(1). Let ε > 0. Then there exists δ > 0 such that for every optimal solution X of (3)
with xii − x2

0i ≤ δ it follows that f (x∗) − 〈Q̃, X〉 ≤ ε.
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Fig. 4 Branching on integer and continuous variables. We branch at x̄ = 1
3 . Top splitting up D = {−1, 0, 1}

yields the new domains {−1, 0} and {1}. Bottom splitting up D = [−1, 1] yields the new domains [−1, 1
3 ]

and [ 1
3 , 1]

Proof It suffices to prove that |xii − x2
0i | ≤ δ for all i implies

|xi j − x0i x0 j | ≤
√

δ2 + 2δ

for all i, j . This follows from considering the determinant of the submatrix given by
the rows and columns indexed by 0, i and j . ��
The complete branch-and-bound algorithm Q-MIST (Quadratic Mixed-Integer Semi-
definite programming Technique) is now described below.

Theorem 2 Let all Di be bounded. Then for any ε > 0, Algorithm Q-MIST termi-
nates in finite time with a feasible solution x such that f (x) ≤ f ∗ + ε, where f ∗ is
the optimum of Problem (1).

Proof We may assume that Di ⊆ [0, 1]. By Lemma 1, there exists δ > 0 such that
Algorithm Q-MIST terminates as soon as xii − x2

0i ≤ δ for all i = 1, . . . , n. The latter
condition is always satisfied for intervals of length at most 2

√
δ. In other words, the

algorithm will never choose a branching position within an interval of length less than
2
√

δ. ��
Note that in case of unbounded sets Di , the algorithm might not terminate in finite
time, as discussed in Sect. 2.3.

A further improvement of Algorithm Q-MIST is obtained by applying the range
reduction technique [14]. For this, assume again that all domains Di are bounded,
with li = min Di and ui = max Di . Let λi denote the dual multiplier corresponding
to the constraint xii ≤ (ui + li )xi0 − ui li . Let U denote the value of the currently
best known solution and L = 〈Q̃, X〉 the optimal solution value of the current SDP
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Algorithm Q-MIST: branch-and-bound algorithm for Problem (1)
Input: Q ∈ Sn , l ∈ R

n , c ∈ R, closed subsets Di ⊆ R for i = 1, . . . , n, ε > 0
Output: x∗ ∈ R

n s.t. f (x∗) differs at most ε from min f (x), x ∈ D1 × · · · × Dn
let U = ∞;
let P be the SDP (3);
let S = {P};
while S �= ∅ do

choose some P from S;
let S = S\{P};
repeat

solve P (e.g., using an interior point algorithm) to obtain X ;
for i = 1 to n do

apply Algorithm SepP to separate (x0i , xii ) from P(Di );
add generated cutting planes to P

end
until no cutting plane has been generated;
choose x̂ ∈ D1 × · · · × Dn to obtain a feasible solution �(x̂) of P ;
if f (x̂) < U then

let U = f (x̂);
let x∗ = x̂ ;

end
if 〈Q̃, X〉 < U − ε then

find i maximizing xii − x2
0i ;

obtain P1 from P by replacing Di by Di ∩ (−∞, x0i ];
obtain P2 from P by replacing Di by Di ∩ [x0i ,∞);
let S = S ∪ {P1, P2};

end
end

relaxation; see Algorithm Q-MIST. If λi > 0, we can derive that all optimal solutions
of our problem satisfy

xi0 ≤ ui + li
2

− √
Δ or xi0 ≥ ui + li

2
+ √

Δ

if Δ = 1
4 (ui + li )2 − ui li − U−L

λi
≥ 0. This information can be used for the branch-

ing variable xi in order to decrease the size of the domains Di in the two resulting
subproblems.

2.3 Unbounded relaxations

If all domains Di in (1) are bounded, clearly all P(Di ) are bounded and thus relaxa-
tion (3) is bounded as well. In case of unbounded domain but convex objective function
Problem (3) is bounded by the continuous minimum since the latter is the optimum
of Relaxation (4).

However, in case of an unbounded domain and a non-convex objective function, the
initial relaxation (3) may be unbounded, even if the original Problem (1) is bounded. As
an example, consider the problem of testing copositivity of a matrix Q. This problem
can be modeled as
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min x�Qx
s.t. x ≥ 0 .

If Q is copositive, this problem is bounded by zero. On the other hand, it is easy to
see that the SDP relaxation (3) is unbounded as soon as Q is not positive semidefinite.
Hence we have an infinite gap between (1) and (3) for each matrix being copositive
but not positive semidefinite, e.g., for the Horn matrix

H =

⎛
⎜⎜⎜⎜⎝

1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1

⎞
⎟⎟⎟⎟⎠

.

Notice however that the copositivity test can be modeled alternatively by

min x�Qx
s.t. x ∈ [0, 1]n,

which also fits into our framework.

3 Experiments

We implemented Algorithm Q-MIST in C++ using CSDP 6.0.1 [4] for solving the
SDP relaxations. We carried out experiments on numerous classes of instances, con-
taining both convex and non-convex objective functions and both integer and con-
tinuous variables. All tests were performed on an Intel Core Duo Processor running
at 3.00 GHz. We stop our algorithm as soon as the absolute gap falls below 10−6.
Moreover, we do not branch on variables already restricted to intervals of length at
most 10−6.

For most of our experiments, we created random objective functions f as follows:
given a percentage p ∈ [0, 100], we choose n numbers μi , where the first �pn/100�
are chosen uniformly at random from [−1, 0] and the remaining ones are chosen uni-
formly at random from [0, 1]. Next, we generate n vectors of dimension n each, now
choosing all entries uniformly at random from [−1, 1], and orthonormalize them to
obtain vectors vi . The coefficient matrix Q is then calculated as Q = ∑n

i=1 μiviv
�
i .

In particular, the parameter p allows to control whether the matrix Q is positive semi-
definite (p = 0), negative semidefinite (p = 100) or indefinite. Finally, we determine
l by choosing all entries uniformly at random from [−1, 1], and set c = 0.

Note that for p = 0 the resulting problems have a convex objective function. For
these problems specialized algorithms exist, e.g. [6]. Since in this paper we focus on
the non-convex case, which is considerably harder, we do not propose to apply our
algorithm when solving purely convex instances. We do not expect our algorithm to
be competitive in this case.
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Table 1 Results for integer instances with domains {−10, . . . , 10}
n Q-MIST COUENNE

Solved Time Nodes Solved Time Nodes

10 110 0.1 17.7 110 29.6 5,720.8

20 110 2.3 206.9 96 643.9 75,464.5

30 110 43.1 1,435.3 0 − −
40 104 334.3 6,058.2 0 − −
50 70 593.4 10,347.7 0 − −

3.1 Non-convex integer instances

We first generated random instances with Di = {−10, . . . , 10} for all i = 1, . . . , n.
The number of variables n was chosen between 10 and 50. The objective function was
generated randomly as described above, for each p out of {0, 10, . . . , 100} and each
n we created 10 instances. Thus we consider 110 instances for each size n.

We compare Algorithm Q-MIST to the state of the art non-convex mixed-integer
programming software COUENNE [2] (running on the same machine). Results are
summarized in Table 1. The first column contains the number n of variables. The
following columns contain, for both approaches, the number of solved instances, the
average running time in seconds, and the average number of branch-and-bound nodes,
respectively. For all our experiments we set a time limit of 1 h. Instances not solved to
proven optimality within this time limit are not considered in the averages, averages
not taken over all 110 instances are printed in italics. As can be seen from Table 1, we
can solve all but six instances up to n = 40, whereas COUENNE is incapable of solv-
ing any instance beyond n = 20. In particular, the small number of nodes enumerated
on average by Q-MIST compared with COUENNE is remarkable.

As explained above, we can control the number of negative eigenvalues of the coef-
ficient matrix Q by the parameter p. Clearly, this parameter has a strong influence
on running times. In order to investigate this influence, we plotted the average run-
ning times of Algorithm Q-MIST depending on p; see Fig. 5. We use a logarithmic
scale. Different from the tables, we count the running times of unsolved instances as
3,600 s; the time limit is depicted as a dashed line. The different colors correspond to
the different numbers of variables.

One can observe that instances having a convex or concave objective function are
solved more easily by Algorithm Q-MIST than instances with indefinite Q. Note how-
ever that in both the convex and the concave case the problem remains NP-hard due
to integrality constraints. On the other hand, COUENNE does not seem to profit at all
from (near-)convexity.

To conclude this section we take a closer look at the separation algorithm. For the
instances considered above, we have Di = {−10, . . . , 10}. It follows that the num-
ber of linear inequalities needed to define a single set P(Di ) is 21. Indeed, for each
i ∈ {−10, . . . , 9}, we have a facet xii ≥ (2i + 1)xi0 − i(i + 1) of P(Di ); the last
facet is xii ≤ 100. However, it turns out that only a small part of these facets is needed
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Fig. 5 The average running time for integer instances depending on the percentage of negative eigenvalues;
Q-MIST (left) and COUENNE (right)

Table 2 Results for integer instances without separation

n Q-MIST

w/ separation w/o separation

Solved Time Nodes Solved Time Nodes

10 110 0.1 17.7 110 0.1 27.2

20 110 2.3 206.9 110 4.8 345.3

30 110 43.1 1,435.3 110 92.6 3,580.7

40 104 334.3 6,058.2 94 317.9 6,295.9

50 70 593.4 10,347.7 64 492.5 10,426.9

when solving the SDP relaxation (3): for the random instances considered above, for
n = 50, we need to generate only 3.24 such facets on average within one node of the
branch-and-bound tree. In other words, very few calls of Algorithm SepP and hence
very few reoptimizations of the SDP suffice to solve the relaxation (3). In general,
more inequalities are needed for instances with less negative eigenvalues. To be more
precise, the number of inequalities separated on average at each node is as follows.

p 0 10 20 30 40 50 60 70 80 90 100
avg. inequalities 31.20 2.38 0.95 0.25 0.03 0.02 0.00 0.00 0.00 0.00 0.00

The small number of iterations in the separation routine raises the question whether
the constraints (x0i , xii ) ∈ P(Di ) for i = 1, . . . , n have a crucial effect on the bound
given by the SDP relaxation (3). Replacing these constraints by the single inequalities
xii ≤ 100 and switching off the separation algorithm, we still obtain an exact algo-
rithm for solving Problem (1). Table 2 presents a comparison of both approaches. It is
obvious from the average numbers of branch-and-bound nodes that our cutting planes
improve the bounds significantly. Moreover, even if the number of SDPs to be solved
per node is increased by separation, the overall running times decrease considerably
for larger n, so that more instances can be solved to optimality within the time limit.
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Table 3 Instances of Phuong
et al. [11]

The size of these instances is
n = 40

Example Q-MIST Phuong et al.

Time Nodes Time

1 27 1,127 54

2 37 1,683 1

3 28 1,179 441

4 530 24,973 474

Table 4 Results for ternary instances

n Q-MIST COUENNE

Solved Time Nodes Solved Time Nodes

10 110 0.1 9.1 110 0.4 18.0

20 110 0.4 53.5 110 61.5 3,822.0

30 110 3.4 199.7 55 1,531.5 101,487.2

40 110 22.1 831.6 1 1,965.3 51,968.0

50 110 231.9 5,463.7 0 − −

3.2 Non-convex ternary instances

A problem arising in engineering applications is the following [11]:

max x�Cx

s.t. x ∈ {−1, 0, 1},
n∑

i=1

xi = 0 .

Instances of this type can be addressed by Algorithm Q-MIST by explicitly adding
the constraint

∑n
i=1 xi = 0 to the SDP relaxation (3).

A special case of this problem is considered in [11]. Here, the matrix C is circulant.
In Table 3, we compare our algorithm with the algorithm presented in [11]. The latter
is based on a problem-specific enumeration scheme. The timings for the algorithm of
Phuong et al. are taken from [11], as the code is not available. They used a Pentium IV
2.53 GHz, a slightly slower machine than we used for our experiments. Taking this
into account, we can still see that our algorithm performs comparably well, even if
their algorithm is tailored for ternary quadratic problems with circulant cost matrices,
while our algorithm does not exploit any special problem structure.

In order to run more tests on ternary instances, we generated (non-circulant) random
matrices Q. Again, we chose dimensions n from 10 to 50, and random coefficient
matrices with p % negative eigenvalues, with p ∈ {0, 10, . . . , 100}. For each n and
p, we again generated 10 matrices. Results are presented in Table 4, along with the
running times of COUENNE. Note that in these experiments we omitted the constraint∑n

i=1 xi = 0. The effect of the number of negative eigenvalues on the average running
time of Q-MIST is shown in Fig. 6.
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Fig. 6 The average running time for ternary instances depending on the percentage of negative eigenvalues;
Q-MIST (left) and COUENNE (right)

Table 5 Results for mixed-binary instances

n Q-MIST COUENNE

Solved Time Nodes Solved Time Nodes

10 110 0.1 12.2 110 0.1 5.5

20 110 0.3 35.5 110 8.7 105.6

30 110 6.7 255.5 110 81.9 559.4

40 104 83.0 1,618.8 109 385.4 6,156.0

50 99 133.7 1,785.9 70 1,806.9 36,455.8

3.3 Non-convex mixed-binary instances

We next generated random mixed-integer instances with box constraints, with half of
the variables being integer. In other words, we chose Di = [0, 1] for half of the vari-
ables and Di = {0, 1} for the other half. The objective function was again produced
as described above. Results are summarized in Table 5.

In Fig. 7, we plot the results by the percentage of negative eigenvalues. Again,
instances having a convex or concave objective function are solved more easily than
instances with indefinite Q. Note that in the concave case the problem is equivalent to
a pure binary quadratic optimization problem. It turns out that the hardest instances for
Algorithm Q-MIST arise when the percentage of negative eigenvalues lies between
10 and 30.

3.4 BoxQP instances

Our algorithm is mainly designed for problems containing integer variables. However,
it can also be applied to problem instances without any integrality conditions. In this
section, we compare our approach to the branch-and-bound algorithm of Burer [7].
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Fig. 7 The average running time for mixed-binary instances depending on the percentage of negative
eigenvalues; Q-MIST (left) and COUENNE (right)
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Fig. 8 Comparison of Algorithm Q-MIST and the branch-and-bound algorithm of Burer [7] for globally
solving the 90 instances of BoxQP. Time in seconds, plotted on a logarithmic scale. The line x = y is
plotted for reference only

The set of instances we evaluated has dimension 20–60 and is taken from [19]. All
variables have range [0, 1]. Such problems are called BoxQP problems.

We performed all experiments on the same computing system. As can be seen in
Fig. 8, our algorithm is performing worse than the algorithm of [7], which is spe-
cialized for solving BoxQP problems. Nevertheless, our approach is still capable of
solving the instances in reasonable running time.
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4 Conclusion

We presented an exact solution method for solving a large class of quadratic opti-
mization problems. This class includes integer and continuous variables, as well as
non-convex objective functions. The new algorithm is based on a semidefinite pro-
gramming relaxation embedded into a branch-and-bound framework. To the best of
our knowledge, this is the first algorithm using pure semidefinite programming tech-
niques for solving general non-convex quadratic mixed-integer problems.

Extensive experiments show that this algorithm can solve medium-sized instances
within reasonable running time. A comparison with COUENNE, which is one of the
few software packages that is capable of solving non-convex problems to optimality,
demonstrates the outstanding performance of our algorithm. Even when compared to
specialized solvers for smaller problem classes, namely ternary quadratic problems
and BoxQP, our algorithm performs reasonably well.
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helped to improve this paper.
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