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We present a low-prefactor, cubically scaling scaled-opposite-spin second-order Møller-Plesset per-
turbation theory (SOS-MP2) method which is highly suitable for massively parallel architectures like
graphics processing units (GPU). The scaling is reduced from O(N5) to O(N3) by a reformulation
of the MP2-expression in the atomic orbital basis via Laplace transformation and the resolution-of-
the-identity (RI) approximation of the integrals in combination with efficient sparse algebra for the
3-center integral transformation. In contrast to previous works that employ GPUs for post Hartree-
Fock calculations, we do not simply employ GPU-based linear algebra libraries to accelerate the
conventional algorithm. Instead, our reformulation allows to replace the rate-determining contrac-
tion step with a modified J-engine algorithm, that has been proven to be highly efficient on GPUs.
Thus, our SOS-MP2 scheme enables us to treat large molecular systems in an accurate and efficient
manner on a single GPU-server. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4891797]

I. INTRODUCTION

Second-order Møller-Plesset perturbation theory (MP2)1

is an important method in the field of ab initio quantum chem-
istry, however, the O(N5) scaling with molecular size N ham-
pers its applicability to large systems. Therefore, many ef-
ficient low- or linear-scaling methods have been developed
over the last decades, e.g., see Refs. 2–8. Despite its success,
reducing the prefactors is a central issue which is the focus of
our present work.

Our method is based on the Laplace scaled-opposite-spin
MP2 approach within the resolution-of-the-identity (RI) ap-
proximation (SOS-RI-MP2) of Jung et al.9 where the essen-
tial idea is a reversed order of summation compared to a
conventional RI-MP2 calculation, i.e., the molecular orbital
(MO) indices are contracted first before the summations over
auxiliary functions are carried out. In this work, we use an
atomic orbital-based reformulation which leads to an asymp-
totic cubic scaling, that is one order of magnitude smaller than
in the original MO-based SOS-RI-MP2 approach, and which
allows for efficient evaluation on graphics processing units
(GPUs). In contrast to the asymptotically cubic scaling local
SOS-RI-MP2 variant of Jung et al.,10 our method does not
rely on a local metric or orbital localization, but uses local
atomic orbitals (AOs).

In the last years several methods focusing on using GPUs
for post Hartree-Fock (HF) methods have been published11–15

that employ GPUs only for linear algebra operations. In this
work, however, our reformulation for SOS-RI-MP2 allows to
replace the computationally demanding contraction step with
a modified J-engine algorithm, which has already been proven
to be highly efficient on GPUs within self-consistent field

a)Electronic mail: Christian.Ochsenfeld@cup.uni-muenchen.de

(SCF) calculations.16, 17 This integral-direct approach also en-
ables a complete avoidance of disk-IO.

II. THEORY

The conventional RI-MP2 expression for the opposite-
spin MP2 term reads

EOS
RI−MP 2

=−
∑

ijab

∑

RSR′S ′

(ia|R)[J−1]RS(S|jb)(ia|R′)[J−1]R′S ′ (S ′|jb)

εa + εb − εi − εj

,

(1)

where the matrix J contains the two-center two-electron in-
tegrals in the auxiliary basis (R, S). Following the Laplace
AO-MP2 approach2–4 this expression can be transformed into
the AO basis

EOS
RI−AO−MP 2 = −

∑
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× (S ′|λ′σ ′). (2)

The sum over α corresponds to the quadrature sum of the
Laplace transform of the energy denominator where usually
5-6 points have been found to provide good accuracy.4, 18, 19

The pseudo-densities P and P are defined as
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For an efficient evaluation, we define intermediates

ZRS =
∑

μνμ′ν ′
(R|μ′ν ′)P μμ′P νν ′(μν|S)

=
∑

μν

(R|μν)(μν|S), (4)

which allow to calculate the OS-MP2 energy via

Z̃ = ZJ−1 (5)

and

EOS
RI−AO−MP 2 = −

∑

α

∑

RS

Z̃RSZ̃SR. (6)

The crucial step is the calculation of the intermediate matrix
Z which can be calculated with cubic scaling cost as shown
below. It should be noted that the matrix Z differs from the
matrices X and Y used in the methods of Jung et al. (see
Eqs. (12) and (19) in Ref. 10), where the inverse, or inverse
square root, respectively, of the matrix J is included.

The formation of the Z matrix requires transformed
three-center integrals (R|μν) which we calculate in an asymp-
totically quadratic step from the untransformed integrals
(R|μν) using sparse matrix multiplications in the highly ef-
ficient block-compressed sparse row (BCSR) format20 (see
Ref. 21 for details of our BCSR implementation). For an
efficient transformation, it is furthermore advantageous to
perform a Cholesky decomposition of the occupied pseudo-
density,

P = LLT , (7)

which provides a coefficient matrix L for local occupied
pseudo-MOs19 that can be used as an intermediate basis.
The transformation starts with a sparse square matrix of in-
tegrals for a given auxiliary index M(R) with M

(R)
μν = (R|μν)

where the sparsity reflects the linear-scaling number of signif-
icant basis function products. The transformation to the trans-
formed integral block

M
(R) = PM(R)P (8)

TABLE I. Outline of the algorithm for SOS-RI-AO-MP2. Steps (4)–(7) are
repeated for every Laplace point.

(1) Calculation of (R|μν) O(N2)
(2) Calculation of JRS = (R|S) O(N2)
(3) Calculation of J−1 O(N3)
(4) Calculation of pseudo-densities O(N3)
(5) Transformation of (R|μν) to (R|μν) O(N2)
(6) Contraction

∑
μν

(R|μν)(μν|S) (on GPU) O(N3)

(7) Multiplication Z J−1 O(N3)
(8) Contraction

∑
RS

Z̃
RS

Z̃
SR

O(N2)

with M
(R) = (R|μν) is then performed in three consecutive

multiplications,

M
(R) = L((LT M(R))P). (9)

It should be noted that the number of occupied Cholesky
pseudo-MOs is equal or, in some cases, slightly smaller than
the number of occupied MOs (see Ref. 19 for an in-depth dis-
cussion) and the dimension of the matrices is therefore largely
reduced by the first transformation with the Cholesky coeffi-
cients. In any of the three multiplications, two matrix dimen-
sions correspond to the number of atomic orbitals and one
corresponds to the number of occupied pseudo-MOs. Further
savings in the final transformation step are possible, if one
exploits the restriction of the subsequent contraction Eq. (4)
to significant basis function products: The final multiplication
in Eq. (9) can be restricted to matrix blocks which contain
(μ, ν) pairs that match significant basis function pairs. All
matrices have a sparse structure and the matrix multiplica-
tions therefore scale asymptotically linearly with system size
for a given auxiliary index which leads to an asymptotically
quadratic scaling of the total transformation step.

An outline of the steps in our method is given in
Table I and timings on linear alkanes and DNA systems are
given in Tables II and III. Steps (1)–(4), (7), and (8) have neg-
ligible cost (<10% in all calculations, 2% for the largest DNA
system) and the effective scaling for these steps is at most cu-
bically with system size. The cubic scaling steps (3), (4), and
(7) are performed using highly optimized linear algebra

TABLE II. Wall times and scaling behavior with respect to the number of basis functions for SOS-RI-AO-MP2 calculations on linear alkanes in a def2-SVP
and def2-TZVP basis on a computing node with two Intel Xeon E5-2620 processors (12 CPU cores) and four Nvidia GeForce GTX Titan GPUs. Timings and
scaling exponents [O(Nx )] are given for the whole calculation as well as selected steps of the algorithm defined in Table I.

def2 − SVP # Basis
Total Transformation (5) Contraction (6) on GPU Steps (1)–(4), (7), (8)

system functions time [s] O(Nx ) time [s] O(Nx ) time [s] O(Nx ) time [s] O(Nx )

C20H42 490 98 . . . 51 . . . 39 . . . 8 . . .
C40H82 970 575 2.59 374 2.92 171 2.16 30 1.94
C80H162 1930 2248 1.98 1051 1.50 1048 2.64 149 2.33
C160H322 3850 14 134 2.66 6206 2.57 7127 2.78 801 2.44
C320H642 7690 95 765 2.77 33 881 2.45 56 358 2.99 5526 2.79

def2 − TZVP # Basis
Total Transformation (5) Contraction (6) on GPU Steps (1)–(4), (7), (8)

system functions time [s] O(Nx ) time [s] O(Nx ) time [s] O(Nx ) time [s] O(Nx )
C20H42 872 406 . . . 261 . . . 120 . . . 25 . . .
C40H82 1732 1831 2.19 932 1.85 784 2.74 115 2.22
C80H162 3452 11 800 2.70 5790 2.65 5445 2.81 565 2.31
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TABLE III. Wall times and scaling behavior with respect to the number of basis functions for SOS-RI-AO-MP2 calculations on DNA systems in a def2-SVP
basis on a computing node with two Intel Xeon E5-2620 processors (12 CPU cores) and four Nvidia GeForce GTX Titan GPUs. Timings and scaling exponents
[O(Nx )] are given for the whole calculation as well as selected steps of the algorithm defined in Table I.

Transformation Contraction Steps

# Basis
Total (5) (6) on GPU (1)–(4), (7), (8) Referencea

System functions time [s] O(Nx ) time [s] O(Nx ) time [s] O(Nx ) time [s] O(Nx ) time [s] O(Nx )

DNA1 625 238 . . . 143 . . . 82 . . . 13 . . . 438 . . .
DNA2 1332 2096 2.88 1279 2.90 721 2.87 96 2.64 8290 3.88
DNA4 2746 19 601 3.09 13 289 3.24 5750 2.87 562 2.44 146 000 3.96
DNA8 5574 185 659 3.18 126 060 3.18 55 882 3.21 3717 2.67 . . . . . .

aReference calculation with conventional SOS-RI-MP2 (1 core@Intel Xeon E5-2620, only serial version available).

routines. The significant steps are the transformation of the
three-center integrals, step (5), and the contraction with the
untransformed integrals in step (6) which is performed on
GPU – details of our algorithm are presented in Sec. III.
The scaling of the transformation step (5) is asymptotically
quadratic and this behavior is observed as the general trend
for large linear alkanes but superimposed with considerable
fluctuations due to the blocking in the BCSR format with
the chosen block size of around 100 × 100. At the present
stage of development, we do not adjust the block structure for
the rectangular Cholesky matrices, which leads to some vari-
able overhead in the multiplications which can be significant
for smaller systems. For the DNA systems, the transforma-
tion matrices are less sparse and the quadratic scaling regime
is not reached but an effective cubic scaling is observed.

It should be noted that the scaling of the computational
cost given in Table I is based on increased sparsity in large
molecular systems with a fixed choice of basis set. More gen-
erally, one can also express the scaling behavior in terms
of the number of atom-centers (Nc) and number of AOs
per center (Nao/c). The number of auxilliary AOs per center
can usually be given in terms of Nao/c multiplied by a con-
stant caux, i.e., as caux × Nao/c. Thus, we obtain for the two
rate-determining steps (5) and (6) a scaling behavior of cocc
× caux × O(N2

cN3
ao/c) and c2

aux × O(N3
cN4

ao/c), respectively,
where either Nc or Nao/c is constant (scaling with basis-set
size or system size, respectively). The first expression with
the prefactor cocc comes from the use of the Cholesky factor
L in the sparse multiplications of step (5). These expressions
show the scaling for a fixed system size with increasing basis
set size, i.e., N3

ao/c for step (5) and N4
ao/c for step (6). Never-

theless, the asymptotic scaling with respect to the system size
(i.e., Nao/c is constant) is a quadratic (5) or cubic (6) scaling
behavior independent of the choice of the basis set.

In order to provide some measure of comparison for
the efficiency of our algorithm, we performed SOS-RI-
MP2 calculations with a development version of Q-Chem22

for the first three DNA-fragments (1 core, Intel Xeon
E5-2620@2.00GHz), showing a speed-up of approx. 7.5 for
DNA4. Here, it has to be stressed that a fair and balanced com-
parison of two different algorithms aiming for different com-
puting architectures is very difficult. For larger systems, how-
ever, the speed-up of the presented algorithm will be far larger
due to the less favorable O(N4) of the conventional SOS-RI-
MP2 algorithm.

In our present implementation, the untransformed three-
center integrals are saved to disk once and read in the trans-
formation step for every Laplace point. An implementation
without any I/O can be easily realized by performing steps
(3), (4), and (5) in batches of R. For each batch of this aux-
iliary index, all three-center integrals can be kept in memory.
The transformation can be performed in memory and in step
(5) the untransformed integrals are calculated on-the-fly and
directly contracted so that all operations can be performed
without any hard disk access. It also has to be stressed that
the current implementation is strictly sequential with respect
to the single steps given in Table I, i.e., the GPU-kernels block
the further execution of the code in order to provide mean-
ingful timings for the single steps of the algorithm. However,
the overall computational time can be significantly reduced by
executing the GPU-kernels in a non-blocking fashion, so that
the contraction step (6) and the transformation step (5) can be
executed simultaneously.

III. DETAILS: GPU-BASED ALGORITHM

For an efficient evaluation of the contraction step (6), a
modification of the J-engine23, 24 based GPU-algorithm for the
evaluation of the Coulomb matrix in SCF calculations17 is
employed. The algorithm is based on the 1 thread/1 primitive
integral (1T1PI) approach and the shell-pair ordering as pro-
posed by Ufimtsev and Martínez.16, 25 To be consistent with
this work with respect to the choice of bra and ket distribu-
tions and to make the analogy to the Coulomb matrix con-
struction most clear, we rewrite Eq. (4) (for real functions)
as

ZRS =
∑

μν

(S|μν)M
(R)
μν , (10)

with M
(R)
μν = (R|μν) (cf. Eq. (8)). In contrast to the regular

Coulomb matrix construction, we execute a Coulomb-type
contraction for any auxiliary index R to calculate one row of

Z using the matrix of transformed three-center integrals M
(R)

in place of the density matrix.
In the regular algorithm to determine the Coulomb matrix

for SCF calculations, the ket shell-pairs are contracted with a
single density matrix only. Here, however, Naux density-like
matrices have to be contracted, so that the use of the con-
ventional algorithm would show the same large prefactor and
some adjustments of the algorithm were required.
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Loop over Lket

xxxLoop over batches of R

xxxxxx Determine max. elements for all shell-pairs of batch: M
(R)

λσ
max

xxxxxx Sort ket shell-pairs λσ according to Qλσ × M
(R)
λσ

max

xxxxxx Contract ’densities’ M
(R)

with ket shell-pair data

xxxxxx Copy ket-data onto GPU(s)

xxxxxx Loop over Lbra

xxxxxxxxx Copy (pre-sorted) bra-data onto GPU(s)

xxxxxxxxx Execute GPU-kernel: ZR[p] =
λσ

([p]|λσ)M
(R)

λσ

xxxxxxxxx Copy back primitive Integrals ZR[p]

xxxxxxxxx Transform and contract: ZR[p] → ZRS

xxxxxx EndLoop

xxx EndLoop

EndLoop

FIG. 1. Scheme of the algorithm for the contraction step Eq. (10). If nothing
else is indicated, the steps are executed on CPU.

Crucial to the performance of the algorithm is the use of
shared memory to hold the intermediate values J[pq], however,
this memory is strictly limited on GPUs. Thus, we decided to
retain the two-dimensional thread-block setup but we extend
the grid by a further dimension to represent the offset to the
corresponding indices of the current R-batch. Therefore, we
strongly reduce the communication between host and GPU-
devices. It should be noted that in this case the bra-data does
not represent shell-pairs but only the shells of the auxilliary
basis.

The complete algorithm is also depicted in Fig. 1. Note
that the elements of (R|μν) are already transformed to the
cartesian basis and non-axial normalization coefficients have
been incorporated. Furthermore, the elements are sorted ac-
cording to the l-quantum number combination of μν, so that
the batches can be read from disk in a coalesced fashion.

IV. CONCLUSION

We present a reformulation of the SOS-RI-MP2 algo-
rithm which not only reduces the computational effort to
O(N3), but also allows for an efficient evaluation of the rate-
determining contraction step on GPUs by employing a mod-
ified J-engine algorithm. As a – to our knowledge – first re-
formulation of a post-HF method which is highly suitable for
GPUs beyond the mere use of GPU-accelerated linear algebra
libraries, our ansatz may also be applicable to other post-HF

methods in order to enable an efficient use of massively par-
allel processors.
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