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Abstract In this paper we study the relationship between valid inequalities for mixed-
integer sets, lattice-free sets associated with these inequalities and the multi-branch
split cuts introduced by Li and Richard (Discret Optim 5:724–734, 2008). By analyzing
n-dimensional lattice-free sets, we prove that for every integer n there exists a positive
integer t such that every facet-defining inequality of the convex hull of a mixed-integer
polyhedral set with n integer variables is a t-branch split cut. We use this result to give
a finite cutting-plane algorithm to solve mixed-integer programs. We also show that
the minimum value t , for which all facets of polyhedral mixed-integer sets with n
integer variables can be generated as t-branch split cuts, grows exponentially with
n. In particular, when n = 3, we observe that not all facet-defining inequalities are
6-branch split cuts.
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484 S. Dash et al.

1 Introduction

Starting with the work of Andersen et al. [2], there has been renewed interest in
lattice-free sets as a way to generate cutting planes for mixed-integer programs (MIPs).
In [2], the authors study lattice-free sets in R

2 and show that all facet-defining inequal-
ities for the so-called two-row continuous group relaxation (defined by two equations,
two integer variables and an arbitrary number of non-negative continuous variables)
can be generated by these sets. Later, Dash et al. [11] showed that facets of the convex
hull of any mixed-integer set with two integer variables can be obtained by crooked-
cross cuts, a family of disjunctive cuts related to the multi-branch split cuts studied
earlier by Li and Richard [26].

Currently, an area of active research is the classification of all maximal lattice-free
sets in R

3 (see [4]) and in higher dimensions. This project is motivated by the fact that
any valid inequality for a polyhedral mixed-integer set in Z

n × R
l can be obtained

using a lattice-free set in R
n and therefore classifying all lattice-free sets in R

n leads to
a characterization of all facet-defining inequalities of the convex hull of mixed-integer
sets in Z

n × R
l . This classification project, however, seems difficult even in R

3 and
there has been very limited progress in higher dimensions.

In this paper we study the connection between valid inequalities for mixed-integer
sets in Z

n × R
l and multi-branch split cuts. We show that any lattice-free set in R

n is
contained in a t-branch split set for some finite integer t , or equivalently, in the union
of t split sets. Furthermore, using ideas from Lenstra’s algorithm [25] for integer
programming in fixed dimension, we obtain t as a function of n alone and not of the
data defining the mixed-integer set. This result leads to a characterization of all facet-
defining inequalities of the convex hull of mixed-integer sets in Z

n ×R
l without using

an explicit classification of maximal lattice-free sets in R
n . In addition, this result also

leads to a finite cutting-plane algorithm for solving mixed-integer programs that only
generates multi-branch split cuts.

The question of finite termination of pure cutting-plane algorithms has received
some attention recently. Gomory [17] presented the first finite cutting-plane algorithm
to solve pure integer programs. He later presented a cutting-plane algorithm for MIPs
which uses the Gomory mixed-integer (GMI) cut [18], but proved finite termination
only when the optimal objective value is known to be integral a priori (and an integer
variable representing the objective function value is explicitly added to the constraint
system). Later, Cook et al. [10] presented a very simple MIP which cannot be solved
with split cuts alone. As GMI cuts are split cuts, their results imply that Gomory’s
algorithm will not terminate on this example. This result was recently extended by
Dash and Günlük [13] to show that for a certain MIP with n integer variables and one
continuous variable, no cutting-plane algorithm generating only (n − 1)-branch split
cuts will terminate in finite time (more precisely, the case when n = 3 was shown by
Li and Richard [26] and Dash and Günlük extend this to arbitrary n). Cook, Kannan
and Schrijver also note that if the data is rational it is possible to discretize continuous
variables in an MIP (by treating such variables as integer variables after scaling by
an appropriate constant) and solve the resulting pure integer program by Gomory’s
cutting-plane algorithm.
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Lattice-free sets 485

For MIPs with a bounded LP relaxation, Adams and Sherali [1] presented a hier-
archy of relaxations which yield the convex hull of integer solutions in finitely many
steps. Jörg [20,21] gave an algorithm which generates disjunctive cuts and solves any
such MIP in finite time. Subsequently, Chen et al. [9] also gave a disjunctive cutting-
plane algorithm to solve such MIPs in finite time. The case when the LP relaxation is not
necessarily bounded was addressed recently by Del Pia and Weismantel [15] who show
that the integral lattice-free closure of a polyhedron is again a polyhedron and the inte-
ger hull can be obtained by applying the closure operator finitely many times (though
they do not show how to obtain this closure algorithmically). Our result in this paper
gives the first finite cutting-plane algorithm for general MIPs which does not explicitly
use the encoding complexity of the input data nor discretizes the continuous variables.

In this paper we also construct a family of lattice-free sets in R
n which cannot be

covered by multi-branch split sets unless one uses at least 3 · 2n−2 split sets. Using
this construction, we present mixed-integer sets in Z

n × R which have facet-defining
inequalities that are not t-branch split cuts unless t ≥ 3 · 2n−2. For example, when
n = 3, we show that 6-branch split cuts are not sufficient to obtain the integer hull, but
21-branch split cuts are. In order to obtain this result, we show that the lattice-width
of a lattice-free, convex set in R

3 is at most 4.2439; in R
4 we show a corresponding

bound of 6.8481.

2 Preliminaries

In this paper we work with polyhedral mixed-integer sets of the form

P = P L P ∩ (Zn × R
l) where P L P = {(x, y) ∈ R

n+l : Ax + Gy ≤ b}, (1)

and A, G and b have m rows and rational components. We call P L P the continuous
relaxation of P .

2.1 Disjunctive and lattice-free cuts

Disjunctive programming was introduced by Balas [5] and has proved to be a very
important tool for generating valid inequalities for mixed-integer sets. We next review
the main ideas that are relevant for this paper. Let Dk = {(x, y) ∈ R

n+l : Ak x ≤ bk}
be finitely many polyhedral sets indexed by k ∈ K and let D = ∪k∈K Dk . We call D
a disjunction for the mixed-integer lattice Z

n × R
l if

Z
n × R

l ⊂ D

and we call each Dk an atom of the disjunction D (when the mixed-integer lattice is
clear from the context, we omit it). By definition D = Dx × R

l where Dx ⊆ R
n

is the projection of D in the space of the integer components, and consequently, the
condition above is same as requiring Z

n ⊂ Dx . Notice that verifying Z
n ⊂ Dx is the

same as checking if Z
n\Dx = ∅, which, in general, is not an easy task. In the next

section, we will discuss simple disjunctions for which validity of the disjunction can
be verified trivially.
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486 S. Dash et al.

A linear inequality is called a disjunctive cut for P derived from the disjunction D
if it is valid for P L P ∩ Dk for all k ∈ K ; therefore

P ⊆ conv
(

P L P ∩ D
)

= conv

( ⋃
k∈K

(P L P ∩ Dk)

)
,

where conv
(
P L P ∩ D

)
is the set of points in P L P that satisfy all disjunctive cuts

derived from D.
Disjunctive cuts can also be seen as lattice-free cuts. Given a set B ⊂ R

n , we call B
strictly lattice-free if B ∩Z

n = ∅, and we say that B is lattice-free if int(B)∩Z
n = ∅,

where int(B) stands for the points in the interior of B. Thus a lattice-free set may have
integral points on its boundary. If B is strictly lattice-free, we define P(B) as

P(B) = conv
(

P L P\(B × R
l)

)
⇒ P ⊆ P(B),

and any inequality valid for P(B) is called a lattice-free cut derived from the set B.
Note that the definition of a lattice-free cut above is different from that in most recent
papers starting with [2] where convex sets which have strictly lattice-free interior are
called lattice-free sets and cuts derived from these sets are called lattice-free cuts. We
will see below (Observation 2.2) that these two families of cuts for a given polyhedron
are equivalent.

A disjunctive cut derived from the disjunction Dx × R
l is a lattice-free cut derived

from the set R
n\Dx . Consequently, all disjunctive cuts are lattice-free cuts. As we

discuss below, it is also possible to show that valid inequalities obtainable as lattice-free
cuts from strictly lattice-free, convex sets are disjunctive cuts. Therefore all lattice-free
cuts are disjunctive cuts. Before establishing the equivalence between lattice-free and
disjunctive cuts we first make an important observation which we use throughout the
paper.

Observation 2.1 Let D = Dx × R
l ⊂ R

n+l be a disjunction and let B ⊂ R
n be a

strictly lattice-free set. If Dx ∩ B = ∅, then conv
(
P L P ∩ D

) ⊆ P(B). In other words,
when Dx ∩ B = ∅, any lattice-free cut for P derived from B can be obtained as a
disjunctive cut derived from D.

Let cT x + dT y ≥ γ be a given rational valid inequality for P and let ∅ �= V ⊂ R
n

be the points in P L P that violate this inequality. In other words,

V = {(x, y) ∈ P L P : cT x + dT y < γ }. (2)

Furthermore, let V x ⊂ R
n denote the projection of the set V in the space of the

integer variables and note that V x ∩ Z
n = ∅. It is known that V x is defined by a finite

collection of strict and non-strict rational inequalities, see [12]. Jörg [21] observes that
the set V x is contained in the interior of a polyhedral lattice-free set. In other words,
there is a rational polyhedral set B = {x ∈ R

n : πT
i x ≤ γi , i ∈ K }, where πi ∈ Z

n
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and γi ∈ Z for all i ∈ K , such that int(B) ∩ Z
n = ∅ and

V x ⊆ int(B) = {x ∈ R
n : πT

i x < γi , i ∈ K }. (3)

Therefore cT x +dT y ≥ γ is valid for P(int(B)) ⊆ P(V x ). Based on this observation,
Jörg then argues that

D =
⋃
i∈K

{(x, y) ∈ R
n+l : πT

i x ≥ γi } (4)

is a disjunction for Z
n × R

l and the cut cT x + dT y ≥ γ is a disjunctive cut derived
from D. Therefore, any valid inequality for P , and in particular, any facet-defining
inequality for P is a disjunctive cut derived from some disjunction D and a lattice-free
cut derived from some lattice-free, convex set. We emphasize that this approach is not
prescriptive in the sense that the disjunction D is defined using the valid inequality
cT x + dT y ≥ γ and not the other way around.

The discussion above also establishes the equivalence between lattice-free cuts
obtained from convex sets as described in [2] and the seemingly more general lattice-
free cuts obtained from sets that are not necessarily convex. When cT x + dT y ≥ γ

is a lattice-free cut obtained from a possibly non-convex set B ′, the inclusion in (3)
leads to the following observation.

Observation 2.2 Let B ′ ⊂ R
n be a strictly lattice-free set (which is possibly non-

convex). Any rational cut for P derived from B ′ can be obtained as a cut derived from
a strictly lattice-free, convex set B.

We would like to emphasize that the observation above does not claim the existence of
a single convex set B that can produce all the cuts that B ′ can produce. For example,
R

n \Z
n is a strictly lattice-free set that can yield all valid inequalities for P , and clearly

there does not exist a convex set that can do the same.

2.2 Multi-branch split disjunctions

We next discuss simple disjunctions D for which it is easy to verify that Z
n ×R

l ⊂ D.
The building block of these disjunctions is a split disjunction (see [10]) which is a
disjunction that can be defined with two atoms D1, D2, where

D1 = {(x, y) ∈ R
n+l : πT x ≤ γ } and D2 = {(x, y) ∈ R

n+l : πT x ≥ γ + 1}

for some π ∈ Z
n, γ ∈ Z. We denote this disjunction as D(π, γ ), and define the

associated split set as

S(π, γ ) = R
n\D(π, γ ) = {(x, y) ∈ R

n+l : γ < πT x < γ + 1}.

We will denote the topological closure of S(π, γ ) by S̄(π, γ ) and call it a closed
split set. If x ∈ Z

n then πT x ∈ Z implying that πT x either satisfies πT x ≤ γ or
πT x ≥ γ + 1 and therefore D(π, γ ) is a valid disjunction for Z

n × R
l .
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Li and Richard [26] define a generalization of split disjunctions they call t-branch
split disjunctions. Let πi ∈ Z

n and γi ∈ Z for i = 1, . . . , t . Then,

D(π1, . . . , πt , γ1, . . . , γt ) =⋃
S⊆{1,...,t}

{(x, y) ∈ R
n+l : πT

i x ≤ γi if i ∈ S, πT
i x ≥ γi + 1 if i �∈ S} (5)

is called a t-branch split disjunction. A split disjunction is simply a 1-branch split
disjunction. Further,

D(π1, . . . , πt , γ1, . . . , γt ) = R
n+l\

⋃
i=1,...,t

S(πi , γi ).

In other words, the complement of D(π1, . . . , πt , γ1, . . . , γt ) equals the union of t
split sets and is thus lattice-free. Therefore D(π1, . . . , πt , γ1, . . . , γt ) defines a valid
disjunction. On the other hand, verifying that a set of the form in (4) is a valid dis-
junction requires solving an integer program.

A t-branch split disjunction can be specified using 2t atoms of the form (5). We
refer to disjunctive cuts derived from t-branch split disjunctions as t-branch split cuts.

3 Valid inequalities as t-branch split cuts

In this section we show that any valid inequality for P is a t-branch split cut for
some t . Recently Chen et al. [9] showed this result for bounded P using t-branch split
disjunctions defined by unit vectors. In addition the number t in their result depends on
the data defining P . Next, we show that it is not necessary to require P to be bounded
and, further, we also derive a bound on t that depends only on the number of integer
variables defining P .

To show that a given valid inequality is a t-branch split cut for some t , we will
consider the strictly lattice-free set V x , defined after Eq. (2), on the space of integer
variables, and cover it by t split sets: we say that a set B is covered by a collection of
split sets if B is contained in their union.

Given a closed, bounded, convex set B ⊂ R
n and a vector c ∈ Z

n , let the width of
B along the direction c, denoted by w(B, c), be defined as

w(B, c) = max{cT x : x ∈ B} − min{cT x : x ∈ B}. (6)

The lattice width of B, denoted here as w(B), is defined as

w(B) = min
c∈Zn\{0}

w(B, c).

If the set is not closed, we define its lattice width to be the lattice width of its topological
closure. We call a closed, full-dimensional, bounded convex set a convex body. Any
strictly lattice-free, bounded, convex set B is contained in a strictly lattice-free, convex
body B ′ and the lattice width of B is bounded from above by the lattice width of B ′.
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Lattice-free sets 489

Lenstra [25] gave a polynomial-time algorithm to solve the feasibility version of
integer programs in fixed dimension. Given a polyhedron, Lenstra’s algorithm either
finds an integral point contained in the polyhedron or certifies that no such point exists.
A central component of this algorithm is the use of algorithmic versions of Khinchine’s
flatness theorem [23]. The flatness theorem states that there exists a function f : Z+ →
R+ such that for any strictly lattice-free, bounded, convex set B ⊂ R

n ,

w(B) ≤ f (n). (7)

Notice that the function f only depends on the dimension of B and not on the encoding
complexity of the data defining B. In [25], Lenstra uses this result to construct a finite
enumeration tree to solve the integer feasibility problem. The number of nodes in
the tree is bounded from above by a function of n which again is independent of the
encoding complexity of the data defining B. Modifying Lenstra’s idea slightly, we later
show that every strictly lattice-free, convex body in R

n can be covered by the union of
t split sets, where t is bounded from above by the maximum number of enumeration
nodes used in Lenstra’s algorithm.

Lenstra showed that (7) holds with f (n) = 2n2
, which was later improved to

f (n) = c0(n + 1)n/2 by Kannan and Lovász [22] for some constant c0. This bound
was subsequently improved by Banaszczyk, Litvak, Pajor, and Szarek to O(n3/2) and
by Rudelson [29] to O(n4/3 logc n) for some constant c. The constant c0 used by
Kannan and Lovász [22] is c0 = max{1, 4/c1} where c1 is another constant defined
by Bourgain and Milman [8]. Independent of the value of c1, the constant c0 ≥ 1 and
therefore the upper bound defined by Kannan and Lovász on the lattice width is at
least 3 for R

2 and at least 6 for R
3. When B ⊂ R

2, Hurkens [19] proved that (7) holds
with f (2) = 1+2/

√
3 ≈ 2.1547, and showed that this bound is tight. More precisely

he showed the following result:

Theorem 3.1 [19] If B ⊂ R
2 is lattice-free, then w(B) ≤ 1 + 2√

3
. Furthermore,

there exists lattice-free B ⊂ R
2 with w(B) = 1 + 2√

3
and any such B is a triangle

with vertices q1, q2, q3 such that (let q4 := q1)

1√
3

qi +
(

1 − 1√
3

)
qi+1 ∈ Z

2, for i = 1, 2, 3.

Letting bi = 1√
3

qi +
(

1 − 1√
3

)
qi+1 in the theorem above and taking b1 =

(0, 0)T , b2 = (0, 1)T , and b3 = (1, 0)T , one obtains a triangle T ⊂ R
2 with

w(T ) = 1+ 2√
3
. The three vertices q1, q2, q3 of this triangle are given by the columns

of the following matrix:

1

3

(
2 −1 − √

3 2 + √
3

−1 − √
3 2 + √

3 2

)
.
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490 S. Dash et al.

Fig. 1 The lattice-free triangle T in R
2 with lattice-width 1 + 2/

√
3

Fig. 2 A lattice-free
tetrahedron in R

3 with lattice
width 2 + 2/

√
3

Furthermore, T is a so-called type 3 maximal lattice-free triangle [2] that contains the
lattice points b1, b2 and b3 in the relative interior of its sides. As shown in Figure 1,
T does not contain any other lattice points.

3.1 Width of lattice-free sets in R
3

Recently, Averkov et al. [4] obtained a complete list (up to unimodular transforma-
tions) of maximal lattice-free polytopes in R

3 with integer vertices. One can verify that
the lattice width of such bodies does not exceed three in R

3. However, in R
3, one can

construct lattice-free bodies with lattice width slightly greater than 3. Recall the vectors
q1, q2, q3 ∈ R

2 which define the vertices of the triangle T . Consider the tetrahedron
H with vertices s1, . . . , s4, where s4 = (0, 0, 2 + 2/

√
3), and s1, s2, s3 are points on

the plane {x : x3 = 0} such that the points (qi , 1) ∈ R
3 lie on the line segment from si

to s4. By definition, H ∩{x : x3 = 1} is congruent to T . See Fig. 2. H has lattice width
2 + 2/

√
3 ≈ 3.1547. To see this note that if c ∈ Z

3\{0} such that c1 = c2 = 0, then
c3 �= 0 and w(H, c) ≥ max{x3 : x ∈ H} − min{x3 : x ∈ H} = 2 + 2/

√
3. On the

other hand, if (c1, c2) �= (0, 0), then w(H, c) ≥ w(H ∩{x : x3 = 0}, c) ≥ 2 + 2/
√

3.
This is because the triangles H ∩ {x : x3 = 0} and H ∩ {x : x3 = 1} are homothetic
triangles, and the ratio of their respective lattice widths (when treated as convex bod-
ies in R

2) is (2 + 2/
√

3)/(1 + 2/
√

3), which is the ratio of their distance from s4.
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We do not know of any result analogous to Hurkens’ result which gives the best
possible upper bound on the lattice width in R

3.
Using the best known value for c1, and refining the result of Kannan and Lovász

slightly, we next give an upper bound in R
3 on the lattice width of strictly lattice-

free, convex bodies. We need a few definitions to give the result and its proof. In [8],
Bourgain and Milman show that if K ⊂ R

n is a convex body symmetric about the
origin and K ∗ is its polar body, i.e., K ∗ = {y ∈ R

n : yT x ≤ 1 ∀x ∈ K }, then

vol(K )vol(K ∗) ≥
(c1

n

)n
(8)

where vol(K ) denotes the n-dimensional volume (Lebesgue measure) of K and c1 > 0
is a universal constant that does not depend on n.

If S and T are subsets of R
n , and δ is a positive real number, then let S + T =

{s + t : s ∈ S, t ∈ T }, and let δS = {δs : s ∈ S}. S − T is similarly defined. For a
convex body B in R

n , let μ j (B) be defined as

μ j (B) = inf{t ∈ R+ : t B + Z
n intersects every (n − j)-dimensional

affine subspace of R
n},

where inf is short for infimum. Then μn(B) is the infimum of all t such that t B +Z
n =

R
n , and is called the covering radius of B. Therefore μn(B) ≥ 1 if B is lattice-free

and convex and μn(B) > 1 if B is a strictly lattice-free, convex body. Let

λ1(B) = inf{t ∈ R : t (B − B) contains a nonzero integer vector}.

Theorem 3.2 If B ⊂ R
3 is lattice-free, then w(B) ≤ 1+2/

√
3+(90/π2)

1
3 ≈ 4.2439.

Proof We first define functions φ0, φ1 : Z+ → R+ that we will use instead of the
universal constants c0 and c1. Let Bn stand for the unit ball in R

n and define

φ1(n) = n
(2n(n!)2

(2n)! vol(Bn)2
) 1

n

and let φ0(n) = 4/φ1(n). Subsequently, we will refer to c0 as the least upper bound
on φ0(n) for all n, and c1 as the largest lower bound on φ1(n) for all n.

In [24], Kuperberg gave the best-known value for c1 and showed that if K is a
convex body symmetric about the origin, then

vol(K )vol(K ∗) ≥ 2n(n!)2

(2n)! vol(Bn)2.

Using our notation, this can be rewritten as

vol(K )vol(K ∗) ≥
(

φ1(n)

n

)n

(9)
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which is identical to (8) except the universal constant c1 is now replaced with the
function φ1(n).

In [22], Kannan and Lovász show that λ1(B)w(B) ≤ 4/(vol(B − B)vol((B −
B)∗))1/n which implies that

w(B) ≤ 4n

λ1(B)φ1(n)
= nφ0(n)

λ1(B)

by (9). In addition (in Lemma 2.3) they also show that μ1(B) = 1/w(B) and therefore,
substituting out w(B) from the inequality above, we obtain λ1(B) ≤ nφ0(n)μ1(B).

Now combining μn(B) ≤ μn−1(B) + λ1(B) [22, Lemma 2.5] with the fact that
μ2(B) ≤ (1 + 2/

√
3)μ1(B) (see [22, p 587]) we obtain

μ3(B)≤μ2(B) + λ1(B)≤(1+2/
√

3)μ1(B) + λ1(B)≤(1 + 2/
√

3+3φ0(3))μ1(B).

As 1 ≤ μ3(B) for a lattice-free body in R
3, we have

1

μ1(B)
= w(B) ≤ 1 + 2/

√
3 + 3φ0(3).

Substituting φ0(3) = (10/3π2)
1
3 ≈ 0.6964 we obtain the desired value. ��

We can similarly refine the lattice-width bound in [22] in higher dimensions.
Lemma 2.6 in [22] asserts that μ j+1(B) ≤ μ j (B) + ( j + 1)c0μ1(B) for j =
1, . . . , n − 1. Adding up these inequalities, one obtains that if B ⊂ R

n , then μn(B) ≤
(1 + c0

∑n
i=2 i)μ1(B). Therefore [22, Theorem 2.7],

if c0 ≥ 1, μn(B) ≤ c0n(n + 1)/(2w(B)) as μ1(B) = 1/w(B).

(We noted before that c0 is chosen to be max{1, 4/c1} in [22, p. 581].) Looking at the
proofs of Lemma 2.6 and Lemma 2.5 in [22], and the fact that λ1(B) ≤ φ0(n)nμ1(B),
one can replace [22, Lemma 2.6] by

μ j+1(B) ≤ μ j (B) + ( j + 1)φ0( j + 1)μ1(B) for j = 1, . . . , n − 1

⇒ μn(B) ≤ (1 + 2/
√

3 +
n∑

i=3

iφ0(i))/w(B),

and therefore w(B) ≤ 1 + 2/
√

3 + ∑n
i=3 iφ0(i) for lattice-free bodies in R

n . As
φ0(4) ≈ 0.6510, we can conclude that if B ⊂ R

4 and B is convex and lattice-free,
then w(B) ≤ 6.8481.

3.2 Lattice-free sets and integer programming

We next review some basic properties of unimodular matrices, i.e., integral, square
matrices with determinant ±1. If U is an n × n unimodular matrix, and v ∈ R

n , the
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affine transformation σ(x) = U x + v is a one-to-one, invertible, mapping of R
n to

R
n with σ−1(x) = U−1(x − v) and this transformation preserves volumes (see [3,

Thm 15.13]). If U is an unimodular matrix, then so is U−1; if in addition v ∈ Z
n ,

then the function σ(x) is a one-to-one, invertible, mapping of Z
n to Z

n . Further, if
a ∈ Z

n, b ∈ Z, the set {x ∈ R
n : aT x = b} is mapped to the set

{x ′ ∈ R
n : aT U−1(x ′ − v) = b} ≡ {x ′ ∈ R

n : aT U−1x ′ = b + aT U−1v}

and aT U−1 ∈ Z
n . Therefore, given a split set S(a, b), σ (S(a, b)) and σ−1(S(a, b))

are both split sets. If a ∈ Z
n and the g.c.d. of the coefficients of a is one, then there is

a unimodular matrix U such that aT U = (0, . . . , 0, 1) and aT x = b has an integral
solution for any integer b (see [30, Corollary 4.1c]). Note that the previous statement
implies that aT is the last row of U−1.

In the remainder of the section, we do not use any specific bound on the lattice
width, but just use f (n) to stand for a function which gives an upper bound on the
lattice width of strictly lattice-free bodies in R

n . For any positive integer n, we define
the functions

f̄n = 1 + � f (n)� and h(n) = f̄n + f̄n f̄n−1 + f̄n f̄n−1 f̄n−2 + · · · + �n
i=1 f̄i .

Lemma 3.3 Any strictly lattice-free, bounded, convex set B ⊂ R
n is contained in the

union of some h(n) split sets.

Proof The result is trivially true when n = 1 as w(B) ≤ 1 in that case and h(1) can
be assumed to be 2. Assume it is true for all dimensions up to n − 1 and consider a
strictly lattice-free, bounded, convex set B ⊂ R

n . By Khinchine’s flatness result, there
is a nonzero vector a ∈ Z

n such that u − l ≤ f (n) where u = max{aT x : x ∈ B} and
l = min{aT x : x ∈ B}. Therefore B ⊆ {x ∈ R

n : �l� ≤ aT x ≤ �u�}. We can assume
the g.c.d. of the coefficients of a is one, otherwise a = kā for some positive integer k
and ā ∈ Z

n , and max{āT x : x ∈ B} − min{āT x : x ∈ B} = (u − l)/k ≤ f (n)/k.
Let L be the collection of the split sets S(a, b) for b ∈ V = {�l�, . . . , �u� − 1} and

notice that

B \
⋃
b∈V

S(a, b) =
⋃

b∈V̄

{x ∈ B : aT x = b}

where V̄ = {�l�, . . . , �u�}. Each one of the |V̄ | sets in the right hand side of this
expression is strictly lattice-free, and has dimension at most n − 1. As the g.c.d. of
the coefficients of a is one, aT x = b has an integral solution (say vb) for any b ∈ Z,
and there is a unimodular matrix U with aT as its last row. Then, under the affine
transformation x → U x − Uvb (with inverse transformation x → U−1x + vb), there
is a one-to-one mapping of {x ∈ R

n : aT x = b} to the set R
n−1×{0}, and of the integer

points in the respective sets. Therefore, for any b ∈ Z, the set {x ∈ B : aT x = b}
is mapped to a strictly lattice-free set B ′ × {0} with B ′ ⊂ R

n−1. By the induction
hypothesis, B ′ can be covered by h(n − 1) split sets, and so can B ′ × {0} (by split sets
S(ai , bi ) where ai

n = 0). Applying the affine transformation x → U−1x + vb to the
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split sets S(ai , bi ), we get h(n − 1) split sets covering {x ∈ B : aT x = b}. Add each
of these split sets to L.

Then L has size at most |V | + |V̄ |h(n − 1). Notice that

u − l ≤ f (n) �⇒ �u� − �l� ≤ � f (n)�,

and |V |, |V̄ | ≤ �u� − �l� + 1. Consequently, |V |, |V̄ | ≤ f̄n and the set L has size at
most f̄n(1 + h(n − 1)) = h(n) and the desired bound follows. ��

The previous result obviously also holds for the interior of any (maximal) lattice-
free, bounded, convex set in R

n . If the strictly lattice-free, convex set is unbounded,
additional conditions are needed for Lemma 3.3 to hold; the conditions we choose
may not be the least restrictive but suffice for our purpose. Lovász [27] showed that
any maximal lattice-free, convex set is a polyhedron. Furthermore, if such a set is
unbounded, then it is either an irrational hyperplane or it is full-dimensional and it
can be expressed as Q + L where Q is a polytope and L a rational linear space. In the
latter case, Q + L is called a cylinder over the polytope Q. Also see Basu et. al. [7]
for a more recent and complete proof of Lovász’s result.

Lemma 3.4 Let B ⊂ R
n be a strictly lattice-free, unbounded, convex set. If B is

contained in the interior of a maximal lattice-free, convex set in R
n, then it is contained

in the union of some h(n) split sets.

Proof Let B ′ be a maximal lattice-free, convex set containing B in its interior; then B ′
is full-dimensional. Therefore B ′ is not an irrational hyperplane. By Lovász’s result,
B ′ = Q + L , where L is rational, dim(L) = r for some 0 < r < n, and Q is a lattice-
free polytope contained in L⊥, the orthogonal complement of L , and has dimension
n − r . Furthermore, B is contained in int(Q) + L . As L and L⊥ are rational, we can
define an n ×n unimodular matrix U such that U L⊥ = R

n−r ×{0}r . Therefore, every
point in the set U Q = {U x : x ∈ Q} has its last r components zero. Further U Q is
lattice-free, and Lemma 3.3 theorem gives h(n − r) split sets in R

n−r whose union
covers the projection of int(U Q) on the first n−r components. Let S(πi , γi ) be the i th
split set in the above union. Let S(π ′

i , γi ) be the corresponding split set in R
n which is

defined as follows: π ′
i is obtained by appending r zeros to πi and then multiplying by

U−1. It is easy to see that int(Q)+ L and therefore B is covered by ∪h(n−r)
i=1 S(π ′

i , γi ).
As h(n − r) ≤ h(n), the result follows. ��

Applying Lemma 3.4 with the bound of Rudelson [29] on f (n), it is easy to obtain
an exponential upper bound of O(n!4/3) on the number of split sets needed to cover a
strictly lattice-free, convex set. We will give a smaller exponential lower bound in the
next section.

Recall the mixed-integer set P defined in (1). Let cT x + dT y ≥ γ be a non-trivial
rational valid inequality for conv (P), i.e., cT x + dT y ≥ γ is not valid for P L P , but
is valid for conv (P). Let V ⊂ R

n+l be defined as in (2), and let V x be defined as the
projection of V on the space of the integer variables. V x is strictly lattice-free, and
is non-empty as cT x + dT y ≥ γ is not valid for P L P . As we discussed earlier, Jörg
[21] showed that V x is contained in the interior of a rational, lattice-free polyhedron
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B ⊂ R
n , and thus in the interior of a maximal lattice-free, convex set. Depending on

whether V x is bounded or unbounded, we can use either of the previous two lemmas
to obtain the following result.

Theorem 3.5 Any facet-defining inequality for conv (P) is a h(n)-branch split cut.

We observed earlier that Jörg’s results already express every facet-defining inequal-
ity as a disjunctive cut. The previous theorem gives an alternative expression of every
facet-defining inequality as a disjunctive cut. We next obtain a finite disjunctive cutting-
plane algorithm for arbitrary MIPs based on Theorem 3.5. This algorithm is however
of purely theoretical interest, and is highly impractical.

Theorem 3.6 The mixed-integer program max{cT x + dT y : (x, y) ∈ P} can be
solved in finite time via a pure cutting-plane algorithm which generates only h(n)-
branch split cuts.

Proof Let t = h(n). We will represent any t-branch split disjunction D(π1, . . . , πt ,

γ1, . . . , γt ) by a vector v in Z
(n+1)t ; the components of π1, . . . , πt are arranged as the

first nt components of v, and γ1, . . . , γt form the last t components. Let 	 = Z
(n+1)t .

As 	 is a countable set, by definition the vectors in 	 can be arranged in a sequence
{	i }, say by increasing norm. Further let Di be the t-branch split disjunction defined
by 	i . For any facet-defining inequality of conv (P), there exists a (finite) integer k
such that the inequality is a t-branch split cut defined by the disjunction Dk . Let k∗
be the largest index of a disjunction associated with facet-defining inequalities. Now
consider the following algorithm which does not compute or use the value of k∗. Let
P0 denote the continuous relaxation of P .

Repeat the following two steps for i = 1, 2, . . .

1. Compute Pi = Pi−1 ∩ conv (P0 ∩ Di ) .

2. If the basic optimal solution of max{cT x+dT y : (x, y) ∈ Pi } is integral, terminate.

As Pi is a relaxation of P , an integral optimal solution over Pi is also an optimal
solution over P . Further, as Pk∗ = conv (P), the algorithm must terminate for some
i ≤ k∗. ��

If one wants to check validity of a given inequality, the termination criterion in
the above algorithm can be modified to check it. Finally, if one wants to compute
conv (P), then the termination criterion can be changed to verifying that all vertices
of Pi are integral.

One drawback of the proof of finiteness in Theorem 3.6 is that it gives no information
on how long the algorithm will run for any given P . We next prove that the number
of generated disjunctions is bounded by a function of the encoding size of P L P =
{(x, y) ∈ R

n+l : Ax + Gy ≤ b}. The encoding size of an integer is the number of
bits in its binary encoding plus one. The encoding size of a rational number is the
sum of the encoding sizes of its numerator and denominator, and the encoding size of
a rational vector is the sum of encoding sizes of its components. The encoding size
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of a hyperplane is the sum of encoding sizes of its coefficients (including the zero
coefficients). A polyhedron is said to have facet-complexity φ if it can be described
by a list of inequalities such that the corresponding hyperplanes have encoding size at
most φ (the inequalities are then said to have encoding size at most φ).

Theorem 3.7 If P in Theorem 3.6 is defined by m linear constraints, each with encod-
ing size φ, then there exists a function g : Z

2 → Z such that the maximum number of
h(n)-branch split disjunctions enumerated by the algorithm in Theorem 3.6 is at most
g(m, φ).

Proof We say that an expression or a set “has bounded complexity” to mean that
its encoding size is bounded from above by a function of m and φ, and note that
n + l ≤ φ by definition. As P L P has facet-complexity at most φ, the facet-complexity
of conv (P) is at most φ1 = 24(n+l)5φ (see [30, Corollary 17.1a]). In other words, for
every facet of conv (P), there is an inequality cT x + dT y ≥ γ defining the facet with
encoding size at most φ1. Consider the set V in (2) defined as the points of P L P cut off
by cT x +dT y ≥ γ , and remember that V x denotes the projection of V onto the space
of integer variables. It is shown in [12,21] that V x = {x ∈ R

n : A1x ≤ b1, A2 < b2}
for some rational matrices A1, A2 and rational vectors b. Further, for any inequality
that appears in the description of this set, if a is the vector of coefficients of the x
variables and β is the right hand side, then

aT = λ̄A + μ̄c, β = λ̄b + μ̄γ, (10)

where (λ̄, μ̄) is an extreme direction of the cone

C = {(λ, μ) ∈ R
m × R : λG + μd = 0, λ ≥ 0, μ ≥ 0}.

Notice that the facet complexity of C is bounded by the encoding size of a column of[
G
d

]
. Therefore, the facet complexity of C is at most φ2 = mφ+φ1 and consequently,

the extreme points and directions of C have encoding size at most 4(m + 1)2φ2 ([30,
Theorem 10.2]). As each extreme direction (λ̄, μ̄) that appears in (10) has bounded
complexity we conclude that every inequality defining V x has bounded complexity. It
is shown in [12] that V x is contained in the interior of the rational, full-dimensional,
lattice-free polyhedron B = {x ∈ R

n : A1x ≤ b1 + 1, A2x ≤ b2} which again
has bounded facet complexity (say at most φ3). Therefore, it is possible to write
B = Q B + CB for some Q B = conv

(
v1, . . . , vq

)
and CB = cone (r1, . . . , rs) where

q and s are finite and q ≥ 1. Furthermore the vectors v1, . . . , vq and r1, . . . , rs are
rational and have encoding size at most 4n2φ3 (see [30, Theorem 10.2]).

We next show that there exists an integral vector z ∈ R
n with bounded complexity

such that the width of B along the direction z equals the lattice width of B. For
k = 1, . . . , n, consider the integer program IPk which, as we show below, gives the
minimum w(B, z) along all vectors z with zk ≥ 1:
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min t

s.t. t ≥ zT (vi − v j ) ∀i, j ∈ {1, . . . , q},
r T

j z = 0, ∀ j ∈ {1, . . . , s},
zk ≥ 1, z ∈ Z

n,

t ≥ 0.

First consider a feasible integral solution (t̄, z̄) for IPk . Then, as r T
j z̄ = 0 for all

j ∈ {1, . . . , s}, we have max{z̄T x : x ∈ B} = max{z̄T vi : i ∈ {1, . . . , q}} and
min{z̄T x : x ∈ B} = min{z̄T vi : i ∈ {1, . . . , q}}. Consequently, t̄ ≥ w(B, z̄) =
max{z̄T (vi − v j ) : i, j ∈ {1, . . . , q}}. Therefore, if (tk, zk) is an optimal solution of
IPk , we have w(B, zk) = tk .

As B is a full-dimensional lattice-free polyhedron w(B) is bounded; in other words,
there exists a non-zero integral vector z∗ such that w(B) = w(B, z∗) ≤ f (n). As
w(B) is bounded, r T

j z∗ = 0 for all j ∈ {1, . . . , s}. In addition, if z∗
k �= 0, then either

(w(B), z∗) or (w(B),−z∗) is feasible for IPk . Therefore, if p is such that t p ≤ tk for
all k = 1, . . . , n for which IPk is feasible, then w(B) = t p = w(B, z p).

Finally, note that IPp has an optimal solution with bounded complexity as the
encoding sizes of v1, . . . , vq and r1, . . . , rs are all bounded above by 4n2φ3, and the
numbers q and s also have bounded complexity. Therefore there exists a vector z with
bounded complexity such that w(B, z) = w(B). This implies that B can be covered
by split sets of the form {x ∈ R

n : τ < zT x < τ + 1} and split sets which cover
the sets {x ∈ B : zT x = τ } for τ ∈ [�min j {zT v j }�, �max j {zT v j }�]. The numbers
τ in the sets above have bounded complexity. We can assume, via induction, that
{x ∈ B : zT x = τ } can be covered by h(n − 1) split sets with encoding size bounded
above by a function of the facet complexity of {x ∈ B : zT x = τ } and the number
of constraints defining it. As these two numbers in turn have bounded complexity, we
can conclude that there is a h(n)-branch disjunction of bounded complexity which
implies the inequality cT x + dT y ≥ γ . ��

4 Covering lattice-free sets with split sets

In this section, we construct a lattice-free, bounded, convex set in R
n such that its

interior cannot be covered by fewer than 	(2n) split sets. Note that the upper bound
h(n) on the number of split sets needed to cover such a set is significantly larger.

Recall that S(a, b) = {x ∈ R
n : b < aT x < b + 1} is an open set. Given an

integer vector a ∈ Z
n , we refer to the collection of split sets {S(a, b) : b ∈ Z} as the

collection of split sets defined by a. We refer to a as the defining vector of these split
sets, and denote this fact using a function d.v.(·) where d.v.(S(a, b)) = a. We denote
the Euclidean norm of a by ||a||.
Definition 4.1 Let K ⊂ R

n be a compact set and let ε > 0 be given. We define

L(K , ε) = {a ∈ Z
n : vol(K ∩ S(a, b)) > ε for some b ∈ Z}.

Note that L(K , ε) can be empty, for example if ε is greater than the volume of K .
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Lemma 4.2 For any compact set K ⊂ R
n and any number ε > 0, the set L(K , ε) is

finite.

Proof Let l ∈ R be an upper bound on the (n−1)-dimensional volume of the intersec-
tion of a hyperplane with K . For any vector a ∈ Z

n , the distance between two parallel
hyperplanes of the form {x : aT x = b} and {x : aT x = b + 1} is 1/||a||. Therefore, if
||a|| > l/ε, the volume of the intersection of a split set S(a, b) (for some b ∈ Z) with
K is at most l/||a|| < ε. Therefore L(K , ε) is a subset of {a ∈ Z

n : ||a|| ≤ l/ε} and
is a finite set. ��

For example, if K is the set of points in R
2 that lie inside a given triangle, then the

length of the longest side of this triangle can be used as the number l in the proof of
the previous lemma.

Lemma 4.3 There exists a rational, lattice-free triangle T0 ⊂ R
2 and an ε > 0 such

that T0\(S1 ∪ S2) has area at least ε for any pair of split sets S1, S2 ⊂ R
2.

Proof Let T be the lattice-free triangle defined in the previous section with lattice
width 1 + 2/

√
3 ≈ 2.1547. Remember that vertices of T are irrational points. By

slightly rotating each side of T about the integer point in its relative interior, we can
obtain a rational, maximal, lattice-free triangle T0 with lattice width arbitrarily close
to 1 + 2/

√
3, say equal to 2.15. Therefore, the interior of T0 is not contained in the

union of two split sets defined by linearly independent vectors [11,19], or by linearly
dependent vectors (as w(T0) > 2). (One can combine this observation with results in
[19] to complete the proof, however we give a self-contained proof below.)

The intersection of the split set {x ∈ R
n : 0 < x1 < 1} with T0 has area at least 1/2,

and therefore (1, 0) ∈ L(T0, 1/2) �= ∅. As L(T0, 1/2) is finite and T0 is bounded, there
are finitely many split sets defined by vectors in L(T0, 1/2) such that their intersection
with T0 has an area of 1/2 or more; find the one with maximum area of intersection
with T0. Let 0 < ε1 ≤ area(T0) − 1/2 be the area left uncovered by this split set.
Split sets defined by vectors not contained in L(T0, 1/2) cover an area of T0 less than
1/2 and consequently, the minimum area of T0 left uncovered by any split set is at
least ε1.

Now consider L(T0, ε1/2). Let ε2 > 0 be the area of T0 left uncovered by any two
split sets with defining vectors from L(T0, ε1/2). As the number of pairs of such split
sets is finite, ε2 exists. Let S1 and S2 be two arbitrary split sets. If their defining vectors
belong to L(T0, ε1/2), then the area of T0 not covered by these split sets is at least ε2.
If d.v.(S2) �∈ L(T0, ε1/2), notice that S1 does not cover a portion of T0 with area of
at least ε1, and S2 covers a portion of T0 with area at most ε1/2. Consequently, S1 and
S2 leave an area of min{ε1/2, ε2} > 0 of T0 uncovered. ��

The triangle T0 in the previous lemma contains lattice points on its boundary; the
phrase “lattice-free” in the previous lemma can be replaced by “strictly lattice-free” if
we shrink the triangle T0 slightly so that the lattice-width remains strictly greater than
two, but no integer points lie on the boundary. We denote the collection of all split sets
in R

n by Sn .

Definition 4.4 The set A ⊂ R
n is weakly covered by the split sets S1, . . . , S j ∈ Sn

if the volume of A\(S1 ∪ . . . ∪ S j ) is zero.
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Recall that any convex, bounded, lattice-free set in R
2 can be weakly covered by three

split sets, but the triangle in the previous lemma cannot be weakly covered by two
split sets.

Lemma 4.5 Let l, m with l ≥ m be given positive integers and K ⊂ R
n be a compact

set that cannot be weakly covered by any m − 1 split sets in Sn. Then there exists a
finite set  ⊂ Z

n such that whenever K is weakly covered by S1, . . . , Sl ∈ Sn, then
the defining vectors of at least m of these split sets are contained in .

Proof We use induction with respect to m and construct a family of sets (K , l, m)

satisfying the desired property.
If m = 1 then at least one split set in a weak covering of K by l split sets must

cover a volume of volK
l of K and therefore we choose

(K , l, 1) = L
(

K ,
volK

l

)
,

which is finite by Lemma 4.2.
For some m ≥ 1, assume the result has been proved for all compact sets that cannot

be weakly covered by m − 1 split sets. Let K be a compact set that cannot be weakly
covered by m split sets. Let σ be a collection of l ≥ m + 1 split sets weakly covering
K . Let S0 ∈ σ be a split set whose intersection with K has the greatest volume of all
split sets in σ . Then vol(K ∩ S0) ≥ volK

l and therefore d.v.(S0) ∈ L(K , volK/ l).
The set K\S0 is a compact set which is weakly covered by σ\{S0}.

Further, K\S0 cannot be weakly covered by m − 1 split sets, otherwise K can be
weakly covered by m split sets. By induction, there exists a finite set (K\S0, l −
1, m) such that at least m of the split sets in σ\{S0} have their defining vectors in
(K\S0, l − 1, m). We take

(K , l, m + 1) = L
(

K ,
volK

l

)
∪

⋃

S∈Sn :vol(K∩S)≥ volK
l

(K\S, l − 1, m)

which is a finite union of finite families of sets. ��
We next make an important observation on how the set (K , l, m) changes under

unimodular transformations. Given an n × n matrix M and a set S ⊆ R
n , we define

M S = {Ms : s ∈ S}. Recall from Section 3.2 that a linear transformation defined by
a unimodular matrix maps any split set to a split set and does not alter the volume of
a bounded set. In particular, given a bounded set A and a split set S ∈ Sn , the volume
of A ∩ S is the same as that of M A ∩ M S if M is an n × n unimodular matrix.

Remark 4.6 From the proof of Lemma 4.5 it also follows that (K , l, m) is equal
to the union of finitely many sets of the form L(K ′, ε′), where K ′ is obtained by
subtracting up to m − 1 split sets in Sn from K .

Furthermore, given any n × n unimodular matrix N and ε > 0, as L(N K , ε) =
NL(K , ε), it can easily be shown (by induction on m) that (N K , l, m) =
N(K , l, m) for any integer l > 0.

123



500 S. Dash et al.

Lemma 4.7 Given any two finite sets of vectors V, W ⊂ Z
2\{0}, there exists a uni-

modular matrix M such that MV ∩ W = ∅.

Proof Let q = maxv∈V ∪W ||v||∞ and let

M =
(

1 μ

μ μ2 + 1

)
where μ = 3q.

Observe that M is integral and has determinant 1. Let v = (v1, v2)
T ∈ V . To prove

that Mv �∈ W , we first show that the first component of Mv, denoted by α, is nonzero.
Note that α = v1 +μv2. If |v2| ≥ 1, then α is a nonzero integer as |v1| < μ. If v2 = 0,
then α equals v1 which is nonzero as every vector in V is nonzero.

The second row of Mv equals μ(v1 + μv2) + v2 = μα + v2. As |α| ≥ 1, |v2| ≤ q
and μ = 3q, we have |μα + v2| ≥ 3q − q > q. Thus ||Mv||∞ > q and therefore Mv

cannot belong to W . ��
Lemma 4.8 Let l ≥ 3, k ≥ 1 be integers. There exist rational, lattice-free tri-
angles T0, . . . , Tk−1 ⊂ R

2 with the following properties: (i)Ti cannot be weakly
covered by fewer than three split sets for any i = 0, . . . , k − 1, (i i) the sets
(T0, l, 3), . . . , (Tk−1, l, 3) are pairwise-disjoint.

Proof Let T0 be the lattice-free triangle constructed in Lemma 4.3. For any 2 × 2
unimodular matrix N , clearly N T0 is lattice-free. We will now construct unimod-
ular matrices N0, . . . , Nk−1, where N0 is the identity matrix, such that the trian-
gles Ti = Ni T0 for i = 0, . . . , k − 1, have the desired property. Consider any
k > 0, and assume we have constructed N0, . . . , Nk−1. Let V = (T0, l, 3),
and let W = ∪k−1

i=0 (Ni T0, l, 3). By Lemma 4.7, we can construct a unimodular
matrix Nk such that Nk V has no elements in common with W . By Remark 4.6,
Nk V = (Nk T0, l, 3). The result follows by induction on k. ��

For any n ≥ 3, applying Lemma 4.8 with l = 3 × 2n−2 − 1 and k = 2n−2 we
obtain triangles Ti for i ∈ {0, . . . , 2n−2 − 1} such that no triangle Ti can be weakly
covered by fewer than three split sets and for any pair of indices i �= j the intersection
(Ti , 3 × 2n−2 − 1, 3) ∩ (Tj , 3 × 2n−2 − 1, 3) is empty.

For an integer � ∈ {0, . . . , 2n−2 − 1}, let δl stand for the lth bit in the binary
expansion of � in n − 2 bits. In other words, � = ∑n−2

l=1 δl2l−1 with each δl ∈ {0, 1}.
For each � ∈ {0, . . . , 2n−2 − 1}, we define the corresponding 2-dimensional affine
subspace

V� := {(δ1, . . . , δn−2, x, y)|x, y ∈ R}

and a triangle in this two-dimensional affine subspace

T� := {(δ1, . . . , δn−2, x, y)|(x, y) ∈ T�}.

Let cent(T�) stand for the centroid of the triangle T�, i.e., if the vertices of T� are
u, v, w ∈ R

2, then cent(T�) = (u + v + w)/3. For any positive number ε, and any
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Fig. 3 Tε when n = 3

V
0

T1

pε,1

pε,0

1V

0x

y
T

� ∈ {0, . . . , 2n−2 − 1}, we define the point

pε,� := (δ1, . . . , δn−2, cent(T�)) + ((2δ1 − 1)ε, . . . , (2δn−2 − 1)ε, 0, 0).

For example, when δi = 0 for i = 1, . . . , n − 2 (i.e., � = 0) then pε,� =
(−ε, . . . ,−ε, x̄, ȳ) where (x̄, ȳ) is the centroid of T0, and similarly, when δi = 1
for i = 1, . . . , n − 2, then p = (1 + ε, . . . , 1 + ε, x ′, y′) where (x ′, y′) is the centroid
of T2n−2−1. Finally, we define the polytope Tε as

Tε := conv

⎛
⎝

2n−2−1⋃
�=0

(T� ∪ {pε,�})
⎞
⎠ .

In Figure 3, we depict Tε when n = 3; here V0 = {(0, x, y)|x, y ∈ R} and V1 =
{(1, x, y)|x, y ∈ R}. The filled circles represent integer points on the boundaries of
the triangles T0 ⊂ V0 and T1 ⊂ V1.

Let ei stand for the unit vector in R
n with a one in the i th component and a 0 in

all other components, and let 0 (respectively, 1) stand for the all-zero (resp., all-ones)
vector in R

n .

Lemma 4.9 For any rational ε > 0, Tε is a rational polytope and its integer hull is
full-dimensional.

Proof Let ε be a positive rational number. The triangles T� are rational polytopes for
� ∈ {0, . . . , 2n−2 − 1}, and the points pε,� are also rational for all �. Therefore Tε

is a rational polytope.
For the second part, recall that the triangle T0 contains the integer points

(0, 0), (1, 0) and (0, 1). Furthermore, the point (0, 0) ∈ Ti for all i = 0, . . . , 2n−2 −1,
as Ti = Ni T0 for some unimodular matrix Ni . Therefore, Tε contains the integer points
0, e1, . . . , en as en−1, en and 0 belong to T0 and ei ∈ T2i−1 for i = 1, . . . , n − 2. The
set of points {0, e1, . . . , en} has affine dimension n and therefore the integer hull of
Tε is full-dimensional. ��
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Theorem 4.10 There exists a rational ε > 0 such that

(i) the relative interior of T� is contained in the interior of Tε, for 0 ≤ � < 2n−2,
(ii) Tε ∩ V� = T� for 0 ≤ � < 2n−2, and

(iii) Tε is lattice-free.

Proof (i) Let p be a point in the relative interior of T� for some � ∈ {0, . . . , 2n−2−1};
then p = (δ1, . . . , δn−2, x p, yp) where (x p, yp) ∈ int(T�). We will show that p
strictly satisfies every facet-defining inequality of Tε, and as Tε is full-dimensional
by Lemma 4.9, this will imply that p is contained in the interior of Tε. Let aT x ≤ b
be an inequality defining a facet of Tε; it is uniquely defined up to multiplication by
a scalar. Let a = (a1, . . . , an).

Assume that aT p = b. Clearly, there exists some σ > 0 such that the points
(x p, yp)±σ(1, 0) and (x p, yp)±σ(0, 1) are all contained in T0. Therefore p±σen−1 ∈
Tε and p ± σen ∈ Tε which implies that an−1 = an = 0. For i = 1, . . . , n − 2, the
point

qi = (δ1, . . . , δi−1, 1 − δi , δi+1, δn−2, 0, 0) ∈ Tε ⇒ aT qi ≤ b,

and therefore ai ≥ 0 if δi = 1 and ai ≤ 0 if δi = 0 for i = 1, . . . , n − 2. But this
sign pattern of the coefficients of a implies that aT pε,� > b unless a = 0, but then
aT x ≤ b is not a facet-defining inequality, a contradiction. Therefore, aT p < b.

(ii) As Tε contains the convex hull of sets of the form T�, for any � ∈
{0, . . . , 2n−2 − 1} we have Tε ∩ V� ⊇ T�. We need to show the reverse inclu-
sion. Once again, for convenience, we only prove the result for � = 0; the proof for
� �= 0 is similar. Let d > 0 be such that for all � ∈ {0, . . . , 2n−2 − 1} the distance
of cent(T�) to the boundary of T� is at least d. In addition, let B be the maximum
distance between any two vertices of Tε. Clearly these numbers exist.

Now consider an arbitrary point v ∈ Tε ∩ V0. Clearly v can be expressed as a
convex combination of the vertices of Tε and note that these vertices come from the
set of vertices of T� and from the points pε,� for varying �. Thus, for some index
set U we have v = ∑

j∈U λ jv
j with

∑
j∈U λ j = 1, λ j > 0 and v j is a vertex of Tε

for all j ∈ U .
Note that Tε has at most four vertices which have all first n − 2 components less

than or equal to 0, namely, the three vertices of T0 which all have their first n − 2
components equal to 0 and pε,0 which has all of the first n − 2 components equal
to −ε. Let U ′ ⊆ U be the indices of the remaining vertices. Let vi stand for the i th
component of v, and let v

j
i stand for the i th component of v j . For j ∈ U ′ we have

n−2∑
i=1

v
j
i ≥ 1 − nε,

as among the first n − 2 components of such a v j at least one component is at least
1 and the rest are at least −ε. When ε > 0 is chosen to be less than 1/n, we have
1 − nε > 0 and therefore the only vertex of Tε that has the sum of the first n − 2
components strictly negative is pε,0. We now consider two cases:
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Case 1 Assume pε,0 �∈ {v j : j ∈ U }. As v = ∑
j∈U λ jv

j , we have,

n−2∑
i=1

vi = 0 =
∑
j∈U

λ j

(
n−2∑
i=1

v
j
i

)
. (11)

Using the fact that λ > 0 and
∑n−2

i=1 v
j
i > 0 for all j ∈ U ′ we conclude that U ′ = ∅,

which in turn implies that v ∈ T0.

Case 2 Now assume that pε,0 ∈ {v j : j ∈ U } and let v0 = pε,0 with the associated
coefficient λ0. Also let w = ∑

j∈U ′ λ j . Note that the sum of the first n−2 components
of pε,0 is greater than −nε. Once again, from (11) we get

0 ≥ −λ0nε + (1 − nε)w ⇒ λ0 ≥ (1/(nε) − 1)w.

When ε is small enough, we have 1/(nε) − 1 > B/d, and therefore λ0/w > B/d.
We now rewrite v = ∑

j∈U λ jv
j as

v =
∑

j �=0, j �∈U ′
λ jv

j + (λ0 + w)

⎛
⎝ λ0

λ0 + w
v0 + w

λ0 + w

⎡
⎣∑

j∈U ′

λ j

w
v j

⎤
⎦

⎞
⎠ . (12)

Consider the point p′ = ∑
j∈U ′(λ j/w)v j given by the sum inside the square

brackets in (12) and note that it is a convex combination of the vertices of Tε. All of
these vertices are at a distance of at most B from any other point in Tε, and therefore so
is p′. Let the last two coordinates of p′ be (x ′, y′), and note that the last two coordinates
of v0 equal cent(T0) and the last two coordinates of v j define a vertex of T0 for all
j �= 0, j �∈ U ′. The vector (vn−1, vn) consisting of the last two coordinates of v is a
convex combination of (x ′, y′), cent(T0) and vertices of T0.

The expression inside the curved brackets in (12) gives a convex combination of
v0 and p′ and the last two coordinates of this point equals

λ0

λ0 + w
cent(T0) + w

λ0 + w
(x ′, y′).

Let p̄ ∈ R
2 stand for the point above. As λ0/w > B/d, the ratio of the distance

between p̄ and cent(T0) to the distance between p̄ and (x ′, y′) is less than d/B. As
the distance of cent(T0) to the boundary of T0 is at least d and the distance of (x ′, y′)
to the boundary of T0 is at most B, p̄ is contained in the interior of T0. Consequently,
the vector consisting of the last two coordinates of v is a convex combination of points
in T0 and is thus contained in T0. Therefore v ∈ T0 and Tε ∩ V0 ⊆ T0.

(iii) If v ∈ Z
n is an integer point in Tε, the first n − 2 components of v must be

0–1, and thus v ∈ V� for some 0 ≤ � < 2n−2. But, by construction, Tε ∩ V� = T�.
Therefore v ∈ T� for some 0 ≤ � < 2n−2. Further, if v is contained in the interior of
Tε, then it must be contained in the relative interior of T ∩ H for any affine subspace
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H of dimension one or more. But v is not contained in the relative interior of Tε ∩ V�.
Thus Tε is lattice-free. ��

Let � : R
n → R

2 denote projection to the last two coordinates and consider
a split set S = S(a, b) in R

n where a = (α1, . . . αn) ∈ Z
n and b ∈ Z. For any

� ∈ {0, . . . , 2n−2 − 1} we have

S ∩ V� =
{

(δ1, . . . , δn−2, x, y) : b−
n−2∑
l=1

δlαl < αn−1x+αn y < b+1−
n−2∑
l=1

δlαl

}
.

Notice that if αn−1 = αn = 0, then αn−1x +αn y = 0, which implies that S ∩ V� = ∅
as 0 cannot be strictly contained between two consecutive integers. On the other hand,
if (αn−1, αn) �= (0, 0), then S ∩ V� is a nonempty split set and its defining vector
is (αn−1, αn)T . Therefore �(S ∩ V�) is either a split set in R

2 with defining vector
(αn−1, αn)T , or it is an empty set.

We are now ready to show an exponential lower bound on the number of split sets
that can cover a lattice-free set.

Theorem 4.11 (Lower bound result) Let ε > 0 be such that Tε satisfies the properties
in Theorem 4.10. The interior of Tε is not contained in the union of any 3 × 2n−2 − 1
split sets.

Proof By contradiction. Suppose that int(Tε) is contained in the union of t split sets
S1, . . . , St in Sn , where t < 3 × 2n−2. Then, Theorem 4.10(i) implies that the relative
interiors of the triangles T� for 0 ≤ � < 2n−2 are also contained in ∪t

i=1St ; therefore
the triangles T� are weakly covered by ∪t

i=1St .
Let � ∈ {0, . . . , 2n−2 − 1}. Let S�

i = �(Si ∩ V�). By the previous lemma, S�
i is

either a split set in R
2 if the last two components of d.v.(Si ) are nonzero, or the empty

set otherwise. In the latter case, we define d.v.(S�
i ) = (0, 0) for convenience; then

d.v.(S�
i ) = �(d.v.(Si )) for any i , and therefore, d.v.(S�

i ) does not depend on �. As
int(Tε) ⊆ S1 ∪ · · · ∪ St , it follows that �(int(Tε) ∩ V�) = �(int(T�)) = int(T�) is
contained in S�

1 ∪ · · · ∪ S�
t . Therefore, there exist three sets, say S�

1 , S�
2 , S�

3 , such
that d.v.(S�

i ) ∈ (T�, 3 × 2n−2 − 1, 3) for i = 1, 2, 3.

For any �′ �= �, there are indices p, q, r such that d.v.(S�′
i ) ∈ (T�′ , 3×2n−2 −

1, 3) for i = p, q, r . But as the sets (T�, 3×2n−2−1, 3) and (T�′ , 3×2n−2−1, 3)

are disjoint, and d.v.(S�
i ) = d.v.(S�′

i ) for i = 1, . . . , t , it follows that {p, q, r} is
disjoint from {1, 2, 3}. Arguing similarly for indices not equal to � and �′, we can
conclude that t ≥ 3 × 2n−2, a contradiction. ��

Note that the first coordinate of any point in Tε is contained in the interval [−ε, 1+ε]
and consequently Tε has lattice-width at most 1+2ε < 2. Therefore Tε can be covered
by three closed split sets, even though its interior can only be covered by an exponential
number (in n) of split sets.

In R
3, Theorem 4.11 yields a rational, lattice-free polytope which needs 6 split sets

to cover its interior. We can improve this number by one (in general, we can improve
the bound in Theorem 4.11 by one too).
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Theorem 4.12 In R
3, there is a rational, lattice-free polytope such that its interior is

not contained in the union of any 6 split sets.

Proof Let T0 and T1 be triangles in R
2, constructed using Lemma 4.8, such that each

triangle cannot be weakly covered by fewer than three split sets and (T0, 6, 3) ∩
(T1, 6, 3) = ∅. Let

Vi = {(x, y, i) : x, y ∈ R} and Ti = {(x, y, i) : (x, y) ∈ Ti } for i = 0, 1.

Let pε,0 = (cent(T0),−ε) and pε,1 = (cent(T1), 1 + ε). We define � : R
3 → R

2

to be the projection to the first two coordinates. In addition let Q = {(x, y) : 0 ≤
x, y ≤ 7}.Q has an area of 49, but the area of Q covered by any (translated) split set
in R

2 is at most 7, and hence at least 7 such (translated) split sets are needed to cover
Q. Finally, let T′ = conv

(
T0, T1, {pε,0, pε,1}, Q1/2

)
, where Q1/2 = {(x, y, z) : 0 ≤

x, y ≤ 7, z = 1/2}. We will show that T′ has the desired property.
One can choose ε so that T′ is a rational, lattice-free polytope, and the rela-

tive interiors of T0 and T1 are contained in the interior of T′, as in the proof of
Theorem 4.10, and we assume ε is chosen in such a manner. Assume that there
exist t ≤ 6 split sets S1, . . . , St in R

3 such that their union contains int(T′). Let
d.v.(Si ) = (αi

1, α
i
2, α

i
3) ∈ Z

3. It is clear from the proof of Theorem 4.11 that there
must be three split sets, say S1, S2, S3, such that the defining vectors of the split sets
�(Si ∩ V0), i.e., (αi

1, α
i
2), are contained in (T0, 6, 3) for i = 1, 2, 3. Similarly, there

must be three split sets Sp, Sq , Sr such that (αi
1, α

i
1) ∈ (T1, 6, 3) for i = p, q, r .

As (T0, 6, 3) ∩ (T1, 6, 3) = ∅, it follows that {1, 2, 3} ∩ {p, q, r} = ∅, which
implies that {p, q, r} = {4, 5, 6} and t = 6. Further, the split sets Si for i = 1, . . . , 6
have the property that their defining vectors (αi

1, α
i
2, α

i
3) satisfy (αi

1, α
i
2) �= (0, 0), and

therefore the intersection of these split sets with {(x, y, z) : z = 1/2} are nonempty,
two-dimensional translated split sets which cover Q. But Q cannot be covered by any
six translated split sets in R

2, a contradiction. ��

Note that the integer hull of T′ in the previous theorem has dimension 3. The
next theorem connects the previous results with the inexpressibility of facet-defining
inequalities of polyhedral sets as t-branch split cuts. (See [14, Lemma 2] for similar
proof techniques for lattice-free cuts.)

Theorem 4.13 Let t be a positive integer and B ⊂ R
n be a rational, full-dimensional,

lattice-free polytope. Assume that the integer hull of B has dimension n and the interior
of B cannot be covered by t split sets. Then there exists a mixed-integer set in Z

n ×
R, defined by rational linear inequalities, that has a facet-defining inequality which
cannot be expressed as a t-branch split cut.

Proof Let B and t satisfy the conditions of the theorem. Let x̄ be a point in the interior
of B. Let B ′ be the polyhedron in R

n+1 defined as

B ′ = conv ((B × {−1}) ∪ (B × {0}) ∪ (x̄ × {1/2})) .
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We define a mixed-integer polyhedral set PB as follows:

PB = {(x, y) ∈ Z
n × R : (x, y) ∈ B ′}.

Let ihull (·) stand for the integer hull of its argument; then B ′ and ihull
(
B ′) have

dimension n + 1, and so does conv (PB). All mixed-integer solutions of PB satisfy
y ≤ 0; this is in fact a facet-defining inequality for conv (PB) as conv (PB)∩ {(x, y) :
y = 0} equals ihull (B) × {0} which has dimension n.

Let S1, . . . , St be t arbitrary split sets in R
n+1 defined on the x variables, i.e., they

are of the form Ŝi × R, where Ŝi are split sets in R
n . Recall that y ≤ 0 is a t-branch

split cut for PB derived from the disjunction associated with the split sets S1, . . . , St

if and only if it is valid for B ′\ ∪t
i=1 Si . The split sets Ŝi do not cover the interior of

B. Let x̂ ∈ int(B)\ ∪t
i=1 Ŝi . Then B ′\ ∪t

i=1 Si contains a point of the form (x̂, ε′)
for some ε′ > 0. This point violates the inequality y ≤ 0, and thus y ≤ 0 cannot be
expressed as a t-branch split cut. ��

This result when combined with Theorem 4.11 implies the existence of mixed-
integer polyhedral sets with n integer variables with the property that their convex hull
has a facet-defining inequality which cannot be expressed as a (3 × 2n−2 − 1)-branch
split cut.

Corollary 4.14 For any n ≥ 3 there exists a nonempty rational mixed-integer poly-
hedral set in Z

n × R with a facet-defining inequality that cannot be expressed as a
(3 × 2n−2 − 1)-branch split cut.

5 Concluding remarks

As mentioned in the introduction, every cut based on a maximal lattice-free convex
set in R

2 is implied by a crooked cross cut and therefore by a 3-branch split cut [11].
This result is derived using the classification of maximal lattice-free sets in R

2 by Dey
and Wolsey [16]. An analogous classification result is not yet known in R

3, and seems
unattainable in R

n for larger n using current tools.
Combining the fact that any lattice-free convex set in R

2 is contained in a 3-branch
split set with Theorem 3.2 that bounds the lattice width of lattice-free, convex sets in
R

3, it is possible to show that cuts based on lattice-free convex sets in R
3 are implied

by 21-branch split cuts.

Theorem 5.1 Any strictly lattice-free, convex set B in R
3 is contained in the union of

21 split sets. Further, there is a disjunction not intersecting B that can be constructed
using at most 22 atoms.

Proof Let a stand for the direction of minimum lattice width and remember that
w(B) < 4.25. Therefore, B is strictly contained in a set of the form {x ∈ R

3 : q <

aT x < q +4.25} ⊂ {x ∈ R
3 : �q� < aT x < �q +4.25� for some number q. Consider

split sets of the form {x ∈ R
3 : b < aT x < b + 1} for up to 6 consecutive values

of b = �q�, . . . , �q + 4.25� − 1. Then B minus the union of these sets consists of
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two-dimensional, strictly lattice-free sets of the form {x ∈ B : aT x = b} for at most
5 consecutive values of b. Each such lattice-free set needs 3 split sets for a total of 21
split sets.

It is possible to construct a disjunction which does not intersect B using at
most 22 atoms as follows: the first two atoms are {x ∈ R

3 : aT x ≤ �q�} and
{x ∈R

3 : aT x ≥�q+4.25�}. In addition, there are at most 4 atoms for each nonempty
set of the form {x ∈ B : aT x =b} where b=�q�+1, . . . , �q+4.25�−1. ��

The above upper bound of 21 split sets is quite a bit higher than the lower bound of
7 split sets we obtained earlier. It would be interesting to obtain the smallest number
of split sets needed to cover every lattice-free set in R

3.
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