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Most algorithms for solving linear program require a phase-1 procedure to find a feasible solution. Recently,
a dual–primal algorithm for linear optimization has been proposed by Li [Dual–primal algorithm for linear
optimization, Optimiz. Methods Softw. 28 (2013), pp. 327–338]. In the process of implementing the dual–
primal algorithms, we found an interesting phenomenon that the phase-1 algorithm developed in [Li (2013)]
always terminates in one iteration. This fact does not come by chance. A rigorous proof is given in this
paper.
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1. Introduction

Most algorithms for linear programming problems, say, simplex and interior point methods,
require a phase-1 algorithm to obtain a feasible solution as input, e.g., see [2,3,5–10]. Recently,
an interesting dual–primal algorithm for linear optimization and a new phase-1 have been pro-
posed [4]. This new phase-1 algorithm exploits the advantage of dual–primal algorithm and only
one single artificial variable is introduced. When applying the dual–primal algorithm to some
linear program arisen from scheduling problems, we note that all test problems obtain the feasible
solution by this new phase-1 procedure with only one iteration. This fact does not come by chance.
A rigorous proof is given in this paper.

In the next section, for self-contained the dual–primal algorithm and the new phase-1 algorithm
are presented. Then in Section 3, it is proved that this new phase-1 algorithm is always terminated
in one iteration. Some conclusion remarks are given in Section 4.

2. Dual–primal algorithm for linear programming and corresponding phase-1 algorithm

Consider the linear programming problem in the standard form

min cTx

s.t. Ax = b, x ≥ 0,
(1)
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and its associated dual problem

max bTy

s.t. ATy + s = c, s ≥ 0,
(2)

where c, x, s ∈ Rn, b, y ∈ Rm, A ∈ Rm×n with m < n, rank(A) = m.
If x ∈ Rn is primal feasible, and y ∈ Rm is dual feasible and xTs = 0 then x and y are primal

and dual optimal respectively. This well know result shows that the set of optimal solutions can
be characterized as the solutions of the Karush–Kuhn–Tucker (KKT) system as follows:

1. Ax = b; 2. ATy + s = c; 3. xTs = 0; 4. x ≥ 0; 5. s ≥ 0.

An algorithm for solving linear optimization is called a single-term KKT algorithm, if it maintains
the validity of any four of above five conditions in the solving process and tries to achieve
the remainder one condition, which acts as a termination condition. Primal simplex method,
dual simplex method, primal–dual method and interior point method are all single-term KKT
algorithms. Patterns 1, 2, 3 and 5 below illustrate the requirements of the above mentioned
algorithms, respectively [4].

The dual–primal algorithm for linear optimization associated with patterns 4, where preserving
all KKT conditions 1, 3, 4 and 5, but the equality 2 is attained at termination, has been newly
developed by Li [4].

Let x̄ be a primal feasible solution to the problem (1). Let M and N be the two index sets,
respectively:

M = {i|x̄i > 0, i ∈ {1, . . . , n}},
N = {i|x̄i = 0, i ∈ {1, . . . , n}}. (3)

The coefficient matrix A and the identity coefficient matrix of s can be partitioned correspondingly
as [AM , AN ] and [IM , IN ], respectively. Vectors x, s and c are partitioned conformably. Consider
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least-squares problem

min
z≥0

‖Âz − c‖2, (4)

where Â = [AT, −AT, IN ] ∈ Rn×(2m+|N |), zT = (uT, vT, sT
N )T ∈ R2m+|N |.

Dual–primal algorithm (main procedure) [4]
Let x̄ be a primal feasible solution.

1. Determine N by (3).
2. Compute the residual r = [AT, IN ] [ y

z

] − c at the solution to the problem (4).
3. Stop if the residual r = 0 : the current solution x̄ and

s̄ =
{

0 for j ∈ M;

s̄j for j ∈ N ;

are primal and dual optimal, respectively.
4. Stop if r ≥ 0: the problem (1) is unbounded below.
5. Determine step length α by α = min{−x̄j/rj|rj < 0, j ∈ M}.
6. Update x̄ by x̄ := x̄ + αr, and go to Step 1.

The dual–primal algorithm requires a primal feasible solution as its input. A phase-1 approach
which only introduces a single artificial variable is developed in [4]. Without loss of generality
we assume that b ≥ 0 in the program (1). Introduce an artificial variable xn+1 and construct the
following auxiliary program:

min xn+1

s.t. Ax + xn+1b = b,

x ≥ 0, xn+1 ≥ 0.

(5)

Program (5) has an obviously feasible solution x(0) = 0 ∈ Rn, x(0)
n+1 = 1.

Phase-1 algorithm [4] Solve (5) by dual–primal algorithm. Let (x∗, x∗
n+1) ≥ 0 be the optimal

solution to (5). If x∗
n+1 > 0, then the program (1) is infeasible. If x∗

n+1 = 0, then x∗ is a feasible
solution to program (1).

Main result

Like least-squares primal–dual algorithm proposed in [1], the dual–primal algorithm [4] is
expected to have an advantage on combinatorial problems, such as set partitioning problems,
assignment problems and scheduling problems etc, over the simplex method, because these
problems are highly degenerate.

In this section, we prove an interesting property – that the Phase-1 procure of dual–primal
algorithm always terminates in one iteration. First, we introduce two propositions to be used later
in the proofs of the main theorem.

Proposition 1 If the residual r at the solution to (4) satisfies r �= 0, then it is a feasible direction
of the problem (1).

Proof Proposition 1 is Lemma 4.3 in [4]. �

Proposition 2 If the dual–primal algorithm terminates at Step 4, i.e. r ≥ 0 and r �= 0, then the
problem (1) is unbounded below.
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Proof Proposition 2 is Lemma 4.4 in [4]. �

Now we prove the following main result.

Theorem The Phase-1 procedure terminates in one iteration at either

(i) with a feasible solution to the problem (1) reached; or
(ii) detecting the infeasibility of problem (1).

Proof Rewrite the problem (5) as

min c̃Tx̃

s.t. Ãx̃ = b,

x̃ ≥ 0,

(6)

where c̃ = (0, . . . , 0, 1)T ∈ Rn+1, x̃ = (x1, . . . , xn, xn+1)
T ∈ Rn+1, Ã = [A, b]m×(n+1). The auxil-

iary problem (6) has an obviously feasible solution x̃(0) = (0, . . . , 0, 1)T ∈ Rn+1, and therefore
it exists a nonnegative optimal solution, since the objective function c̃Tx̃ = xn+1 ≥ 0. Let the
residual of the associated nonnegative least-squares problem

min
z≥0

∥∥∥∥[ÃT, IN ]
[

y
z

]
− c̃

∥∥∥∥
2

(7)

be

r(0) = [ÃT, IN ]
[

y
z

]
− c̃ =

⎛
⎜⎜⎜⎜⎜⎝

r(0)
1

. . .

r(0)
n

r(0)
n+1

⎞
⎟⎟⎟⎟⎟⎠ , (8)

where

IN =

⎡
⎢⎢⎢⎢⎣

1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .

0 0 . . . 1
0 0 . . . 0

⎤
⎥⎥⎥⎥⎦

(n+1)×n

is the first n columns of the identity matrix In+1.
By Proposition 1 we know that x̃(0) + αr(0) ≥ 0, for some α > 0, i.e.,

⎛
⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎠ + α

⎛
⎜⎜⎜⎜⎜⎜⎝

r(0)
1

...

r(0)
n

r(0)
n+1

⎞
⎟⎟⎟⎟⎟⎟⎠

≥ 0

and hence r(0)
1 ≥ 0, . . . , r(0)

n ≥ 0 and

1 + αr(0)
n+1 ≥ 0. (9)

Now consider r(0)
n+1, we distinguish two cases:
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1© r(0)
n+1 < 0.

In case 1©, r(0)
n+1 is the unique nonnegative component of the residual. Thus, the inequality (9)

implies that the next step length is given by

α = − 1

r(0)
n+1

.

Thus, after one iteration we obtain the next solution

x(1)
j = x(0)

j + r(0)
j

(−r(0)
n+1)

≥ 0, j = 1, . . . , n,

x(1)
n+1 = x(0)

n+1 + r(0)
n+1

(−r(0)
n+1)

= 1 − 1 = 0.

Note that x(1)
n+1 = 0, thus, (x(1)

1 , . . . , x(1)
n+1) is an optimal solution of the problem (5), and hence

(x(1)
1 , . . . , x(1)

n ) is a feasible solution of the original linear programming problem (1).
2© r(0)

n+1 ≥ 0.

In case 2©, the problem (1) is infeasible. In fact, in this case the condition r(0)
1 ≥ 0, . . . , r(0)

n ≥ 0
and r(0)

n+1 ≥ 0 imply that r(0)
1 = 0, . . . , r(0)

n = 0, r(0)
n+1 = 0, since otherwise by Proposition 2, the

auxiliary program (6) will be unbounded if there exits j ∈ {1, . . . , n + 1} such that r(0)
j > 0. Thus

by (8) we have

[ÃT, IN ]
(

y(0)

z(0)

)
−

⎛
⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
...
0
0

⎞
⎟⎟⎟⎠ , (10)

where y(0) ∈ Rm, z(0) ∈ Rn. From (10) it follows that(
AT

bT

)
y(0) + IN z(0) =

(
0
1

)
, (11)

where 0 ∈ Rn. Note that z0 ≥ 0, by (10) we have

ATy0 ≤ 0

bTy0 = 1 (12)

which implies that the system

ATy ≤ 0

bTy > 0 (13)

has a solution. By Farkas’s Lemma we know that the system

Ax = b

x ≥ 0 (14)

has no solution. So the problem (1) is infeasible. �
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3. Final remark

We prove that one can find a feasible solution or detect the infeasibility to the problem (1) in only
one iteration, by applying the phase-1 procedure of dual–primal algorithm developed in [4]. It
may be interesting to note that if we set y = u − v, u, v ≥ 0, then the KKT conditions for linear
programming problem (1) can be written as

Ax = b,

ATu − ATv + s = c,

cTx − bTu + bTv = 0,

x, s, u, v ≥ 0. (15)

Thus, finding an optimal solution to problem (1) is equivalent to the problem of finding a solution
to a larger linear system (15). Now for any given c ∈ Rn, say, c = 0, consider linear program

min 0Tx

s.t. constrains (15)
(16)

Clearly, finding an optimal solution to problem (1) is equivalent to find a feasible solution to (16).
Apply the phase-1 to problem (16), it terminates in one iteration. Thus, to solve problem (1) is
equivalent to solve a least-squares problem with nonnegative constraints, which is solvable in
polynomial-time.
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