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Abstract This paper derives new algorithms for signomial programming, a general-
ization of geometric programming. The algorithms are based on a generic principle for
optimization called the MM algorithm. In this setting, one can apply the geometric-
arithmetic mean inequality and a supporting hyperplane inequality to create a surro-
gate function with parameters separated. Thus, unconstrained signomial programming
reduces to a sequence of one-dimensional minimization problems. Simple examples
demonstrate that the MM algorithm derived can converge to a boundary point or to
one point of a continuum of minimum points. Conditions under which the minimum
point is unique or occurs in the interior of parameter space are proved for geometric
programming. Convergence to an interior point occurs at a linear rate. Finally, the
MM framework easily accommodates equality and inequality constraints of signo-
mial type. For the most important special case, constrained quadratic programming,
the MM algorithm involves very simple updates.
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1 Introduction

As a branch of convex optimization theory, geometric programming is next in line to
linear and quadratic programming in importance [4,6,15,16]. It has applications in
chemical equilibrium problems [14], structural mechanics [6], integrated circuit design
[5], maximum likelihood estimation [12], stochastic processes [7], and a host of other
subjects [6]. Geometric programming deals with posynomials, which are functions of
the form

f (x) =
∑

α∈S

cα

n∏

i=1

xαi
i . (1)

Here the index set S ⊂ R
n is finite, and all coefficients cα and all components

x1, . . . , xn of the argument x of f (x) are positive. The possibly fractional powers
αi corresponding to a particular α may be positive, negative, or zero. For instance,
x−1

1 + 2x3
1 x−2

2 is a posynomial on R
2. In geometric programming we minimize a

posynomial f (x) subject to posynomial inequality constraints of the form u j (x) ≤ 1
for 1 ≤ j ≤ q, where the u j (x) are again posynomials. In some versions of geometric
programming, equality constraints of posynomial type are permitted [3].

A signomial function has the same form as the posynomial (1), but the coefficients
cα are allowed to be negative. A signomial program is a generalization of a geometric
program, where the objective and constraint functions can be signomials. From a
computational point of view, signomial programming problems are significantly harder
to solve than geometric programming problems. After suitable change of variables,
a geometric program can be transformed into a convex optimization problem and
globally solved by standard methods. In contrast, signomials may have many local
minima. Wang et al. [20] recently derived a path algorithm for solving unconstrained
signomial programs.

The theory and practice of geometric programming has been stable for a genera-
tion, so it is hard to imagine saying anything novel about either. The attractions of
geometric programming include its beautiful duality theory and its connections with
the arithmetic-geometric mean inequality. The present paper derives new algorithms
for both geometric and signomial programming based on a generic device for iterative
optimization called the MM algorithm [9,11]. The MM perspective possesses sev-
eral advantages. First it provides a unified framework for solving both geometric and
signomial programs. The algorithms derived here operate by separating parameters
and reducing minimization of the objective function to a sequence of one-dimensional
minimization problems. Separation of parameters is apt to be an advantage in high-
dimensional problems. Another advantage is ease of implementation compared to
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MM algorithms for geometric and signomial programming 341

competing methods of unconstrained geometric and signomial programming [20].
Finally, straightforward generalizations of our MM algorithms extend beyond signo-
mial programming.

We conclude this introduction by sketching a roadmap to the rest of the paper.
Section 2 reviews the MM algorithm. Section 3 derives an MM algorithm for uncon-
strained signomial programming from two simple inequalities. The behavior of the
MM algorithm is illustrated on a few numerical examples in Sect. 4. Section 5 extends
the MM algorithm for unconstrained problems to the constrained cases using the
penalty method. Section 6 specializes to linearly constrained quadratic programming
on the positive orthant. Convergence results are discussed in Sect. 7.

2 Background on the MM algorithm

The MM principle involves majorizing the objective function f (x) by a surrogate
function g(x | xm) around the current iterate xm (with i th component xmi ) of a
search. Majorization is defined by the two conditions

f (xm) = g(xm | xm) (2)

f (x) ≤ g(x | xm) , x �= xm .

In other words, the surface x �→ g(x | xm) lies above the surface x �→ f (x) and is
tangent to it at the point x = xm . Construction of the majorizing function g(x | xm)

constitutes the first M of the MM algorithm.
The second M of the algorithm minimizes the surrogate g(x | xm) rather than

f (x). If xm+1 denotes the minimizer of g(x | xm), then this action forces the descent
property f (xm+1) ≤ f (xm). This fact follows from the inequalities

f (xm+1) ≤ g(xm+1 | xm) ≤ g(xm | xm) = f (xm),

reflecting the definition of xm+1 and the tangency conditions (2). The descent property
makes the MM algorithm remarkably stable. Strictly speaking, the validity of the
descent property depends only on decreasing g(x | xm), not on minimizing g(x | xm).

3 Unconstrained signomial programming

The art in devising an MM algorithm revolves around intelligent choice of the majoriz-
ing function. For signomial programming problems, fortunately one can invoke two
simple inequalities. For terms with positive coefficients cα , we use the arithmetic-
geometric mean inequality

n∏

i=1

zαi
i ≤

n∑

i=1

αi

‖α‖1
z‖α‖1

i (3)

for nonnegative numbers zi and αi and �1 norm ‖α‖1 = ∑n
i=1 |αi | [19]. If we make

the choice zi = xi/xmi in inequality (3), then the majorization
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n∏

i=1

xαi
i ≤

(
n∏

i=1

xαi
mi

)
n∑

i=1

αi

‖α‖1

(
xi

xmi

)‖α‖1

, (4)

emerges, with equality when x = xm . We can broaden the scope of the majorization
(4) to cases with αi < 0 by replacing zi by the reciprocal ratio xmi/xi whenever
αi < 0. Thus, for terms cα

∏n
i=1 xαi

i with cα > 0, we have the majorization

cα

n∏

i=1

xαi
i ≤ cα

⎛

⎝
n∏

j=1

x
α j
m j

⎞

⎠
n∑

i=1

|αi |
‖α‖1

(
xi

xmi

)‖α‖1sgn(αi )

,

where sgn(αi ) is the sign function.
The terms cα

∏n
i=1 xαi

i with cα < 0 are handled by a different majorization. Our
point of departure is the supporting hyperplane minorization

z ≥ 1 + ln z

at the point z = 1. If we let z = ∏n
i=1(xi/xmi )

αi , then it follows that

n∏

i=1

xαi
i ≥

n∏

j=1

x
α j
m j

(
1 +

n∑

i=1

αi ln xi −
n∑

i=1

αi ln xmi

)
(5)

is a valid minorization in x around the point xm . Multiplication by the negative coef-
ficient cα now gives the desired majorization. The surrogate function separates para-
meters and is convex when all of the αi are positive.

In summary, the objective function (1) is majorized up to an irrelevant additive
constant by the sum

g(x | xm) =
n∑

i=1

gi (xi | xm)

gi (xi | xm) =
∑

α∈S+
cα

⎛

⎝
n∏

j=1

x
α j
m j

⎞

⎠ |αi |
‖α‖1

(
xi

xmi

)‖α‖1sgn(αi )

(6)

+
∑

α∈S−
cα

⎛

⎝
n∏

j=1

x
α j
m j

⎞

⎠αi ln xi ,

where S+ = {α : cα > 0}, and S− = {α : cα < 0}. To guarantee that the next iterate
is well defined and occurs on the interior of the parameter domain, it is helpful to
assume for each i that at least one α ∈ S+ has αi positive and at least one α ∈ S+
has αi negative. Under these conditions each gi (xi | xm) is coercive and attains its
minimum on the open interval (0,∞).

Minimization of the majorizing function is straightforward because the surrogate
functions gi (xi | xm) are univariate functions. The derivative of gi (xi | xm) with
respect to its left argument equals
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g′
i (xi | xm) =

∑

α∈S+
cα

⎛

⎝
n∏

j=1

x
α j
m j

⎞

⎠αi x−1
i

(
xi

xmi

)‖α‖1sgn(αi )

+
∑

α∈S−
cα

⎛

⎝
n∏

j=1

x
α j
m j

⎞

⎠αi x−1
i

Assuming that the exponents αi are integers, this is a rational function of xi , and once
we equate it to 0, we are faced with solving a polynomial equation. This task can
be accomplished by bisection or by Newton’s method. In practice, just a few steps
of either algorithm suffice since the MM principle merely requires decreasing the
surrogate functions gi (xi | xm).

In a geometric program, the function g′
i (xi | xm) has a single root on the interval

(0,∞). For a proof of this fact, note that making the standard change of variables
xi = eyi eliminates the positivity constraint xi > 0 and renders the transformed
function hi (yi | xm) = gi (xi | xm) strictly convex. Because |αi |sgn(αi )

2 = |αi |, the
second derivative

h′′
i (yi | xm) =

∑

α∈S+
cα

⎛

⎝
n∏

j=1

x
α j
m j

⎞

⎠ |αi | · ‖α‖1

x‖α‖1sgn(αi )

mi

e‖α‖1sgn(αi )yi

is positive. Hence, hi (yi | xm) is strictly convex and possesses a unique minimum
point. These arguments yield the even sweeter dividend that the MM iteration map is
continuously differentiable. From the vantage point of the implicit function theorem
[8], the stationary condition h′

i (ym+1,i | xm) = 0 determines ym+1,i , and consequently
xm+1,i , in terms of xm . Observe here that h′′

i (ymi | xm) �= 0 as required by the implicit
function.

It is also worth pointing out that even more functions can be brought under
the umbrella of signomial programming. For instance, majorization of the two
related functions − ln f (x) and ln f (x) is possible for any posynomial f (x) =∑

α cα

∏n
i=1 xαi

i . In the first case,

− ln f (x) ≤ −
∑

α

amα

bm

[
n∑

i=1

αi ln xi + ln

(
cαbm

amα

)]
(7)

holds for amα = cα

∏n
i=1 xαi

mi and bm = ∑
α amα because Jensen’s inequality applies

to the convex function − ln t . In the second case, the supporting hyperplane inequality
applied to the convex function − ln t implies

ln f (x) ≤ ln f (xm) + 1

f (xm)

[
f (x) − f (xm)

]
.

This puts us back in the position of needing to majorize a posynomial, a problem we
have already discussed in detail. By our previous remarks, the coefficients cα can be
negative as well as positive in this case. Similar majorizations apply to any composition
φ ◦ f (x) of a posynomial f (x) with an arbitrary concave function φ(y).
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4 Examples of unconstrained minimization

Our first examples demonstrate the robustness of the MM algorithms in minimization
and illustrate some of the complications that occur. In each case we can explicitly
calculate the MM updates. To start, consider the posynomial

f1(x) = 1

x3
1

+ 3

x1x2
2

+ x1x2

with the implied constraints x1 > 0 and x2 > 0. The majorization (4) applied to the
third term of f1(x) yields

x1x2 ≤ xm1xm2

[
1

2

(
x1

xm1

)2

+ 1

2

(
x2

xm2

)2
]

= xm2

2xm1
x2

1 + xm1

2xm2
x2

2 .

Applied to the second term of f1(x) using the reciprocal ratios, it gives

3

x1x2
2

≤ 3

xm1x2
m2

[
1

3

(
xm1

x1

)3

+ 2

3

(
xm2

x2

)3
]

= x2
m1

x2
m2

1

x3
1

+ 2xm2

xm1

1

x3
2

.

The sum g(x | xm) of the two surrogate functions

g1(x1 | xm) = 1

x3
1

+ x2
m1

x2
m2

1

x3
1

+ xm2

2xm1
x2

1

g2(x2 | xm) = 2xm2

xm1

1

x3
2

+ xm1

2xm2
x2

2

majorizes f1(x). If we set the derivatives

g′
1(x1 | xm) = − 3

x4
1

− x2
m1

x2
m2

3

x4
1

+ xm2

xm1
x1

g′
2(x1 | xm) = −6xm2

xm1

1

x4
2

+ xm1

xm2
x2

of each of these equal to 0, then the updates

xm+1,1 = 5

√√√√3

(
x2

m1

x2
m2

+ 1

)
xm1

xm2
, xm+1,2 = 5

√

6
x2

m2

x2
m1
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solve the minimization step of the MM algorithm. It is also obvious that the point
x = (

5
√

6,
5
√

6)t is a fixed point of the updates, and the reader can check that it
minimizes f1(x).

It is instructive to consider the slight variations

f2(x) = 1

x1x2
2

+ x1x2
2

f3(x) = 1

x1x2
2

+ x1x2

of this objective function. In the first case, the reader can check that the MM algorithm
iterates according to

xm+1,1 = 3

√
x2

m1

x2
m2

, xm+1,2 = 3

√
xm2

xm1
.

In the second case, it iterates according to

xm+1,1 = 5

√
x3

m1

x3
m2

, xm+1,2 = 5

√

2
x2

m2

x2
m1

.

The objective function f2(x) attains its minimum value whenever x1x2
2 = 1. The MM

algorithm for f2(x) converges after a single iteration to the value 2, but the converged
point depends on the initial point x0. The infimum of f3(x) is 0. This value is attained
asymptotically by the MM algorithm, which satisfies the identities xm1x3/2

m2 = 23/10

and xm+1,2 = 22/25xm2 for all m ≥ 1. These results imply that xm1 tends to 0 and xm2
to ∞ in such a manner that f3(xm) tends to 0. One could not hope for much better
behavior of the MM algorithm in these two examples.

The function

f4(x) = x2
1 x2

2 − 2x1x2x3x4 + x2
3 x2

4 = (x1x2 − x3x4)
2

is a signomial but not a posynomial. The surrogate function (6) reduces to

g(x | xm) = x2
m2

2x2
m1

x4
1 + x2

m1

2x2
m2

x4
2 + x2

m4

2x2
m3

x4
3 + x2

m3

2x2
m4

x4
4

−2xm1xm2xm3xm4(ln x1 + ln x2 + ln x3 + ln x4)

with all variables separated. The MM updates

xm+1,1 = 4

√
x3

m1xm3xm4

xm2
, xm+1,2 = 4

√
x3

m2xm3xm4

xm1
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xm+1,3 = 4

√
x3

m3xm1xm2

xm4
, xm+1,4 = 4

√
x3

m4xm1xm2

xm3

converge in a single iteration to a solution of f4(x) = 0. Again the limit depends on
the initial point.

The function

f5(x) = x1x2 + x1x3 + x2x3 − ln(x1 + x2 + x3)

is more complicated than a signomial. It also is unbounded because the point
x = (m, 1

m , 1
m ) satisfies f5(x) = 2+m−2 − ln(m +2/m). According to the majoriza-

tion (7), an appropriate surrogate is

g(x | xm) =
(

xm2

2xm1
+ xm3

2xm1

)
x2

1 +
(

xm1

2xm2
+ xm3

2xm2

)
x2

2 +
(

xm1

2xm3
+ xm2

2xm3

)
x2

3

− xm1

xm1 + xm2 + xm3
ln x1 − xm2

xm1 + xm2 + xm3
ln x2

− xm3

xm1 + xm2 + xm3
ln x3

up to an irrelevant constant. The MM updates are

xm+1,i =
√√√√ x2

mi(∑
j �=i xmj

)
(xm1 + xm2 + xm3)

.

If the components of the initial point coincide, then the iterates converge in a single
iteration to the saddle point with all components equal to 1/

√
6. Otherwise, it appears

that f5(xm) tends to −∞.
The following objective functions

f6(x) = x2
1 x6

2 + x2
1 x4

2 − 2x2
1 x3

2 − x2
1 x2

2 + 5.25x1x3
2

−2x2
1 x2 + 4.5x1x2

2 + 3x2
1 + 3x1x2 − 12.75x1

f7(x) =
10∑

i=1

x4
i + 2

9∑

i=1

x2
i

10∑

j=i+1

x2
j + (10−5 − 0.5)

10∑

i=1

x2
i

−(2 × 10−5)

10∑

i=7

xi + 1

16

f8(x) = x1x2
3 x−1

6 x−1
7 + x2

1 x−1
3 x−2

5 x−1
6 x7

+x3
1 x2

2 x−2
5 x2

6 + x−1
2 x−1

4 x2
6 + x3x3

5 x−3
6

f9(x) = x1x2
4 + x2x3 + x1x2x3x2

4 + x−1
1 x−2

4
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Table 1 Numerical examples of unconstrained signomial programming

Fun Type Initial point x0 Min point Min value Iters (10−9)

f1 P (1,2) (1.4310,1.4310) 3.4128 38

f2 P (1,2) (0.6300,1.2599) 2.0000 2

f3 P (1,1) Diverges 0.0000

f4 S (0.1,0.2,0.3,0.4) (0.1596,0.3191,0.1954,0.2606) 0.0000 3

f5 G (1,1,1) (0.4082,0.4082,0.4082) 0.2973 2

(1,2,3) Diverges −∞
f6 S (1,1) (2.9978,0.4994) −14.2031 558

f7 S (1, . . . , 10) 0.0255x0 0.0000 18

f8 P (1, . . . , 7) Diverges 0.0000

f9 P (1,2,3,4) (0.3969,0.0000,0.0000,1.5874) 2.0000 7

Test functions f4(x), f6(x), f7(x), f8(x) and f9(x) are taken from [20]. P posynomial; S signomial;
G general function

from the reference [20] are intended for numerical illustration. Table 1 lists ini-
tial conditions, minimum points, minimum values, and number of iterations until
convergence under the MM algorithm. Convergence is declared when the relative
change in the objective function is less than a pre-specified value ε, in other words,
when

f (xm) − f (xm+1)

| f (xm)| + 1
≤ ε.

Optimization of the univariate surrogate functions easily succumbs to Newton’s
method. The MM algorithm takes fewer iterations to converge than the path algo-
rithm for all of the test functions mentioned in [20] except f6(x). Furthermore, the
MM algorithm avoids calculation of the gradient and Hessian and requires no matrix
decompositions or selection of tuning constants.

As Sect. 7 observes, MM algorithms typically converge at a linear rate. Although
slow convergence can occur for functions such as the test function f6(x), there are
several ways to accelerate an MM algorithm. For example, our published quasi-
Newton acceleration [21] often reduces the necessary number of iterations by one
or two orders of magnitude. Figure 1 shows the progress of the MM iterates for the
test function f6(x) with and without quasi-Newton acceleration. Under a conver-
gence criterion of ε = 10−9 and q = 1 secant condition, the required number of
iterations falls to 30; under the same convergence criterion and q = 2 secant con-
ditions, the required number of iterations falls to 12. It is also worth emphasizing
that separation of parameters enables parallel processing in high-dimensional prob-
lems. We have recently argued [25] that the best approach to parallel processing is
through graphics processing units (GPUs). These cheap hardware devices offer one
to two orders of magnitude acceleration in many MM algorithms with parameters
separated.
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Fig. 1 Upper left The test function f6(x). Upper right 558 MM iterates. Lower left 30 accelerated
MM iterates (q = 1 secant conditions). Lower right 12 accelerated MM iterates (q = 2 secant
conditions)

5 Constrained signomial programming

Extending the MM algorithm to constrained geometric and signomial programming is
challenging. Box constraints ai ≤ xi ≤ bi are consistent with parameter separation as
just developed, but more complicated posynomial constraints that couple parameters
are not. Posynomial inequality constraints take the form

h(x) =
∑

β

dβ

n∏

i=1

xβi
i ≤ 1.

The corresponding equality constraint sets h(x) = 1. We propose handling both
constraints by penalty methods. Before we treat these matters in more depth, let us
relax the positivity restrictions on the dβ but enforce the restriction βi ≥ 0. The latter

objective can be achieved by multiplying h(x) by x
maxβ {−βi ,0}
i for all i . If we subtract

the two sides of the resulting equality, then the equality constraint h(x) = 1 can be
rephrased as r(x) = 0 for the signomial r(x) = ∑

γ eγ

∏n
i=1 xγi

i , with no restriction
on the signs of the eγ but with the requirement γi ≥ 0 in effect. For example, the
equality constraint
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1

x1
+ x1

x2
2

= 1

becomes

x2
1 + x2

2 − x1x2
2 = 0.

In the quadratic penalty method [1,13,17] with objective function f (x) and a
single equality constraint r(x) = 0 and a single inequality constraint s(x) ≤ 0, one
minimizes the sum fλ(x) = f (x)+λr(x)2 +λs(x)2+, where s(x)+ = max{s(x), 0}.
As the penalty constant λ tends to ∞, the solution vector xλ typically converges
to the constrained minimum. In the revised objective function, the term r(x)2 is a
signomial whenever r(x) is a signomial. For example, in our toy problem the choice
r(x) = x2

1 + x2
2 − x1x2

2 has square

r(x)2 = x4
1 + x4

2 + x2
1 x4

2 + 2x2
1 x2

2 − 2x1x4
2 − 2x3

1 x2
2 .

Of course, the powers in r(x) can be fractional here as well as integer. The term s(x)2+
is not a signomial and must be subjected to the majorization

s(x)2+ ≤
{

[s(x) − s(xm)]2 s(xm) < 0

s(x)2 s(xm) ≥ 0

to achieve this status. In practice, one does not need to fully minimize fλ(x) for any
fixed λ. If one increases λ slowly enough, then it usually suffices to merely decrease
fλ(x) at each iteration. The MM algorithm is designed to achieve precisely this goal.
Our exposition so far suggests that we majorize r(x)2, s(x)2, and [s(x) − s(xm)]2 in
exactly the same manner that we majorize f (x). Separation of parameters general-
izes, and the resulting MM algorithm keeps all parameters positive while permitting
pertinent parameters to converge to 0. Section 7 summarizes some of the convergence
properties of this hybrid procedure.

The quadratic penalty method traditionally relies on Newton’s method to minimize
the unconstrained functions fλ(x). Unfortunately, this tactic suffers from roundoff
errors and numerical instability. Some of these problems disappear with the MM
algorithm. No matrix inversions are involved, and iterates enjoy the descent property.
Ill-conditioning does cause harm in the form of slow convergence, but the previ-
ously mentioned quasi-Newton acceleration largely remedies the situation [21]. As
an alternative to quadratic penalties, exact penalties take the form λ|r(x)| + λs(x)+.
Remarkably, the exact penalty method produces the constrained minimum, not just
in the limit, but for all finite λ beyond a certain point. Although this desirable prop-
erty avoids the numerical instability encountered in the quadratic penalty method,
the kinks in the objective functions f (x) + λ|r(x)| + λs(x)+ are a nuisance.
Our recent paper [24] on the exact penalty method shows how to circumvent this
annoyance.
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6 Nonnegative quadratic programming

As an illustration of constrained signomial programming, consider quadratic program-
ming over the positive orthant. Let

f (x) = 1

2
xt Qx + ct x

be the objective function, Ex = d the linear equality constraints, and Ax ≤ b
the linear inequality constraints. The symmetric matrix Q can be negative definite,
indefinite, or positive definite. The quadratic penalty method involves minimizing the
sequence of penalized objective functions

fλ(x) = 1

2
xt Qx + ct x + λ

2
‖(Ax − b)+‖2

2 + λ

2
‖Ex − d‖2

2

as λ tends to ∞. Based on the obvious majorization

x2+ ≤
{

(x − xm)2 xm < 0

x2 xm ≥ 0
,

the term ‖(Ax − b)+‖2
2 is majorized by ‖Ax − b − rm‖2

2, where

rm = min{Axm − b, 0}.

A brief calculation shows that fλ(x) is majorized by the surrogate function

gλ(x | xm) = 1

2
xt Hλx + vt

λm x

up to an irrelevant constant, where Hλ and vλm are defined by

Hλ = Q + λ(At A + Et E)

vλm = c − λAt (b + rm) − λEt d.

It is convenient to assume that the diagonal coefficients 1
2 hλi i appearing in the quadratic

form 1
2 xT Hλx are positive. This is generally the case for large λ. One can handle

the off-diagonal term hλi j xi x j by either the majorization (4) or the majorization (5)
according to the sign of hλi j . The reader can check that the MM updates reduce to

xm+1,i = xmi

2

⎡

⎢⎣− vλmi

h+
λmi

+
√√√√
(

vλmi

h+
λmi

)2

− 4
h−

λmi

h+
λmi

⎤

⎥⎦ , (8)
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where

h+
λmi =

∑

j :hλi j >0

hλi j xmj , h−
λmi =

∑

j :hλi j <0

hλi j xmj .

When h−
λmi = 0, the update (8) collapses to

xm+1,i = xmi max

{
− vλmi

h+
λmi

, 0

}
. (9)

To avoid sticky boundaries, we replace 0 in Eq. (9) by a small positive constant ε

such as 10−9. Sha et al. [18] derived the update (8) for λ = 0 ignoring the constraints
Ex = d and Ax ≤ b.

For a numerical example without equality constraints take

f10(x) = 1

2
x2

1 + x2
2 − x1x2 − 2x1 − 6x2

A =
⎛

⎝
1 1

−1 2
2 1

⎞

⎠ , b =
⎛

⎝
2
2
3

⎞

⎠ .

The minimum occurs at the point (2/3, 4/3)t . Table 2 lists the number of iterations
until convergence and the converged point xλ for the sequence of penalty constants
λ = 2k . The quadratic program

f11(x) = −8x1 − 16x2 + x2
1 + 4x2

2

A =
(

1 1
1 0

)
, b =

(
4
3

)

converges much more slowly. Its minimum occurs at the point (2.4, 1.6)t . Table 3
lists the numbers of iterations until convergence with (q = 1) and without (q = 0)
acceleration and the converged point xλ for the same sequence of penalty constants
λ = 2k . Fortunately, quasi-Newton acceleration compensates for ill conditioning in
this test problem.

7 Convergence

As we have seen, the behavior of the MM algorithm is intimately tied to the behavior
of the objective function f (x). For the sake of simplicity, we now restrict attention to
unconstrained minimization of posynomials and investigate conditions guaranteeing
that f (x) possesses a unique minimum on its domain. Uniqueness is related to the
strict convexity of the reparameterization

h( y) =
∑

α∈S

cαeαt y
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Table 2 Iterates from the
quadratic penalty method for the
test function f10(x)

The convergence criterion for
the inner loops is 10−9

log2 λ Iters xλ

0 8 (0.9503, 1.6464)

1 6 (0.8580, 1.5164)

2 5 (0.8138, 1.4461)

3 23 (0.7853, 1.4067)

4 32 (0.7264, 1.3702)

5 31 (0.6967, 1.3518)

6 30 (0.6817, 1.3426)

7 29 (0.6742, 1.3380)

8 28 (0.6704, 1.3356)

9 26 (0.6686, 1.3345)

10 25 (0.6676, 1.3339)

11 23 (0.6671, 1.3336)

12 22 (0.6669, 1.3335)

13 21 (0.6668, 1.3334)

14 19 (0.6667, 1.3334)

15 18 (0.6667, 1.3334)

16 16 (0.6667, 1.3333)

17 15 (0.6667, 1.3333)

of f (x), where αt y = ∑n
i=1 αi yi is the inner product of α and y and xi = eyi for

each i . The Hessian matrix

d2h( y) =
∑

α∈S

cαeαt yααt

of h( y) is positive semidefinite, so h( y) is convex. If we let T be the subspace of
R

n spanned by {α}α∈S , then h( y) is strictly convex if and only if T = R
n . Indeed,

suppose the condition holds. For any v �= 0, it then must be true that αtv �= 0 for
some α ∈ S. As a consequence,

vt d2h( y)v =
∑

α∈S

cαeαt y(αtv)2 > 0,

and d2h( y) is positive definite. Conversely, suppose T �= R
n , and take v �= 0 with

αtv = 0 for every α ∈ S. Then h( y + tv) = h( y) for every scalar t , which is
incompatible with h( y) being strictly convex.

Strict convexity guarantees uniqueness, not existence, of a minimum point. Coer-
civeness ensures existence. The objective function f (x) is coercive if f (x) tends to ∞
whenever any component of x tends to 0 or ∞. Under the reparameterization xi = eyi ,
this is equivalent to h( y) = f (x) tending to ∞ as ‖ y‖2 tends to ∞. A necessary and
sufficient condition for this to occur is that maxα∈S αtv > 0 for every v �= 0. For a
proof, suppose the contrary condition holds for some v �= 0. Then it is clear that h(tv)
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Table 3 Iterates from the
quadratic penalty method for the
test function f11(x)

The convergence criterion for
the inner loops is 10−16

log2 λ Iters (q = 0) Iters (q = 1) xλ

0 18 5 (3.0000, 1.8000)

1 2 2 (2.8571, 1.7143)

2 56 6 (2.6667, 1.6667)

3 97 5 (2.5455, 1.6364)

4 167 5 (2.4762, 1.6190)

5 312 5 (2.4390, 1.6098)

6 541 6 (2.4198, 1.6049)

7 955 5 (2.4099, 1.6025)

8 1,674 4 (2.4050, 1.6012)

9 2,924 3 (2.4025, 1.6006)

10 4,839 3 (2.4013, 1.6003)

11 7,959 4 (2.4006, 1.6002)

12 12,220 4 (2.4003, 1.6001)

13 17,674 4 (2.4002, 1.6000)

14 21,739 3 (2.4001, 1.6000)

15 20,736 3 (2.4000, 1.6000)

16 8,073 3 (2.4000, 1.6000)

17 111 3 (2.4000, 1.6000)

18 6 4 (2.4000, 1.6000)

19 5 2 (2.4000, 1.6000)

20 3 2 (2.4000, 1.6000)

21 2 2 (2.4000, 1.6000)

remains bounded above by h(0) as the scalar t tends to ∞. Conversely, if the stated
condition is true, then the function q( y) = maxα∈S αt y is continuous and achieves its
minimum of d > 0 on the sphere { y ∈ R

n : ‖ y‖2 = 1}. It follows that q( y) ≥ d‖ y‖2
and that

h( y) ≥ max
α∈S

{
cαeαt y

}
≥
(

min
α∈S

cα

)
ed‖ y‖2 .

This lower bound shows that h( y) is coercive.
The coerciveness condition is hard to apply in practice. An equivalent condition

is that the origin 0 belongs to the interior of the convex hull of the set {α}α∈S . It
is straightforward to show that the negations of these two conditions are logically
equivalent. Thus, suppose q(v) = maxα∈S αtv ≤ 0 for some vector v �= 0. Every
convex combination

∑
α pαα then satisfies

(∑
α pαα

)t
v ≤ 0. If the origin is in the

interior of the convex hull, then εv is also for every sufficiently small ε > 0. But
this leads to the contradiction εvtv = ε‖v‖2

2 ≤ 0. Conversely, suppose 0 is not in
the interior of the convex hull. According to the separating hyperplane theorem for
convex sets, there exists a unit vector v with vtα ≤ 0 = vt 0 for every α ∈ S. In other
words, q(v) ≤ 0. The convex hull criterion is easier to check, but it is not constructive.
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In simple cases such as the objective function f1(x) where the power vectors are
α = (−3, 0)t ,α = (−1,−2)t , and α = (1, 1)t , it is visually obvious that the origin
is in the interior of their convex hull.

One can also check the criterion q(v) > 0 for all v �= 0 by solving a related
geometric programming problem. This problem consists in minimizing the scalar t
subject to the inequality constraints αt y ≤ t for all α ∈ S and the nonlinear equality
constraint ‖ y‖2

2 = 1. If tmin ≤ 0, then the original criterion fails.
In some cases, the objective function f (x) does not attain its minimum on the

open domain R
n
>0 = {x : xi > 0, 1 ≤ i ≤ n}. This condition is equivalent to the

corresponding function ln h( y) being unbounded below on R
n . According to Gordon’s

theorem [2,10], this can happen if and only if 0 is not in the convex hull of the set
{α}α∈S . Alternatively, both conditions are equivalent to the existence of a vector v

with αtv < 0 for all α ∈ S. For the objective function f3(x), the power vectors are
α = (−1,−2)t and α = (1, 1)t . The origin (0, 0)t does not lie on the line segment
between them, and the vector (−3/2, 1)t forms a strictly oblique angle with each. As
predicted, f3(x) does not attain its infimum on R

n
>0.

The theoretical development in reference [10] demonstrates that the MM algorithm
converges at a linear rate to the unique minimum point of the objective function
f (x) when f (x) is coercive and its convex reparameterization h( y) is strictly convex.
The theory does not cover other cases, and it would be interesting to investigate them.
The general convergence theory of MM algorithms [10] states that five properties of the
objective function f (x) and MM algorithmic map x �→ M(x) guarantee convergence
to a stationary point of f (x): (a) f (x) is coercive on its open domain; (b) f (x) has
only isolated stationary points; (c) M(x) is continuous; (d) x∗ is a fixed point of M(x)

if and only if x∗ is a stationary point of f (x); and (e) f [M(x∗)] ≤ f (x∗), with
equality if and only if x∗ is a fixed point of M(x). For a general signomial program,
items (a) and (b) are the hardest to check. Our examples provide some clues.

The standard convergence results for the quadratic penalty method are covered
in the references [1,10,13,17]. To summarize the principal finding, suppose that the
objective function f (x) and the constraint functions ri (x) and si (x) are continuous
and that f (x) is coercive on R

n
>0. If xλ minimizes the penalized objective function

fλ(x) = f (x) + λ
∑

i

ri (x)2 + λ
∑

j

s j (x)2+,

and x∞ is a cluster point of xλ as λ tends to ∞, then x∞ minimizes f (x) subject
to the constraints. In this regard observe that the coerciveness assumption on f (x)

implies that the solution set {xλ}λ is bounded and possesses at least one cluster point.
Of course, if the solution set consists of a single point, then xλ tends to that point.

8 Discussion

The current paper presents novel algorithms for both geometric and signomial pro-
gramming. Although our examples are low dimensional, the previous experience of
Sha et al. [18] offers convincing evidence that the MM algorithm works well for
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high-dimensional quadratic programming with nonnegativity constraints. The ideas
pursued here—the MM principle, separation of variables, quasi-Newton acceleration,
and penalized optimization – are surprisingly potent in large-scale optimization. The
MM algorithm deals with the objective function directly and reduces multivariate mini-
mization to a sequence of one-dimensional minimizations. The MM updates are simple
to code and enjoy the crucial descent property. Treating constrained signomial pro-
gramming by the penalty method extends the MM algorithm even further. Quadratic
programming with linear equality and inequality constraints is the most important
special case of constrained signomial programming. Our new MM algorithm for con-
strained quadratic programming deserves consideration in high-dimensional prob-
lems. Even though MM algorithms can be notoriously slow to converge, quasi-Newton
acceleration can dramatically improve matters. Acceleration involves no matrix inver-
sion, only matrix times vector multiplication. In our limited experiments with large-
scale problems [22,23], MM algorithms with quasi-Newton acceleration can achieve
comparable or better performance than limited-memory BFGS algorithms. Finally, it
is worth keeping in mind that parameter separated algorithms are ideal candidates for
parallel processing.

Because geometric programs are convex after reparameterization, it is relatively
easy to pose and check sufficient conditions for global convergence of the MM algo-
rithm. In contrast it is far more difficult to analyze the behavior of the MM algo-
rithm for signomial programs. Theoretical progress will probably be piecemeal and
require problem-specific information. A major difficulty is understanding the asymp-
totic nature of the objective function as parameters approach 0 or ∞. Even in the
absence of theoretical guarantees, the descent property of the MM algorithm makes
it an attractive solution technique and a diagnostic tool for finding counterexamples.
Some of our test problems expose the behavior of the MM algorithm in non-standard
situations. We welcome the help of the optimization community in unraveling the
mysteries of the MM algorithm in signomial programming.
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