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Abstract Identifying clusters of similar objects in data plays a significant role in
a wide range of applications. As a model problem for clustering, we consider the
densest k-disjoint-clique problem, whose goal is to identify the collection of k disjoint
cliques of a given weighted complete graph maximizing the sum of the densities of the
complete subgraphs induced by these cliques. In this paper, we establish conditions
ensuring exact recovery of the densest k cliques of a given graph from the optimal
solution of a particular semidefinite program. In particular, the semidefinite relaxation
is exact for input graphs corresponding to data consisting of k large, distinct clusters
and a smaller number of outliers. This approach also yields a semidefinite relaxation
with similar recovery guarantees for the biclustering problem. Given a set of objects
and a set of features exhibited by these objects, biclustering seeks to simultaneously
group the objects and features according to their expression levels. This problem may
be posed as that of partitioning the nodes of a weighted bipartite complete graph such
that the sum of the densities of the resulting bipartite complete subgraphs is maximized.
As in our analysis of the densest k-disjoint-clique problem, we show that the correct
partition of the objects and features can be recovered from the optimal solution of a
semidefinite program in the case that the given data consists of several disjoint sets of
objects exhibiting similar features. Empirical evidence from numerical experiments
supporting these theoretical guarantees is also provided.
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1 Introduction

The goal of clustering is to partition a given data set into groups of similar objects,
called clusters. Clustering is a fundamental problem in statistics and machine learn-
ing and plays a significant role in a wide range of applications, including informa-
tion retrieval, pattern recognition, computational biology, and image processing. The
complexity of finding an optimal clustering depends significantly on the measure of
fitness of a proposed partition, but most interesting models for clustering are posed
as an intractable combinatorial problem. For this reason, heuristics are used to cluster
data in most practical applications. Unfortunately, although much empirical evidence
exists for the usefulness of these heuristics, few theoretical guarantees ensuring the
quality of the obtained partition are known, even for data containing well separated
clusters. For a recent survey of clustering techniques and heuristics, see Berkhin [7].
In this paper, we establish conditions ensuring that the optimal solution of a particular
convex optimization problem yields a correct clustering under certain assumptions on
the input data set.

Our approach to clustering is based on partitioning the similarity graph of a given
set of data. Given a data set S and measure of similarity between any two objects,
the similarity graph GS is the weighted complete graph with nodes corresponding
to the objects in the data set and each edge i j having weight equal to the level of
similarity between objects i and j . For this representation of data, clustering the data
set S is equivalent to partitioning the nodes of GS into disjoint cliques such that edges
connecting any two nodes in the same clique have significantly higher weight than
those between different cliques. Therefore, a clustering of the data may be obtained by
identifying dense, in the sense of having large average edge weight, subgraphs of GS .

We consider the densest k-partition problem as a model problem for clustering.
Given a weighted complete graph K = (V, E, W ) and integer k ∈ {1, . . . , |V |}, the
densest k-partition problem aims to identify the partition of V into k disjoint sets
such that the sum of the average edge weights of the complete subgraphs induced by
these cliques is maximized. Unfortunately, the densest k-partition problem is NP-hard,
since it contains the minimum sum of squared Euclidean distance problem, known to
be NP-hard [2], as a special case. In Sect. 2, we consider the related problem of finding
the set of k disjoint complete subgraphs maximizing the sum of their densities. We
model this problem as a quadratic program with combinatorial constraints and relax
to a semidefinite program using matrix lifting. This relaxation approach is similar to
that employed in several recent papers [19,35,43], although we consider a different
model problem for clustering and establish stronger recovery properties. We show that
the optimal solution of this semidefinite relaxation coincides with that of the original
combinatorial problem for certain program inputs. In particular, we show that the set
of input graphs for which the relaxation is exact includes the set of graphs with edge
weights concentrated on a particular collection of disjoint subgraphs, and provide a
general formula for the clique sizes and number of cliques that may be recovered.

In Sect. 3, we establish similar results for the biclustering problem. Given a set of
objects and features, biclustering, also known as co-clustering, aims to simultaneously
group the objects and features according to their expression levels. That is, we would
like to partition the objects and features into groups of objects and features, called
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Guaranteed clustering and biclustering via semidefinite programming 431

biclusters, such that objects strongly exhibit features within their bicluster relative to
the features within the other biclusters. Hence, biclustering differs from clustering in
the sense that it does not aim to obtain groups of similar objects, but instead seeks
groups of objects similar with respect to a particular subset of features. Applications of
biclustering include identifying subsets of genes exhibiting similar expression patterns
across subsets of experimental conditions in analysis of gene expression data, grouping
documents by topics in document clustering, and grouping customers according to their
preferences in collaborative filtering and recommender systems. For an overview of
the biclustering problem, see Busygin et al. [11], Fan et al. [18].

As a model problem for biclustering, we consider the problem of partitioning a
bipartite graph into dense disjoint subgraphs. If the given bipartite graph has vertex
sets corresponding to sets of objects and features with edges indicating expression level
of each feature by each object, each dense subgraph will correspond to a bicluster of
objects strongly exhibiting the contained features. Given a weighted bipartite complete
graph K = ((U, V ), E, W ) and integer k ∈ {1, . . . , min{|U |, |V |}}, we seek the set
of k disjoint bipartite complete subgraphs with sum of their densities maximized. We
establish that this problem may be relaxed as a semidefinite program and show that,
for certain program instances, the correct partition of K can be recovered from the
optimal solution of this relaxation. In particular, this relaxation is exact in the special
case that the edge weights of the input graph are concentrated on some set of disjoint
bipartite subgraphs. When the input graph arises from a given data set, the relaxation is
exact when the underlying data set consists of several disjoint sets strongly exhibiting
nonoverlapping sets of features.

Our results build upon those of recent papers regarding clusterability of data. These
papers generally contain results of the following form: if a data set is randomly sam-
pled from a distribution of “clusterable” data, then the correct partition of the data can
be obtained efficiently using some heuristic, such as the k-means algorithm or other
iterative partitioning heuristics [1,6,32,42], spectral clustering [5,27,31,40], or con-
vex optimization [3,26,30,33]. Recent papers by Kolar et al. [28], Rohe and Yu [41],
and Flynn and Perry [20] establish analogous recovery guarantees for biclustering;
the latter two of these papers appeared shortly after the initial preprint release of this
paper. Our results are of a similar form. If the underlying data set consists of several
sufficiently distinct clusters or biclusters, then the correct partition of the data can be
recovered from the optimal solution of our relaxations. We model this ideal case for
clustering using random edge weight matrices constructed so that weight is, in expec-
tation, concentrated heavily on the edges of a few disjoint subgraphs. We will establish
that this random model for clustered data contains those previously considered in the
literature and, in this sense, our results are a generalization of these earlier theoretical
guarantees.

More generally, our results follow in the spirit of, and borrow techniques from,
recent work regarding sparse optimization and, in particular, the nuclear norm relax-
ation for rank minimization. The goal of matrix rank minimization is to find a solution
of minimum rank of a given linear system, i.e., to find the optimal solution X∗ ∈ Rm×n

of the optimization problem min{rank X : A(X) = b} for given linear operator
A : Rm×n → Rp and vector b ∈ R p. Although this problem is well-known to be NP-
hard, several recent papers ([4,12,13,24,34,36–38], among others) have established
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that, under certain assumptions on A and b, the minimum rank solution is equal to the
optimal solution of the convex relaxation obtained by replacing rank X with the sum of
the singular values of X , the nuclear norm ‖X‖∗. This relaxation may be thought of as
a matrix analogue of the �1 norm relaxation for the cardinality minimization problem,
and these results generalize similar recovery guarantees for compressed sensing (see
[14–16]). For example, the nuclear norm relaxation is exact with high probability if
A is a random linear transform with matrix representation having i.i.d. Gaussian or
Bernoulli entries and b = A(X0) is the image of a sufficiently low rank matrix X0
under A. We prove analogous results for an instance of rank constrained optimization.
To identify the densest k complete subgraphs of a given graph, we seek a rank-k matrix
X maximizing some linear function of X , depending only on the edge weights W of the
input graph, subject to linear constraints. We will see that the optimal rank-k solution
is equal to that obtained by relaxing the rank constraint to the corresponding nuclear
norm constraint if the matrix W is randomly sampled from a probability distribution
satisfying certain assumptions.

2 A semidefinite relaxation of the densest k-disjoint-clique problem

Given a graph G = (V, E), a clique of G is a pairwise adjacent subset of V . That is,
C ⊆ V is a clique of G if i j ∈ E for every pair of nodes i, j ∈ C . Let KN = (V, E, W )

be a complete graph with vertex set V = {1, 2, . . . , N } and nonnegative edge weights
Wi j ∈ [0, 1] for all i, j ∈ V . A k-disjoint-clique subgraph of KN is a subgraph of
KN consisting of k disjoint complete subgraphs, i.e., the vertex sets of each of these
subgraphs is a clique. For any subgraph H of KN , the density of H , denoted dH , is
the average edge weight incident at a vertex in H :

dH =
∑

i j∈E(H)

Wi j

|V (H)| .

The densest k-disjoint-clique problem concerns choosing a k-disjoint-clique subgraph
of KN such that the sum of the densities of the subgraphs induced by the cliques is
maximized. Given a k-disjoint-clique subgraph with vertex set composed of cliques
C1, . . . , Ck , the sum of the densities of the subgraphs induced by the cliques is equal to

k∑

i=1

dG(Ci ) =
k∑

i=1

vT
i W vi

vT
i vi

, (2.1)

where vi is the characteristic vector of Ci . In the special case that C1, . . . , Ck defines a
partition of V and Wi j = 1−‖x(i)−x( j)‖2 for a given set of N vectors {x(1), . . . , x(N )}
in Rn with maximum distance between any two points at most one, we have

k∑

�=1

dG(C�) =
k∑

�=1

1

|C�|

⎛

⎝
∑

i∈C�

∑

j∈C�

(1 − (x(i) − x( j))T (x(i) − x( j)))

⎞

⎠
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=
k∑

�=1

⎛

⎝|C�| − 2

⎛

⎝
∑

i∈C�

‖x(i)‖2 −
∑

i∈C�

∑

j∈C�

(x(i))T x( j)

⎞

⎠

⎞

⎠

= N − 2
k∑

�=1

∑

i∈C�

‖x(i) − c(�)‖2,

where c(�) = ∑
i∈C�

x(i)/|C�| is the center of the vectors assigned to C� for all

� = 1, . . . , k, since
∑k

�=1 |C�| = N for this choice of W . Here, and in the rest

of the note, ‖x‖ = √
xT x denotes the �2 norm in Rn . For this choice of W , the densest

k-partition problem, i.e., finding a partition C1, . . . , Ck of V such that the sum of den-
sities of the subgraphs induced by C1, . . . , Ck is maximized, is equivalent to finding
the partition of V such that the sum of the squared Euclidean distances

f ({x(1), . . . , x(n)}, {C1, . . . , Ck}) =
k∑

�=1

∑

i∈C�

‖x(i) − c(�)‖2 (2.2)

from each vector x(i) to its assigned cluster center is minimized. Unfortunately, min-
imizing f over all potential partitions of V is NP-hard and, thus, so is the densest
k-partition problem (see Peng and Wei [35]). It should be noted that the complexity of
the densest k-disjoint-clique subgraph problem is unknown, although the problem of
minimizing f over all k-disjoint-clique subgraphs has the trivial solution of assigning
exactly one point to each cluster and setting all other points to be outliers.

If we let X be the N × k matrix with i th column equal to vi/‖vi‖, we have∑k
i=1 dG(Ci ) = Tr (X T W X). We call such a matrix X a normalized k-partition matrix.

That is, X is a normalized k-partition matrix if the columns of X are the normalized
characteristic vectors of k disjoint subsets of V . We denote by npm(V, k) the set of
all normalized k-partition matrices of V . We should note that the term normalized
k-partition matrix is a slight misnomer; the columns of X ∈ npm(V, k) do not neces-
sarily define a partition of V into k disjoint sets but do define a partition of V into the
k + 1 disjoint sets given by the columns X (:, 1), . . . , X (:, k) of X and their comple-
ment. Using this notation, the densest k-disjoint-clique problem may be formulated
as the quadratic program

max{Tr (X T W X) : X ∈ npm(V, k)}. (2.3)

Unfortunately, quadratic programs with combinatorial constraints are NP-hard in gen-
eral.

The quadratic program (2.3) may be relaxed to a rank constrained semidefinite
program using matrix lifting. We replace each column xi of X with a rank-one semi-
definite variable xi xT

i to obtain the new decision variable X̃ = ∑k
i=1 xi xT

i . The new
variable X̃ has both rank and trace exactly equal to k since the summands xi xT

i are
orthogonal rank-one matrices, each with nonzero eigenvalue equal to 1. Moreover,
since [xi ] j = 1/

√
ri for all j ∈ Ci and all remaining components equal to 0 where ri

is equal to the number of nonzero entries of xi , we have
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X̃e =
k∑

i=1

xi (xT
i e) =

k∑

i=1

√
ri xi .

Thus, the matrix X̃ has row sum equal to one for each vertex in the subgraph of KN

defined by the columns of X and zero otherwise. Therefore, we may relax (2.3) as the
rank constrained semidefinite program

max
{
Tr (W X) : Xe ≤ e, rank X = k, Tr X = k, X ≥ 0, X ∈ �N+

}
(2.4)

Here �N+ denotes the cone of N × N symmetric positive semidefinite matrices and
e denotes the all-ones vector in RN . The nonconvex program (2.4) may be relaxed
further to a semidefinite program by ignoring the nonconvex constraint rank (X) = k:

max
{
Tr (W X) : Xe ≤ e, Tr X = k, X ≥ 0, X ∈ �N+

}
. (2.5)

Note that a k-disjoint-clique subgraph with vertex set composed of disjoint cliques
C1, . . . , Ck defines a feasible solution of (2.5) with rank exactly equal to k and objec-
tive value equal to (2.1) by

X∗ =
k∑

i=1

vi vT
i

vT
i vi

, (2.6)

where vi is the characteristic vector of Ci for all i = 1, . . . , k. This feasible solution is
exactly the lifted solution corresponding to the cliques {C1, . . . , Ck}. This relaxation
approach mirrors that for the planted k-disjoint-clique problem considered in Ames
and Vavasis [3]. In Ames and Vavasis [3], entrywise nonnegativity constraints can be
ignored for the sake of computational efficiency due to explicit constraints forcing
all entries of a feasible solution corresponding to unadjacent nodes to be equal to 0.
Due to the lack of such constraints in (2.5), the nonnegativity constraints are required
to ensure that the optimal solution of (2.5) is unique if the input data is sufficiently
clusterable. Indeed, suppose that

W =
(

eeT 0
0 eeT

)
,

where e is the all-ones vector in Rn . Then both

1

n

(
eeT 0
0 eeT

)
and

1

n

(
eeT −eeT

−eeT eeT

)

are positive semidefinite, have trace equal to 2, row sums bounded above by 1, and have
objective value equal to 2n. Therefore, the nonnegativity constraints are necessary to
distinguish between these two solutions. We should also point out that the constraints
of (2.5) are similar to those of the semidefinite relaxation used to approximate the
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minimum sum of squared Euclidean distance partition by Peng and Wei [35], although
with different derivation.

The relaxation (2.5) may be thought of as a nuclear norm relaxation of (2.4).
Indeed, since the eigenvalues and singular values of a positive semidefinite matrix
are identical, every feasible solution X satisfies Tr (X) = ∑N

i=1 σi (X) = ‖X‖∗.
Moreover, since every feasible solution X is symmetric and has row sums at most 1,
we have ‖X‖1 = ‖X‖∞ ≤ 1 for every feasible X . Here ‖ · ‖1, ‖ · ‖, and ‖ · ‖∞ denote
the matrix norms on RN×N induced by the �1, �2, and �∞ norms on RN respectively.
This implies that every feasible X satisfies ‖X‖ ≤ 1 since ‖X‖ ≤ √‖X‖1‖X‖∞
(see [23, Corollary 2.3.2]). Since ‖X‖∗ is the convex envelope of rank (X) on the set
{X : ‖X‖ ≤ 1} (see, for example, [37, Theorem 2.2]), the semidefinite program (2.5)
is exactly the relaxation of (2.4) obtained by ignoring the rank constraint and only
constraining the nuclear norm of a feasible solution. Many recent results have shown
that the minimum rank solution of a set of linear equations A(X) = b is equal to the
minimum nuclear norm solution, under certain assumption on the linear operator A.
We would like to prove analogous results for the relaxation (2.5). That is, we would
like to identify conditions on the input graph that guarantee recovery of the densest
k-disjoint-clique subgraph by solving (2.5).

Ideally, a clustering heuristic should be able to correctly identify the clusters in
data that is known a priori to be clusterable. In our graph theoretic model, this case
corresponds to a graph GS = (V, E, W ) admitting a k-disjoint-clique subgraph with
very high weights on edges connecting nodes within the cliques and relatively low
weights on edges between different cliques. We focus our attention on input instances
for the densest k-disjoint-clique problem that are constructed to possess this structure.
Let K ∗ be a k-disjoint-clique subgraph of KN with vertex set composed of disjoint
cliques C1, C2, . . . , Ck . We consider random symmetric matrices W ∈ �N with
entries sampled independently from one of two distributions �1, �2 as follows:

• For each q = 1, . . . , k, the entries of each diagonal block WCq ,Cq are independently
sampled from a probability distribution �1 satisfying E[Wi j ] = E[W ji ] = α and
Wi j ∈ [0, 1] for all i, j ∈ Cq .

• All remaining entries of W are independently sampled from a probability distri-
bution �2 satisfying E[Wi j ] = E[W ji ] = β and Wi j ∈ [0, 1] for all (i, j) ∈
(V × V )\ ∪k

q=1 (Cq × Cq).

That is, we sample the random variable Wi j from the probability distribution �1 with
mean α if the nodes i, j are in the same planted clique; otherwise, we sample Wi j from
the distribution�2 with meanβ. We say that such random matrices W are sampled from
the planted cluster model. We should note the planted cluster model is a generalization
of the planted k-disjoint-clique subgraph model considered in Ames and Vavasis [3],
as well as the stochastic block/probabilistic cluster model considered in Jalali et al.
[26], Oymak and Hassibi [33], Rohe et al. [40]. Indeed, the stochastic block model
is generated by independently adding edges within planted dense subgraphs with
probability p and independently adding edges between cliques with probability q for
some p > q. The planted k-disjoint-clique subgraph model is simply the stochastic
block model in the special case that p = 1. Therefore, choosing �1 and �2 to be
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436 B. P. W. Ames

Bernoulli distributions with probabilities of success p and q, respectively, yields W
sampled from the stochastic block model.

The following theorem describes which partitions {C1, C2, . . . , Ck+1} of V yield
random symmetric matrices W drawn from the planted cluster model such that the
corresponding planted k-disjoint-clique subgraph K is the densest k-disjoint-clique
subgraph and can be found with high probability by solving (2.5).

Theorem 2.1 Suppose that the vertex sets C1, . . . , Ck define a k-disjoint-clique sub-
graph K ∗ of the complete graph KN = (V, E) on N vertices and let Ck+1 :=
V \(∪k

i=1Ci ). Let ri := |Ci | for all i = 1, . . . , k + 1, and let r̂ = mini=1,...,k ri . Let
W ∈ �N be a random symmetric matrix sampled from the planted cluster model
according to distributions �1 and �2 with means α and β, respectively, satisfying

γ = γ (α, β, r) := α(1 + δ0,rk+1) − 2β > 0, (2.7)

where δi, j is the Kronecker delta function defined by δi, j = 1 if i = j and 0 otherwise.
Let X∗ be the feasible solution for (2.5) corresponding to C1, . . . , Ck defined by (2.6).
Then there exist scalars c1, c2, c3 > 0 such that if

c1
√

N + c2
√

krk+1 + c3rk+1 ≤ γ r̂ (2.8)

then X∗ is the unique optimal solution for (2.5), and K ∗ is the unique maximum
density k-disjoint-clique subgraph of KN corresponding to W with probability tending
exponentially to 1 as r̂ → ∞.

Note that the condition (2.7) implies that α > β if rk+1 = 0 and α > 2β otherwise.
That is, if {C1, . . . , Ck} defines a partition of V then the restriction that α > 2β can
be relaxed to α > β. On the other hand, the condition (2.8) cannot be satisfied unless
N = O(r̂2) and rk+1 = O(r̂). We now provide a few examples of r1, . . . , rk satisfying
the hypothesis of Theorem 2.1.

• Suppose that we have k cliques C1, . . . , Ck of size r1 = r2 = · · · = rk = N ε . Then
(2.8) implies that we may recover the k-disjoint-clique subgraph corresponding to
C1, . . . , Ck if N ε ≥ �(N 1/2). Since the cliques C1, . . . , Ck are disjoint and contain
�(N ) nodes, we must have ε ≥ 1/2. Therefore, our heuristic may recover O(N 1/2)

planted cliques of size N 1/2.
• On the other hand, we may have cliques of different sizes. For example, suppose

that we wish to recover k1 cliques of size N 3/4 and k2 smaller cliques of size N 1/2.
Then the right-hand side of (2.8) must be at least �

(√
N +√

(k1 + k2)rk+1 +rk+1
)
.

Therefore, we may recover the planted cliques provided that k1 = O(N 1/4), k2 =
O(N 1/2), and rk+1 = O(N 1/2).

Although we consider a more general model for clustered data, our recovery guar-
antee agrees (up to constants) with those existing in the literature. In particular, the
bound on the minimum size of the planted clique recoverable by the relaxation (2.5),
r̂ = �(N 1/2), provided by Theorem 2.1 matches that given in Jalali et al. [26], Oymak
and Hassibi [33]. However, among the existing recovery guarantees in the literature,
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few consider noise in the form of diversionary nodes. As a consequence of our more
general model, the relaxation (2.5) is exact for input graphs containing up to O(r̂)

noise nodes, fewer than the bound, O(r̂2), provided by [3, Theorem 4.5].

3 A semidefinite relaxation of the densest k-disjoint-biclique problem

Given a bipartite graph G = ((U, V ), E), a pair of disjoint independent subsets
U ′ ⊆ U, V ′ ⊆ V is a biclique of G if the subgraph of G induced by (U ′, V ′) is
complete bipartite. That is, (U ′, V ′) is a biclique of G if uv ∈ E for all u ∈ U ′, v ∈ V ′.
A k-disjoint-biclique subgraph of G is a subgraph of G with vertex set composed
of k disjoint bicliques of G. Let KM,N = ((U, V ), E, W ) be a weighted complete
bipartite graph with vertex sets U = {1, 2, . . . , M}, V = {1, . . . , N } with matrix of
edge weights W ∈ [0, 1]U×V . We are interested in identifying the densest k-disjoint-
biclique subgraph of KM,N with respect to W . We define the density of a subgraph
H = (U ′, V ′, E ′) of KM,N to be the total edge weight incident at each vertex divided
by the square root of the number of edges from U ′ to V ′:

dH = 1√|E ′|
∑

u∈U ′,v∈V ′
Wuv. (3.1)

Note that the density of H , as defined by (3.1), is not necessarily equal to the average
edge weight incident at a vertex of H , since the square root of the number of edges is
not equal to the total number of vertices if |U ′| 
= |V ′| or H is not complete. The goal
of the densest k-disjoint-biclique problem is to identify a set of k disjoint bicliques of
KM,N such that the sum of the densities of the complete subgraphs induced by these
bicliques is maximized. That is, we want to find a set of k disjoint bicliques, with
characteristic vectors (u1, v1), . . . , (uk, vk), maximizing the sum

k∑

i=1

uT
i W vi

‖ui‖‖vi‖ . (3.2)

As in our analysis of the densest k-disjoint-clique problem, this problem may be
posed as the nonconvex quadratic program

max{Tr (X T W Y ) : X ∈ npm(U ), Y ∈ npm(V )}. (3.3)

By letting Z = (X T , Y T )T (X T , Y T ), we have Tr (X T W Y ) = 1
2 Tr (W̃ Z), where

W̃ =
(

0 W
W T 0

)
.

Using this change of variables, we relax to the rank constrained semidefinite
program
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max
1

2
Tr (W̃ Z)

s.t. ZU,U e ≤ e, ZV,V e ≤ e,
Tr (ZU,U ) = k, Tr (ZV,V ) = k,

rank (ZU,U ) = k, rank (ZV,V ) = k,

Z ≥ 0, Z ∈ �M+N+ ,

(3.4)

where ZU,U and ZV,V are the blocks of Z with rows and columns indexed by U
and V respectively. Ignoring the nonconvex rank constraints yields the semidefinite
relaxation

max
1

2
Tr (W̃ Z)

s.t. ZU,U e ≤ e, ZV,V e ≤ e,
Tr (ZU,U ) = k, Tr (ZV,V ) = k,

Z ≥ 0, Z ∈ �M+N+ .

(3.5)

As in our analysis of the densest k-disjoint-clique problem, we would like to identify
sets of program instances of the k-disjoint-biclique problem that may be solved using
the semidefinite relaxation (3.5). As before, we consider input graphs where it is known
a priori that a k-disjoint-biclique subgraph with large edge weights, relative to the edges
of its complement, exists. We consider random program instances generated as follows.
Let G∗ be a k-disjoint-biclique subgraph of KM,N with vertex set composed of the
disjoint bicliques (U1, V1), . . . , (Uk, Vk). We construct a random matrix W ∈ RM×N+
with entries sampled independently from one of two distributions �1,�2 as follows.

• If u ∈ Ui , v ∈ Vi for some i ∈ {1, . . . , k}, then we sample Wuv from the distribution
�1, with mean α. If u and v are in different bicliques of K ∗, then we sample Wuv

according to the probability distribution �2, with mean β < α.
• The probability distributions �1,�2 are chosen such that u ∈ U, v ∈ V , 0 ≤

Wuv ≤ 1.

We say that such W are sampled from the planted bicluster model. Note that G∗ defines
a feasible solution for (3.5) by

Z∗ =
k∑

i=1

(
ui/‖ui‖
vi/‖vi‖

)(
ui/‖ui‖
vi/‖vi‖

)T

, (3.6)

where ui , vi are the characteristic vectors of Ui and Vi , respectively, for all i =
1, . . . , k. Moreover, Z∗ has objective value equal to (3.2). The following theorem
describes which partitions {U1, . . . , Uk} and {V1, . . . , Vk} of U and V yield random
matrices W drawn from the planted bicluster model such that Z∗ is the unique optimal
solution of the semidefinite relaxation (3.5) and G∗ is the unique densest k-disjoint-
biclique subgraph.

Theorem 3.1 Suppose that the vertex sets (U1, V1), . . . , (Uk, Vk) define a k-disjoint-
biclique subgraph K ∗ of the complete bipartite graph KM,N = ((U, V ), E). Let
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Uk+1 := U\(∪k
i=1Ui ) and Vk+1 := V \(∪k

i=1Vi ). Let mi = |Ui | and ni = |Vi | for all
i = 1, . . . , k + 1 and n̂ := mini=1,...,k ni . Let Z∗ be the feasible solution for (3.5)
corresponding to K ∗ given by (3.6). Let W ∈ RM×N+ be a random matrix sampled
from the planted bicluster model according to distributions �1 and �2 with means
α, β satisfying

γ = γ (α, β, m, n) := α(1 + δ0,mk+1δ0,nk+1) − 2β > 0. (3.7)

Suppose that there exist scalars {τ1, . . . , τk+1} such that mi = τ 2
i ni for all i ∈

{1, . . . , k + 1} and

ατi > βτ j (3.8)

for all i, j ∈ {1, . . . , k + 1}. Then there exist scalars c1, c2 > 0 depending only on
α, β, and {τ1, . . . , τk+1} such that if

c1

(√
k + √

nk+1 + 1
)√

N + βτk+1nk+1 ≤ c2γ n̂ (3.9)

then Z∗ is the unique optimal solution of (3.5) and G∗ is the unique maximum density
k-disjoint-biclique subgraph with respect to W with probability tending exponentially
to 1 as n̂ tends to ∞.

For example, Theorem 3.1 implies that O(N 1/3) bicliques of size m̂ = n̂ = N 2/3

can be recovered from a graph sampled from the planted bicluster model with up to
O(N 1/3) diversionary nodes by solving (3.5).

4 Proof of Theorem 2.1

This section comprises a proof of Theorem 2.1. The proof of Theorem 3.1 is essen-
tially identical to that of Theorem 2.1, although with some modifications made to
accommodate the different relaxation and lack of symmetry of the weight matrix W ;
an outline of the proof of Theorem 3.1 is given in Sect. 5.

4.1 Optimality conditions

We begin with the following sufficient condition for the optimality of a feasible solution
of (2.5).

Theorem 4.1 Let X be feasible for (2.5) and suppose that there exist some μ ∈ R,
λ ∈ RN+ , η ∈ RN×N+ and S ∈ �N+ such that

−W + λeT + eλT − η + μI = S (4.1)

λT (Xe − e) = 0 (4.2)

Tr (Xη) = 0 (4.3)

Tr (X S) = 0. (4.4)

Then X is optimal for (2.5).
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Note that X = (k/N − ε)I + εeeT is a strictly feasible solution of (2.5) for suffi-
ciently small ε > 0. Thus, Slater’s constraint qualification holds for (2.5). Therefore,
a feasible solution X is optimal for (2.5) if and only if it satisfies the Karush-Kuhn-
Tucker conditions. Theorem 4.1 provides the necessary specialization to (2.5) of these
necessary and sufficient conditions (see, for example, [10, Section 5.5.3] or [39, The-
orem 28.3]).

Let K ∗ be a k-disjoint-clique subgraph of KN with vertex set composed of the
disjoint cliques C1, . . . , Ck of sizes r1, . . . , rk and let X∗ be the corresponding feasible
solution of (2.5) defined by (2.6). Let Ck+1 := V \(∪k

i=1Ci ) and rk+1 := N −∑k
i=1 ri .

Let r̂ := mini=1,...,k ri . Let W ∈ �N be a random symmetric matrix sampled from
the planted cluster model according to �1 and �2 with means α and β. To show that
X∗ is optimal for (2.5), we will construct multipliers μ ∈ R, λ ∈ RN+ , η ∈ RN×N+ ,
and S ∈ �N+ satisfying (4.1), (4.2), (4.3), and (4.4). Note that the gradient Eq. (4.1)
provides an explicit formula for the multiplier S for any choice of multipliers μ, λ,

and η.
The proof of Theorem 2.1 uses techniques similar to those used in Ames and Vavasis

[3]. Specifically, the proof of Theorem 2.1 relies on constructing multipliers satisfying
Theorem 4.1. The multipliers λ and η will be constructed in blocks inherited from the
block structure of the proposed solution X∗. Again, once the multipliers μ, λ, and η

are chosen, (4.1) provides an explicit formula for the multiplier S.
The dual variables must be chosen so that the complementary slackness condition

(4.4) is satisfied. The condition Tr (X∗S) = 0 is satisfied if and only if X∗S = 0,
since both X∗ and S are desired to be positive semidefinite (see [44, Proposition
1.19]). Therefore, the multipliers must be chosen so that the left-hand side of (4.1) is
orthogonal to the columns of X∗. That is, we must choose the multipliers μ, λ, and η

such that S, as defined by (4.1), has nullspace containing the columns of X∗. By the
special block structure of X∗, this is equivalent to requiring Sv,Cq to sum to 0 for all
q ∈ {1, . . . , k} and v ∈ V .

The gradient condition Eq. (4.1), coupled with the requirement that the columns
of X∗ reside in the nullspace of S, provides an explicit formula for the multiplier
λ. Moreover, the complementary slackness condition (4.3) implies that all diagonal
blocks ηCq ,Cq , q = 1, . . . , k, are equal to 0. To construct the remaining multipliers,
we parametrize the remaining blocks of S using the vectors yq,s and zq,s for all q 
= s.
These vectors are chosen to be the solutions of the system of linear equations defined
by SX∗ = X∗S = 0. As in Ames and Vavasis [3], we will show that this system is a
perturbation of a linear system with known solution and will use this known solution
to obtain estimates of yq,s and zq,s .

Once the multipliers are chosen, we must establish dual feasibility to prove that
X∗ is optimal for (2.5). In particular, we must show that λ and η are nonnegative
and S is positive semidefinite. To establish nonnegativity of λ and η, we will show
that these multipliers are strictly positive in expectation and close to their respective
means with extremely high probability. To establish that S is positive semidefinite, we
will show that the diagonal blocks of S dominate the off diagonal blocks with high
probability.
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4.2 Choice of the multipliers and a sufficient condition for uniqueness and optimality

We construct the multipliers λ, η, and S in blocks indexed by the vertex sets
C1, . . . , Ck+1. The complementary slackness condition (4.4) implies that the columns
of X are in the nullspace of S since Tr (X S) = 0 if and only if X S = 0 for all posi-
tive semidefinite X, S. Since X∗

Cq ,Cq
is a multiple of the all-ones matrix eeT for each

q = 1, . . . , k, and all other entries of X∗ are equal to 0, (4.4) implies that the block
SCq ,Cs must have row and column sums equal to 0 for all q, s ∈ {1, . . . , k}. Moreover,
since all entries of X∗

Cq ,Cq
are nonzero, ηCq ,Cq = 0 for all q = 1, . . . , k by (4.3).

To compute an explicit formula for λ, note that the condition SCq ,Cq e = 0 is satisfied
if

0 = SCq ,Cq e = μe + rqλCq + (λT
Cq

e)e − WCq ,Cq e (4.5)

for all q = 1, . . . , k. Rearranging (4.5) shows that λCq is the solution to the system

(rq I + eeT )λCq = WCq ,Cq e − μe (4.6)

for all q = 1, . . . , k. We will use the Sherman-Morrision-Woodbury formula (see, for
example, [23, Equation (2.1.4)]), stated in the following lemma, to obtain the desired
formula for λ.

Lemma 4.1 Let A ∈ �n×n be nonsingular and u, v ∈ Rn be such that 1+vT A−1u 
=
0. Then

(A + U V T )−1 = A−1 − A−1uvT A−1

1 + vT A−1u
. (4.7)

Applying (4.7) with A = rq I , u = v = e shows that choosing

λCq = 1

rq

(
WCq ,Cq e − 1

2

(
μ + eT WCq ,Cq e

rq

)
e

)
(4.8)

ensures that Tr (SCq ,Cq X∗
Cq ,Cq

) = 0 for all q = 1, . . . , k.
We next construct η. Fix q, s ∈ {1, . . . , k + 1} such that q 
= s. To ensure that

SCq ,Cs e = 0 and SCs ,Cq e = 0, we parametrize the entries of ηCq ,Cs using the vectors
yq,s and zq,s . In particular, we take

ηCq ,Cs =
(

δ̄q,k+1

2

(
α − μ

rq

)
+ δ̄s,k+1

2

(
α − μ

rs

)
− β

)
eeT + yq,seT + e(zq,s)T .

(4.9)

Here δ̄i j := 1 − δi j , where δi j is the Kronecker delta function defined by δi j =
1 if i = j and 0 otherwise. That is, we take ηCq ,Cs to be the expected value of
λCq eT +eλT

Cs
−WCq ,Cs , plus the parametrizing terms yq,seT and e(zq,s)T . The vectors

123



442 B. P. W. Ames

yq,s and zq,s are chosen to be the solutions to the systems of linear equations imposed
by the requirement that X∗S = SX∗ = 0. As we will see, this system of linear
equations is a perturbation of a linear system with known solution. Using the solution
of the perturbed system we obtain bounds on yq,s and zq,s , which are used to establish
that η is nonnegative and S is positive semidefinite.

Let

η̃Cq ,Cs := λCq eT + eλT
Cs

− WCq ,Cs . (4.10)

Note that the symmetry of W implies that η̃Cs ,Cq = η̃T
Cq ,Cs

. Let b = bq,s ∈ RCq∪Cs

be defined by bCq := η̃Cq ,Cs e − E[η̃Cq ,Cs ]e and bCs = η̃Cs ,Cq e − E[η̃Cs ,Cq ]e. We
choose y = yq,s and z = zq,s to be solutions of the system

(
rs I + θeeT (1 − θ)eeT

(1 − θ)eeT rq I + θeeT

)(
y
z

)
= b (4.11)

for some scalar θ > 0 to be defined later. The requirement that the row sums of SCq ,Cs

are equal to zero is equivalent to y and z satisfying the system of linear equations

0 = −rsyi − zT e + rs

(
λi − δ̄q,k+1

2rq
(αrq − μ)

)
+
(

λT
Cs

e − δ̄s,k+1

2
(αrs − μ)

)

− ([WCq ,Cs e]i − rsβ) (4.12)

for all i ∈ Cq . Similarly, the column sums of SCq ,Cs are equal to zero if and only if y
and z satisfy

0 = −rqzi − yT e + rq

(
λi − δ̄s,k+1

2rs
(αrs − μ)

)
+
(

λT
Cq

e − δ̄q,k+1

2
(αrq − μ)

)

− ([WCs ,Cq e]i − rqβ) (4.13)

for all i ∈ Cs . Note that the system of equations defined by (4.12) and (4.13) is
equivalent to (4.11) in the special case that θ = 0. However, when θ = 0, the system of
equations in (4.11) is singular, with nullspace spanned by the vector (e;−e). When θ is
nonzero, each row of the system (4.11) has an additional term of the form θ(eT y−eT z).
However, any solution (y; z) of (4.11) for θ > 0 is also a solution in the special case
that θ = 0. Indeed, since (e;−e) is in the nullspace of the matrix

(
rs I eeT

eeT rq I

)

and bT
Cq

e = bT
Cs

e, taking the inner product of each side of (4.11) with (e;−e) yields

θ(rq + rs)(eT y − eT z) = bT
Cq

e − bT
Cs

e = 0.
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Therefore, the unique solution (y; z) of (4.11) also satisfies (4.12) and(4.13) for any
θ > 0 such that (4.11) is nonsingular. In particular, note that (4.11) is nonsingular
for θ = 1. For this choice of θ , y and z are the unique solutions of the systems
(rs I + eeT )y = b1 and (rq I + eeT )z = b2, where b1 := bCq and b2 := bCs .
Applying (4.7) with A = rs I , u = v = e and A = rq I , u = v = e yields

y = 1

rs

(
b1 − (bT

1 e)
rq + rs

e

)
and z = 1

rq

(
b2 − (bT

2 e)
rq + rs

e

)
(4.14)

respectively. Finally, we choose μ = εγ r̂ , where γ = γ (α, β, r) = α(1 + δ0,rk+1) −
2β, and ε > 0 is a scalar to be chosen later.

In summary, we choose the multipliers μ ∈ R, λ ∈ RN , η ∈ RN×N as follows:

μ = εγ r̂ (4.15)

λCq =

⎧
⎪⎨

⎪⎩

1

rq

(
WCq ,Cq e − 1

2

(
μ + eT WCq ,Cq e

rq

)
e

)
, if q ∈ {1, . . . , k}

0, if q = k + 1

(4.16)

ηCq ,Cs =
{

E[η̃Cq ,Cs ] + yq,seT + e(zq,s)T , if q, s ∈ {1, . . . , k + 1}, q 
= s

0, otherwise

(4.17)

where ε > 0 is a scalar to be defined later, η̃Cq ,Cs is defined as in (4.10), and yq,s, zq,s

are given by (4.14) for all q, s ∈ {1, . . . , k+1} such that q 
= s. We choose S according
to (4.1). Finally, we define the (k + 1) × (k + 1) block matrix S̃ in �N by

S̃Cq ,Cs =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

αeeT − WCq ,Cs , if q =s, q, s ∈ {1, . . . , k}
βeeT − WCq ,Cs , if q 
=s, q, s ∈ {1, . . . , k}
βeeT − WCq ,Cs + (λCq − E[λCq ])eT , if s =k + 1

βeeT − WCq ,Cs + e(λCs −E[λCs ])T , if q = k + 1.

(4.18)

We conclude with the following theorem, which provides a sufficient condition
ensuring that the proposed solution X∗ is the unique optimal solution for (2.5) and
K ∗ is the unique maximum density k-disjoint-clique subgraph of KN corresponding
to W .

Theorem 4.2 Suppose that the vertex sets C1, . . . , Ck define a k-disjoint-clique sub-
graph K ∗ of the complete graph KN = (V, E) on N vertices and let Ck+1 :=
V \(∪k

i=1Ci ). Let ri := |Ci | for all i = 1, . . . , k + 1, and let r̂ = mini=1,...,k ri . Let
W ∈ �N be a random symmetric matrix sampled from the planted cluster model
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according to distributions �1,�2 with means α, β satisfying (2.7). Let X∗ be the
feasible solution for (2.5) corresponding to C1, . . . , Ck defined by (2.6). Let μ ∈ R,

λ ∈ RN , and η ∈ RN×N be chosen according to (4.15), (4.16), and (4.17), and let
S be chosen according to (4.1). Suppose that the entries of λ and η are nonnegative.
Then there exists scalar c > 0 such that if ‖S̃‖ ≤ cγ r̂ then X∗ is optimal for (2.5),
and K ∗ is the maximum density k-disjoint-clique subgraph of KN corresponding to
W . Moreover, if

rseT WCq ,Cq e > rqeT WCq ,Cs e (4.19)

for all q, s ∈ {1, . . . , k} such that q 
= s, then X∗ is the unique optimal solution of
(2.5) and K ∗ is the unique maximum density k-disjoint-clique subgraph of K N .

Proof By construction, μ, λ, η, and S satisfy (4.1), (4.2), (4.3), and (4.4). Moreover,
λ and η are nonnegative by assumption. Therefore, it suffices to show that S is positive
semidefinite to prove that X∗ is optimal for (2.5). To do so, we fix x ∈ RN and
decompose x as x = x1 + x2 where

x1(Ci ) =
{

φi e, if i ∈ {1, . . . , k}
0, if i = k + 1

for some φ ∈ Rk chosen such that x2(Ci ) is orthogonal to e for all i = 1, . . . , k, and
x2(Ck+1) = x(Ck+1). Here, and in the rest of the note, the notation v(A) denotes the
vector in R|A| with entries equal to those of v indexed by A. Similarly, the notation
M(A, B) denotes the |A| × |B| matrix with entries equal those of M indexed by A
and B respectively. We have

xT Sx = xT
2 Sx2 = xT

2 (S̃ + μI )x2 ≥
(
μ − ‖S̃‖

)
‖x2‖ ≥

(
εγ r̂ − ‖S̃‖

)
‖x2‖

since x2(Ci ) is orthogonal to e for all i = 1, . . . , k and, hence, xT
2 (S − S̃ −μI )x2 = 0.

Therefore, if ‖S̃‖ ≤ εγ r̂ , then xT Sx ≥ 0 for all x ∈ RN with equality if and only if
x2 = 0. In this case, X∗ is optimal for (2.5). Moreover, vi is in the nullspace of S for
all i = 1, . . . , k by (4.4) and the fact that X∗ = ∑k

i=1 vi vT
i /ri . Since xT Sx = 0 if

and only if x2 = 0, the nullspace of S is exactly equal to the span of {v1, . . . , vk} and
S has rank equal to N − k.

To see that X∗ is the unique optimal solution for (2.5) if Assumption (4.19) holds,
suppose, on the contrary, that X̃ is also optimal for (2.5). By (4.4), we have Tr (X̃ S) =
0, which holds if and only if X̃ S = 0. Therefore, the row and column spaces of X̃ lie
in the nullspace of S. Since X̃ � 0 and X̃ ≥ 0, we may write X̃ as

X̃ =
k∑

i=1

k∑

j=1

σi j vi vT
j (4.20)
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for some σ ∈ Rk×k+ . The fact that X̃ satisfies X̃e ≤ e implies that

σqqrq +
k∑

s=1
s 
=q

σqsrs ≤ 1 (4.21)

for all q =, 1 . . . , k. Moreover, since Tr (W X̃) = Tr (W X∗), there exists some q ∈
{1, . . . , k} such that

σqqvT
q W vq +

k∑

s=1
s 
=q

σqsvT
q W vs ≥ vT

q W vq

rq
. (4.22)

Combining (4.21) and (4.22) shows that

0 ≤ vT
q W vq

⎛

⎜⎜⎝
1

rq
−

k∑

s=1
s 
=q

σqsrs

rq

⎞

⎟⎟⎠ +
k∑

s=1
s 
=q

σqsvT
q W vs − vT

q W vq

rq

=
k∑

s=1
s 
=q

σqs

rq
(rqvT

q W vs − rsvT
q W vq),

contradicting Assumption (4.19). Therefore, X∗ is the unique optimal solution of (2.5)
as required. ��

4.3 Nonnegativity of λ and η in the planted case

We now establish that the entries of λ and η are nonnegative with probability tending
exponentially to 1 as r̂ approaches ∞ for sufficiently small choice of ε in (4.15).

We begin by deriving lower bounds on the entries of η. To do so, we will repeatedly
apply the following theorem of Hoeffding (see [25, Theorem 1]), which provides a
bound on the tail distribution of a sum of bounded, independent random variables.

Theorem 4.3 (Hoeffding’s Inequality) Let X1, . . . , Xm be independent identically
distributed (i.i.d.) variables sampled from a distribution satisfying 0 ≤ Xi ≤ 1 for all
i = 1, . . . , m. Let S = X1 + · · · + Xm. Then

Pr(|S − E[S]| > t) ≤ 2 exp

(−2t2

m

)
(4.23)

for all t > 0.

To show that ηi j ≥ 0 for all i, j ∈ V with high probability, we will use the
following lemma, which provides an upper bound on ‖yq,s‖∞ and ‖zq,s‖∞ for all
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q, s ∈ {1, . . . , k + 1} such that q 
= s, holding with probability tending to 1 as r̂ tends
to ∞.

Lemma 4.2 There exists scalar c̃ > 0 such that ‖yq,s‖∞ + ‖zq,s‖∞ ≤ c̃r̂−1/4 for all
q, s ∈ {1, . . . , k + 1} such that q 
= s with probability tending exponentially to 1 as
r̂ → ∞.

Proof Fix q, s ∈ {1, . . . , k} such that q 
= s. Without loss of generality, we assume
that rq ≤ rs . The proof for the case when either q or s is equal to k + 1 is analogous.
We first obtain an upper bound on ‖y‖∞ = ‖yq,s‖∞. By the triangle inequality, we
have

‖y‖∞ ≤ 1

rs

∥∥∥∥∥b1 + |bT
1 e|

rq + rs
e

∥∥∥∥∥∞
≤ 1

rs

(
‖b1‖∞ + |bT

1 e|
rq + rs

)
. (4.24)

Hence, to obtain an upper bound on ‖y‖∞, it suffices to obtain bounds on ‖b1‖∞ and
|bT

1 e|. We begin with ‖b1‖∞. Recall that we have

bi = rs

(
λi − 1

2rq
(αrq − μ)

)
+
(

λT
Cs

e − 1

2
(αrs − μ)

)
−
⎛

⎝
∑

j∈Cs

Wi j − βrs

⎞

⎠ .

(4.25)

for each i ∈ Cq . Note that

λT
Cs

e = 1

rs

(
eT WCs ,Cs e − 1

2
rsμ − 1

2
eT WCs ,Cs e

)
= 1

2rs
(eT WCs ,Cs e − rsμ).

Applying (4.23) with S = Tr (WCs ,Cs ), t = r3/2
s and S = ∑

i∈Cs

∑
j∈Cs , j>i Wi j ,

t = r3/2
s /2 shows that

∣∣∣∣λ
T
Cs

e − 1

2
(αrs − μ)

∣∣∣∣ = 1

2rs
|eT WCs ,Cs e − αr2

s |

≤ 1

2rs

⎛

⎜⎜⎜⎝|Tr (WCs ,Cs ) − αrs | + 2

∣∣∣∣∣∣∣∣∣

∑

i∈Cs

∑

j∈Cs

j>i

Wi j − αrs(rs − 1)

2

∣∣∣∣∣∣∣∣∣

⎞

⎟⎟⎟⎠ ≤ √
rs (4.26)

with probability at least 1 − 2 exp(−2r2
s ) − 2 exp(−r2

s /(rs − 1)) ≥ 1 − p̃1, where
p̃1 := 2 exp(−2r̂2) + 2 exp(−r̂). Next, applying (4.23) with S = ∑

�∈Cs
Wi� and

t = r3/4
s shows that

∣∣∣∣∣∣

∑

�∈Cs

Wi� − βrs

∣∣∣∣∣∣
≤ r3/4

s (4.27)
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with probability at least 1 − p̃2 where p̃2 := 2 exp(−2r̂1/2). Finally, applying (4.23)
with S = ∑

�∈Cq
Wi�, t = r3/4

q and (4.26) shows that

∣∣∣∣λi − 1

2rq
(αrq − μ)

∣∣∣∣ ≤ 1

rq

∣∣∣∣∣∣

∑

�∈Cq

Wi� − rqα

∣∣∣∣∣∣
+ 1

2r2
q

∣∣∣eT WCq ,Cq e − αr2
q

∣∣∣

≤ r−1/4
q + r−1/2

q ≤ 2r−1/4
q (4.28)

with probability at least 1− p̃1 − p̃2. Combining (4.26), (4.27) and (4.28) and applying
the union bound shows that

‖b1‖∞ ≤ 4r−1/4
q rs (4.29)

with probability at least 1 − p̃1 − 2rq p̃2. By a similar argument, ‖b2‖∞ ≤ 4r3/4
q with

probability at least 1 − p̃1 − 2rs p̃2.

We next obtain an upper bound on |bT
1 e| and |bT

2 e|. We have

bT
1 e = rs

(
λT

Cq
e − 1

2
(αrq − μ)

)
+ rq

(
λT

Cs
e − 1

2
(αrs − μ)

)

+(βrsrq − eT WCq ,Cs e). (4.30)

By (4.26) and the union bound, we have

∣∣∣∣λ
T
Cs

e − 1

2
(αrs − μ)

∣∣∣∣ ≤ √
rs (4.31)

∣∣∣∣λ
T
Cq

e − 1

2
(αrq − μ)

∣∣∣∣ ≤ √
rq (4.32)

with probability at least 1 − 2 p̃1. Moreover, applying (4.23) with S = eT WCq ,Cs e and
t = rq

√
rs shows that

|eT WCq ,Cs e − βrsrq | ≤ rq
√

rs (4.33)

with probability at least 1 − p̃3, where p̃3 := 2 exp(−2r̂). Substituting (4.31) and
(4.33) into (4.30), we have

|bT
1 e| ≤ 3rs

√
rq (4.34)

for some scalar c3 > 0 with probability at least 1 − 2 p̃1 − p̃3 by the union bound.
Similarly,

|bT
2 e| ≤ 3rs

√
rq (4.35)
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with probability at least 1 − 2 p̃1 − p̃3. Substituting (4.29) and (4.34) in (4.24) yields

‖y‖∞ ≤ c̃1r−1/4
q , (4.36)

for some scalar c̃1 > 0, with probability at least 1 − (3 p̃1 + 2rq p̃2 + p̃3). Similarly,
there exists scalar c̃2 > 0 such that

‖z‖∞ ≤ c̃2r−1/4
q (4.37)

with probability at least 1 − (3 p̃1 + 2rs p̃2 + p̃3). Combining (4.36) and (4.37) and
applying the union bound over all q, s completes the proof. ��

As an immediate consequence of Lemma 4.2, η is nonnegative with probability
tending exponentially to 1 for sufficiently large values of r̂ .

Corollary 4.1 Suppose that α and β satisfy (2.7). Then the entries of the matrix η are
nonnegative with probability tending exponentially to 1 as r̂ approaches ∞.

Proof Fix i ∈ Cq , j ∈ Cs for some q, s ∈ {1, . . . , k +1} such that q 
= s. Recall that

ηCq ,Cs =
(

δ̄q,k+1

2

(
α − μ

rq

)
+ δ̄s,k+1

2

(
α − μ

rs

)
− β

)
eeT + yq,seT + e(zq,s)T .

Therefore, since γ > 0 by (2.7), Lemma 4.2 implies that

ηi j ≥ (1 − δq,k+1)

2

(
α − μ

rq

)
+ (1 − δs,k+1)

2

(
α − μ

rs

)
− β − ‖yq,s‖∞ − ‖zq,s‖∞

≥
(

1

2
− ε

)
γ − c̃r̂−1/4 ≥ 0,

for all sufficiently small ε > 0 and sufficiently large r̂ with probability tending expo-
nentially to 1 as r̂ → ∞, since at most one of q and s is equal to k + 1. ��

The following lemma provides a similar lower bound on the entries of λ.

Lemma 4.3 There exist scalars c̄1, c̄2 > 0 such that λi ≥ r̂(c̄1 − c̄2r̂−1/4) for all
i ∈ V \Ck+1 with probability tending exponentially to 1 as r̂ → ∞.

Proof Fix q ∈ {1, . . . , k} and i ∈ Cq . Recall that

λi =
∑

j∈Cq

Wi j − 1

2rq
eT WCq ,Cq e − μ

2
.

Applying (4.23) with S = ∑
j∈Cq

Wi j and t = r3/4
q yields

∑

j∈Cq

Wi j ≥ αrq − r3/4
q (4.38)
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with probability at least 1 − p̃2. Moreover, (4.32) implies that

1

2rq
eT WCq ,Cq e ≤ 1

2
(αrq + √

rq) (4.39)

with probability at least 1 − p̃1. Combining (4.38) and (4.39) and applying the union
bound shows that there exist scalars c̄1, c̄2 > 0 such that

λi ≥ αrq − r3/4
q − 1

2
(αrq + √

rq) − μ

2
≥ rq(c̄1 − c̄2r−1/4

q )

with probability at least 1 − p̃1 − p̃2 for sufficiently small choice of ε > 0 in (4.15).
Applying the union bound over all i ∈ V \Ck+1 completes the proof. ��

Note that Lemma 4.3 implies that λ ≥ 0 with probability tending exponentially
to 1 as r̂ tends to ∞. Therefore, μ, λ, η constructed according to (4.15), (4.16),
and (4.17) are dual feasible for (2.5) with probability tending exponentially to 1 as
r̂ → ∞ if the left-hand side of (4.1) is positive semidefinite. The following lemma
states the uniqueness condition given by (4.19) is also satisfied with high probability
for sufficiently large r̂ .

Lemma 4.4 If r̂ > 9/(α − β)2 then rseT WCq ,Cq e > rqeT WCq ,Cs e for all q, s ∈
{1, . . . , k} such that q 
= s with probability tending exponentially to 1 as r̂ → ∞.

Proof Fix q 
= s such that rq ≤ rs . Combining (4.26) and (4.33) shows that

rseT WCq ,Cq e − rq eT WCq ,Cs e ≥ rsr2
q (α − β − 2r−1/2

q − r−1/2
s ) ≥ rsr2

q (α − β − 3r̂−1/2)

with probability at least 1 − p̃1 − p̃3. Noting that this lower bound is positive if
r̂ > 9/(α − β)2 and applying the union bound over all choices of q and s completes
the proof. ��

We have shown that μ, λ, η constructed according to (4.15), (4.16), and (4.17) are
dual feasible for (2.5) and the uniqueness condition (4.19) is satisfied with probability
tending exponentially to 1 as r̂ → ∞. In the next subsection, we derive an upper bound
on the norm of S̃ and use this bound to obtain conditions ensuring dual feasibility of
S and, hence, optimality of X∗ for (2.5).

4.4 An upper bound on ‖S̃‖

In this section, we derive an upper bound on ‖S̃‖, which will be used to verify that the
conditions on the partition C1, . . . , Ck+1 imposed by (2.8) ensure that the k-disjoint-
clique subgraph of KN composed of the cliques C1, . . . , Ck is the unique maximum
density k-disjoint-clique of KN with respect to W and can be recovered by solving
(2.5) with probability tending exponentially to 1 as r̂ → ∞. In particular, we will
prove the following lemma.

123



450 B. P. W. Ames

Lemma 4.5 There exist scalars ρ1, ρ2 > 0 such that

‖S̃‖ ≤ ρ1
√

N + ρ2
√

krk+1 + βrk+1 (4.40)

with probability tending exponentially to 1 as r̂ approaches ∞.

This lemma, along with Theorem 4.2, Lemma 4.3, and Corollary 4.1, establishes
Theorem 2.1. Indeed, if the right-hand side of (4.40) is bounded above by O(γ r̂) then
Theorem 4.2, Lemma 4.3, and Corollary 4.1 imply that the k-disjoint-clique subgraph
given by C1, . . . , Ck is the densest k-disjoint-clique subgraph corresponding to W and
can be recovered by solving (2.5).

The remainder of this section consists of a proof of Lemma 4.5. We decompose S̃
as S̃ = S̃1 + S̃2 + S̃3 where S̃i ∈ �N , i = 1, . . . , 3, are (k + 1) by (k + 1) block
matrices such that

S̃1(Cq , Cs) = E[W ] − W

S̃2(Cq , Cs) =

⎧
⎪⎨

⎪⎩

(λCq − E[λCq ])eT , if s = k + 1

e(λCs − E[λCs ])T , if q = k + 1

0 otherwise

S̃3(Cq , Cs) =
{

−βeeT , if q = s = k + 1

0, otherwise.

To bound the norm of each matrix in this decomposition, we will make repeated
use of the following bound on the norm of a random symmetric matrix (see [21],
[4, Theorem 1]).

Theorem 4.4 Let A ∈ �n be a random symmetric matrix with i.i.d. entries sampled
from a distribution with mean μ and variance σ 2 such that Ai j ∈ [0, 1] for all
i, j ∈ {1, . . . , n}. Then ‖A−μeeT ‖ ≤ 3σ

√
n with probability at least 1−exp(−cn1/6)

where c depends only on σ .

We are now ready to compute the desired bound on ‖S̃‖. By Theorem 4.4, there
exist ρ1 > 0 such that ‖S̃1‖ ≤ ρ1

√
N with probability tending exponentially to 1 as

N → ∞. Morever, we have ‖S̃3‖ = β‖eeT ‖ = βrk+1. It remains to obtain an upper
bound on ‖S̃2‖.

Note that ‖S̃2‖ ≤ 2‖λ − E[λ]‖√rk+1 by the triangle inequality. Recall that

λCq − E[λCq ] = 1

rq

((
WCq ,Cq e − αrqe

) − 1

rq

(
eT WCq ,Cq e − αr2

q

)
e
)

for all q = 1, . . . , k. Applying Theorem 4.4, there exists ϕ > 0 such that

‖WCq ,Cq e − αrqe‖ ≤ ‖WCq ,Cq − αeeT ‖‖e‖ ≤ ϕrq

with probability tending exponentially to 1 as r̂ → ∞. On the other hand, (4.26)
implies that |eT WCq ,Cq e − αr2

q | ≤ 2r3/2
q with probability at least 1 − p̃1. It follows
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that there exists scalar ρ2 > 0 such that ‖λCq −E[λCq ]‖2 ≤ ρ2
2/4 for all q = 1, . . . , k

with probability tending exponentially to 1 as r̂ → ∞. Therefore, ‖λ − E[λ]‖2 =∑k
q=1 ‖λCq − E[λCq ]‖2 ≤ kρ2

2/4 with high probability, as required. This completes
the proof of Lemma 4.5.

5 Proof of Theorem 3.1

5.1 Optimality conditions and choice of multipliers

We provide of a sketch of the proof of Theorem 3.1 here; many of the technical details
are identical to those in the proof of Theorem 2.1 and are omitted. As before, we will
establish that a proposed solution satisfies a set of sufficient conditions for optimality
for (3.5), given by the following theorem, with high probability if the input graph
satisfies the assumptions of Theorem 3.1.

Theorem 5.1 Let Z be feasible for (3.5) and suppose that there exist someμ1, μ2 ∈ R,
λ ∈ RM+ , φ ∈ RN+ , η ∈ R(M+N )×(M+N )

+ and S ∈ �M+N+ such that

(
μ1 I + λeT + eλT −W

−W T μ2 I + φeT + eφT

)
− η = S (5.1)

λT (ZU,U e − e) = 0 (5.2)

φT (ZV,V − e) = 0 (5.3)

Tr (Zη) = 0 (5.4)

Tr (Z S) = 0. (5.5)

Then Z is optimal for (3.5).

Let (U1, V1), . . . , (Uk, Vk) denote the vertex sets of the k-disjoint-biclique sub-
graph G∗ of the bipartite complete graph KM,N = ((U, V ), E) with vertex sets U and
V of size M and N respectively. Let Uk+1 := U\(∪k

i=1Ui ) and Vk+1 := V \(∪k
i=1Vi ).

Let W ∈ RM×N be a random nonnegative matrix sampled from the planted bicluster
model according to distributions �1,�2 with means α, β. Let mi := |Ui |, ni := |Vi |
for all i = 1, . . . , k + 1, and let m̂ = mini=1,...,k mi , n̂ = mini=1,...,k ni . Let
Ci := Ui ∪ Vi and let ri := |Ci | = mi + ni for all i = 1, . . . , k + 1. We assume that
mi is equal to a scalar multiple τ 2

i of ni for all i ∈ {1, . . . , k + 1}. That is, mi = τ 2
i ni

for some τi > 0 for all i = 1, . . . , k + 1.
As before, we establish optimality of Z∗ by constructing dual multipliers satisfying

the assumptions of Theorem 5.1. The matrix S and, hence, λ, φ, and η will be con-
structed in blocks indexed by the vertex sets U1, . . . , Uk+1 and V1, . . . , Vk+1. Note
that the diagonal blocks of Z∗

U,U indexed by U1, . . . , Uk consist of multiples of the
all-ones matrix and the remaining blocks are equal to 0. Therefore, λUk+1 = 0 by (5.2).
Similarly, the block structure of Z∗ implies that φVk+1 = 0 by (5.3) and ηCq ,Cq = 0
for all q = 1, . . . , k by (5.4).

Since both S and Z∗ are assumed to be positive semidefinite matrices, the comple-
mentary slackness condition, Tr (Z∗S) = 0, is equivalent to requiring the columns of
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Z∗ to reside in the nullspace of S. For each q ∈ {1, . . . , k}, we choose λUq so that
SUq ,Cq is orthogonal to Z∗

Uq ,Cq
. In particular, it suffices to choose λ such that

0 = SUq ,Uq e + τq SUq ,Vq e = μ1e + mqλUq + (λT
Uq

e)e − τq WUq ,Vq e (5.6)

for all q = 1, . . . , k. Rearranging (5.6) shows that λUq is the solution to the system

(mq I + eeT )λUq = τq WUq ,Vq e − μ1e (5.7)

for all q = 1, . . . , k. As before, the Sherman-Morrision-Woodbury formula yields
an explicit formula for λ; for each q ∈ {1, . . . , k}, applying (4.7) with A = mq I ,
u = v = e shows that

λUq = 1

mq

(
τq WUq ,Vq e − 1

2

(
μ1 + eT WUq ,Vq e

τqnq

)
e

)
. (5.8)

Similarly, choosing

φVq = 1

nq

(
W T

Uq ,Vq
e

τq
− 1

2

(
μ2 + eT WUq ,Vq e

τqnq

)
e

)
(5.9)

forces the rows of SVq ,Cq to be orthogonal to the columns of Z∗
Cq ,Cq

for all q ∈
{1, . . . , k}. Note that E[λUq ] = (α/(2τq) − μ1/(2mq))e for all q ∈ {1, . . . , k}. We
choose μ1 = εγ m̂ for some scalar ε > 0 to be defined later to ensure that λ is
nonnegative in expectation. Similarly, E[φVq ] = (

ατq/2 − μ2/(2nq)
)

e for all q =
1, . . . , k. Again, we choose μ2 = εγ n̂ for small enough ε > 0 to ensure that φ is
nonnegative in expectation.

We next construct the multiplier η. We set ηCk+1,Ck+1 = 0 and parametrize ηCq ,Cs

using the vectors yq,s and zq,s for each q 
= s. For each q = 1, . . . , k + 1, let
wq be the vector in RCq such that wq(Uq) = e and wq(Vq) = τqe. We choose
ηCq ,Cs = �q,s + yq,swT

s + wq(zq,s)T , where

�q,s =
(

πUq ,Us eeT τsπUq ,Vs eeT

τqπVq ,Us eeT τqτsπVq ,Vs eeT

)

for some scalars πUq ,Us , πUq ,Vs , πVq ,Us , πVq ,Vs > 0 to be defined later. As before, we
choose yq,s and zq,s to be solutions of the system of equations given by SCq ,Cs Z∗

Cs ,Cs
=

0 and SCs ,Cq Z∗
Cq ,Cq

= 0. By the symmetry of S and Z∗, yq,s = zs,q for all q 
= s.
For all q, s ∈ {1, . . . , k + 1} such that q 
= s, let

S̄Cq ,Cs :=
(

λUq eT + eλT
Us

−WUq ,Vs

−W T
Us ,Vq

φVq eT + eφT
Vs

)
, (5.10)
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and let b = bq,s ∈ RCq∪Cs be the vector defined by bCq = (
S̄Cq ,Cs −E[S̄Cq ,Cs ]

)
ws and

bCs = (
S̄Cs ,Cq − E[S̄Cs ,Cq ]

)
wq . The parameters πUq ,Us , πUq ,Vs , πVq ,Us , πVq ,Vs > 0

will be chosen so that

(
E[S̄Cq ,Cs ] − �q,s)ws = 0 and

(
E[S̄Cs ,Cq ] − �s,q)wq = 0. (5.11)

We will establish that such a choice of �q,s exists in Lemma 5.1.
Fix q, s ∈ {1, . . . , k} such that q 
= s. It is easy to see that the requirement that

the rows of SCq ,Cs be orthogonal to the columns of Z∗
Cs ,Cs

is satisfied if y = yq,s and
z = zq,s are chosen to be be the unique solutions of the system

(
2ms I + wqwT

q 0

0 2mq I + wswT
s

)(
y
z

)
= b. (5.12)

Applying (4.7) with A = 2ms , u = v = wq and A = 2mq , u = v = ws yields

y = 1

2ms

(
I − wqwT

q

2(mq + ms)

)
bCq and z = 1

2mq

(
I − wswT

s

2(mq + ms)

)
bCs

respectively.
For q ∈ {1, . . . , k}, we set zk+1,q = 0 and choose y = yk+1,q so that the rows of

SCk+1,Cq are orthogonal to wq . By our choice of �k+1,q , y must satisfy

2mqy =
(

e(λUq − E[λUq ])T −WUk+1,Vq + βeeT

βeeT − W T
Uq ,Vk+1

e(φVq − E[φVq ])

)
wq = bk+1,q

Therefore, we choose yk+1,q = (1/(2mq))bk+1,q . We choose the remaining blocks
of η symmetrically. That is, we choose yq,k+1 = 0 and set zq,k+1 = yk+1,q for all
q = 1, . . . , k.

To establish that S is positive semidefinite with high probability, we decompose S
as the sum S = S1 + S2 + S3 + S4 where

S1(Cq , Cs) :=
{

SCk+1,Ck+1 , if q = s = k + 1

S̄Cq ,Cs − E[S̄Cq ,Cs ], otherwise,
(5.13)

S2(Cq , Cs) :=
⎧
⎨

⎩

E[S̄Cq ,Cs ] − �q,s, if q 
= s

E[S̄Cq ,Cq ], if q = s, q ∈ {1, . . . , k},
0, otherwise,

(5.14)

S3(Cq , Cs) := {
yq,swT

s + wq(zq,s)T , for all q, s ∈ {1, . . . , k + 1} (5.15)

and

S4 :=
(

μ1 I 0
0 μ2 I

)
. (5.16)
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We conclude with the following theorem, which provides a sufficient condition for
optimality and uniqueness of the proposed solution Z∗ for (3.5).

Theorem 5.2 Let Z∗ be the feasible solution for (3.5) corresponding to G∗ defined
by (3.6). Then there exist scalars ξ1, ξ2 > 0 such that if

‖S1‖ + ξ1(nk+1 N )1/2 ≤ ξ2γ n̂ (5.17)

then Z∗ is the unique optimal solution of (3.5) and G∗ is the unique densest k-disjoint-
biclique subgraph of KM,N with probability tending exponentially to 1 as n̂ → ∞.

The remainder of this section consists of a proof of Theorem 5.2. We first establish
that Z∗ is optimal for (3.5) and G∗ is the unique densest k-disjoint-biclique subgraph
of KM,N with probability tending exponentially to 1 as n̂ → ∞ if (5.17) is satisfied.
By construction, μ, λ, φ, η and S satisfy (5.1), (5.2), (5.3), (5.4), and (5.5). Moreover,
a series of arguments similar to those in Sect. 4.3 establish that λ, φ, and η are non-
negative with probability tending exponentially to 1 as n̂ → ∞. Therefore, it suffices
to show that S is positive semidefinite with probability tending exponentially to 1
as n̂ → ∞ if (5.17) is satisfied. To do so, we will establish that xT Sx ≥ 0 for all
x ∈ RM+N in this case.

Fix x ∈ RM+N . We decompose x as x = ∑k
i=1 ϕi xi + x̄ for some ϕ1, . . . , ϕk ,

where xi (Ci ) = wi and all remaining entries of xi are equal to 0, and x̄ is orthogonal
to the span of {x1, . . . , xk}. Note that span {x1, . . . , xk} ⊆ Null S since xi is a scalar
multiple of a column of Z∗ for all i = 1, . . . , k. It follows that

xT Sx = x̄T Sx̄ =
4∑

i=1

x̄T Si x̄. (5.18)

Note that x̄T S3x̄ = 0 since x̄(Cq) is orthogonal to wq for all q = 1, . . . , k and
x̄T S4x̄ ≥ min{μ1, μ2}‖x̄‖2 = εγ min{m̂, n̂}‖x̄‖2. by our choice of μ1 and μ2. The
following lemma provides a similar lower bound on x̄T S2x̄.

Lemma 5.1 Suppose that α, β, τ1, . . . , τk+1 satisfy (3.7) and (3.8). Then, for all
q, s ∈ {1, . . . , k+1} such that q 
= s, there exist scalars πUq ,Us , πUq ,Vs , πVq ,Us , πVq ,Vs

> 0 and ĉ > 0, depending only on α, β, τ1, . . . , τk+1 such that x̄T S2x̄ ≥
−ĉ‖x̄‖2√nk+1 N and (5.11) is satisfied.

Proof Fix q, s ∈ {1, . . . , k} such that q 
= s. Let π1 := πUq ,Us , π2 := πUq ,Vs ,
π3 := πVq ,Us , and π4 := πVq ,Vs . Then the system of equations defined by (5.11) is
equivalent to

⎛

⎜⎜⎝

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

π1
π2
π3
π4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

λ̄ − β/τs

φ̄ − τsβ

λ̄ − β/τq

φ̄ − τqβ

⎞

⎟⎟⎠, (5.19)
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where

λ̄ := α

2

(
1

τq
+ 1

τs

)
− μ1

2

(
1

mq
+ 1

ms

)
,

φ̄ := α

2
(τq + τs) − μ2

2

(
1

nq
+ 1

ns

)
. (5.20)

The system (5.19) is singular with solutions of the form

π1 = λ̄ − φ̄

τqτs
+ π4, π2 = φ̄

τqτs
− β

τs
− π4,

π3 = φ̄

τqτs
− β

τq
− π4. (5.21)

We next show that there exists some choice of π4 > 0, independent of n̂, such that the
desired bound on x̄T S2x̄ holds and π1, π2, π3 are bounded below by a positive scalar
whenever (3.7) and (3.8) are satisfied.

Suppose that α, β, τ1, . . . , τk+1 satisfy (3.7) and (3.8). Let π4 := (ρ1φ̄−ρ2β)/τqτs

for some ρ1, ρ2 > 0 to be chosen later. For π4 to be strictly positive, we need ρ2β <

ρ1φ̄. Substituting our choice of π4 into the formulas for π2 and π3 given by (5.21) and
rearranging shows that ρ1 and ρ2 must satisfy

ρ2β > β max{τq , τs} + (ρ1 − 1)φ̄ (5.22)

for π2, π3 to be positive. When (3.8) is satisfied

φ̄ − β max{τq , τs} ≥ α

2
(τq + τs) − β max{τq , τs} − εγ > 0

for sufficiently small ε > 0 in our choice of μ1 and μ2. Therefore, we choose ρ2 such
that

ρ2 = ρ1φ̄ − κ(β max{τq , τs} − φ̄}

for some κ ∈ (0, 1). Then π4 = κ(φ̄ − β max{τq , τs}) is bounded below by a positive
scalar, depending only on α, β, τq , and τs by our choice of μ2. Since our choice of
ρ1, ρ2 satisfies (5.22), π2, π3 are also bounded below by a positive scalar. Finally,
since π4 is at least a positive scalar, we can always take ε > 0 small enough that π1 is
also bounded below by a positive scalar depending only on α, β, τq and τs . The case
when q ∈ {1, . . . , k} and s = k + 1 follows by an identical argument.

It remains to show that this particular choice of � yields the desired lower bound
on x̄T S2x̄. Let uq := x̄(Uq) and vq := x̄(Vq) denote the entries of x̄ indexed by
Uq and Vq respectively, for all q = 1, . . . , k + 1. For all q = 1, . . . , k, we have
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uT
q e = −τqvT

q e since x̄ is orthogonal to span {x1, . . . , xk}. Fix s ∈ {1, . . . , k}. By our

choice of π
k+1,s
1 , π

k+1,s
2 , π

k+1,s
3 , and π

k+1,s
4 we have

S2(Ck+1, Cs) = S2(Cs, Ck+1)
T = 1

2

(
(λ̄k+1,s + β/τs)eeT −(τs λ̄k+1,s + β)eeT

−(φ̄k+1,s/τs + β)eeT (φ̄k+1,s + τsβ)eeT

)

= 1

2

(
(λ̄k+1,s + β/τs)e

−(φ̄k+1,s/τs + β)e

)
(eT − τseT ).

It follows that

k∑

s=1

x̄(Ck+1)
T S2(Ck+1, Cs)x̄(Cs)

≥ −1

2

k∑

s=1

max

{
λ̄ + β

τs
,

φ̄

τs
+ β

}
‖x̄(Ck+1)‖1 (‖us‖1 + τs‖vs‖1)

≥= −ĉ‖x̄(Ck+1)‖1 (‖x̄‖1 − ‖x̄(Ck+1)‖1),

where τmin := mini=1,...,k τi , τmax := maxi=1,...,k τi , and

ĉ := 1

2

(α

2
+ β

)(max{τmax, 1}
min{τmin, 1}

)
.

The optimization problem

max
w1∈R�1 ,w2∈R�2

{‖w1‖1‖w2‖1 : ‖w1‖2 + ‖w2‖2 = �2}

has optimal solution w∗
1 = (�/

√
2�1)e, w∗

2 = (�/
√

2�2)e, with optimal value
�2√�1�2/2. Taking w1 := x̄(Ck+1) and w2 = (x̄(C1); . . . ; x̄(Ck)) and � = ‖x̄‖,
shows that

‖x̄(Ck+1)‖1
(‖x̄‖1 − ‖x̄(Ck+1)‖1

) ≤ ‖x̄‖2

2

√
rk+1(N − rk+1)

and, consequently,

k∑

s=1

x̄(Ck+1)
T S2(Ck+1, Cs)x̄(Cs) ≥ − ĉ‖x̄‖2

2

√
rk+1 N . (5.23)

Similarly,

x̄(Cq)T S2(Cq , Cq)x̄(Cq) = (vT
q e)2

(
4τqα − μ1 + μ2

nq

)
(5.24)
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for all q = 1, . . . , k. Finally, for q, s ∈ {1, . . . , k} such that q 
= s, we have

x̄(Cq)T S2(Cq , Cs)x̄(Cs)

= (vT
q e)(vT

s e)
(
τqτs λ̄

q,s + β(τq + τs) + φ̄q,s − τqτs(π
q,s
1 − π

q,s
2 − π

q,s
3 + π

q,s
4 )

)

(5.25)

= 4(vT
q e)(vT

s e)(φ̄q,s − τqτsπ
q,s
4 ). (5.26)

Here (5.26) is obtained by substituting (5.21), into (5.25). Let v̄q := vT
q e for all

q = 1, . . . , k. Combining (5.23), (5.24) and (5.26) shows that

x̄T S2x̄

≥ −ĉ‖x̄‖2
√

rk+1 N +
k∑

q=1

v̄2
q

(
τqα − μ1 + μ2

nq

)

+2
k∑

q=1

k∑

s=q+1

4v̄q v̄s((1 − κ)φ̄q,s + κβτ̃qs)

≥ −ĉ‖x̄‖2
√

rk+1 N + 8
k∑

q=1

k∑

s=q+1

|v̄q v̄s |

×
(

ατmin − μ1 + μ2

4n̂
− (1 − κ)φ̄q,s − κβτ̃qs

)
,

where τ̃qs := max{τq , τs}, since
∑k

q=1 v̄2
q ≥ ∑

q 
=s |v̄q v̄s |. If ατmin > βτi for all
i = 1, . . . , k then, for all ε > 0 sufficiently small and κ sufficiently close to 1, we
have

ατmin − μ1 + μ2

4n̂
− (1 − κ)φ̄q,s − κβ max{τq , τs}

≥ ατmin − β max{τq , τs} − (1 − κ)(α − β) max{τq , τs}
− εγ

4

(
m̂

n̂
+ 1

)
≥ 0

for all q 
= s. It follows immediately that x̄T S2x̄ ≥ −ĉ‖x̄‖2√rk+1 N . ��
Substituting the respective bounds on x̄T Si x̄ into (5.18) shows that

x̄T Sx̄ ≥
(

min{μ1, μ2} − ĉ
√

rk+1 N − ‖S1‖
)

‖x̄‖2. (5.27)

Since μ1, μ2 are both scalar multiples of n̂, where the scalar depends only on
α, β, τ1, . . . , τk+1, there exists scalar ξ > 0, also depending only α, β, τ1, . . . , τk+1,
such that the right-hand side of (5.27) is nonnegative if ‖S1‖ + ĉ

√
rk+1 N

≤ ξγ n̂.
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It remains to show that Z∗ is the unique optimal solution with high probability
if (5.17) holds. An argument similar to that in the proof of Theorem 4.2 show that
Z∗ is the unique optimal solution of (3.5) if nseT WUq ,Vq e > nqeT WUq ,VS e for all
q, s ∈ {1, . . . , k}. Moreover, an argument identical to that of the proof of Lemma 4.4,
establishes that this uniqueness condition holds with high probability for sufficiently
large n̂. This completes the proof.

5.2 Positive semidefiniteness of S

It remains to show that S, as defined by (5.1), satisfies (5.17) to prove that Z∗ is the
unique optimal solution of (3.5). In particular, we will derive the following upper
bound on the spectral norm of S1.

Lemma 5.2 There exist scalars c1, c2 > 0 such that

‖S1‖ ≤ c1
√

k N + c2
√

N + βτk+1nk+1 (5.28)

with probability tending exponentially to 1 as n̂ approaches ∞.

To establish Lemma 5.2, we decompose S1 as S1 = S̃1 + S̃2 + S̃3 + S̃4, where
S̃i ∈ �M+N , i = 1, . . . , 4, are defined as follows. We take

S̃1(Uq , Us) = (λUq − E[λUq ])eT + e(λUs − E[λUs ])T ,

S̃1(Vq , Vs) = (φVq − E[φVq ])eT + e(φVs − E[φVs ])T ,

for all q, s ∈ {1, . . . , k + 1} and set all remaining entries of S̃1 to be 0. Next, let

S̃2(Uq , Vs) =
{

βeeT − Rq,q , if q = s, q ∈ {1, . . . , k}
βeeT − WUq ,Vs , otherwise,

where Rq,q is a mq × nq random matrix with independent identically distributed
(i.i.d.) entries sampled according to �2, the distribution of the off-diagonal blocks of
W . We choose S̃2(Vq , Us) = S̃2(Us, Vq)T and set all other entries of S̃2 equal to 0.
Next, we set S̃3(Uq , Vq) = αeeT − WUq ,Vq and S̃3(Vq , Uq) = S̃3(Uq , Vq)T for all

q = 1, . . . , k, and set all remaining entries of S̃3 equal to 0. Finally, S̃4 is the correction
matrix for the diagonal blocks of S̃2. That is, we take S̃4(Uq , Vq) = Rq,q − βeeT ,
and S̃4(Vq , Uq) = S̃4(Uq , Vq)T , for all q = 1, . . . , k, we take S̃4(Uk+1, Vk+1) =
S̃4(Vk+1, Uk+1)

T = −βeeT , and all remaining entries of S̃4 are 0. To obtain the
desired bound on ‖S1‖, we bound each of ‖S̃1‖, ‖S̃2‖, ‖S̃3‖, and ‖S̃4‖ individually.
To do so, we will repeatedly invoke the following bound on the norm of a random
rectangular matrix (see Geman [22] and [4, Theorem 2]).

Theorem 5.3 Let A be a �yn� × n random matrix with independent identically dis-
tributed (i.i.d.) entries sampled from a distribution with mean μ and variance σ 2 such
that Ai j ∈ [0, 1] for all i ∈ {1, . . . , �yn�}, j ∈ {1, . . . , n} for fixed y ∈ R+. Then there
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exist c1, c2, c3, c4 > 0 depending only on σ and y such that ‖A − μeeT ‖ ≤ c4σ
√

n
with probability at least 1 − c1 exp(−c2nc3).

Applying Theorem 5.3 shows that ‖S̃2‖ = ‖S̃2(U, V )‖ ≤ c̃2
√

N for some scalar
c̃2 with probability tending exponentially to 1 as n̂ → ∞ by the block structure
of S̃2. A similar argument shows that there exists scalar c̃3 > 0 such that ‖S̃3‖ ≤
c̃3 maxq=1,...,k

√
nq ≤ c̃3

√
N with probability tending exponentially to 1 as n̂ → ∞.

Next,

‖S̃4‖ = max

{
c̃4 max

q=1,...,k

√
nq , β

√
mk+1nk+1

}
≤ c̃4

√
N + βτk+1nk+1

for some scalar c̃4 > 0 with probability tending exponentially to 1 as n̂ → ∞, again
by Theorem 5.3. Finally, a calculation similar to the derivation of the bound on ‖S̃2‖
in the proof of Lemma 4.5 shows that ‖S̃1‖ = O(

√
k N ) with probability tending

exponentially to 1 as n̂ → ∞. Applying the triangle inequality and the union bound
completes the proof.

6 Numerical experiments

In this section, we empirically verify the performance of our heuristics for a variety of
program inputs. Specifically, we randomly generate symmetric matrices W according
to the planted cluster model, for a number of distributions on the entries of W and
partitions {C1, . . . , Ck+1} of the rows and columns of W , and compare the optimal
solution of (2.5) to that corresponding to the planted partition. Similarly, we also
compare the optimal solution of (3.5) to the matrix representation of the planted
partition for W sampled from the planted bicluster model.

In each experiment, we solve either (2.5) or (3.5) using the Alternating Direction
Method of Multipliers (ADMM). A comprehensive description of ADMM and similar
algorithms is well beyond the scope of this manuscript; we direct the reader to the
recent survey [9] for more details. To solve (2.5), we represent the feasible region
as the intersection of two sets and apply ADMM to solve the resulting equivalent
formulation. In particular, let � := {X ∈ �V : Xe ≤ e, X ≥ 0}, and � :=
{X ∈ �V : Tr (X) = k, X ∈ �V+}. Then we may rewrite (2.5) as max{Tr (W Y ) :
X − Y = 0, X ∈ �, Y ∈ �}. We solve this problem iteratively as follows. In
each iteration, we approximately minimize the augmented Lagrangian Lβ(X, Y, U ) =
Tr (W Y ) − Tr (U (X − Y )) + β

2 ‖X − Y‖2
F with respect to Y and X successively, and

then update the dual multiplier U as U = U − β(X − Y ).1 Here ‖ · ‖F denotes the
Frobenius norm on �V defined by ‖X‖2

F = Tr (X2). As we will see, the resulting
subproblems are convex and can be solved efficiently; therefore, this algorithm will
converge to the optimal solution of (2.5) (see [17, Theorem 8]).

1 The penalty parameter β = min{max{5n/k, 80}, 500}/2 was chosen via simulation, and seems to work
well for most problem instances.
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Let (Xk, Y k, U k)be the current iterate after k iterations. To update in the Y direction,
we minimize Lβ with respect to Y . That is, Y k+1 is a minimizer of the subproblem

min
Y∈�

1

2

∥∥∥∥Y −
(

Xk − W + U k

β

)∥∥∥∥
2

F
. (6.1)

Let Xk − (W + U k)/β have eigenvalue decomposition V Diag (vk)V T . Then, by the
fact that both the Frobenius norm and the set � are invariant under unitary similarity
transformations, we have Y k+1 = V Diag (y∗)V T , where y∗ is the optimal solution
of min{‖y − vk‖2 : eT y = k, y ≥ 0}, by [29, Proposition 2.6]. This latter sub-
problem admits an analytic solution, which can be computed efficiently; see Berg and
Friedlander [45].

Next, we take Xk+1 to be the optimal solution of

min
X∈�

1

2

∥∥∥∥X −
(

Y k + U k

β

)∥∥∥∥
2

F
. (6.2)

Unfortunately, this subproblem does not admit a closed-form solution. Instead, we
approximately solve (6.2) by applying the spectral projected gradient method of Birgin
et al. [8] to the dual of (6.2). Taking the dual of (6.2) shows that

Xk+1 =
[(

Y k+1 + U k

β

)
− z∗eT + e(z∗)T

2

]

+
,

where z∗ is the optimal solution of the dual problem

min
z≥0

1

2

∥∥∥∥

[(
Y k+1 + U k

β

)
− zeT + ezT

2

]

+

∥∥∥∥
2

F

+ zT e − 1

2

∥∥∥∥Y k+1 + U k

β

∥∥∥∥
2

F
; (6.3)

Here, the operator [·]+ : �V → �V ∩ RV ×V+ maps each Z ∈ �V to the matrix
with (i, j)th entry equal to [[Z ]+]i j = max{0, Zi j } for all i, j ∈ V . Moreover, the
objective function of the dual problem (6.3) is both differentiable and coercive in z,
and, therefore, the dual can be solved efficiently [8]. The algorithm is stopped when
the relative duality gap |v(k)

p − v
(k)
d |/ max{|v(k)

p , 1} and primal constraint violation are
smaller than a desired error tolerance.

We solve (3.5) in a similar manner. In particular, we apply ADMM to minimize
the augmented Lagrangian of the convex program max{Tr (W Y ) : X − Y = 0, X ∈
�B, Y ∈ �B}, where �B = {X ∈ �U∪V : XU,U e ≤ e, XV,V e ≤ e, X ≥ 0} and
�B = {Y ∈ �U∪V+ : Tr (Y ) = 2k}. It is important to note that �B is a relaxation
of the set {Y ∈ �U∪V : Tr (YUU ) = k, Tr (YV V ) = k} and, therefore, we are
actually applying ADMM to solve a relaxation of (3.5). Here, the penalty parameter
β = min {max {5n/k, 80} , 500} is used in the augmented Lagrangian. As before, the
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subproblem to update Y admits a closed-form solution using simplex projection, and
we update X by applying the spectral projected gradient method to the dual subproblem

min
λ≥0,φ≥0

∥∥∥∥

[(
Y k+1 + U k

β

)
− �

]

+

∥∥∥∥
2

F

+ λT e + φT e − 1

2

∥∥∥∥Y k+1 + U k

β

∥∥∥∥
2

F
,

where

� :=
( 1

2 (λeT + eλT ) 0
0 1

2 (φeT + eφT )

)
.

Again, we stop the algorithm when both the relative duality gap and primal constraint
violation are within a desired error tolerance.

For N = 200 and N = 500 and a variety of choices of r̂ ∈ {1, . . . , N }, the
following procedure was repeated 10 times. We first partition the indices {1, . . . , N }
into k = ⌊

N/r̂
⌋

subsets {C1, C2, . . . , Ck} of size at least r̂ . We then generate a random
symmetric matrix W ∈ �n according to the planted cluster model with respect to
{C1, C2, . . . , Ck} and one of two sets of probability distributions. In the first, Wi j is
a Bernoulli random variable with probability of success 0.75 if i, j both belong to
C� for some � ∈ {1, 2, . . . , k} and is a Bernoulli random variable with probability
of success p otherwise, for some fixed probability p. In the second, each Wi j is
Gaussian with μ = α, σ = 0.25 for some α ∈ [0.25, 1] if i and j belong to the
same block, and (μ, σ 2) = (0.25, 0.25) otherwise. For each choice of p and α, the
ADMM procedure described above is called to approximately solve (2.5). In each
experiment, the algorithm is terminated if the stopping criteria is achieved with error
tolerance ε = 10−5 or after 500 iterations, and the subproblem (6.2) is solved to

Fig. 1 Number of recoveries for N -node graph with k planted cliques of size at least r̂ and W generated
according to the distributions �1 = Bern(0.75),�2 = Bern(p). Brighter colours indicate a higher rate
of recovery
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Fig. 2 Number of recoveries for N -node graph with k planted cliques of size at least r̂ and W generated
according to the distributions �1 = N (α, 0.25), �2 = N (0.25, 0.25)

Fig. 3 Number of recoveries for (250, 200)-node bipartite graph with k planted bicliques of size at least
(1.25n̂, n̂) and W generated according to the distributions �1 and �2

within error tolerance ε/10 during each iteration. Let X∗ denote the optimal solution
for (2.5) returned by the ADMM algorithm. We declare the block structure of W to
be successfully recovered if ‖X∗ − X0‖2

F/‖X0‖2
F < 10−3, where X0 is the proposed

solution constructed according to (2.6).
Figures 1 and 2 display the average number of successes for each choice of r̂ for W

sampled from the planted cluster model according to the Bernoulli and Gaussian dis-
tributions, respectively. The empirical performance of our heuristic appears to match
that predicted by Theorem 2.1. For each choice of p or α, there is a sharp phase transi-
tion between zero and perfect recovery as r̂ increases past some threshhold. It should
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be noted that the recovery guarantees given by Theorem 2.1 appear to be conserva-
tive compared to those observed empirically; we have perfect recovery for values of r̂
smaller than the left-hand side of (2.8) for many trials. Moreover, W generated accord-
ing to the Gaussian model do not necessarily satisfy the assumption 0 ≤ Wi j ≤ 1 for
i, j ∈ {1, . . . , N }.

We repeated the experiment for bipartite graphs drawn from the planted bicluster
model. For (M, N ) = (250, 200), and various minimum bicluster sizes (m̂, n̂), we
randomly sample weight matrices W from the planted bicluster model according to
some partition of {1, . . . , M} × {1, . . . , N } into k = ⌊

N/n̂
⌋

bicliques with left and
right vertex sets of size at least m̂ and n̂ respectively. For each W , we solve (3.5) using
the ADMM algorithm described above and declare the block structure to be recovered
if the returned optimal solution Z∗ satisfies ‖Z∗ − Z0‖2

F/‖Z0‖2
F < 10−3, where Z0 is

the proposed solution constructed according to (3.6). We plot the number of successful
recoveries for each (m̂, n̂) and generating distribution in Fig. 3. As before, the empirical
behaviour of our heuristic reflects that predicted by Theorem 3.1, although there is
some evidence that this theoretical recovery guarantee may be overly pessimistic.
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