
LETTER Communicated by Yufeng Liu

A DC Programming Approach for Finding Communities
in Networks

Hoai An Le Thi
hoai-an.le-thi@univ-lorraine.fr
Manh Cuong Nguyen
manh-cuong.nguyen@univ-lorraine.fr
Laboratory of Theoretical and Applied Computer Science, University of Lorraine,
Ile du Saulcy, 57045 Metz, France

Tao Pham Dinh
pham@insa-rouen.fr
Laboratoire of Mathematics, National Institute for Applied Sciences—Rouen, 76801
Saint-Étienne-du-Rouvray cedex, France

Automatic discovery of community structures in complex networks is a
fundamental task in many disciplines, including physics, biology, and
the social sciences. The most used criterion for characterizing the exis-
tence of a community structure in a network is modularity, a quantitative
measure proposed by Newman and Girvan (2004). The discovery commu-
nity can be formulated as the so-called modularity maximization problem
that consists of finding a partition of nodes of a network with the high-
est modularity. In this letter, we propose a fast and scalable algorithm
called DCAM, based on DC (difference of convex function) program-
ming and DCA (DC algorithms), an innovative approach in nonconvex
programming framework for solving the modularity maximization prob-
lem. The special structure of the problem considered here has been well
exploited to get an inexpensive DCA scheme that requires only a matrix-
vector product at each iteration. Starting with a very large number of
communities, DCAM furnishes, as output results, an optimal partition
together with the optimal number of communities c∗; that is, the number
of communities is discovered automatically during DCAM’s iterations.
Numerical experiments are performed on a variety of real-world network
data sets with up to 4,194,304 nodes and 30,359,198 edges. The compar-
ative results with height reference algorithms show that the proposed
approach outperforms them not only on quality and rapidity but also on
scalability. Moreover, it realizes a very good trade-off between the quality
of solutions and the run time.

Neural Computation 26, 2827–2854 (2014) c© 2014 Massachusetts Institute of Technology
doi:10.1162/NECO_a_00673

2828 H. A. Le Thi, M. C. Nguyen, and T. Pham Dinh

1 Introduction

In recent years, the study of complex networks has attracted a great deal
of interest in many disciplines, including physics, biology, and the social
sciences. Examples of such networks include web graphs, social networks,
citation networks, and biochemical networks. Despite the fact that these
networks belong to very distinct fields, they all surprisingly share some
common structural features, such as power law degree distributions, small-
world average shortest paths, and high clustering coefficients.

Community structure is one of the important network features. The en-
tire network is in fact composed of densely connected subnetworks, with
only sparse connections between them. Such subnetworks are called com-
munities or modules. Detection of communities is of significant practical
importance as it allows analyzing networks at a megascopic scale: identifi-
cation of related web pages, uncovering of communities in social networks,
and decomposition of metabolic networks in functional modules.

If there is a community structure in a network, the intracommunity edges
should be significantly denser than the intercommunity edges. Hence, de-
tecting communities amounts to searching for the structure that maximizes
the number of intracommunity edges while minimizing the number of inter-
community edges. In 2004, Girvan and Newman (Newman, 2010; Newman
& Girvan, 2004) proposed a quantitative measure, the modularity (Q mea-
sure), for characterizing the existence of community structure in a network.
The modularity Q of a particular partition is defined as the number of edges
inside clusters, minus the expected number of such edges if the graph were
random, conditioned on its degree distribution.

More formally, consider an undirected unweighted network G = (V, E)

with n nodes (V = {1, . . . , n}), and m edges (m = Card(E)). Denote by A the
adjacency matrix: Ai j = 1, i f (i, j) ∈ E, 0 otherwise. The degree of node i is
denoted ωi (ωi = ∑n

j=1 Ai j), and ω stands for the vector whose components
are ωi.

Let P be a partition of V , and let δ(i, j) be a function that takes the value
1 if nodes i, j are in the same community and 0 otherwise. The modularity
measure is defined as

Q(P) = 1
2m

n∑
i, j=1

(
Ai j −

ωiω j

2m

)
δ(i, j).

The first part of Q(P), say, 1
2m

∑n
i, j=1 Ai jδ(i, j), corresponds to the frac-

tion of intracommunity links, whereas the second part 1
2m

∑n
i, j=1

ωiω j

2m δ(i, j)
corresponds to the same fraction in a random network. The modularity
values range from −0.5 to 1 (Brandes et al., 2008), with a higher positive
value indicating stronger support for community structure in the network.

A DC Programming Approach 2829

Hence, community discovery can be formulated as the so-called modularity
maximization problem, which consists of finding a partition of nodes of a
network with the highest modularity. Since its introduction, the modularity
measure has become a central tool for network analysis, and a great deal
of work has studied its properties (Danon, Duch, Diaz-Guilera, & Arenas,
2005; Fortunato & Barthelemy, 2007; Arenas, Fernandez, & Gomez, 2008;
Brandes et al., 2008; Djidjev, 2008; Twan & Elena, 2013), and numerous
algorithms have been developed to maximize modularity. Brandes et al.
(2008) has proved that the modularity maximization is an NP-hard prob-
lem. Hence, exact methods are computationally intractable even for very
small networks, and most existing methods are approximate or heuristic.

In terms of clustering, the approaches differ in whether a hierarchical
partition (recursively subdividing communities into subcommunities) is
sought and whether the number of communities is prespecified by the user
or decided by the algorithm, as well as other parameters. In this sense, three
classes of algorithms can be distinguished: divisive hierarchical clustering
(tackle multiple two-partition problems repeatedly: Agarwal and Kempe,
2008; Duch & Arenas, 2005; Newman, 2006b), agglomerative hierarchical
clustering (merge clusters repeatedly: Blondel, Guillaume, Lambiotte, &
Lefebvre, 2008; Clauset, Newman, & Moore, 2004; Newman, 2004; Pons &
Latapy, 2004; Wakita & Tsurumi, 2007), and k-way partitioning (Emprise
& Dit-Yan, 2011; Guimera & Amaral, 2005; Lehmann & Hansen, 2007;
Newman, 2006a; Boccaletti, Ivanchenko, Latora, Pluchino, & Rapisarda,
2007; Evans & Lambiotte, 2009; Mariá & Leonidas, 2013; Nadakuditi &
Newman, 2012). On the other hand, White and Smyth (2005) have shown
that modularity-based clustering can be understood as a special instance
of spectral clustering. Methods based on spectral clustering have been de-
veloped by Newman (2006a), White and Smyth (2005), Richardson, Mucha,
and Porter (2009), and Sun, Danila, Josic, and Bassler (2009).

In terms of optimization, one distinguishes three main approaches for
modularity maximization: heuristics, metaheuristics, and mathematical
programming approaches. Numerous heuristics have been developed by,
among others, Blondel et al. (2008), Clauset et al. (2004), Duch and Arenas
(2005), Emprise and Dit-Yan (2011), Newman (2004, 2006a, 2006b), Pons
and Latapy (2004), and Cafieri, Hansen, and Liberti (2011). For metaheuris-
tics, one can cite simulated annealing (Massen and Doye, 2005; Guimera
& Amaral, 2005; Medus, Acuna, & Dorso, 2005), genetic search (Tasgin,
Herdagdelen, & Bingol, 2007), greedy algorithms (Wakita & Tsurumi, 2007;
Schuetz & Caflisch, 2008).

The mathematical programming approaches are more recent. In these
approaches, modularity maximization is formulated as either an integer (or
mixed integer) linear programming problem or an integer/mixed integer
quadratic program. Due to the NP-hardness of these problems, most of pro-
posed methods are approximate. Agarwal and Kempe (2008) considered an
integer linear programming formulation and introduced two approximate

2830 H. A. Le Thi, M. C. Nguyen, and T. Pham Dinh

algorithms. The first is linear programming followed by randomized round-
ing, and the second is based on vector programming relaxation of a
quadratic program that recursively splits one partition into two smaller
partitions while a better modularity can be obtained. Emprise and Dit-Yan
(2011) considered an integer quadratic formulation and proposed an itera-
tive algorithm that solves a quadratic program at each iteration. There are
few exact algorithms; the first was introduced by Xu, Tsoka, & Papageor-
giou (2007), and the most recent is based on column generation approaches
for mixed integer linear/quadratic programming (Aloise et al., 2010). The
largest problem solved to date by exact methods has 512 entities (Aloise
et al., 2010).

Recently, new modularity measures based on the modularity Q and the
modularity-density D-measure (Li, Zhang, Wang, Zhang, & Chen 2008)
and then new formulations of modularity maximization via mixed integer
nonlinear programming were investigated in Jonathan and Lisa (2012) and
Laura, Songsong, Lazaros, and Sophia (2012). These approaches aim to
identify overlapping communities or small communities that cannot be
revealed by the original modularity maximization problem.

In this letter, we focus on maximizing the original modularity Q by a
mathematical programming approach via an integer quadratic program-
ming problem. Our method is based on DC (difference of convex functions)
programming and DCA (DC algorithms), an innovative continuous ap-
proach in a nonconvex programming framework. DC programming and
DCA were introduced by Pham Dinh Tao in their preliminary form in 1985
and have been extensively developed since 1994 by Le Thi Hoai An and
Pham Dinh Tao. They have become classic and are increasingly popular
(Collobert, Sinz, Weston, & Bottou, 2006; Le Thi, Belghiti, & Pham Dinh,
2006; Le Thi, Le, & Pham Dinh, 2006, 2007; Le Thi, Le, Nguyen, & Pham
Dinh, 2008; Le Thi, Nguyen, & Ouchani, 2008; Liu, Shen, & Doss, 2005;
Liu & Shen, 2006; Neumann, Schnörr, & Steidl, 2004; Ong & Le Thi, 2013;
Pham Dinh & Le Thi, 1997, 1998; Shen, Tseng, Zhang, & Wong, 2003; Weber,
Schüle, & Schnörr, 2005; and the list of references in Le Thi, 2013). They
address the DC programs of the form

α = inf{ f (x) := g(x) − h(x) : x ∈ R
p} (Pdc) (1.1)

where g, h : R
p → R ∪ {+∞} are lower semicontinuous proper convex func-

tions on R
p. Such a function f is called DC function, and g−h, DC decompo-

sition of f while g and h are DC components of f. The construction of DCA
involves DC components g and h but not the function f itself. Hence, for a
DC program, each DC decomposition corresponds to a different version of
DCA. Since a DC function f has an infinite number of DC decompositions,
which have crucial impacts on the qualities (e.g., speed of convergence,
robustness, efficiency, globality of computed solutions) of DCA, the search

A DC Programming Approach 2831

for a good DC decomposition is important from an algorithmic point of
view. Moreover, despite its local character, DCA with a good initial point
can converge to global solutions. Finding a good initial point is then also an
important stage of DCA. How to develop an efficient algorithm based on
the generic DCA scheme for a practical problem is thus a judicious ques-
tion to be studied, and the answer depends on the specific structure of the
problem being considered.

Our work is motivated by the fact that DCA has been successfully ap-
plied to many (smooth or nonsmooth) large-scale nonconvex programs
in various domains of applied sciences, in particular, in machine learning
(Collobert et al., 2006; Le Thi, Belghiti et al., 2006; Le Thi, Le et al., 2006; Le
Thi et al., 2007; Le Thi, Le et al., 2008; Le Thi, Nguyen et al., 2008; Liu et al.,
2005; Liu & Shen, 2006; Neumann et al., 2004; Ong & Le Thi, 2013; Shen et al.,
2003; Yuille & Rangarajan, 2002; Weber et al., 2005) for which they quite of-
ten provided a global solution and proved to be more robust and efficient
than standard methods. Working on the matrix space, we first formulate
the modularity maximization problem as maximizing a quadratic function
under the Cartesian product of unit simplices with binary variables. This
problem is then equivalently reformulated as maximizing a quadratic func-
tion under the same set but now with continuous variables on which DCA
can be applied. We propose an appropriate DC decomposition that gives
rise, after a suitable computational strategy, to a very simple DCA scheme
(DCAM) in which all computations are explicit. The advantages of our
algorithm are multiple:

• Thanks to the DC decomposition technique, the initial combinatorial
optimization problem is transformed equivalently, in an elegant way,
to a continuous problem. Surprisingly, due to this customized choice
of DC decomposition, although our algorithm works on a continuous
domain, it constructs a sequence in the discrete feasible set of the
initial problem. Such an original property is important for large-scale
settings: in ultra-large networks, if we stop the algorithm before its
convergence, we get always an integer solution, that is, the algorithm
furnishes an approximate solution without rounding procedures.

• Again thanks to DC decomposition, DCAM enjoys interesting con-
vergence properties. It converges, after a finitely many iterations, to
a local solution in almost cases. In particular, DCAM is very inex-
pensive in terms of CPU time since all computations are explicit. In
fact, each iteration requires only one matrix-vector product and max-
imizes a linear function on a simplex whose solutions are explicitly
computed (no solver is required).

• Although the number of clusters is an input parameter of the al-
gorithm, it can be modified by DCAM itself during its iterations.
Starting with a very large number of clusters (even with n, the num-
ber of nodes of the network), DCAM can detect empty clusters and

2832 H. A. Le Thi, M. C. Nguyen, and T. Pham Dinh

provide an optimal partition together with the optimal number of
communities. That feature constitutes a great advantage of DCAM:
finding the number of clusters is a difficult and still relevant issue for
researchers in clustering analysis.

These benefits are confirmed by our numerical results on real-world net-
works: DCA outperforms standard approaches on solution quality, compu-
tation cost, and scalability.

The rest of the letter is organized as follows. In section 2, we present
the integer quadratic formulation of the modularity maximization prob-
lem. Section 3 is devoted to DC programming and DCA for solving this
quadratic program. First, we give a brief presentation of DC programming
and DCA and then present reformulation techniques as well as a DC formu-
lation of the considered problem. Afterward we show how to determine the
resulting DCA scheme and provide some discussions about the algorithm.
Computational experiments are reported in section 4; section 5 concludes
the letter.

2 An Integer Quadratic Formulation of the Modularity
Maximization Problem

Assume that each vertex (entity) belongs to exactly one community (i.e.,
the case of overlapping communities is not considered here).

Let P be a partition of V and c be the number of communities in P . Define
the binary assignment matrix U = (Uik)

k=1,...,c
i=1,...,n in P , say, Uik = 1, if the vertex

i belongs to community k and 0 otherwise. Then the modularity can also be
expressed according to U as follows:

Q(U) = 1
2m

n∑
i, j=1

Bi j

c∑
k=1

UikUjk,

where B := A − 1
2m ωωT is a constant matrix, called the modularity matrix.

It depends on only the network (independent on P). Hence, the modularity
maximization problem can be written as

max
U

Q(U) : = 1
2m

n∑
i, j=1

Bi j

c∑
k=1

UikUjk (2.1)

s.t
c∑

k=1

Uik = 1 ∀i = 1, . . . , n, Uik ∈ {0, 1} ∀i = 1, . . . , n; ∀k = 1, . . . , c.

(2.2)

A DC Programming Approach 2833

The constraint
∑c

k=1 Uik = 1 ensures that each entity belongs to exactly
one community. Observe that the maximizing modularity gives an optimal
partition together with the optimal number of communities c.

For a matrix U ∈ IRn.c, Ui. and U. j denote the ith row and the jth column
of U, respectively. The transpose of U is denoted by UT, and (Ui)

T will be
written as UT

i for simplicity.
Let Mn,c(R) denote the space of real matrices of order n × c. We can

identify by rows (resp. columns) each matrix U ∈ Mn,c(R) with a row vector
(resp. column vector) in (Rc)n (resp. (Rn)c) by writing, respectively,

U ←→ U = (U1., . . . ,Un.),UT
i. ∈ R

c, U
T ∈ (Rc)n (2.3)

and

U ←→ U =

⎛
⎜⎝

U.1
...

U.c

⎞
⎟⎠ , U. j ∈ R

n,U ∈ (Rn)c. (2.4)

The inner product in Mn,c(R) is defined as the inner product in (Rc)n or
(Rn)c, that is,

〈X,Y〉Mn,c(R) = 〈XT , Y
T〉(Rc)n = 〈X ,Y〉(Rn)c = Tr(XTY),

where Tr(XTY) denotes the trace of the matrix XTY. Hence the modularity
measure can be computed as

Q(U) = 1
2m

Tr(UTBU) = 1
2m

c∑
j=1

(U. j)
TBU. j = 1

2m

n∑
i=1

Ui.([(BU)]i.)
T .

(2.5)

For simplifying computations, we choose either representation, matrix or
vector, of U in a convenient way. For instance, with the column identification
of U, we can express the modularity measure using vector representation as
Q(U) = 1

2mUTBb U, where Bb is the diagonal block matrix of order n.c × n.c
whose blocks are all equal to B.

Let �c be the (c − 1)−simplex defined as

�c =
{

x ∈ [0, 1]c :
c∑

k=1

xk = 1
}
,

2834 H. A. Le Thi, M. C. Nguyen, and T. Pham Dinh

and let � ⊂ [0, 1]n×c be the Cartesian product of n simplices �c, say,

� := �c×, . . . ,×�c.

Denote by V(�c) (resp. V(�)) the vertex set of �c (resp. �). Obviously

V(�) = V(�c)×, . . . , ×V(�c).

With the matrix representation, problem 2.3 is written as

max
{

1
2m

Tr(UTBU) : Ui. ∈ V(�c),∀i = 1, . . . , n
}

,

and with the vector column representation, it is expressed as

max
{

Q(U) := 1
2m

UTBb U : U ∈ V(�)

}
. (2.6)

In the next section, we develop DC programming and DCA for solving the
modularity maximization problem of the form 2.6.

3 Solving the Modularity Maximization Problem
by DC Programming and DCA

3.1 A Brief Introduction of DC Programming and DCA. As indicated
in section 1, DC programming and DCA address the problem of minimizing
a DC function on the entire space R

p or on a closed convex set C ∈ R
p.

Generally, a DC program takes the form

α = inf{ f (x) := g(x) − h(x) : x ∈ R
p}, (Pdc), (3.1)

where g, h : R
p → R ∪ {+∞} are lower semicontinuous proper convex func-

tions on the Euclidean space X := R
p. When either g or h is a polyhedral

convex function (say, a pointwise supremum of a finite collection of affine
functions) (Pdc) is called a polyhedral DC program.

A convex constraint x ∈ C can be incorporated in the objective function
f by using the indicator function on C, denoted χC, which is defined by
χC(x) = 0 if x ∈ C, +∞ otherwise. (Any convex constrained DC program
can be written in the standard form (Pdc) by adding the indicator function
of the convex constraint set to the first DC component g.)

Let y ∈ Y , where Y is the dual space of X = R
p that can be identified with

R
p itself. Let g∗(y) defined by

g∗(y) = sup{〈x, y〉 − g(x) : x ∈ R
p}

A DC Programming Approach 2835

be the conjugate function of g. Then the following program is called the
dual program of (Pdc):

αD = inf{h∗(y) − g∗(y) : y ∈ Y }. (Ddc).

One can prove that α = αD (Le Thi & Pham Dinh, 2005; Pham Dinh & Le
Thi, 1997) and there is a perfect symmetry between primal and dual DC
programs: the dual of (Ddc) is exactly (Pdc).

For a convex function h, the subdifferential of h at x0, denoted by ∂h(x0),
is defined by

∂h(x0) ≡ {y ∈ R
p : h(x) ≥ h(x0) + 〈x − x0, y〉,∀x ∈ R

p}.

The subdifferential ∂h(x0) is a closed convex set that generalizes the deriva-
tive in the sense that h is differentiable at x0 if and only if ∂h(x0) ≡ {∇xh(x0)}.

DCA is based on the local optimality conditions for (Pdc), namely,

∂h(x∗) ∩ ∂g(x∗) �= ∅ (3.2)

(such a point x∗ is called the critical point of g − h or generalized KKT point
for (Pdc)), and

∅ �= ∂h(x∗) ⊂ ∂g(x∗). (3.3)

Condition 3.3 is a necessary local optimality for (Pdc). It is also sufficient for
many classes of DC programs that are quite often encountered in practice.
In particular it is sufficient for polyhedral DC programs.

The transportation of global solutions between (Pdc) and (Ddc) is ex-
pressed by the following properties:

Property 1.

[∪y∗∈D ∂g∗(y∗)] ⊂ P, [∪x∗∈P ∂h(x∗)] ⊂ D, (3.4)

where P and D denote the solution sets of (Pdc) and (Ddc), respectively.

Under technical conditions, this transportation also holds for local solu-
tions of (Pdc) and (Ddc) (see Le Thi & Pham Dinh, 2005; Pham Dinh & Le
Thi, 1997 for more details).

Property 2. Let x∗ be a local solution to (Pdc) and let y∗ ∈ ∂h(x∗). If g∗ is
differentiable at y∗, then y∗ is a local solution to (Ddc). Similarly, let y∗ be a
local solution to (Ddc) and let x∗ ∈ ∂g∗(y∗). If h is differentiable at x∗, then x∗

is a local solution to (Pdc).

2836 H. A. Le Thi, M. C. Nguyen, and T. Pham Dinh

The main idea of DCA is simple: each iteration of DCA approximates the
convex function h by its affine minorant defined by yk ∈ ∂h(xk) and solves
the resulting convex program.

DCA: General Scheme

Initializations: let x0 ∈ IRp be a guess, set k := 0.

Repeat
1. Calculate yk ∈ ∂h(xk).
2. Calculate xk+1 ∈ arg min{g(x) − 〈x, yk〉 : x ∈ IRp} (Pk).
3. K = k + 1.

Until convergence of
{
xk

}
.

Convergence properties of DCA and its theoretical basis can be found in
Le Thi and Pham Dinh (2005) and Pham Dinh and Le Thi (1997, 1998). For
instance, it is important to mention that (for simplicity, we omit here the
dual part of these properties):

• DCA is a descent method without line search: the sequence {g(xk) −
h(xk) is decreasing. If g(xk+1) − h(xk+1) = g(xk) − h(xk), then xk is a
critical point of g − h.

• If the optimal value αof problem (Pdc) is finite and the infinite se-
quence {xk}is bounded, then every limit point x∗ of the sequence {xk}
is a critical point of g − h. In such a case, DCA terminates at the kth
iteration.

• DCA has a linear convergence for DC programs. Especially for poly-
hedral DC programs, the sequence {xk} contains finitely many ele-
ments and the algorithm converges after a finite number of iterations.

For a complete study of DC programming and DCA, see Le Thi and
Pham Dinh (2005) and Pham Dinh and Le Thi (1997, 1998) and the references
therein.

The solution of a nonconvex program (Pdc) by DCA must be composed
of two stages: the search for an appropriate DC decomposition of f and
that of a good initial point. Research has been very active on the use of DC
programming and DCA for machine learning and data mining.

It should be noted that:

• The convex concave procedure (CCCP) for constructing discrete time
dynamical systems mentioned in Yuille and Rangarajan (2002) is a
special case of DCA applied to smooth optimization.

• The SLA (successive linear approximation) algorithm developed by
Bradley and Mangasarian (1998) is a version of DCA for concave
minimization;

• The EM algorithm that Dempster, Laird, and Rubin (1977) applied to
the log-linear model is a special case of DCA.

We show below how to use DCA for solving the equivalent modularity
maximization problem, equation 2.6.

A DC Programming Approach 2837

3.2 DC Programming and DCA for Solving Problem 2.6. Both column
and row identifications displayed in section 2 will be used here in order to
provide an explicit DCA that could handle large-size problems.

3.2.1 A Continuous Reformulation of Problem 2.6. Using a DC decomposi-
tion technique, we first reformulate problem 2.6 as a continuous optimiza-
tion problem.

For any real number μ, the modularity measure can be rewritten as

Q(U) = 1
2m

UT (Bb + μIb)U − 1
2m

μUTU,

where Ib is the identity matrix of order n.c.
Let h be the quadratic function defined by h(U) := 1

2U
T (Bb + μIb)U . As

U ∈ V(�), we have

UTU = Tr(UTU) =
n∑

i=1

Ui.(Ui.)
T = n.

Therefore, problem 2.6 is equivalent to

max
{

h(U) : =1
2
UT (Bb + μIb)U : U ∈ V(�)

}
. (3.5)

Let μ be a scalar such that μ > −λ1(B), where λ1(B) is the smallest eigen-
value of the modularity matrix B. Hence, the quadratic function h is strongly
convex and we call μ the regularization parameter. As h is strongly convex,
problem 3.5 and the convex maximization problem,

max
{
h(U) : U ∈ �

}
, (3.6)

are equivalent in the sense that they have the same optimal value and the
same solution set.

3.2.2 A DC Formulation of Problem 3.6. In the sequel, we consider
problem 3.6 with μ > −λ1(B). This convex maximization problem can be
written as

min
{−h(U) : U ∈ �

}
,

which is equivalent to

min
{

f (U) := χ�(U) − h(U) : U ∈ R
n.c} , (3.7)

2838 H. A. Le Thi, M. C. Nguyen, and T. Pham Dinh

where χ� is the indicator function on �. Clearly, the function χ� is convex
(because that � is a convex set), and then problem 3.7 is a DC program with
the following natural DC decomposition:

f (U) := g(U) − h(U), g(U) =χ�(U).

Since χ� is a polyhedral function, problem 3.7 is a polyhedral DC program.
Moreover, h is differentiable, and its gradient is given by ∇h(U) = (Bb +
μIb)U .

3.2.3 The DCA Scheme Corresponding to Problem 3.7. According to the
generic DCA scheme, applying DCA to problem 3.7 consists of computing,
at each iteration k, Yk = ∇h(U k) = (Bb + μIb)U k and then solving the next
problem to obtain U k+1:

min{χ�(U) − 〈U,Yk〉 : U ∈ R
n.c}). (3.8)

Denote by Yk = (B + μI)Uk (I denotes the identity matrix of order n). Taking
into account the useful properties concerning matrix representation of U
and Yk, we can compute explicitly an optimal solution of problem 3.8 as
follows:

min{χ�(U) − 〈U,Yk〉 : U ∈ R
n.c} ⇐⇒ max{〈U,Yk〉 : U ∈ � } (3.9)

= max
Ui.∈�c,∀i=1,...n

{
n∑

i=1

〈Ui.,Yk
i.〉

}
= max

Ui.∈V(�c),∀i=1,...n

{
n∑

i=1

〈Ui.,Yk
i.〉

}
.

The last problem is separable, and solving it amounts to solving n problems
of the form

max{〈Ui.,Yk
i.〉 : Ui. ∈ V(�c)}

whose optimal solution is given by

Uk+1
i. = earg max j=1...c Yk

i j
, (3.10)

where {e j : j = 1, . . . , c} is the canonical basis of R
c.

The sequence
{
U k

}
computed by DCA has the following interesting

property which shows the efficiency of DCA in the search of the optimal
number of clusters.

Proposition 1. If at iteration k one has Uk
il = 0 ∀i = 1, . . . , n, then Uk+1

il = 0
∀i = 1, . . . , n. Consequently, if a cluster is empty at an iteration k, then it can
be deleted in DCA. The sequence {ck} (ck stands for the number of nonempty

A DC Programming Approach 2839

clusters at the iteration k) is decreasing during DCA’s iterations and reduced to c∗

at iteration k∗, say c0 ≥ c1 ≥ . . . ≥ ck ≥ ck+1 ≥ . . . ≥ ck∗ = c∗ and ck = c∗ for all
k > k∗.

Proof. If there exists l ∈ {1, . . . , c} such that Uk
il = 0 ∀i = 1, . . . , n, then Yk

il =
(B + μI)i.U

k
.l = 0 ∀i = 1, . . . , n. Now let j∗ := arg max j Yk

i j. We will prove that
j∗ �= l. Indeed, we have (e is the vector of ones in R

n)

c∑
j=1

Yk
i j =

c∑
j=1

(B + μI)i.U
k
. j = (B + μI)i.

c∑
j=1

Uk
. j = (B + μI)i.e

T

=
(

n∑
t=1

Bit

)
+ μ = μ.

Hence Yk
i. contains at least one positive element and therefore Yk

i j∗
:=

max j=1...c Yk
i j > 0. That means j∗ �= l. From equation 3.10, it follows that

Uk+1
il = 0.

Proposition 1 allows us to update the number of clusters during DCA’s
iterations. Starting with c0, a very large number of clusters (the number of
nodes in the network), DCA automatically detects empty clusters. Then by
removing all columns l such that Uk

.l = 0, we reduce considerably (during
some first iterations) the dimension of matrices Yk and Uk.

The proposed DCA including the update of clusters number can be
described as follows:

DCAM

Initialization: Let U0 be a n × c matrix with binary values, let c0 be an
integer number sufficiently large.
Let ε and ε be small positive values. Calculate μ = −λmin(B) + ε. k ←
0. Set c ← c0.

Repeat
1. Compute Yk = (B + μI)Uk.
2. Set Uk+1

i. = earg max j=1,...,ck Yk
i j
,∀i ∈ {1, . . . , n}.

3. For l = 1, . . . , c
if Uk+1

.l = 0 then update c ← c − 1, remove the column Uk+1
.l from

Uk+1

end for
k ← k + 1,

until ‖Uk+1−Uk‖
‖Uk‖ < ε.

2840 H. A. Le Thi, M. C. Nguyen, and T. Pham Dinh

Theorem 1 (convergence properties of DCAM).

i. DCAM generates the sequence
{
U k

}
contained in V(Δ) such that the

sequence
{−Q(U k)

}
is decreasing (or, equivalently, the sequence

{
Q(U k)

}
is increasing).

ii. Sequence
{
U k

}
converges to U∗ ∈ V(Δ) after a finite number of iterations.

iii. Point U∗ is a KKT point of problem 3.7. Moreover, if

arg max
j

(B + μI)U∗
i j is a singleton ∀i ∈ {1, . . . , n}, (3.11)

then U∗ is a local solution to problem 3.7.

Proof. i and ii are direct consequences of the convergence properties of
DCA for a polyhedral DC program. Moreover, since h is differentiable ev-
erywhere, condition ∂h(U∗) ∩ ∂g(U∗) �= ∅ becomes ∂h(U∗) ⊂ ∂g(U∗) which
is the KKT condition for problem 3.7. Hence, the first part of iii is straight-
forward. Only the second part of iii needs a proof.

We first note that g := χ� is a polyhedral convex function; so is its conju-
gate g∗ := χ∗

�. Hence, the dual DC program of problem 3.7 is a polyhedral
DC program and the relation

∅ �= ∂g∗(Y∗) ⊂ ∂h∗(Y∗) (3.12)

is a necessary and sufficient local optimality condition (Le Thi & Pham Dinh,
2005; Pham Dinh & Le Thi, 1997, 1998). Clearly condition 3.11 is verified if
and only if the problem

min
{
χ�(U) − 〈U,Y∗〉 : U ∈ R

n.c} (3.13)

admits a unique optimal solution, that is, g∗ is differentiable at Y∗ = (Bb +
μIb)U∗. In other words, by returning to matrix representation with Y∗ =
(B + μI)U∗, problem 3.13 can be expressed in the form of problem 3.8,
and the uniqueness of solutions to problem 3.13 holds iff, for i = 1, . . . , n,

the row [(B + μI)U∗]i. has a unique greatest entry. In this case, relation
3.12 holds, and therefore, Y∗ is a local solution to the dual DC program
of equation 3.7. Using the transportation of local minimizers (see the two
properties mentioned in section 3.1) between primal and dual DC programs,
we conclude that U∗ is a local solution to problem 3.7. Thus ends the proof.

3.3 Discussion. The main advantages of our algorithms were noted in
section 1. Here we provide a more detailed discussion of the complexity of
the algorithm and the choice of c0.

DCAM algorithm is simple and easy to implement. One iteration of the
algorithm relies only on very few basic operations, which leads to a very
low computation cost (all computations are explicit and then no solver is
used for the convex subproblem in DCA). Moreover, there is no need to

A DC Programming Approach 2841

evaluate the objective function numerous times as in standard gradient
descent schemes, for instance.

An important point contributing to the efficiency of DCAM comes from
the fact that even if we reformulate the initial combinatorial problem as a
continuous problem, 3.6, DCAM works only on the vertex set of the sim-
plex �, which is finite. Therefore, contrary to other relaxation approaches
in which cluster assignments are represented as a full matrix (see, e.g.,
the deterministic annealing method of Lehmann and Hansen, 2007), in the
DCAM algorithm, the assignment matrix is a binary matrix all along the
iterations. Matrix operations can therefore be performed efficiently. The to-
tal number of operations to solve this main linear program is nc. Hence,
the key operations in DCAM consist of computing the gradient matrix
Yk := (B + μI)Uk = (A + μI)Uk − 1

2mω(ωTUk), which requires O(m + nc)
operations (O(m) and O(nc) for computing, respectively, the first and the
second term). It should be noticed that Yk can be computed incrementally as
Yk+1 = (B + μI)Uk+1 = Yk + (B + μI)(Uk+1 − Uk). Observe that each row of
(Uk+1 − Uk) corresponds to a change in the assignment that contains only
two non-null components: −1 for the previous community and +1 for the
new community; the other rows are null. Then the incremental computation
of Yk+1 requires roughly 2 min(m, nq) + 2nc sums and products in the worst
case, where q is the number of changes in the assignments when passing
from k to k + 1. So if q < m

2n , the incremental approach is more efficient than
the full calculation. If m takes a high value, the incremental approach will be
used often and the running time will be shorter. In practice, the incremental
approach can reduce running time on large networks by 15%.

The computation of λ1(B) can be done by the shifted power method
in O((n + m)n), assuming that the power method requires n iterations to
converge (see Newman, 2006b). However DCA does not require an exact
computation of λ1(B), only an approximation of this eigenvalue. Therefore,
in practical situations, the number of iterations is much smaller than n.

Finally, it is worth noting once again the great advantage of DCAM in
finding automatically the optimal number of clusters: starting with a very
large value c0 (the number of communities), DCAM furnishes as output
results an optimal partition, together with the optimal number of commu-
nities c∗. As for the input value c0, to avoid an underestimation of c∗, we
start with a very large value c0—for example, c0 = n. Obviously, for large
networks, the smaller c0 is, the shorter CPU time would be, and the choice
of c0 = n in these networks is not reasonable. Hence, a suitable value of c0

should be chosen to avoid too many unnecessary calculations during the
first iterations. It is well known in practice that the number of clusters of a

network having n nodes is around
√

n
2 (Mardia, Kent, & Bibby, 1979). Hence

we can take c0 ∈ [
√

n
2 , n], for example, c0 = n, in small and medium-size net-

works (n ≤ 500 000) and the larger n is, c0 should be closer to
√

n
2 .

2842 H. A. Le Thi, M. C. Nguyen, and T. Pham Dinh

In our experiments, we observe that the sequence {ck} is decreasing
(quickly during some first iterations of DCAM) and reduced to c∗ after
the first half of DCA’s iterations; during the remaining iterations, DCAM
continues to optimize the modularity with this value c∗. So by removing
empty clusters and updating the value of c during DCAM’s iterations, we
reduce considerably the complexity of DCAM.

3.4 Finding Good Starting Points for DCAM. Finding good starting
points is one of important tasks in the design of DCA-based algorithms.
Especially due to some issues of the modularity measure, this task should
be carefully studied for modularity maximization problems. In fact, mod-
ularity clustering is known to have some issues, as has been discussed in
Fortunato (2010) and (Good, de Montjoye, and Clauset, 2010):

1. The optimal partition may not coincide with the most intuitive par-
tition (the resolution limit problem). Thus, merging clusters to get
modular structures with higher modularity (as the trends of several
heuristics, for instance, multilevel methods) may not produce an in-
tuitive partition. That is why, in these approaches, small communities
are often hidden.

2. There are typically an exponential number of structurally diverse
alternative partitions with modularities very close to the optimum
(the degeneracy problem). This implies that the results of determin-
istic algorithms that return a unique partition for a given network
should be treated with particular caution, since this behavior tends
to obscure the magnitude of the degeneracy problem and the wide
range of alternative solutions.

3. The maximum modularity score depends on the size n of the network
and the number of modules c it contains.

DCAM seems to be suitable for issue 3 in the sense that it finds simultane-
ously the optimal number c∗ of modules and the optimal modularity. Issue
2 motivates us to investigate two efficient techniques to initialize DCAM
in order to escape local minima. The first technique is inspired by the label
propagation algorithm (LPA) proposed in Raghavan, Albert, and Kumara
(2007). Furthermore, taking into account issue 1, we propose a DCAM-like
algorithm that slightly modifies DCAM in the step of computing Uk (assign
nodes to clusters) so that the clusters having a low density of intraconnec-
tions (among them small clusters) are favorable in the assignment. These
two procedures to compute starting points are described below.

3.4.1 A Two-Step Procedure. In the first step, each node in the network is
assigned a random numeric label that belongs to {1, 2, . . . , c}. In the second
step, the label of every node is updated by the new label corresponding to
the most frequent in its neighborhood. This step is performed iteratively
with a small number of iterations (two iterations in our experiment).

A DC Programming Approach 2843

3.4.2 A DCAM-like Algorithm. Perform DCAM in which step 2 is replaced
by

Uk+1
i. = e

arg max j=1,...,ck

Yk
i j

deg(j)

,∀i ∈ {1, . . . , n}, (3.14)

where deg(j) denotes the number of edges connecting two vertices u, v such
that both u and v belong to cluster j.

Clearly this procedure gives priority to clusters having a low density
of intraconnections in the assignment step. It seems to be able to circum-
vent the most important limit of modularity measure—small communities
cannot be detected by modularity maximization. Hence performing some
iterations of a DCAM-like the algorithm may give a good solution for start-
ing the main DCAM algorithm.

4 Numerical Experiments

We tested DCAM on several real networks and compared it with six existing
approaches. The experiments have been conducted on an Intel Core i7-
2720QM CPU 2 × 2.20 Ghz with 4 Gb of memory.

4.1 Data Sets and Reference Algorithms. To evaluate the performance
of the algorithms, we conduct experiments on 15 well-known networks
that have been tested in previously (e.g., Newman, 2006b). The data sets are
presented in Table 1 (note that the optimization problems have nc variables
and nc + n constrains). The data sets come from different sources:

• Zachary’s Karate Club, Dolphin Social Network, Les Miserables,
Books about US politics, and American College football are from
Mark Newman’s network data repository at http://www-personal
.umich.edu/∼mejn/netdata/

• Jazz Musicians Network, Email communication network, PF2177,
GearBox Tmt/sym, Hook/1498, Af/shell10, Rgg_n_2_21_s0, and
Rgg_n_2_22_s0 are downloaded from the University of Florida
Sparse Matrix Collection at http://www.cise.ufl.edu/research/
sparse/matrices/

• Email Enron is at http://snap.stanford.edu/data/email-Enron.html;
The DCAM is compared to eight reference algorithms. The first six are

heuristic: CNM developed in Clauset et al. (2004); FG, the improvement
implementation version of CNM (Wakita & Tsurumi, 2007); WT, the Walk-
trap algorithm based on a new distance between nodes using random walks
(Pons & Latapy, 2004); SP, the Spectral Bisection algorithm Newman (2006b);
FU, the fast unfolding algorithm Blondel et al. (2008); (the fastest heuris-
tic algorithm); and ML, multi level clustering (Noack & Rotta, 2009). The
last two algorithms (Agarwal & Kempe, 2008) are based on mathematical

2844 H. A. Le Thi, M. C. Nguyen, and T. Pham Dinh

Table 1: Description of Data Sets.

Name Note Number of Vertices Number of Edges

Zachary’s Karate Club KAR 34 78
Dolphin Social Network DOL 62 159
Les Miserables MIS 77 254
Books about US Politics BOK 105 441
American College Football BAL 115 613
Jazz Musicians Network JAZ 198 2,742
Email Communication Network EMA 1,133 5,451
Pf2177 PF2 9,728 367,436
Email_Enron EER 36,691 183,830
GearBox GEB 153,746 4,617,075
Tmt/sym TMT 726,713 2,903,837
Hook/1498 HOK 1,498,023 31,207,734
Af/shell10 AFS 1,508,065 27,090,195
Rgg_n_2_21_s0 RG1 2,097,152 14,487,995
Rgg_n_2_22_s0 RG2 4,194,304 30,359,198

programming: LP (linear programming followed by randomized rounding)
and VP (a vector programming relaxation of a quadratic program that re-
cursively splits one partition into two smaller partitions while a better mod-
ularity can be obtained). Following are the sources of these algorithms:

• SP algorithm: http://deim.urv.cat/∼sgomez/radatools.php)
• CNM: http://cs.unm.edu/ aaron/research/fastmodularity.htm
• FG and WT (Igraph library on C++): http://igraph.sourceforge.net/
• ML: http://studiy.tu-cottbus.de/∼rrotta/news:2010:06_02_new_

release_of_the_multi-level_clustering_software
• FU: https://sites.google.com/site/findcommunities/
• VP and LP (Agarwal’s web page): http://www-scf.usc.edu/

∼gaurava/

ML and FU are the two state-of-the-art methods for modularity maxi-
mization. In the ML algorithm, the communities detection has two phases:
the coarsening phase with a merge prioritizer and the refinement phase. We
use the single-step greedy coarsening method and multilevel fast greedy
refinement (with reduction factors of 50%) at the suggestion of the authors
(Noack & Rotta, 2009). For the merge prioritizer, the criteria for merging
cluster pairs are based on modularity increasing �Q.

The fast unfolding algorithm has two phases. The first phase provides a
local maxima of the modularity by performing a coarsening method whose
merge prioritizer is the gain of modularity �Q. The second phase constructs
a new network whose nodes are now the communities found during the
first phase. The two phases are performed iteratively until there are no more
changes (see Blondel et al., 2008, for details).

A DC Programming Approach 2845

4.2 Experiment Setting. Our experiments have three parts. In the first
experiment, we compare the behavior of DCAM with different starting
points. In the second, we study the influence of the value c0 on the per-
formance of DCAM. In the third, we compare DCAM with reference
algorithms.

For the first experiment, we consider three versions of DCAM according
to the choice of initial points. The first, DCAM1, starts with a random
initial point with values in {0, 1}. The second, DCAM2, uses the two-step
procedure to initialize DCAM. The third, denoted DCAM3, starts with
the two-step procedure and then performs T iterations of the DCAM-like
algorithm (T = 15 in our experiment) to generate a starting point for DCAM.

Since the initial point is randomly computed (even if DCAM2 and
DCAM3 use a particular procedure, in the first step, the labels of points
are randomly chosen), we run each DCAM five times and take the best
solution (the one corresponding to the largest modularity value). CPU time
is computed as the total CPU of five runs, including the time for finding the
initial point. As for the input value c0, at the first run we take c0 = n except

for the TMT, HOK, and AFS (resp. RG1, RG2) data sets and set c0 = 5.
√

n
2

(resp. c0 =
√

n
2). Let c∗1 be the number of optimal clusters given by the first

run of DCAM. Since the solution given by DCAM is suboptimal, c∗1 is close
to the real optimal number of clusters. Hence in the remaining four runs,
we start DCAM with a larger value c0, say c0 := 2c∗1.

In the stop condition of DCAM, ε = 10−6 for the first 10 data sets and
ε = 10−9 for the last 5 data sets.

FU is a stochastic/randomized algorithm; thus, we run it 5 times with a
random order of nodes in the coarsening phase and take the best solution.
As in DCAM, the FU CPU time is the total CPU of five runs.

4.3 Numerical Results. For experiment 1, We report in Table 2 the
modularity (Q), the number of communities (c∗), and the CPU time of three
versions of DCAM. For Experiment 2, we run DCAM3 five times for each of

three values of c0: n, n
2 , and 5.

√
n
2 . The results are reported in Table 3, where

c∗ and Q are the best value given by five runs and CPU time is the total
CPU time of five runs. For experiment 3, we compare DCAM3 with eight
reference algorithms. The modularity values (Q) given by each algorithm,
as well as the corresponding number of communities (c∗), are reported in
Table 4. More clearly, Figure 1 presents the comparative modularity results
of the algorithms. We set the limit CPU time equal to 1 hour for each run;
the symbol - means that the algorithms do not converge after 1 hour.

The CPU times in seconds of all algorithms are given in Table 5.

4.3.1 Comparison of the Three Versions of DCAM. Thanks to the initial
procedure, DCAM2 and DCAM3 are better than DCAM1 (with random

2846 H. A. Le Thi, M. C. Nguyen, and T. Pham Dinh

Table 2: Comparison Between the Tree Versions of DCAM.

DCAM1 DCAM2 DCAM3

Data Set c* Q CPU c* Q CPU c* Q CPU

KAR 4 0.420 0.000 4 0.420 0.000 4 0.420 0
DOL 5 0.529 0.000 4 0.528 0.000 4 0.528 0.000
MIS 6 0.549 0.000 6 0.560 0.000 6 0.560 0.000
BOK 5 0.526 0.000 5 0.527 0.000 5 0.527 0.000
BAL 10 0.605 0.000 10 0.605 0.000 10 0.605 0.000
JAZ 4 0.445 0.000 4 0.445 0.000 4 0.445 0.000
EMA 39 0.535 0.172 12 0.551 0.000 12 0.551 0.000
PF2 19 0.546 2.532 10 0.558 0.782 10 0.558 2.028
EER 1282 0.521 194.05 1072 0.579 36.72 1072 0.579 37.551
GEB 431 0.735 215.37 142 0.841 80.11 75 0.898 42.718
TMT 3409 0.618 705.43 136 0.829 167.15 152 0.827 175.972
HOK 2433 0.594 5597.21 16 0.854 102.43 18 0.895 113.47
AFS 1736 0.627 3765.23 8 0.738 81.79 22 0.891 125.63
RG1 1954 0.758 4895.21 277 0.839 880.96 314 0.957 985.56
RG2 1448 0.755 5800.30 350 0.827 1966.2 525 0.934 1981.42

Note: Numbers in bold correspond to the best results.

Table 3: Results of DCAM3 with Different Values of c0.

c0 = n c0 = n
2 c0 = 5

√
n
2

Data Set c∗ Q CPU c∗ Q CPU c∗ Q CPU

KAR 4 0.420 0.000 4 0.420 0.000 4 0.420 0.000
DOL 4 0.528 0.000 5 0.529 0.000 4 0.527 0.000
MIS 6 0.560 0.000 6 0.555 0.000 6 0.555 0.000
BOK 5 0.527 0.000 5 0.527 0.000 5 0.527 0.000
BAL 10 0.605 0.000 10 0.605 0.000 9 0.598 0.000
JAZ 4 0.445 0.000 4 0.445 0.000 4 0.445 0.000
EMA 12 0.551 0.000 12 0.551 0.000 10 0.538 0.000
PF2 10 0.558 0.485 10 0.558 0.325 10 0.558 0.314
EER 1072 0.579 37.551 1059 0.567 35.60 734 0.561 26.05
GEB 75 0.898 42.718 103 0.897 35.56 102 0.889 28.28

initial points) on both quality and rapidity, in particular for large networks
(networks with more than 1 million nodes). The gain ratio on running time
of DCAM2 (resp. DCAM3) is up to 55 times (resp. 49 times) (HOK data).
Meanwhile, even with a random starting point, DCAM1 is an efficient
algorithm: it can handle large-scale problems in a reasonable time.

Comparing DCAM2 and DCAM3, we observe that DCAM3 is better in
terms of modularity, especially for large networks. For the first 11 data sets
(small and medium-size networks), the modularity values given by DCAM2

A DC Programming Approach 2847

Ta
bl

e
4:

C
om

pa
ra

ti
ve

R
es

ul
ts

(N
um

be
r

of
C

om
m

un
it

ie
s

an
d

M
od

ul
ar

it
y

V
al

ue
)o

fN
in

e
A

lg
or

it
hm

s.

D
C

A
M

3
C

N
M

W
T

SP
FG

M
L

FU
V

P
L

P

D
at

a
Se

t
c*

Q
c*

Q
c*

Q
c*

Q
c*

Q
c*

Q
c*

Q
c*

Q
c*

Q
U

B

K
A

R
4

0.
42

0
3

0.
38

1
3

0.
39

4
4

0.
39

3
3

0.
38

1
4

0.
39

5
4

0.
41

9
3

0.
42

0
4

0.
42

0
0.

42
0

D
O

L
4

0.
52

8
4

0.
49

5
5

0.
50

1
5

0.
49

1
4

0.
49

6
4

0.
49

5
5

0.
52

7
3

0.
52

6
5

0.
52

9
0.

53
1

M
IS

6
0.

56
0

5
0.

50
1

8
0.

52
1

8
0.

52
1

5
0.

50
1

5
0.

50
1

6
0.

55
8

4
0.

56
0

6
0.

56
0

0.
56

1
B

O
K

5
0.

52
7

4
0.

50
2

4
0.

51
5

4
0.

46
7

4
0.

50
2

4
0.

50
2

5
0.

52
7

3
0.

52
7

5
0.

52
7

0.
52

8
B

A
L

10
0.

60
5

7
0.

57
7

10
0.

60
3

8
0.

47
7

6
0.

55
0

7
0.

56
7

10
0.

60
5

5
0.

60
5

10
0.

60
5

0.
60

6
JA

Z
4

0.
44

5
4

0.
43

9
10

0.
43

3
3

0.
39

4
4

0.
43

9
4

0.
43

9
7

0.
44

4
3

0.
44

5
8

0.
44

5
0.

44
6

E
M

A
12

0.
55

1
13

0.
51

3
44

0.
52

5
22

0.
49

3
17

0.
50

1
13

0.
51

1
12

0.
54

8
4

0.
57

9
5

0.
52

6
-

PF
2

10
0.

55
8

10
0.

54
5

20
0.

45
4

17
0.

43
1

10
0.

54
5

10
0.

54
5

10
0.

55
6

–
–

–
–

–
E

E
R

10
72

0.
57

9
16

37
0.

51
0

–
–

26
31

0.
40

9
16

05
0.

51
7

10
45

0.
52

5
98

3
0.

61
1

–
–

–
–

–
G

E
B

75
0.

89
8

17
0.

83
1

–
–

–
–

19
0.

83
1

17
0.

83
1

29
0.

90
8

–
–

–
–

–
T

M
T

15
2

0.
82

7
9

0.
79

7
–

–
–

–
10

0.
79

8
9

0.
79

7
12

0
0.

97
2

–
–

–
–

–
H

O
K

18
0.

89
5

–
–

–
–

–
–

–
–

–
–

27
0.

89
2

–
–

–
–

–
A

FS
22

0.
89

1
–

–
–

–
–

–
–

–
–

–
33

0.
88

6
–

–
–

–
–

R
G

1
31

4
0.

95
7

–
–

–
–

–
–

–
–

–
–

21
0.

98
3

–
–

–
–

–
R

G
2

52
5

0.
94

7
–

–
–

–
–

–
–

–
–

–
23

0
0.

98
9

–
–

–
–

–

N
ot

e:
N

um
be

rs
in

bo
ld

co
rr

es
po

nd
to

th
e

be
st

re
su

lt
s.

2848 H. A. Le Thi, M. C. Nguyen, and T. Pham Dinh

Table 5: CPU Time in Seconds of Each Algorithm.

Data DCAM3 CNM WT SP FG ML FU VP LP

KAR 0.000 0.116 0.000 0.015 0.000 0.000 0.07 18.51 0.69
DOL 0.000 0.223 0.000 0.028 0.000 0.000 0.04 19.29 4.53
MIS 0.000 0.551 0.015 0.038 0.000 0.04 0.07 26.13 3.98
BOK 0.000 0.367 0.048 0.066 0.015 0.21 0.10 21.14 18.45
BAL 0.000 0.394 0.000 0.096 0.000 0.27 0.10 34.95 12.79
JAZ 0.000 0.747 0.031 0.228 0.016 0.24 0.05 27.14 2.52
EMA 0.000 4.371 0.280 3.148 0.078 1.26 0.22 386.82 37.82
PF2 2.028 76.349 42.619 451.11 59.748 155.64 10.37 – –
EER 37.551 231.355 – 2686.1 50.779 153.52 4.21 – –
GEB 42.718 2372.0 – – 179.93 1329.16 72.40 – –
TMT 175.972 4560.37 – – 188.57 1210.88 113.35 – –
HOK 113.47 – – – – – 411.46 – –
AFS 125.63 – – – – – 131.85 – –
RG1 985.56 – – – – – 421.93 – –
RG2 1981.42 – – – – – 482.05 – –

Note: Numbers in bold correspond to the best results.

Figure 1: Comparative Modularity Values of nine Algorithms.

and DCAM3 are comparable: they are equal on 9 of 11 data sets and quite
close on the 2 remaining data sets. For the last 4 data sets (large networks),
the modularity values furnished by DCAM3 are much higher. These results
confirm that the concept of the DCAM-like algorithm is interesting: it may
be able to circumvent the limit of the modularity measure.

A DC Programming Approach 2849

In terms of rapidity, DCAM3 needs more CPU time than DCAM2 in large
networks. Meanwhile the CPU times of the two algorithms are quite close.

4.3.2 The Influence of c0 on DCAM. DCAM is robust: c∗ is quite stable
when c0 varies (except for EER data), and the difference of modularity
values varies from 0.0 to 0.018. The results of the EER data show that DCAM
does not have the same trend as several heuristics, for instance, multilevel
methods—namely, merge clusters to get modular structures with higher
modularity, and so the smaller the number of communities is, the larger
the modularity is. As for CPU time, not surprisingly, the smaller c0 is, the
shorter the running time will be.

4.3.3 Comparison Between DCAM3 and the Six Heuristic Algorithms. In
comparing the first four algorithms, CNM, SP, WT, and FG, DCAM3 al-
ways gives the largest modularity value and the shortest running time.
The total CPU time of DCAM3 is much smaller than that of the four refer-
ence algorithms. On the four medium-size networks—FP2, EER, GEB, TMT
(9000 < n < 1, 000, 000)—the gain ratio of DCAM varies, respectively, from
6.2 to 157.4 and from 1.1 to 123.2 in comparison with CNM and FG; WP
(resp. SP) can solve only one (resp. two) problem(s) and the gain ratio of
DCAM is 87.9 (resp. 71.5 and 930.1) times;

None of these first four algorithms can handle large networks, while
DCAM3 is scalable: it works well on all large networks.

In comparing the two state-of-the-art methods ML and FU, the modular-
ity values given by DCAM3 are better than that of ML (resp. FU) on 15 of 15
(resp. 8 of 15) data sets. FU gives higher (resp. the same) modularity values
than DCAM3 on 5 (resp. 2) datasets. Note that ML does not converge after
1 hour on 4 large networks.

In terms of rapidity, DCAM3 is always faster than ML (the gain ratio
is up to 76.7 times). On the seven medium and large data sets, DCAM3 is
faster than FU on 4 data sets, while FU is faster on 3 data sets.

4.3.4 Comparison Between DCAM and the Two Mathematical Programming-
based Algorithms VP and LP. VP and LP work on only seven small networks
(no more than 1133 nodes). In terms of modularity, the results of DCAM3,
VP, and LP are comparable: they are equal on five of seven data sets, and
everyone wins on one data set.

Note that the VP and LP algorithms include a refinement procedure and
perform well on only the seven small data sets. Also, for these small data
sets, the modularity values provided by DCAM are very close to the upper
bounds given in Agarwal and Kempe (2008) (the gap is zero on one data
set, 0.001 on five of seven data sets, and 0.002 on one data set).

As for running time, on the seven data sets that can be handled by VP
and LP, the CPU times of VP and LP vary from 0.69 to 386.82 seconds while
those of DCAM3 are always smaller than 0.001 second.

2850 H. A. Le Thi, M. C. Nguyen, and T. Pham Dinh

5 Conclusion

We have studied the problem of detecting community structure in networks
via the maximization of the modularity. By exploiting the special structure
of the problem considered here, we have developed a fast and scalable DCA
scheme (DCAM) that requires only a matrix-vector product at each itera-
tion. The implementation is performed by an incremental approach that
takes into account the sparsity of the modularity matrix. Our algorithm
is neither a hierarchical partition nor a k-partition approach and does not
require any refinement. Starting with a very large number of communi-
ties, DCAM furnishes, as output results, an optimal partition, together with
the optimal number of communities c∗; the number of communities is dis-
covered automatically during DCA’s iterations. The number of clusters is
updated at each iteration when empty clusters are found and computational
efforts are considerably reduced. Moreover, the DCAM-like algorithm com-
bined with an LPA procedure has been proved to be efficient for initializing
DCAM.

Our algorithm can handle large networks with up to 4,194,304 nodes
and 30,359,198 edges; say, the initial optimization problem has 6,073,352,192
variables and 6,077,546,496 constraints (as we start with c0 = 1448 and the
number of variables and of constraints are, respectively, nc and nc + n).

The DCAM has been compared to eight reference algorithms on a va-
riety of real-world network data sets. Experimental results show that it
outperforms reference algorithms not only on quality and rapidity but also
on scalability, and it realizes a very good trade-off between the quality of
solutions and running time.

In future work, we plan to investigate DCA for optimizing new mod-
ularity measures to identify overlapping communities or small commu-
nities that cannot be revealed by the original modularity maximization
problem.

Acknowledgments

We are very grateful to the anonymous referees and the associate ed-
itor for their helpful and constructive comments that helped us to im-
prove our letter. This research has been supported by Fonds Européens de
Développement Régional Lorraine via the project Innovations techniques
d’optimisation pour le traitement Massif de Données.

References

Agarwal, G., & Kempe, D. (2008). Modularity-maximizing graph communities via
mathematical programming. European Physical Journal B, 66(3), 409–418. doi:
10.1140/epjb/e2008-00425-1

A DC Programming Approach 2851

Aloise, D., Cafieri, S., Caporossi, G., Hansen, P., Perron, S., & Liberti, L. (2010).
Column generation algorithms for exact modularity maximisation in networks.
Phys. Rev. E, 82, 046112.

Arenas, A., Fernandez, A., & Gomez, S. (2008). Analysis of the structure of com-
plex networks at different resolution levels. New J. Phys. 10, 053039. doi:10.1088/
1367-2630/10/5/053039

Blondel, V. D., Guillaume, J., Lambiotte, R., & Lefebvre, E. (2008). Fast unfold-
ing of communities in large networks. J. Stat. Mech. doi: 10.1088/1742-5468/
2008/10/P10008

Boccaletti, S., Ivanchenko, M., Latora, V., Pluchino, A., & Rapisarda, A. (2007). De-
tecting complex network modularity by dynamical clustering. Physical Review E,
75, 045102.

Bradley, B. S., & Mangasarian, O. L. (1998). Feature selection via concave minimiza-
tion and support vector machines. In J. Shavlik (Ed.), Machine Learning Proceed-
ings of the Fifteenth International Conferences (pp. 82–90). San Francisco: Morgan
Kaufmann.

Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., & Wagner,
D. (2008). On modularity clustering. IEEE Transactions on Knowledge and Data
Engineering, 20, 172–188.

Cafieri, S., Hansen, P., & Liberti, L. (2011). A locally optimal heuristic for modularity
maximization of networks. Phys. Rev. E, 83, 056105.

Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in
very large networks. Phys. Rev. E, 70(6), 066111. doi: 10.1103/PhysRevE.70.066111

Collobert, R., Sinz, F., Weston, J., & Bottou, L. (2006). Trading convexity for scala-
bility. In Proceedings of the 23rd International Conference on Machine Learning. San
Francisco: Morgan Kaufmann.

Danon, L., Duch, J., Diaz-Guilera, A., & Arenas, A. (2005). Comparing com-
munity structure identification. Journal of Statistical Mechanics, 2005, P09008.
doi:10.1088/1742-5468/2005/09/P09008

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B,
39(1), 1–38.

Djidjev, H. (2008). A scalable multilevel algorithm for graph clustering and commu-
nity structure detection. In Algorithms and models for the web-graph (pp. 117–128).
Berlin: Springer-Verlag.

Duch, J., & Arenas, A. (2005). Community detection in complex networks using ex-
tremal optimization. Phys. Rev. E, 72(2), 027104. doi:10.1103/PhysRevE.72.027104

Emprise, Y. K. C., & Dit-Yan, Y. (2011). A convex formulation of modularity max-
imization for community detection. In Proceedings of the 22nd International Joint
Conference on Artificial Intelligence.

Evans, T. S., & Lambiotte, R. (2009). Line graphs, link partitions, and overlapping
communities. Phys. Rev. E, 80(1), 016105. doi: 10.1103/PhysRevE.80.016105

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486, 75–
174.

Fortunato, S., & Barthelemy, M. (2007). Resolution limit in community detection. In
PNAS, 104, 36–41. doi:10.1073/pnas.0605965104

Good, B. H., de Montjoye, Y. A., & Clauset, A. (2010). The performance of modularity
maximization in practical contexts. Phys. Rev. E, 81, 046106.

2852 H. A. Le Thi, M. C. Nguyen, and T. Pham Dinh

Guimera, R., & Amaral, L. (2005). Functional cartography of complex metabolic
networks. Nature, 433, 895–900.

Jonathan, Q. J., & Lisa, J. M. (2012). Modularity functions maximization with nonneg-
ative relaxation facilitates community detection in networks. Physica A: Statistical
Mechanics and Its Applications, 391, 854–865.

Laura, B., Songsong, L., Lazaros, G. P., & Sophia, T. (2012). A mathematical pro-
gramming approach to community structure detection in complex networks. In
Proceedings of the 22nd European Symposium on Computer Aided Process Engineering
(pp. 1387–1391). Amsterdam: Elsevier.

Lehmann, S., & Hansen, L. (2007). Deterministic modularity optimization. Eur. Phys.
J. B, 60(1), 83–88. doi:10.1140/epjb/e2007-00313-2

Le Thi, H. A. (2013). DC programming and DCA. http://lita.sciences.univ-metz.fr/
∼lethi/DCA.html

Le Thi, H. A., Belghiti, T., & Pham Dinh, T. (2006). A new efficient algorithm based
on DC programming and DCA for clustering. Journal of Global Optimization, 37,
593–608.

Le Thi, H. A., Le, H. M., & Pham Dinh, T. (2006). Optimization based DC program-
ming and DCA for hierarchical clustering. European Journal of Operational Research,
183, 1067–1085.

Le Thi, H. A., Le, H. M., & Pham Dinh, T. (2007). Fuzzy clustering based on nonconvex
optimisation approaches using difference of convex (DC) functions algorithms.
Journal of Advances in Data Analysis and Classification, 2, 1–20.

Le Thi, H. A., Le, H. M., Nguyen, V. V., & Pham Dinh, T. (2008). A DC programming
approach for feature selection in support vector machines learning. Journal of
Advances in Data Analysis and Classification, 2(3), 259–278.

Le Thi, H. A., Nguyen, V. V., & Ouchani, S. (2008). Gene selection for cancer classifi-
cation using DCA. Adv. Dat. Min. Appl. LNCS, 5139, 62–72.

Le Thi, H. A., & Pham Dinh, T. (2005). The DC (difference of convex functions)
programming and DCA revisited with DC models of real world nonconvex op-
timization problems. Annals of Operations Research, 133, 23–46.

Li, Z., Zhang, S., Wang, R. S., Zhang, X. S., & Chen, L. (2008). Quantitative function
for community detection. Phys. Rev. E, 77, 036109.

Liu, Y., & Shen, X. (2006). Multicategory ψ-learning. Journal of the American Statistical
Association, 101, 500–509.

Liu, Y., Shen, X., & Doss, H. (2005). Multicategory ψ-learning and support vector
machine: Computational tools. Journal of Computational and Graphical Statistics, 14,
219–236.

Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. Orlando, FL:
Academic Press.

Mariá, C. V. N., & Leonidas, S. P. (2013). Community detection by modularity max-
imization using GRASP with path relinking. Computers and Operations Research,
40, 3121–3131.

Massen, C., & Doye, J. (2005). Identifying communities within energy landscapes.
Physical Review E, 71, 046101.

Medus, A., Acuna, G., & Dorso, C. (2005). Detection of community structures in
networks via global optimization. Physica A, 358, 593–604.

Nadakuditi, R. R., & Newman, M. E. J. (2012). Graph Spectra and the detectability
of community structure in networks. Phys. Rev. Lett., 108, 188701.

A DC Programming Approach 2853

Neumann, J., Schnörr, C., & Steidl, G. (2004). SVM-based feature selection by direct
objective minimisation. In Pattern Recognition, Proc. of 26th DAGM Symposium (pp.
212–219). Berlin: Springer.

Newman, M. E. J. (2004). Fast algorithm for detecting community structure in net-
works. Phys. Rev. E, 69(6), 066133. doi:10.1103/PhysRevE.69.066133

Newman, M. E. J. (2006a). Finding community structure in networks using the eigen-
vectors of matrices. Phys. Rev. E, 74(3), 036104. doi: 10.1103/PhysRevE.74.036104

Newman, M. E. J. (2006b). Modularity and community structure in networks. PNAS,
103(23), 8577–8582.

Newman, M. E. J. (2010). Networks: An introduction. New York: Oxford University
Press.

Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure
in networks. Phys. Rev. E, 69(2), 026113. doi:10.1103/PhysRevE.69.026113

Noack, A., & Rotta, R. (2009). Multi-level algorithms for modularity clustering. In
Proceedings of the 8th International Symposium on Experimental Algorithms. Dor-
drecht: Kluwer.

Ong, C. S., & Le Thi, H. A. (2013). Learning sparse classifiers with difference of
convex functions algorithms. Optimization Methods and Software, 28, 830–854.

Pham Dinh, T., & Le Thi, H. A. (1997). Convex analysis approach to D.c pro-
gramming: Theory, algorithms and applications. Acta Mathematica Vietnamica, 22,
289–355.

Pham Dinh, T., & Le Thi, H. A. (1998). DC optimization algorithms for solving the
trust region subproblem. SIAM J. Optimization, 8, 476–505.

Pons, P., & Latapy, M. (2004). Computing communities in large networks using
random walks. J. Graph Alg. and App., 10, 284–293.

Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to
detect community structures in large-scale networks. Phys. Rev. E, 76, 036106.

Richardson, T., Mucha, P., & Porter, M. (2009). Spectral tripartitioning of networks.
Physical Review E, 80, 036111.

Schuetz, P., & Caflisch, A. (2008). Efficient modularity optimization by multistep
greedy algorithm and vertex mover refinement. Physical Review E, 77, 046112.

Shen, X., Tseng, G. C., Zhang, X., & Wong, W. H. (2003). ψ-Learning. Journal of the
American Statistical Association, 98, 724–734.

Sun, Y., Danila, B., Josic, K., & Bassler, K. E. (2009). Improved community structure
detection using a modified fine-tuning strategy. Europhysics Letters, 86, no. 28004.

Tasgin, M., Herdagdelen, A., & Bingol, H. (2007). Community detection in complex
networks using genetic algorithms. arXiv:0711.0491

Twan, V. L., & Elena, M. (2013). Graph clustering with local search optimization: The
resolution bias of the objective function matters most. Phys. Rev. E, 87, 012812.

Wakita, K., & Tsurumi, T. (2007). Finding community structure in mega-scale social
networks. arXiv e-print cs/0702048

Weber, S., Schüle, T., & Schnörr, C. (2005). Prior learning and convex-concave regu-
larization of binary tomography. Electr. Notes in Discr. Math., 20, 313–327.

White, S., & Smyth, P. (2005). A spectral clustering approach to finding communities
in graph. In H. Kargupta, J. Srivastava, C. Kamath, & A. Goodman (Eds.), Proceed-
ings of the 5th SIAM International Conference on Data Mining, Society for Industrial
and Applied Mathematics (pp. 274–285). Philadelphia: SIAM.

2854 H. A. Le Thi, M. C. Nguyen, and T. Pham Dinh

Xu, G., Tsoka, S., & Papageorgiou, L. (2007). Finding community structures in com-
plex networks using mixed integer optimization. Eur. Physical Journal B, 60, 231–
239.

Yuille, A. L., & Rangarajan, A. (2002). The convex concave procedure (CCCP). In T.
G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information
processing systems, 14. Cambridge, MA: MIT Press.

Received January 1, 2014; accepted June 23, 2014.

Copyright of Neural Computation is the property of MIT Press and its content may not be
copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.

