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Abstract In this paper, we define a class of linear conic programming (which we call
matrix cone programming or MCP) involving the epigraphs of five commonly used
matrix norms and the well studied symmetric cone. MCP has recently been found to
have many important applications, for example, in nuclear norm relaxations of affine
rank minimization problems. In order to make the defined MCP tractable and meaning-
ful, we must first understand the structure of these epigraphs. So far, only the epigraph
of the Frobenius matrix norm, which can be regarded as a second order cone, has
been well studied. Here, we take an initial step to study several important properties,
including its closed form solution, calm Bouligand-differentiability and strong semi-
smoothness, of the metric projection operator over the epigraph of the l1, l∞, spectral
or operator, and nuclear matrix norm, respectively. These properties make it possible
to apply augmented Lagrangian methods, which have recently received a great deal of
interests due to their high efficiency in solving large scale semidefinite programming,
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to this class of MCP problems. The work done in this paper is far from comprehensive.
Rather it is intended as a starting point to call for more insightful research on MCP so
that it can serve as a basic tool to solve more challenging convex matrix optimization
problems in years to come.

Keywords Matrix cones · Metric projectors · Conic optimization

Mathematics Subject Classification (2000) 65K05 · 90C25 · 90C30

1 Introduction

In this section we shall first define several convex matrix cones and then use these
cones to introduce a class of matrix cone programming problems that have important
applications in many applied areas.

Let R
m×n be the linear space of all m × n real matrices equipped with the inner

product 〈X,Y 〉 := Tr(X T Y ) for X and Y in R
m×n , where “Tr” denotes the trace, i.e.,

the sum of the diagonal entries of a squared matrix. Let f ≡ ‖·‖ be any norm function
defined on R

m×n . The epigraph of f , denoted by epi f ,

epi f := {(t, X) ∈ R × R
m×n | t ≥ f (X)}

is a closed convex cone in R × R
m×n . Such a cone will be called a matrix cone for

ease of reference. We use K to represent epi f or the cross product of several such
closed convex cones when we choose f from the following five norms:

(i) f (·) = ‖ · ‖F , the Frobenius norm, i.e., for each X ∈ R
m×n, ‖X‖F =(∑m

i=1
∑n

j=1|xi j |2
)1/2

;

(ii) f (·) = ‖ · ‖∞, the l∞ norm, i.e., for each X ∈ R
m×n, ‖X‖∞ = max{|xi j | | 1 ≤

i ≤ m, 1 ≤ j ≤ n};
(iii) f (·) = ‖ · ‖1, the l1 norm, i.e., for each X ∈ R

m×n, ‖X‖1 =∑m
i=1
∑n

j=1|xi j |;
(iv) f (·) = ‖ · ‖2, the spectral or the operator norm, i.e., for each X ∈ R

m×n, f (X)
denotes the largest singular value of X ; and

(v) f (·) = ‖ · ‖∗, the nuclear norm, i.e., for each X ∈ R
m×n, f (X) denotes the sum

of the singular values of X .

That is, there exists an integer q ≥ 1 such that K = epi f1 × epi f2 × · · · × epi fq ,
where for each i ≥ 1, fi is one of the norm functions chosen from (i)-(v) on a matrix
space R

mi ×ni . Denote the Euclidean space X by X := X1 × X2 × · · · × Xq , where
for each i ≥ 1, the natural inner product of Xi := R × R

mi ×ni is given by

〈(t, X), (τ,Y )〉Xi := tτ + 〈X,Y 〉 ∀ (t, X) and (τ,Y ) ∈ R × R
mi ×ni .

Denote the natural inner product of X by 〈·, ·〉X . Note that for each i ≥ 1, except for
the case when fi (·) = ‖ · ‖F , the cone epi fi is not self-dual unless min{mi , ni } = 1.
So, in general the above defined closed convex cone K is not self-dual, i.e., K �= K∗ :=
{W ∈ X | 〈W, Z〉X ≥ 0 ∀ Z ∈ K}, the dual cone of K. When f (·) = ‖ · ‖F , epi f
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An introduction to a class of matrix cone programming 143

actually turns to be the second order cone (SOC) if we treat a matrix X ∈ R
m×n as

a vector in R
mn by stacking up the columns of X , from the first to the n-th column,

on top of each other. The SOC is a well understood convex cone in the literature and
thus is not the focus of this paper. We include it here for the sake of convenience in
subsequent discussions.

Let H be a finite-dimensional real Euclidean space endowed with an inner product
〈·, ·〉H and its induced norm ‖ · ‖H. Let Q ∈ H be the cross product of the origin
{0} and a symmetric cone in lower dimensional subspaces of H. A cone is said to be
symmetric, if it is self-dual and homogenous. The cone K is homogeneous if for any
u, v ∈ intK, the topological interior part of K, there exists T ∈ Aut(K) such that
T u = v, where Aut(K) is the automorphism group of K, i.e., the set of nonsingular
linear maps leaving K invariant. Note that the symmetric cone, which includes the
nonnegative orthant, the SOC, and the cone of symmetric and positive semi-definite
real matrices, has been completely classified [13]. Let A : R

p → Y := H × X be a
linear operator. Define the natural inner product of Y by

〈(u, w), (v, z)〉 := 〈u, v〉H + 〈w, z〉X ∀ (u, w) and (v, z) ∈ H × X .

Let A∗ : Y → R
p be the adjoint of A. Let c be a given vector in R

p and b an
element in Y . The matrix cone programming (MCP) we consider in this paper takes
the following form

min
{
cT x | Ax ∈ b + Q × K}. (1)

The corresponding Lagrange dual of the MCP can be written as

max
{〈b, y〉 | A∗y = c, y ∈ Q∗ × K∗}, (2)

where Q∗ represents the dual cone of Q. In applications, many examples can be cast
in the form of (1) or (2). Below we list some of them.

Matrix norm approximation. Given matrices B0, B1, . . . , Bp ∈ R
m×n , the matrix

norm approximation problem is to find an affine combination of the matrices which
has the minimal spectral norm, i.e.,

min

{
‖B0 +

p∑
k=1

yk Bk‖2 | y ∈ R
p

}
. (3)

Such problems have been studied in the iterative linear algebra literature, e.g.,
[15,48,49], where the affine combination is a degree-p polynomial function of a
given matrix.

It is easy to show that the problem (3) can be cast as a semidefinite programming
(SDP) problem whose matrix variable has order (m + n) × (m + n) [53]. However,
such an expansion in the order of the matrix variable implies that it can be very costly,
if possible at all, to solve (3) as an SDP problem when m or n is large. Thus it is highly
desirable for us to design algorithms that can solve (3) in the original matrix space
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R
m×n , in particular for the case when m � n (assume m ≤ n). We believe that the

contributions made in this paper would constitute a key step towards achieving that
goal. More specifically, we strongly advocate approaches based on simply writing the
problem (3) in the form of (1):

min

{
t | t ≥ ‖B0 +

p∑
k=1

yk Bk‖2

}
.

We note that if for some reasons, a sparse affine combination is desired, one can
add a penalty term λ‖y‖1 with some λ > 0 to the objective function in (3) meanwhile
to use ‖ · ‖2

2 to replace ‖ · ‖2 to get

min

{
‖B0 +

p∑
k=1

yk Bk‖2
2 + λ‖y‖1 | y ∈ R

p

}
. (4)

Correspondingly, we can reformulate (4) in terms of the following two MCP forms:

min s + λη

s.t. (s + 1)/2 ≥ √((s − 1)/2)2 + t2,

t ≥ ‖B0 +
p∑

k=1

yk Bk‖2,

η ≥ ‖y‖1

and

min t + λη

s.t. (t + 1)/2 ≥ ‖[(t − 1)/2Im B0 +
p∑

k=1

yk Bk]‖2,

η ≥ ‖y‖1,

where Im is the identity matrix of order m by m.

Matrix completion. Given a matrix M ∈ R
m×n with entries in the index setΩ given,

the matrix completion problem seeks to find a low-rank matrix X such that Xi j ≈ Mi j

for all (i, j) ∈ Ω . The problem of efficient recovery of a given low-rank matrix has
been intensively studied recently. In [2,3,16,23,36,37], etc, the authors established
the remarkable fact that under suitable incoherence assumptions, an m × n matrix
of rank r can be recovered with high probability from a random uniform sample of
O((m+n)rpolylog(m, n)) entries by solving the following nuclear norm minimization
problem:

min
{‖X‖∗ | Xi j = Mi j ∀ (i, j) ∈ Ω}.

The theoretical breakthrough achieved by Candès et al. has led to the rapid expan-
sion of the nuclear norm minimization approach to model application problems for
which the theoretical assumptions may not hold, for example, for problems with noisy
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data or that the observed samples may not be completely random. Nevertheless, for
those application problems, the following model may be considered to accommodate
problems with noisy data:

min
{‖PΩ(X)− PΩ(M)‖2

F + λ‖X‖∗ | X ∈ R
m×n}, (5)

where PΩ(X) denotes the vector obtained by extracting the elements of X correspond-
ing to the index set Ω in lexicographical order, and λ is a positive parameter. In the
above model, the error term is measured in Frobenius norm. One can of course uses the
l1-norm or the spectral norm if those norms are more appropriate for the applications
under consideration. As for the case of the matrix norm approximation, one can easily
write (5) in the form of MCP.

Robust matrix completion/Robust PCA. Suppose that M ∈ R
m×n is a partially

given matrix for which the entries in the index set Ω are observed, but an unknown
sparse subset of the observed entries may be grossly corrupted. The problem here
seeks to find a low-rank matrix X and a sparse matrix Y such that Mi j ≈ Xi j +Yi j for
all (i, j) ∈ Ω , where the sparse matrix Y attempts to identify the grossly corrupted
entries in M , and X attempts to complete the “cleaned” copy of M . This problem has
been considered in [4], and it is motivated by earlier results established in [5,55]. In
[4] the following convex optimization problem is solved to recover M :

min
{‖X‖∗ + λ‖Y‖1 | PΩ(X)+ PΩ(Y ) = PΩ(M)

}
, (6)

where λ is a positive parameter. In robust subspace segmentation [28], a problem
similar to (6) is considered, but the linear constraints are replaced by M = M X + Y ,
and ‖Y‖1 is replaced by

∑n
j=1 ‖y j‖2, where y j denotes the j-th column of Y .

In the event that the “cleaned” copy of M itself in (6) is also contaminated with
random noise, the following problem could be considered to recover M :

min
{‖PΩ(X)+ PΩ(Y )− PΩ(M)‖2

F + ρ (‖X‖∗ + λ‖Y‖1) | X,Y ∈ R
m×n}, (7)

where ρ is a positive parameter. Again, the Frobenius norm that is used in the first
term can be replaced by other norms such as the l1-norm or the spectral norm if they
are more appropriate. In any case, both (6) and (7) can be written in the form of MCP.

Structured low rank matrix approximation. In many applications, one is often faced
with the problem of finding a low-rank matrix X ∈ R

m×n which approximates a given
target matrix M but at the same time it is required to have certain structures (such
as being a Hankel matrix) so as to conform to the physical design of the application
problem [9]. Suppose that the required structure is encoded in the constraints A(X) ∈
b +Q. Then a simple generic formulation of such an approximation problem can take
the following form:

min
{‖X − M‖F | A(X) ∈ b + Q, rank(X) ≤ r

}
. (8)

Obviously it is generally NP hard to find the global optimal solution for the above prob-
lem. However, given a good starting point, it is quite possible that a local optimization
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method such as variants of the alternating minimization method may be able to find
a local minimizer that is close to being globally optimal. One possible strategy to
generate a good starting point for a local optimization method to solve (8) would be
to solve the following penalized version of (8):

min

⎧
⎨
⎩‖X − M‖F + ρ

min{m,n}∑
k=r+1

σk(X) | A(X) ∈ b + Q
⎫
⎬
⎭ , (9)

where σk(X) is the k-th largest singular value of X and ρ > 0 is a penalty parameter.
The above problem is not convex but we can attempt to solve it via a sequence of
convex relaxation problems as proposed in [14] as follows. Starting with X0 = 0 or
any feasible matrix X0 such that A(X0) ∈ b + Q. At the k-th iteration, solve

min
{
λ‖X − Xk‖2

F + ‖X − M‖F + ρ(‖X‖∗ − 〈Hk, X〉) | A(X) ∈ b + Q } (10)

to get Xk+1, where λ is a positive parameter and Hk is a sub-gradient of the convex
function

∑r
k=1 σk(·) at the point Xk . Once again, one may easily write (10) in the

form of MCP.
From the examples given in this section, it becomes quite obvious that there is a great

demand for efficient and robust algorithms for solving matrix optimization problem
of the form (1) or (2), especially for problems that are large scale. The question
that one must answer first is if it is possible to design such algorithms at all. One
obvious, maybe the biggest, discouraging fact is that for large scale MCP problems,
polynomial time interior point methods (IPMs) are powerless due to the fact that the
computational cost of each iteration of an IPM becomes prohibitively expensive. This
is particularly discouraging given the fact that SDP would not have become so widely
investigated and applied in optimization without the invention of polynomial time
IPMs. So the answer to the above question appears to be negative. However, during
the last few years, we have seen lots of interests in using augmented Lagrangian
methods to solve large scale SDP problems. For examples, see [30,34,54,57,58].
Depending on how the inner subproblems are solved, these methods can be classified
into two categories: first order alternating direction based methods [30,34,54] and
second order semismooth Newton based methods [57,58]. The efficiency of all these
methods depends on the fact that the metric projector over the cone of symmetric and
positive semi-definite matrices (in short, SDP cone) admits a closed form solution
[20,41,51]. Furthermore, the semismooth Newton based method [57,58] also exploits
a crucial property – the strong semismoothness of this metric projector established
in [45]. Keeping the progress for solving SDP in mind, we are tempted to apply
the augmented Lagrangian methods to solve MCP (1) and (2). Actually, when K is
vacuous, this has been done in the thesis [57] as the metric projector over the symmetric
cone has the same desirable properties as the metric projector over the SDP cone [47].
In this paper we shall take an initial step to study the metric projector over epi f ,
denoted byΠepi f , with f = ‖·‖∞, ‖ ·‖1, ‖ ·‖2, and ‖ ·‖∗, respectively. In particular,
we shall show that
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– for any (t, X) ∈ R × R
m×n, Πepi f (t, X) admits a simple closed form solution;

– Πepi f (·, ·) is calmly B(ouligand)-differentiable at (t, X) ∈ R × R
m×n and the

directional derivative ofΠepi f (·, ·) at (t, X) along any direction in R × R
m×n has

an explicit formula; and
– Πepi f (·, ·) is strongly semismooth at any point in R × R

m×n .

The above result, together with the fact that the metric projector over the SOC has
already been shown to have the above three properties [8], implies that the metric
projector over K also has the above properties. Thus, these properties, together with
the analogous properties of the metric projector over Q, make it possible to apply the
aforementioned augmented Lagrangian methods to solve MCP (1) and (2).

The remaining parts of this paper are organized as follows. In Sect. 2, we give some
preliminary results, in particular on matrix functions. Section 3 is devoted to studying
the projectors over the epigraphs of the l1 and l∞ norms. This also serves as a basis for
conducting our study on the projectors over the epigraphs of the spectral and nuclear
norms in Sect. 4. We make our conclusions in the final section.

Below are some common notations to be used:

– For any Z ∈ R
m×n , we denote by Zi j the (i, j)-th entry of Z .

– For any Z ∈ R
m×n , we use z j to represent the j th column of Z , j = 1, . . . , n. Let

J ⊆ {1, . . . , n} be an index set. We use ZJ to denote the sub-matrix of Z obtained
by removing all the columns of Z not in J . So for each j , we have Z j = z j .

– Let I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} be two index sets. For any Z ∈ R
m×n ,

we use ZIJ to denote the |I| × |J | sub-matrix of Z obtained by removing all the
rows of Z not in I and all the columns of Z not in J .

– We use “◦” to denote the Hardamard product between matrices, i.e., for any
two matrices X and Y in R

m×n the (i, j)-th entry of Z := X ◦ Y ∈ R
m×n is

Zi j = Xi j Yi j .

2 Preliminaries

Let Z be a finite dimensional real Euclidean space equipped with an inner product
〈·, ·〉 and its induced norm ‖ · ‖. Let C be a nonempty closed convex set in Z . For
any z ∈ Z , let ΠC (z) denote the metric projection of z onto C , which is the unique
optimal solution to following convex optimization problem:

min

{
1

2
‖y − z‖2 | y ∈ C

}
.

It is well known [56] that ΠC (·) is globally Lipschitz continuous with modulus 1.
When C is a closed convex cone, by Moreau’s cone decomposition proposition [31],
we know that any z ∈ Z can be uniquely decomposed into

z = ΠC∗(z)−ΠC (−z). (11)

Let O be an open set in Z and Z ′ be another finite dimensional real Euclidean
space. Suppose that Φ : O ⊆ Z → Z ′ is a locally Lipschitz continuous function on
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the open set O. Then, according to Rademacher’s theorem, Φ is almost everywhere
differentiable (in the sense of Fréchet) in O. Let DΦ be the set of points in O whereΦ is
differentiable. LetΦ ′(x) be the derivative ofΦ at x ∈ DΦ . Then the B-subdifferential
of Φ at x ∈ O is denoted by [35]:

∂BΦ(x) :=
{

lim
DΦ�xk→x

Φ ′(xk)

}

and Clarke’s generalized Jacobian of Φ at x ∈ O [10] takes the form:

∂Φ(x) = conv
{
∂BΦ(x)

}
,

where “conv” stands for the convex hull in the usual sense of convex analysis [38].

Definition 1 LetΦ : O ⊆ Z → Z ′ be a locally Lipschitz continuous function on the
open set O. The function Φ is said to be G-semismooth at a point x ∈ O if for any
y → x and V ∈ ∂Φ(y),

Φ(y)−Φ(x)− V (y − x) = o(||y − x ||).

The function Φ is said to be strongly G-semismooth at x if for any y → x and
V ∈ ∂Φ(y),

Φ(y)−Φ(x)− V (y − x) = O(||y − x ||2).

Furthermore, the function Φ is said to be (strongly) semismooth at x ∈ O if (i) the
directional derivative ofΦ at x along any direction d ∈ Z , denoted byΦ ′(x; d), exists;
and (ii) Φ is (strongly) G-semismooth.

The following result taken from [45, Theorem 3.7] provides a convenient tool for
proving the strong G-semismoothness of Lipschitz functions.

Lemma 1 Let Φ : O ⊆ Z → Z ′ be a locally Lipschitz continuous function on
the open set O. Then Φ is strongly G-semismooth at x ∈ O if and only if for any
DΦ � y → x,

Φ(y)−Φ(x)−Φ ′(y)(y − x) = O(||y − x ||2).

Next, we collect some useful preliminary results on Löwner’s eigenvalue and sin-
gular value operators for studying the projectors over the epigraphs of the spectral and
nuclear norms.

Let Sn be the space of all real n×n symmetric matrices and On be the set of all n×n
orthogonal metrices. Let X ∈ Sn be given. We use λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X)
to denote the real eigenvalues of X (counting multiplicity) being arranged in non-
increasing order. Denote λ(X) := (λ1(X), λ2(X), . . . , λn(X))T ∈ R

n and Λ(X) :=
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diag(λ(X)), where for any x ∈ R
n, diag(x) denotes the diagonal matrix whose i-th

diagonal entry is xi , i = 1, . . . , n. Let P ∈ On be such that

X = PΛ(X)P
T
. (12)

We denote the set of such matrices P in the eigenvalue decomposition (12) by On(X).
Let μ1 > μ2 > · · · > μr be the distinct eigenvalues of X . Define

ak := {i | λi (X) = μk, 1 ≤ i ≤ n}, k = 1, . . . , r. (13)

For each i ∈ {1, . . . , n}, we define li (X) to be the number of eigenvalues that are
equal to λi (X) but are ranked before i (including i) and si (X) to be the number of
eigenvalues that are equal to λi (X) but are ranked after i (excluding i), respectively,
i.e., we define li (X) and si (X) such that

λ1(X) ≥ · · · ≥ λi−li (X)(X) > λi−li (X)+1(X) = · · · = λi (X) = · · · = λi+si (X)(X)

> λi+si (X)+1(X) ≥ · · · ≥ λn(X). (14)

In later discussions, when the dependence of li and si , i = 1, . . . , n, on X can be seen
clearly from the context, we often drop X from these notations.

Next, we list some useful results about the symmetric matrices which are needed
in subsequent discussions. For any subset A of a finite dimensional Euclidean space
Z , let

dist(z,A) := inf{‖z − y‖ | y ∈ A}, z ∈ Z.

The following result, which was stated in [46], was essentially proved in the derivation
of Lemma 4.12 in [45].

Proposition 1 For any H ∈ Sn, let P ∈ On be an orthogonal matrix such that

PT (Λ(X)+ H)P = diag(λ(Λ(X)+ H)).

Then, for any H → 0, we have

Pakal = O(‖H‖), k, l = 1, . . . , r, k �= l, (15)

Pakak PT
akak

= I|ak | + O(‖H‖2), k = 1, . . . , r, (16)

dist(Pakak , O|ak |) = O(‖H‖2), k = 1, . . . , r. (17)

The following proposition about the directional differentiability of the eigenvalue
function λ(·) is well known. For example, see [25, Theorem 7] or [50, Proposition 1.4].

Proposition 2 Let X ∈ Sn have the eigenvalue decomposition (12). Then, for any
Sn � H → 0, we have

λi (X + H)− λi (X)− λli (P
T
ak

H Pak ) = O(‖H‖2), i ∈ ak, k = 1, . . . , r, (18)
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where for each i ∈ {1, . . . , n}, li is defined in (14). Hence, for any given direction
H ∈ Sn, the eigenvalue function λi (·) is directionally differentiable at X with

λ′
i (X; H) = λli (P

T
ak

H Pak ), i ∈ ak, k = 1, . . . , r .

Suppose that X ∈ Sn has the eigenvalue decomposition (12). Let f : R → R be a
scalar function. The corresponding Löwner’s eigenvalue operator is defined by [29]

F(X) := P diag( f (λ1(X)), f (λ2(X)), . . . , f (λn(X))) P
T

=
n∑

i=1

f (λi (X)) p̄i p̄T
i . (19)

Let D := diag(d), where d ∈ R
n is a given vector. Assume that the scalar func-

tion f (·) is differentiable at each di with the derivatives f ′(di ), i = 1, . . . , n. Let
f [1](D) ∈ Sn be the first divided difference matrix whose (i, j)-th entry is given by

( f [1](D))i j =
⎧⎨
⎩

f (di )− f (d j )

di − d j
if di �= d j ,

f ′(di ) if di = d j ,
i, j = 1, . . . , n.

The following result on the differentiability of Löwner’s eigenvalue operator F defined
in (19) is well known and can be largely derived from [11] or [24]. Under the assump-
tion that f is continuous differentiable at every eigenvalue of X , the derivative formula,
together with the differentiability of F can be found from Theorem V.3.3 and pp. 150
of [1]. These results are further refined by [6,7,26]. For the related directional differ-
entiability of F , one may refer to [42] for a nice derivation.

Proposition 3 Let X ∈ Sn be given and have the eigenvalue decomposition (12).
Then, the Löwner eigenvalue operator F(·) is (continuously) differentiable at X if and
only for each i ∈ {1, . . . , n}, f (·) is (continuously) differentiable at λi (X). In this
case, the Fréchet derivative of F(·) at X is given by

F ′(X)H = P
[

f [1](Λ(X)) ◦ (PT
H P)

]
P

T ∀ H ∈ Sn . (20)

The following second order differentiability of the Löwner eigenvalue operator F
can be derived as in [1, Exercise V.3.9].

Proposition 4 Let X ∈ Sn have the eigenvalue decomposition (12). If the scalar
function f (·) is twice continuously differentiable at each λi (X), i = 1, . . . , n, then
the Löwner eigenvalue operator F(·) is twice continuously differentiable at X.

From now on, without loss of generality, we assume that m ≤ n. Let X ∈ R
m×n

be given. We use σ1(X) ≥ σ2(X) ≥ . . . ≥ σm(X) to denote the singular values of
X (counting multiplicity) being arranged in non-increasing order. Denote σ(X) :=
(σ1(X), σ2(X), . . . , σm(X))T ∈ R

m andΣ(X) := diag(σ (X)). Let X ∈ R
m×n admit

the following singular value decomposition (SVD):

X = U [Σ(X) 0] V
T = U [Σ(X) 0]

[
V 1 V 2

]T = UΣ(X)V
T
1 , (21)
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where U ∈ Om and V = [V 1 V 2
] ∈ On with V 1 ∈ R

n×m and V 2 ∈ R
n×(n−m). The

set of such matrices (U , V ) in the SVD (21) is denoted by Om,n(X), i.e.,

Om,n(X) := {(U, V ) ∈ Om × On | X = U [Σ(X) 0] V T }.

Define the three index sets a, b and c by

a := {i | σi (X) > 0, 1 ≤ i ≤ m}, b := {i | σi (X) = 0, 1 ≤ i ≤ m} and

c := {m + 1, . . . , n}. (22)

Let μ1 > μ2 > · · · > μr be the nonzero distinct singular values of X . Define

ak := {i | σi (X) = μk, 1 ≤ i ≤ m}, k = 1, . . . , r. (23)

For each i ∈ {1, . . . ,m}, we also define li (X) to be the number of singular values that
are equal to σi (X) but are ranked before i (including i) and si (X) to be the number of
singular values that are equal to σi (X) but are ranked after i (excluding i), respectively,
i.e., we define li (X) and si (X) such that

σ1(X) ≥ · · · ≥ σi−li (X)(X) > σi−li (X)+1(X) = · · · = σi (X) = · · · = σi+si (X)(X)

> σi+si (X)+1(X) ≥ · · · ≥ σm(X). (24)

In later discussions, when the dependence of li and si , i = 1, . . . ,m, on X can be
seen clearly from the context, we often drop X from these notations.

The following property about the SVD can be checked readily, e.g., see the proof
of Theorem 3.7 in Lewis and Sendov [27].

Proposition 5 Let Σ := Σ(X). Then, the two orthogonal matrices P ∈ Om and
W ∈ On satisfy P [Σ 0] = [Σ 0] W if and only if there exist Q ∈ O|a|, Q′ ∈ O|b|
and Q′′ ∈ On−|a| such that

P =
[

Q 0
0 Q′

]
and W =

[
Q 0
0 Q′′

]
,

where Q = diag(Q1, Q2, . . . , Qr ) is a block diagonal orthogonal matrix with the
k-th diagonal block given by Qk ∈ O|ak |, k = 1, . . . , r .

Let B(·) : R
m×n → Sm+n be the linear operator defined by

B(Z) :=
[

0 Z
Z T 0

]
, Z ∈ R

m×n . (25)

It is well-known [21, Theorem 7.3.7] that

B(X) = P

⎡
⎣
Σ(X) 0 0

0 0 0
0 0 −Σ(X)

⎤
⎦ P

T
, (26)
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where the orthogonal matrix P ∈ Om+n is given by

P = 1√
2

[
U a U b 0 U a U b

V a V b
√

2 V 2 −V a −V b

]
. (27)

For notational convenience, we define two more linear operators S : R
p×p → S p and

T : R
p×p → R

p×p by

S(Z) := 1

2
(Z + Z T ) and T (Z) := 1

2
(Z − Z T ) ∀ Z ∈ R

p×p. (28)

Then, by using (26), one can derive the following proposition directly from (18). For
more details, see [27, Section 5.1].

Proposition 6 For any R
m×n � H → 0, let Y := X + H. We have

σi (Y )− σi (X)− σ ′
i (X; H) = O(‖H‖2), i = 1, . . . ,m, (29)

where

σ ′
i (X; H) =

⎧⎪⎨
⎪⎩
λli

(
S(U

T
ak

H V ak )
)

if i ∈ ak, k = 1, . . . , r,

σli

([
U

T
b H V b U

T
b H V 2

])
if i ∈ b,

(30)

where for each i ∈ {1, . . . ,m}, li is defined in (24).

The following proposition on the singular value decomposition of matrices plays
an important role of our subsequent study.

Proposition 7 For any R
m×n � H → 0, let Y := [Σ(X) 0] + H. Let U ∈ Om and

V ∈ On be two orthogonal matrices satisfying [Σ(X) 0] + H = U [Σ(Y ) 0] V T .
Then, there exist Q ∈ O|a|, Q′ ∈ O|b| and Q′′ ∈ On−|a| such that

U =
[

Q 0
0 Q′

]
+ O(‖H‖) and V =

[
Q 0
0 Q′′

]
+ O(‖H‖), (31)

where Q = diag(Q1, Q2, . . . , Qr ) is a block diagonal orthogonal matrix with the
k-th diagonal block given by Qk ∈ O|ak |, k = 1, . . . , r . Furthermore, we have

S(Hakak ) = Qk
(
Σ(Y )akak −Σ(X)akak

)
QT

k + O(‖H‖2), k = 1, . . . , r (32)

and

[Hbb Hbc] = Q′ [Σ(Y )bb −Σ(X)bb 0] Q′′T + O(‖H‖2). (33)

Proof We can derive (31) directly by employing the corresponding results in Propo-
sition 1 on symmetric matrices via (26) and Proposition 5. Furthermore, (32) and (33)
are the immediate consequences of Proposition 6 and (31). ��
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Let g : R+ → R be a scalar function. The corresponding Löwner’s singular value
operator is defined by

G(X) := U [g(Σ(X)) 0] V
T =

m∑
i=1

g(σi (X))ūi v̄
T
i , (34)

where g(Σ(X)) := diag(g(σ1(X)), . . . , g(σm(X))). For subsequent discussions, we
need to extend the values of g to R as follows

g(t) =
{

g(t) if t ≥ 0,
−g(−t) if t < 0.

(35)

It can be checked easily that g(0) = 0 is the sufficient and necessary condition for the
well definedness of G. So we always assume that g(0) = 0.

Next, consider the differentiability of G(·). Let F(·) : Sm+n → Sm+n be Löwner’s
eigenvalue operator with respect to the scalar function g. Define Ψ : R

m×n → Sm+n

by

Ψ (X) := F(B(X)) = P

⎡
⎣

g(Σ(X)) 0 0
0 0 0
0 0 g(−Σ(X))

⎤
⎦ P

T
.

Thus, from (35) and (27), we have

Ψ (X) =
[

0 G(X)
G(X)T 0

]
= B(G(X)). (36)

Therefore, if F(·) is (continuously) differentiable at B(X), G(·) is also (continuously)
differentiable at X with

Ψ ′(X)H = F ′(B(X))B(H) = B(G ′(X)H) ∀ H ∈ R
m×n . (37)

Let μr+1 := 0. Then, for each k ∈ {1, . . . , r}, there exists δk > 0 such that
|μl−μk | > δk ∀ l = 1, . . . , r+1 and l �= k. For each k ∈ {1, . . . , r}, let pk(·) : R → R

be a continuous scalar function such that pk(t) = 1 if t ∈ [μk − δk
3 , μk + δk

3 ] and

pk(t) = 0 if |t − μk | > δk
2 . Then, we know that pk(0) = 0 for k = 1, . . . , r .

Therefore, the corresponding Löwner’s singular value operator Pk(·) with respect to
pk(·) is well-defined, i.e., for any Y ∈ R

m×n ,

Pk(Y ) = U [pk(Σ(Y )) 0] V T , (38)

where pk(Σ(Y )) = diag(pk(σ1(Y )), . . . , pk(σm(Y ))) and U ∈ Om and V ∈ On are
such that Y = U [Σ(Y ) 0] V T . By the definition of (38), we know that there exists
an open neighborhood N of X such that for each k ∈ {1, . . . , r},
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Pk(Y ) =
∑
i∈ak

uiv
T
i ∀ Y ∈ N . (39)

In order to study the metric projections over K and K∗, we need to consider the
differential properties of Pk(·), k = 1, . . . , r . Since each pk(·) is continuously differ-
entiable near 0 and ±σi (X), i = 1, . . . ,m, we know from Proposition 3 that Pk(·) is
also continuously differentiable in N (shrinking N if necessary). Let Y ∈ N have the
following SVD: Y = U [Σ(Y ) 0] V T with (U, V ) ∈ Om,n(Y ). By further shrinking
N if necessary, we may assume that for any k, l ∈ {1, . . . , r}, σi (Y ) > 0, σi (Y ) �=
σ j (Y ) for any i ∈ ak, j ∈ al (k �= l). Define Γk(Y ) and Ξk(Y ) ∈ R

m×m and
Υk(Y ) ∈ R

m×(n−m), k = 1, . . . , r by

(Γk(Y ))i j =
⎧⎨
⎩

1/(σi (Y )− σ j (Y )) if i ∈ ak, j ∈ al , k �= l, l = 1, . . . , r + 1,
−1/(σi (Y )− σ j (Y )) if i ∈ al , j ∈ ak, k �= l, l = 1, . . . , r + 1,
0 otherwise,

(40)

(Ξk(Y ))i j =
⎧
⎨
⎩

1/(σi (Y )+ σ j (Y )) if i ∈ ak, j ∈ al , k �= l, l = 1, . . . , r + 1,
2/(σi (Y )+ σ j (Y )) if i, j ∈ ak,

0 otherwise
(41)

and

(Υk(Y ))i j =
{

1/(σi (Y )) if i ∈ ak,

0 otherwise,
j = 1, . . . , n − m. (42)

Then, we obtain from (20) and (37) that for each k ∈ {1, . . . , r} and any H ∈ R
m×n ,

P ′
k(Y )H = U [Γk(Y ) ◦ S(A)+Ξk(Y ) ◦ T (A)]V T

1 + U (Υk(Y ) ◦ B)V T
2 , (43)

where A := U T H V1 ∈ R
m×m, B := U T H V2 ∈ R

m×(n−m), V = [V1 V2] and
the two linear operators S(·) and T (·) are defined by (28). Furthermore, for each
k ∈ {1, . . . , r}, from the definition of pk(·), we know that pk(·) is actually twice con-
tinuously differentiable near each λi (B(X)), i = 1, . . . ,m + n. Then, by Proposition
4, we know that the corresponding Löwner’s operator Fk(·)with respect to pk is twice
continuously differentiable near B(X). On the other hand, for each k = 1, . . . , r , from
(36), we know that

[
0 Pk(Z)

Pk(Z)T 0

]
= Fk(B(Z)), Z ∈ R

m×n . (44)

Then, we have the following proposition.

Proposition 8 Let Pk(·), k = 1, . . . , r be defined by (38). Then, there exists an open
neighborhood N of X such that for each k ∈ {1, . . . , r}, Pk(·) is twice continuously
differentiable in N .
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Note that by using the analytic result established in [52] for symmetric functions,
one may show that for each k ∈ {1, . . . , r}, Fk(·) is analytic at B(X). Then from (44),
one may derive the conclusion that for each k ∈ {1, . . . , r}, Pk(·) is analytic at X . Since
in this paper we only need the twice continuous differentiability of Pk(·), k = 1, . . . , r
near X , we will not pursue this analytic property here.

3 Projections over the epigraphs of the l∞ and l1 norms

Since the l∞ and l1 norms are entry-wise matrix norms, the epigraphs of the l∞ and l1
matrix norms in R

m×n can be treated as the epigraphs of the l∞ and l1 vector norms
in R

mn , respectively, if we treat a matrix X ∈ R
m×n as a vector in R

mn . So we only
need to study the metric projection operators over the epigraphs of the l∞ and l1 vector
norms in R

mn . Without causing any confusion, we will use R
n , rather than R

mn , in
our subsequent analysis.

In this section we will mainly focus on the metric projector over the epigraph of
the l∞ norm. The related results of the metric projector over the epigraph of the l1
norm can be obtained by using (11) accordingly as the epigraph of the l∞ norm and
the epigraph of the l1 norm are dual to each other under the natural inner product of
R×R

n . The results obtained in this section are not only of their own interest, but also
are crucial for the study of projections over the epigraphs of the spectral and nuclear
matrix norms in the next section.

For any x ∈ R
n , let x↓ be the vector of components of x being arranged in the non-

increasing order x↓
1 ≥ · · · ≥ x↓

n . Let sgn(x) be the sign vector of x , i.e., (sgn)i (x) = 1
if xi ≥ 0 and −1 otherwise. For a permutation π of {1, . . . , n}, we use xπ to denote the
vector in R

n whose i-th component is given by xπ(i), where π(i) is the i-th component
of π, i = 1, . . . , n.

For any positive constant ε > 0, denote the closed polyhedral convex cone Dε
n by

Dε
n := {(t, x) ∈ R × R

n | ε−1t ≥ xi , i = 1, . . . , n}. (45)

Let ΠDε
n
(·) be the metric projector over Dε

n under natural inner product in R × R
n .

That is, for any (t, x) ∈ R × R
n, ΠDε

n
(t, x) is the unique optimal solution to the

following convex optimization problem

min

{
1

2

(
(τ − t)2 + ‖y − x‖2) | ε−1τ ≥ yi , i = 1, . . . , n

}
. (46)

Then we have the following useful result for ΠDε
n
(·, ·).

Proposition 9 Assume that ε > 0 and (t, x) ∈ R × R
n are given. Let π be a permu-

tation of {1, . . . , n} such that xπ = x↓, i.e., x↓
i = xπ(i), i = 1, . . . , n and π−1 the

inverse of π . For convenience, write x↓
0 = +∞ and x↓

n+1 = −∞. Then, there exists
a integer k ∈ {0, 1, . . . , n} such that
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x↓
k+1 ≤

⎛
⎝

k∑
j=1

x↓
j + εt

⎞
⎠ /(k + ε2) < x↓

k . (47)

Let κ̄ be the smallest integer k ∈ {0, 1, . . . , n} such that (47) holds. Define ȳ ∈ R
n

and τ̄ ∈ R by

ȳi :=
{(∑κ̄

j=1 x↓
j + εt

)
/(κ̄ + ε2) if 1 ≤ i ≤ κ̄,

x↓
i otherwise,

i = 1, . . . , n

and τ̄ := ε
(∑κ̄

j=1 x↓
j + εt

)
/(κ̄ + ε2), respectively. Then ΠDε

n
(t, x) = (τ̄ , ȳπ−1).

Proof The existence of an integer k ∈ {0, 1, . . . , n} can be proved in a similar way
to that of Lemma 2 below. The second part of the proposition can be obtained in a
similar but simpler way to that of Part (i) in Proposition 10. We omit the details here.

��
For any positive constant ε > 0, denote the closed polyhedral convex cone Cεn by

Cεn := {(t, x) ∈ R × R
n | ε−1t ≥ ‖x‖∞}. (48)

LetΠCεn (·, ·) be the metric projector over Cεn under the natural inner product in R×R
n .

That is, for any (t, x) ∈ R × R
n, ΠCεn (t, x) is the unique optimal solution to the

following convex optimization problem

min

{
1

2
((τ − t)2 + ‖y − x‖2) | ε−1τ ≥ ‖y‖∞

}
. (49)

In the following discussions, we frequently drop n from Cεn when its size can be found
from the context. Also, we will simply use C to represent C1.

For any vector z ∈ R
n , we use |z| to denote the vector in R

n whose i-th component
is |zi |, i = 1, . . . , n. Let ε > 0 and (t, x) ∈ R × R

n be given. Let π be a permutation
of {1, . . . , n} such that |x |↓ = |x |π , i.e., |x |↓i = |x |π(i), i = 1, . . . , n and π−1 the

inverse of π . Define s0 := 0 and sk :=∑k
i=1 |x |↓i , k = 1, . . . , n. Denote |x |↓0 = +∞

and |x |↓n+1 = −∞. Then, we have the following simple observation.

Lemma 2 There exists an integer k ∈ {0, 1, . . . , n} such that

|x |↓k+1 ≤ (sk + εt)/(k + ε2) < |x |↓k . (50)

Proof Obviously, if |x |↓1 ≤ ε−1t , then (50) holds for k = 0 as |x |↓0 = +∞. For

|x |↓1 > ε−1t , we can easily check that (50) holds for some k ∈ {1, . . . , n} by using

the induction and the fact that |x |↓k+1 > (sk + εt)/(k + ε2) if and only if (sk+1 + εt)/
((k + 1)+ ε2) < |x |↓k+1. ��
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Let k̄ be the smallest integer k ∈ {0, 1, . . . , n} such that (50) in Lemma 2 holds.
Let

θε(t, x) := (sk̄ + εt)/(k̄ + ε2). (51)

Note that if k̄ < n, then θε(t, x) ≥ 0 and if k̄ = n, then θε(t, x) can be a negative
number. It also holds that if θε(t, x) < 0, then k̄ = n. Moreover, if |x |↓1 > ε−1t ,

we know that k̄ ≥ 1 and (sk̄ + εt)/(k̄ + ε2) < |x |↓
k̄

≤ · · · ≤ |x |↓1 , which implies

(sk̄ + εt)/(k̄ + ε2) < sk̄/k̄, i.e.,

k̄t < εsk̄ . (52)

Define three index sets α, β and γ in {1, . . . , n} by

α := {i | |xi | > θε(t, x)}, β := {i | |xi | = θε(t, x)} and

γ := {i | |xi | < θε(t, x)}. (53)

Define x̄ ∈ R
n and t̄ ∈ R+, respectively by

x̄i :=
{

sgn(xi )max{θε(t, x), 0} if i ∈ α,
xi otherwise,

i = 1, . . . , n

and t̄ := εmax{θε(t, x), 0}. Then it is easy to see that (t̄, x̄) ∈ Cε.
Proposition 10 Assume that ε > 0 and (t, x) ∈ R × R

n are given.

(i) The metric projection ΠCε (t, x) of (t, x) onto Cε can be computed as follows

ΠCε (t, x) = (t̄, x̄). (54)

(ii) The continuous mappingΠCε (·, ·) is piecewise linear and for any (η, h) ∈ R×R
n

sufficiently close to (0, 0),

ΠCε (t + η, x + h)−ΠCε (t, x) = ΠĈε (η, h), (55)

where Ĉε := TCε (t̄, x̄) ∩ ((t, x) − (t̄, x̄))⊥ is the critical cone of Cε at (t, x)

and TCε (t̄, x̄) is the tangent cone of Cε at (t̄, x̄). Denote δ :=
√
ε2 + k̄ and

h′ := sgn(x) ◦ h. Let

η′ :=
{
δ−1(εη +∑i∈αh′

i ) if t ≥ −ε−1‖x‖1,

0 otherwise.

The directional derivative of ΠCε (·, ·) at (t, x) along the direction (η, h) ∈
R × R

n is given by

Π ′
Cε ((t, x); (η, h)) = ΠĈε (η, h) = (η̄, h̄), (56)
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where (η̄, h̄) ∈ R × R
n satisfies

h̄i = sgn(xi )ε
−1η̄, i ∈ α and h̄i = hi , i ∈ γ (57)

and

(
δε−1η̄, (sgn(x) ◦ h̄)β

) =
{
ΠDδ|β|

(η′, h′
β) if t > −ε−1‖x‖1,

ΠCδ|β|
(η′, h′

β) otherwise.
(58)

Here for the case that β = ∅, we use the convention that Dδ|β| := R and Cδ|β| :=
R+.

(iii) The mapping ΠCε (·, ·) is differentiable at (t, x) if and only if t > ε||x ||∞, or
ε‖x‖∞ > t > −ε−1‖x‖1 and |x |↓

k̄+1
< (sk + εt)/(k̄ + ε2), or t < −ε−1‖x‖1.

Proof (i) It is easy to see that problem (49) can be written equivalently as

min

{
1

2

(
(τ − t)2 + ‖ y − |x | ‖2) | ε−1τ ≥ ‖y‖∞

}
(59)

in the sense that (t∗, y∗) ∈ R×R
n solves problem (59) (note that y∗ ≥ 0 in this case)

if and only if (t∗, sgn(x) ◦ y∗) solves problem (49). By using Theorems 368 & 369 in
Hardy, Littlewood and Pólya [19], we can equivalently reformulate problem (59) as

min

{
1

2

(
(τ − t)2 + ‖y − |x |↓‖2) | ε−1τ ≥ ||y||∞

}
(60)

in the sense that (t∗, y∗) ∈ R×R
n solves problem (60) if and only if (t∗, y∗

π−1) solves
problem (59). The Karush-Kuhn-Tucker (KKT) conditions for (60) take the form of

⎧⎨
⎩

0 = τ − t − ε−1μ,

0 ∈ y − |x |↓ + μ∂||y||∞,
0 ≤ (ε−1τ − ‖y‖∞) ⊥ μ ≥ 0,

(61)

where μ ∈ R+ is the corresponding Lagrange multiplier, and the subgradient ∂||y||∞
is given by (see, e.g., [38, pp. 215])

∂‖y‖∞ =
{

conv{±e1, . . . ,±en} if y = 0,
conv{sgn(yi )ei | i ∈ I (y)} if y �= 0,

where for i ∈ {1, . . . , n}, ei is the i-th unit vector in R
n and I (y) = {i | |yi | =

‖y‖∞, i = 1, . . . , n}.
Consider the case that ε||x ||∞ > t > −ε−1‖x‖1. In this case, k̄ ≥ 1. Define ȳ ∈ R

n

and τ̄ ∈ R+, respectively, by

ȳi :=
{
θε(t, x) if 1 ≤ i ≤ k̄,

|x |↓i otherwise,
i = 1, . . . , n and τ̄ := εθε(t, x).
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Let μ̄ := ε(τ̄ − t) = ε
(
ε
∑k̄

j=1 |x |↓j − k̄t
)
/(k̄ + ε2). Since

k̄∑
j=1

(|x |↓j − ȳ j ) =
k̄∑

j=1

|x |↓j − k̄

⎛
⎝

k̄∑
j=1

|x |↓j + εt

⎞
⎠ /(k̄ + ε2)

= ε

⎛
⎝ε

k̄∑
j=1

|x |↓j − k̄t

⎞
⎠ /(k̄ + ε2) = μ̄,

we know from (52) that

μ̄ > 0 and
k̄∑

j=1

(|x |↓j − ȳ j ) = μ̄. (62)

Define (t∗, y∗, μ∗) ∈ R × R
n × R by

(t∗, y∗, μ∗) :=
⎧
⎨
⎩
(t, |x |↓, 0) if t ≥ ε‖x‖∞,
(τ̄ , ȳ, μ̄) if ε‖x‖∞ > t > −ε−1‖x‖1,

(0, 0,−εt) if t ≤ −ε−1‖x‖1.

Then, by using the facts that |x |↓ ≥ ȳ ≥ 0 and (62) holds when ε||x ||∞ > t >
−ε−1‖x‖1, we can readily check that (t∗, y∗, μ∗) ∈ R × R

n × R satisfies the KKT
conditions (61). Consequently, (t∗, y∗) is the unique optimal solution to problem (60).
Note that α = {π−1(i) | i = 1, . . . , k̄}. Thus, we obtain that (t∗, sgn(x) ◦ y∗

π−1) =
(t̄, x̄).

(ii) By noting that Cε = {(t, x) ∈ R×R
n | ε−1t ≥ ‖x‖∞} = {(t, x) ∈ R×R

n | t ≥
εxi , t ≥ −εxi , i = 1, . . . , n} is a polyhedral set, we immediately know that ΠCε (·)
is a piecewise linear function. For a short proof, see [40, Chapter 2] or [44, Chapter
5]. Since Cε is a polyhedral set, from the results in [18,33] we know that

Π ′
Cε ((t, x); (η, h)) = ΠĈε (η, h).

Let f (z) := ‖z‖∞, z ∈ R
n . Then, by using Theorem 2.4.9 in [10], we know that

TCε (ε f (z), z) = {(ζ, d) ∈ R × R
n | ζ ≥ ε f ′(z; d)}. (63)

Then, for any d ∈ R
n ,

f ′(z; d) =
{

max{sgn(zi )di , i ∈ I (z)} if z �= 0,
‖d‖∞ if z = 0.

(64)

We next consider the following five cases:

Case 1: t > ε||x ||∞. In this case, (t̄, x̄) = (t, x) and Ĉε = TCε (t̄, x̄) = R×R
n . Thus,

Π ′
Cε ((t, x); (η, h)) = ΠĈε (η, h) = (η, h). On the other hand, in this case, we know
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that k̄ = 0 and α = ∅, β = ∅ and γ = {1, . . . , n}. Therefore, δ = ε and η′ = η.
Since Dδ|β| = R if β = ∅, we know that (η̄, h̄) = (η, h). This means that (56) holds.

Case 2: t = ε||x ||∞. In this case, (t̄, x̄) = (t, x) and Ĉε = TCε (t̄, x̄). From (63) and
(64) we have

Ĉε = TCε (t̄, x̄) =
{ {(ζ, d) ∈ R × R

n | ε−1ζ ≥ sgn(xi )di , i ∈ I (x)} if x �= 0,
Cε if x = 0.

In this case, k̄ = 0 and θε(t, x) = ‖x‖∞. We know thatα = ∅, β = I (x) and
γ = {1, . . . , n}\ I (x). Therefore, since δ = ε and η′ = η, it can be checked easily
that (η̄, h̄) satisfies the conditions (57) and (58).

Case 3: ε||x ||∞ > t > −ε−1||x ||1. In this case, (t̄, x̄) = (τ̄ , sgn(x) ◦ ȳπ−1) �= (0, 0)
and sgn(x̄) = sgn(x). Then, from (50) and (54), we know that Ī 0 := {π−1(i) | i =
1, . . . , k̄ } ⊆ I (x̄) and

((t, x)− (t̄, x̄))⊥

= {(ζ, d) ∈ R × R
n | (t − t̄)ζ +

∑

i∈ Ī 0

(xi − x̄i )di = 0}

= {(ζ, d) ∈ R×R
n |

k̄∑
j=1

(ȳ j − |x |↓j )(ε−1ζ )+
∑

i∈ Ī 0

(|xi |−|x̄i |)sgn(xi )di =0}

= {(ζ, d) ∈ R × R
n |
∑

i∈ Ī 0

(|xi | − |x̄i |)(−ε−1ζ + sgn(xi )di ) = 0},

which, together with (63), (64), and the facts that t̄ = ε||x̄ ||∞ and |xi | > |x̄i | for each
i ∈ Ī 0, implies that

Ĉε = {(ζ, d) ∈ R × R
n | ε−1ζ = sgn(xi )di ∀ i ∈ Ī 0 and ε−1ζ

≥ sgn(xi )di ∀ i ∈ I (x̄)\ Ī 0}.

In this case, we know thatβ = I (x)\ Ī 0. Then, after simple transformations,ΠĈε (η, h)
can be computed as in Proposition 9, from which we know that (η̄, h̄) satisfies (57)
and (58).

Case 4: t = −ε−1||x ||1 and (t, x) �= (0, 0). In this case, (t̄, x̄) = 0 and Ĉε =
TCε (t̄, x̄) ∩ (t, x)⊥ = Cε ∩ (t, x)⊥. Let supp(x) := {i | xi �= 0, i = 1, . . . , n}. Then,
since (t, x)⊥ = {(ζ, d) ∈ R × R

n | ε−1ζ‖x‖1 = 〈x, d〉 }, we have

Ĉε=Cε ∩ (t, x)⊥ ={(ζ, d) ∈ R × R
n | sgn(xi )di =ε−1ζ ≥ ||d||∞, i ∈supp(x)}.

In this case, we know that k̄ = |supp(x)| and θε(t, x) = 0. Therefore, α =
supp(x), β = {1, . . . , n}\supp(x) and γ = ∅. Since for (ζ, d) ∈ Ĉε, we have
di = ε−1ζ for any i ∈ α, after simple transformations, we know that ΠĈε (η, h)
can be easily computed as in Part (i) of this proposition and (η̄, h̄) also satisfies (57)
and (58).
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Case 5: t < −ε−1||x ||1. In this case, (t̄, x̄) = 0 and Ĉε = TCε (t̄, x̄) ∩ (t, x)⊥ =
{(0, 0)}. Hence, Π ′

Cε ((t, x); (η, h)) = (0, 0). In this case, we know that α =
{1, . . . , n}, β = ∅ and γ = ∅. Also, since η′ = 0 and Cδ|β| = R+, we know that

η̄ = 0 and h̄ = 0, which means that (56) holds.
(iii) This part follows from the proof of Part (ii) and the fact thatΠCε (·, ·) is Lipschitz

continuous. ��

4 Projections over the epigraphs of the spectral and nuclear norms

For any given positive number ε > 0, define the matrix cone Kε
m,n by

Kε
m,n := {(t, X) ∈ R × R

m×n | ε−1t ≥ ‖X‖2}. (65)

For the case that ε = 1, we will simply use Km,n to represent K1
m,n . That is, Km,n is

the epigraph of the spectral norm ‖·‖2 on R
m×n . It is easy to show from the definitions

that the dual cone of Km,n is the epigraph of the nuclear norm ‖ · ‖∗ and Km,n is a
proper hyperbolic cone (see e.g., [17, Definition 2.2]). For simplicity, we omit the
proof. Therefore, we will mainly focus on the metric projector over Km,n . The related
properties of the metric projector over the epigraph of the nuclear norm can be readily
derived by using (11).

Proposition 11 The dual cone of the Km,n is

K∗
m,n = {(t, X) ∈ R × R

m×n | t ≥ ‖X‖∗}.

Moreover, Km,n is a proper hyperbolic cone.

Let ΠKε
m,n
(·, ·) be the metric projector over Kε

m,n under the natural inner product
in R × R

m×n . That is, for any (t, X) ∈ R × R
m×n, ΠKε

m,n
(t, X) is the unique optimal

solution to the following optimization problem

min

{
1

2

(
(τ − t)2 + ‖Y − X‖2

F

) | ε−1τ ≥ ‖Y‖2

}
. (66)

The following results can be proved easily by employing von Neumann’s trace inequal-
ity

〈Y, Z〉 ≤ σ(Y )T σ(Z)

for any two matrices Y and Z in R
m×n [32]. For brevity, omit the details here.

Theorem 1 Assume that (t, X) ∈ R × R
m×n is given and X has the singular value

decomposition (21). Let Cεm be the closed convex cone defined in (48). Let (t̄, ȳ) ∈
R × R

n be given by

(t̄, ȳ) = ΠCεm (t, σ (X)),
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whereΠCεm (t, σ (X)) can be computed explicitly as in Part (i) of Proposition 10. Then,
we have

ΠKε
m,n
(t, X) = (t̄,U

[
diag(ȳ) 0

]
V

T
). (67)

For any positive constant ε > 0, another matrix cone which is related to Kε
m,n is

the epigraph Mε
n ⊆ R × Sn of the convex function ελ1(·), i.e.,

Mε
n := {(t, X) ∈ R × Sn | ε−1t ≥ λ1(X)}. (68)

Let ΠMε
n
(·, ·) be the metric projector over Mε

n under the natural inner product in
R × Sn . That is, for any (t, X) ∈ R × Sn, ΠMε

n
(t, X) is the unique optimal solution

to the following optimization problem

min

{
1

2
((τ − t)2 + ‖Y − X‖2

F ) | ε−1τ ≥ λ1(Y )

}
. (69)

Similarly, the following results can be proved easily by using Fan’s inequality

〈Y, Z〉 ≤ λ(Y )T λ(Z)

for any two symmetric matrices Y and Z in Sn [12]. Also, for brevity, we omit the
details.

Proposition 12 Assume that (t, X) ∈ R × Sn is given and X has the eigenvalue
decomposition (12). Let Dε

n be the closed convex cone defined in (45). Let (t̄, ȳ) ∈
R × R

n be given by

(t̄, ȳ) = ΠDε
n
(t, λ(X)),

where ΠDε
n
(t, λ(X)) can be computed explicitly as in Proposition 9. Then,

ΠMε
n
(t, X) = (t̄, Pdiag(ȳ)P

T
). (70)

Next, we will consider the (directional) differentiability of the metric projector over
Km,n , i.e., ΠKm,n (·, ·). In the following discussions, we will drop m and n from Km,n

when its dependence on m and n can be seen clearly from the context.
Let (t, X) ∈ R × R

m×n be given and X have the singular value decomposition

(21), i.e., X = U [Σ(X) 0] V
T

, where U ∈ Om and V ∈ On . As mentioned before,
we use μ1 > μ2 > · · · > μr to denote all the nonzero distinct singular values of X
and denote μ̄r+1 = 0. For the sake of convenience, we also let σ0(X) = +∞ and
σm+1(X) = −∞. Let s0 = 0 and sk = ∑k

i=1 σi (X), k = 1, . . . ,m. Let k̄ be the
smallest integer k ∈ {0, 1, . . . ,m} such that

σk+1(X) ≤ (sk + t)/(k + 1) < σk(X). (71)
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Denote θ(t, σ (X)) ∈ R by

θ(t, σ (X)) := (sk̄ + t)/(k̄ + 1). (72)

Let α, β and γ be the three index sets in {1, . . . ,m} defined by

α := {i | σi (X) > θ(t, σ (X))}, β := {i | σi (X) = θ(t, σ (X))} and

γ := {i | σi (X) < θ(t, σ (X))}. (73)

Let δ :=
√

1 + k̄. Let S(·) and T (·) be defined by (28). Define ρ : R × R
m×n → R

as follows

ρ(η, H) :=
{
δ−1(η + Tr(S(U

T
α H V α))) if t ≥ −‖X‖∗,

0 otherwise,
(η, H) ∈ R × R

m×n .

(74)

Let (τ,Y ) ∈ R × R
m×n be given. Suppose that U ∈ Om and V ∈ On are such that

Y = U [Σ(Y ) 0] V T . For each k ∈ {1, . . . , r}, let Pk(Y ) be defined by (38). Define
g0(τ, σ (Y )) ∈ R and g(τ, σ (Y )) ∈ R

m by

(
g0(τ, σ (Y )), g(τ, σ (Y ))

) := ΠCm (τ, σ (Y )). (75)

Let

G(τ,Y ) := U [diag(g(τ, σ (Y ))) 0]V T . (76)

Then, from Theorem 1, we have

(g0(τ, σ (Y )),G(τ,Y )) = ΠK(τ,Y ). (77)

Note that from Proposition 10, we know for each k ∈ {1, . . . , r}, gi (t, σ (X)) =
g j (t, σ (X)) for any i, j ∈ ak , where the index sets ak, k = 1, . . . , r are defined by
(23) with respect to the matrix X ∈ R

m×n . Therefore, we may define

νk := gi (t, σ (X)) for an arbitrary i ∈ ak, k = 1, . . . , r.

Moreover, define

GS(Y ) :=
r∑

k=1

νkPk(Y ) and G R(τ,Y ) := G(τ,Y )− GS(Y ). (78)

Define Ω1 ∈ R
m×m, Ω2 ∈ R

m×m and Ω3 ∈ R
m×(n−m) (depending on X ) as follows

(Ω1)i j :=
⎧⎨
⎩

gi (t, σ (X))− g j (t, σ (X))

σi (X)− σ j (X)
if σi (X) �= σ j (X),

0 otherwise,
i, j ∈ {1, . . . ,m},

(79)
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(Ω2)i j :=
⎧⎨
⎩

gi (t, σ (X))+ g j (t, σ (X))

σi (X)+ σ j (X)
if σi (X)+ σ j (X) �= 0,

0 otherwise,
i, j ∈ {1, . . . ,m}

(80)

and

(Ω3)i j :=
⎧
⎨
⎩

gi (t, σ (X))

σi (X)
if σi (X) �= 0,

0 if σi (X) = 0,
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n − m}.

(81)

Hence, from Part (i) of Proposition 10, we know that the matrices Ω1, Ω2 and Ω3
have the following forms

Ω1 =
⎡
⎣

0 0 (Ω1)αγ
0 0 Eβγ

(Ω1)γα Eγβ (Ω1)γ γ

⎤
⎦ , Ω2 =

[
(Ω2)aa (Ω2)ab

(Ω2)ba 0

]
and

Ω3 =
[
(Ω3)ac′

0

]
, (82)

where Eβγ ∈ R
|β|×|γ | and Eγβ ∈ R

|γ |×|β| are two matrices whose entries are all ones
and a, b, c are defined in (22) and c′ := {1, . . . , n − m}.
Theorem 2 Assume that (t, X) ∈ R × R

m×n is given. Let X have the singular value
decomposition (21). Then, the metric projector over the matrix cone K, ΠK(·, ·) is
directionally differentiable at (t, X) along any direction. For any (η, H) ∈ R×R

m×n,

let A := U
T

H V 1 and B := U
T

H V 2. Then, for given (η, H) ∈ R × R
m×n, the

directional derivative Π ′
K((t, X); (η, H)) can be computed as follows:

(i) if t > ‖X‖2, then Π ′
K((t, X); (η, H)) = (η, H);

(ii) if ‖X‖2 ≥ t > −‖X‖∗, then Π ′
K((t, X); (η, H)) = (η, H) with

η = δ−1ψδ0 (η, H), (83)

H = U

⎡
⎣
δ−1ψδ0 (η, H)I|α| 0 (Ω1)αγ ◦ S(A)αγ

0 Ψ δ(η, H) S(A)βγ
(Ω1)γα ◦ S(A)γα S(A)γβ S(A)γ γ

⎤
⎦ V

T
1

+U

[
(Ω2)aa ◦ T (A)aa (Ω2)ab ◦ T (A)ab

(Ω2)ba ◦ T (A)ba T (A)bb

]
V

T
1 + U

[
(Ω3)ac′ ◦ Bac′

Bbc′

]
V

T
2 ,

(84)

where
(
ψδ0 (η, H), Ψ δ(η, H)

) ∈ R × S |β| is given by

(
ψδ0 (η, H), Ψ δ(η, H)

) := ΠMδ|β|
(ρ(η, H), S(U

T
β H V β)). (85)
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In particular, if t = ‖X‖2 > 0, we have that k̄ = 0, δ = 1, α = ∅, ρ(η, H) = η

and

η = ψδ0 (η, H), H = U

[
Ψ δ(η, H)+ T (A)ββ Aβγ

Aγβ Aγ γ

]
V

T
1 + U BV

T
2 ;

(iii) if t = −‖X‖∗, then Π ′
K((t, X); (η, H)) = (η, H) with

η = δ−1ψδ0 (η, H), (86)

H = U

[
δ−1ψδ0 (η, H)I|α| 0

0 Ψ δ
1 (η, H)

]
V

T
1 + U

[
0

Ψ δ
2 (η, H)

]
V

T
2 , (87)

where ψδ0 (η, H) ∈ R, Ψ δ
1 (η, H) ∈ R

|β|×|β| and Ψ δ
2 (η, H) ∈ R

|β|×(n−m) are
given by

(
ψδ0 (η, H),

[
Ψ δ1 (η, H) Ψ δ2 (η, H)

] ) :=ΠKδ|β|,(n−|α|)
(
ρ(η, H),

[
U

T
β H Vβ U

T
β H V 2

] ) ;
(88)

(iv) if t < −‖X‖∗, then Π ′
K((t, X); (η, H)) = (0, 0).

Moreover,ΠK(·, ·) is calmly B-differentiable at (t, X), i.e., for any (η, H) ∈ R×R
m×n

with (η, H) → (0, 0), we have

ΠK(t + η, X + H)−ΠK(t, X)−Π ′
K((t, X); (η, H)) = O(‖(η, H)‖2). (89)

Proof By Theorem 1, we only need to consider the case that ||X ||2 ≥ t ≥ −‖X ||∗.
For any (τ,Y ) ∈ R×R

m×n, (g0(τ, σ (Y )), g(τ, σ (Y ))) is defined by (75), G(τ,Y ) is
defined by (76) and GS(Y ) and G R(τ,Y ) are defined by (78). Let (η, H) ∈ R×R

m×n

be given. We write (τ,Y ) := (t + η, X + H) ∈ R × R
m×n . Suppose that U ∈ Om

and V ∈ On are such that

Y = U [Σ(Y ) 0] V T . (90)

Since GS(X) = G(t, X), we have G(τ,Y )−G(t, X) = GS(Y )−GS(X)+G R(τ,Y ).
By Proposition 8, we know that there exists an open neighborhood N of X such that
for each k ∈ {1, . . . , r}, Pk(·) is twice continuously differentiable in N . Then, for
(η, H) sufficiently close to (0, 0), we know from (43) that

GS(Y )− GS(X) =
r∑

k=1

νk(Pk(Y )− Pk(X)) =
r∑

k=1

νkP ′
k(X)H + O(‖H‖2)

= U [Ω1 ◦ S(A)]V T
1 + U [Ω2 ◦ T (A)]V T

1 + U (Ω3 ◦ B)V
T
2 + O(‖H‖2), (91)

where A = U
T

H V 1 ∈ R
m×m, B = U

T
H V 2 ∈ R

m×(n−m) and Ω1,Ω2 ∈ R
m×m

andΩ3 ∈ R
m×(n−m) are given by (79), (80) and (81), respectively. On the other hand,
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by the definition of (38), for H sufficiently close to 0, i.e., for Y sufficiently close
to X , we have Pk(Y ) = ∑

i∈ak
uiv

T
i , k = 1, . . . , r . Therefore, we obtain that for

(τ,Y ) ∈ R × N (shrinking N if necessary),

G R(τ,Y ) =
r∑

k=1

Δk +Δr+1, (92)

where Δk := ∑
i∈ak

[gi (τ, σ (Y )) − νk]uiv
T
i , k = 1, . . . , r and Δr+1 :=∑

i∈b gi (τ, σ (Y ))uiv
T
i .

Firstly, consider the case that X = [Σ(X) 0] and U = Im, V = In . Then, from
(29) and (30), for (η, H) sufficiently close to (0, 0), we know that

σi (Y ) = σi (X)+ σ ′
i (X; H)+ O(‖H‖2), i = 1, . . . ,m (93)

and

σ ′
i (X; H) =

⎧⎪⎨
⎪⎩
λli

(
S(Hakak )

)
if i ∈ ak, k = 1, . . . , r,

σli ([Hbb Hbc]) if i ∈ b.
(94)

Since ΠCm (·, ·) is Lipschitz continuous on R × R
m , we obtain from (55) that

ΠCm (τ, σ (Y ))−ΠCm (t, σ (X)) = ΠĈm
(η, σ ′(X; H))+ O(‖(η, H)‖2), (95)

where Ĉm is the critical cone of Cm at (t, σ (X)). Let h := σ ′(X; H) ∈ R
m . Then,

from (94), we have

hak = λ(S(Hakak )) ∈ R
|ak |, k = 1, . . . , r (96)

and

hb = σ([Hbb Hbc]) ∈ R
|b|. (97)

Since (g0(t, σ (X)), g(t, σ (X))) = ΠCm (t, σ (X)), from (95), we obtain that

g0(τ, σ (Y ))− g0(t, σ (X)) = η̂ + O(‖(η, H)‖2) (98)

and

gi (τ, σ (Y ))− gi (t, σ (X)) = ĥi + O(‖(η, H)‖2), i = 1, . . . ,m, (99)

where

(̂η, ĥ) := ΠĈm
(η, h). (100)
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Hence, since for each i ∈ {1, . . . ,m}, uiv
T
i is uniformly bounded, we obtain that

Δk = ∑
i∈ak

ĥi uiv
T
i + O(‖(η, H)‖2), k = 1, . . . , r and Δr+1 = ∑

i∈b ĥi uiv
T
i +

O(‖(η, H)‖2). Furthermore, by (31), we know that for each k ∈ {1, . . . , r}, there
exists Qk ∈ O|ak | such that

Uak =
⎡
⎣

O(‖H‖)
Qk + O(‖H‖)

O(‖H‖)

⎤
⎦ and Vak =

⎡
⎣

O(‖H‖)
Qk + O(‖H‖)

O(‖H‖)

⎤
⎦ .

Note that λ(·) and σ(·) are both Lipchitz continuous. Since ΠĈm
(·, ·) is Lipschitz

continuous on R × R
m , from (100), we have

‖(̂η, ĥ)‖ = ‖ΠĈm
(η, h)‖ = O(‖(η, H)‖). (101)

Therefore, for each k ∈ {1, . . . , r}, we have

Δk =
⎡
⎣

O(‖(η, H)‖3) O(‖(η, H)‖2) O(‖(η, H)‖3)

O(‖(η, H)‖2) Qkdiag(̂hak )Q
T
k + O(‖(η, H)‖2) O(‖(η, H)‖2)

O(‖(η, H)‖3) O(‖(η, H)‖2) O(‖(η, H)‖3)

⎤
⎦

+O(‖(η, H)‖2)

=
⎡
⎣

0 0 0
0 Qkdiag(̂hak )Q

T
k 0

0 0 0

⎤
⎦+ O(‖(η, H)‖2). (102)

On the other hand, from (32), we know that S(Hakak ) = Qk(Σ(Y )akak −μ̄k I|ak |)QT
k +

O(‖H‖2), k = 1, . . . , r . Therefore, we obtain from (93) and (96) that

S(Hakak ) = Qkdiag(σ ′
i (X; H) : i ∈ ak)Q

T
k + O(‖H‖2)

= Qkdiag(hak )Q
T
k + O(‖H‖2), k = 1, . . . , r. (103)

Meanwhile, by (31), there exist W ∈ O|b| and Z = [Z1 Z2] ∈ On−|a| with Z1 ∈
R
(n−|a|)×|b| and Z2 ∈ R

(n−|a|)×(n−m) such that

Ub =
[

O(‖H‖)
W + O(‖H‖)

]
and [Vb Vc] =

[
O(‖H‖)

Z + O(‖H‖)
]
.

Therefore, from (101), we obtain that

Δr+1 =
[

0 0
0 W diag(̂hb)Z T

1

]
+ O(‖(η, H)‖2). (104)

On the other hand, from (33), we know that

[Hbb Hbc] = W (Σ(Y )bb − μ̄r+1 I|b|)Z T
1 + O(‖H‖2).
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Therefore, since W and Z1 are uniformly bounded, from (93) and (97), we have

[Hbb Hbc] = W diag(σ ′
i (X; H) : i ∈ b)Z T

1 + O(‖H‖2)

= W diag(hb)Z
T
1 + O(‖H‖2). (105)

Hence, by (92), (102) and (104), we obtain that

G R(τ,Y ) =

⎡
⎢⎢⎢⎣

Q1diag(̂ha1)Q
T
1 · · · 0 0

...
. . .

...
...

0 · · · Qr diag(̂har )Q
T
r 0

0 · · · 0 W diag(̂hb)Z T
1

⎤
⎥⎥⎥⎦

+O(‖(η, H)‖2). (106)

Let η′ = (η +∑i∈αhi )/δ if t ≥ −‖X‖∗; η′ = 0 otherwise, where δ =
√

1 + k̄. If
t ≥ −‖X‖∗, then by the definition of k̄ we can conclude that for any i ∈ α, σi (X) > 0
because in this case θ(t, σ (X)) ≥ 0. Thus, by (96), we know that for t ≥ −‖X‖∗, η′ =
δ−1(η + Tr(S(Hαα))) = ρ(η, H), where ρ(η, H) is defined by (74). By noting that
(̂η, ĥ) = ΠĈm

(η, h) and σ(X) ≥ 0, we obtain from Part (ii) of Proposition 10 that

ĥi = η̂ ∀ i ∈ α, ĥi = hi ∀ i ∈ γ (107)

and

(δη̂, ĥβ) =
{
ΠDδ|β|

(η′, hβ) if t > −‖X‖∗,
ΠCδ|β|

(η′, hβ) otherwise.
(108)

Next, we consider the following two cases:

Case 1: ‖X‖2 ≥ t > −‖X‖∗, i.e., ‖σ(X)‖∞ ≥ t > −‖σ(X)‖1. We first conclude
from (72) that for any i ∈ α ∪ β, σi (X) > 0 because θ(t, σ (X)) > 0 in this case. We
will separate this case into two subcases.

Case 1.1: β �= ∅. Then there exists an integer r ∈ {0, 1, . . . , r − 1} such that α =⋃r
k=1 ak, β = ar+1 and γ = ⋃r

k=r+2 ak
⋃

b. From (108), we have (δη̂, ĥβ) =
ΠDδ|β|

(η′, hβ). By Proposition 12 and the fact that η′ = ρ(η, H), we know

(δη̂, Qβdiag(̂hβ)Q
T
β ) = ΠMδ|β|

(ρ(η, H), Qβdiag(hβ)Q
T
β ).

Note thatΠMδ|β|
(·, ·) is Lipschitz continuous on R×S |β|. Then, from (103), we obtain

that

(δη̂, Qβdiag(̂hβ)Q
T
β ) = ΠMδ|β|

(ρ(η, H), S(Hββ))+ O(‖(τ, H)‖2).
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Therefore, by using the definitions of (83) and (85), we have

η̂ = η̄ + O(‖(τ, H)‖2) (109)

and Qβdiag(̂hβ)QT
β = Ψ δ(η, H) + O(‖(τ, H)‖2. This, together with (106), (107),

(103) and (105), implies

G R(τ,Y ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

η̄I|α| 0 0 0 0 0 0
0 Ψ δ(η, H) 0 0 0 0 0
0 0 S(Har+2ar+2) 0 0 0 0
...

...
...

. . .
...

...
...

0 0 0 0 S(Har ar ) 0 0
0 0 0 0 0 Hbb Hbc

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+O(‖(τ, H)‖2). (110)

Therefore, from (82), (91) and (110), we obtain that

G(τ,Y )− G(t, X) = GS(Y )− GS(X)+ G R(τ,Y )

=
⎡
⎣

ηI|α| 0 (Ω1)αγ ◦ S(H)αγ 0
0 Ψ δ(η, H) S(H)βγ 0

(Ω1)γα ◦ S(H)γα S(H)γβ S(H)γ γ 0

⎤
⎦

+
[
(Ω2)aa ◦ T (H)aa (Ω2)ab ◦ T (H)ab 0
(Ω2)ba ◦ T (H)ba T (H)bb 0

]
+
[

0 (Ω3)ac′ ◦ Hac

0 Hbc

]

+O(‖(η, H)‖2). (111)

Case 1.2: β = ∅. Then there exists r ∈ {1, . . . , r − 1} such that α =⋃r
k=1 ak, β = ∅

and γ =⋃r
k=r+1 ak

⋃
b. Since Dδ|β| = R, we know from (108) that η̂ = δ−1η′. Also,

since Mδ|β| = R, we have

η̄ = δ−1ψδ0 (η, H) = δ−1η′ = η̂. (112)

Then, from (106), (107), (103) and (105), we obtain that

G R(τ,Y ) =

⎡
⎢⎢⎢⎢⎢⎣

η̄I|α| 0 0 0 0 0
0 S(Har+1ar+1) 0 0 0 0
...

...
. . .

...
...

...

0 0 0 S(Har ar ) 0 0
0 0 0 0 Hbb Hbc

⎤
⎥⎥⎥⎥⎥⎦

+ O(‖(τ, H)‖2).

This, together with (82) and (91), implies
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G(τ,Y )− G(t, X) = GS(Y )− GS(X)+ G R(τ,Y )

=
[

ηI|α| (Ω1)αγ ◦ S(H)αγ 0
(Ω1)γα ◦ S(H)γα S(H)γ γ 0

]

+
[
(Ω2)aa ◦ T (H)aa (Ω2)ab ◦ T (H)ab 0
(Ω2)ba ◦ T (H)ba T (H)bb 0

]

+
[

0 (Ω3)ac′ ◦ Hac

0 Hbc

]
+ O(‖(η, H)‖2). (113)

Case 2: t = −‖X‖∗, i.e., t = −‖σ(X)‖1. In this case, θ(t, σ (X)) = 0. Therefore,
we have α = a = {i | σi (X) > 0}, β = b = {i | σi (X) = 0} and γ = ∅. Then,
from (108), we have (δη̂, ĥβ) = ΠCδ|β|

(η′, hβ). From Theorem 1 and the fact that

η′ = ρ(η, H), we know that

(δη̂,W diag(̂hβ)Z
T
1 ) = ΠKδ|β|,(n−|α|)

(ρ(η, H),W diag(hβ)Z
T
1 ).

By noting thatΠKδ|β|,(n−|α|)
(·, ·) is Lipschitz continuous on R×R

|β|×(n−|α|), we obtain

from (105) that

(δη̂,W diag(̂hβ)Z
T
1 ) = ΠKδ|β|,(n−|α|)

(ρ(η, H),
[
Hββ Hβc

]
)+ O(‖(τ, H)‖2).

Then, by using the definitions of (86) and (88), we obtain that

η̂ = η̄ + O(‖(τ, H)‖2) (114)

and W diag(̂hβ)Z T
1 = [Ψ δ

1 (η, H) Ψ δ
2 (η, H)

]+ O(‖(τ, H)‖2), which, together with
(106), (107), (103) and (105), implies

G R(τ,Y ) =
[
η̄I|α| 0 0

0 Ψ δ
1 (η, H) Ψ δ

2 (η, H)

]
+ O(‖(τ, H)‖2).

From (54) and the fact that θ(t, σ (X)) = 0, we have gi (t, σ (X)) = θ(t, σ (X)) =
0, i = 1, . . . ,m. Thus, by using (91) and the fact that in this case, Ω1 = 0, Ω2 = 0
and Ω3 = 0 we obtain that

G(τ,Y )− G(t, X) = GS(Y )− GS(X)+ G R(τ,Y )

=
[
ηI|α| 0 0

0 Ψ δ
1 (η, H) 0

]
+
[

0 0
0 Ψ δ

2 (η, H)

]
+ O(‖(η, H)‖2). (115)

Next, consider the general case for X ∈ R
m×n . Rewrite (90) as [Σ(X) 0] +

U
T

H V = U
T

U [Σ(X + H) 0] V T V . Denote Ũ := U
T

U, Ṽ := V
T

V and

H̃ := U
T

H V =
[
U

T
H V 1 U

T
H V 2

]
= [A B]. Let X̃ := [Σ(X) 0] and

Ỹ := [Σ(X) 0] + H̃ = Ũ [Σ(X + H) 0] Ṽ T . Then, we have G(τ,Y )− G(t, X) =
U
[
G(τ, Ỹ )− G(t, X̃)

]
V

T
. SinceΣ(X̃) = Σ(X) and X̃ = [Σ(X) 0], we know from
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(98), (109), (112), (111) and (113) that if ‖X‖2 ≥ t > −‖X‖∗, then for any (η, H) ∈
R × R

m×n with (η, H) → 0, g0(τ, σ (Y ))− g0(t, σ (X)) = η̄ + O(‖(η, H)‖2) and

G(τ,Y )− G(t, X) = U

⎡
⎣

η̄I|α| 0 (Ω1)αγ ◦ S(A)αγ
0 Ψ δ(η, H) S(A)βγ

(Ω1)γα ◦ S(A)γα S(A)γβ S(A)γ γ

⎤
⎦ V

T
1

+U

[
(Ω2)aa ◦ T (A)aa (Ω2)ab ◦ T (A)ab

(Ω2)ba ◦ T (A)ba T (A)bb

]
V

T
1 + U

[
(Ω3)ac′ ◦ Bac′

Bbc′

]
V

T
2

+O(‖(η, H)‖2),

where (ψδ0 (η, H), Ψ δ(η, H)) ∈ R × S |β| is given by (85). Similarly, we know from
(98), (114) and (115) that if t = −‖X‖∗, then for any (η, H) ∈ R × R

m×n with
(η, H) → 0, g0(τ, σ (Y ))− g0(t, σ (X)) = η̄ + O(‖(η, H)‖2) and

G(τ,Y )− G(t, X) = U

[
η̄I|α| 0

0 Ψ δ
1 (η, H)

]
V

T
1 + U

[
0

Ψ δ
2 (η, H)

]
V

T
2

+O(‖(η, H)‖2),

where ψδ0 (η, H) ∈ R, Ψ δ
1 (η, H) ∈ R

|β|×|β| and Ψ δ
2 (η, H) ∈ R

|β|×(n−m) are given
by (88).

Finally, from (77) and the above analysis we have shown that ΠK(·, ·) is direc-
tionally differentiable at (t, X), the directional derivative of ΠK(·, ·) at (t, X) along
any direction (η, H) ∈ R × R

m×n is given by Parts (i)-(iv) in this theorem and for
(η, H) ∈ R × R

m×n with (η, H) → 0, (89) holds. ��
We characterize the differentiability of the metric projectorΠK(·, ·) in the following

theorem. SinceΠK(·, ·) is globally Lipschitz continuous over R×R
m×n , we know that

the Gâteaux differentiability and Fréchet differentiability of ΠK(·, ·) coincide [10].
On the other hand, it is east to show thatΠK(·, ·) is Gâteaux differentiable at (t, X) if
and only if (t, X) satisfies one of the three conditions listed in the following theorem.
Furthermore, the corresponding derivative formula follows directly from Theorem 2.
Because of space limitations, we omit the detail proof here.

Theorem 3 Let ρ : R × R
m×n → R be the linear operator defined by (74). The

metric projector ΠK(·, ·) is differentiable at (t, X) ∈ R × R
m×n if and only if (t, X)

satisfies one of the following three conditions:

(i) t > ‖X‖2;
(ii) ‖X‖2 > t > −‖X‖∗ but σk̄+1(X) < θ(t, σ (X)), where k̄ and θ(t, σ (X)) are

defined by (71) and (72), respectively;
(iii) t < −‖X‖∗.

In this case, for any (η, H) ∈ R × R
m×n, Π ′

K(t, X)(η, H) = (η̄, H), where under
condition (i), (η, H) = (η, H); under condition (ii),

η = δ−1ρ(η, H) (116)
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and

H = U

[
δ−1ρ(η, H)I|α| (Ω1)αγ ◦ S(A)αγ
(Ω1)γα ◦ S(A)γα S(A)γ γ

]
V

T
1

+U

[
(Ω2)aa ◦ T (A)aa (Ω2)ab ◦ T (A)ab

(Ω2)ba ◦ T (A)ba T (A)bb

]
V

T
1 + U

[
(Ω3)ac′ ◦ Bac′

Bbc′

]
V

T
2

(117)

with A := U
T

H V 1, B := U
T

H V
T
2 ; and under condition (iii), (η, H) = (0, 0).

Finally, we study the strong semismoothness of the metric projector ΠK(·, ·).
Theorem 4 The metric projector ΠK(·, ·) is strongly G-semismooth at (t, X) ∈ R ×
R

m×n.

Proof Denote the set of points in R×R
m×n whereΠK(·, ·) is differentiable by DΠK .

By Lemma 1, in order to show that ΠK(·, ·) is strongly G-semismooth at (t, X) ∈
R × R

m×n we only need to show that for any (τ,Y ) ∈ DΠK converging to (t, X),

ΠK(τ,Y )−ΠK(t, X)−Π ′
K(τ,Y )(η, H) = O(‖η, H‖2), (118)

where (η, H) := (τ,Y ) − (t, X) ∈ R × R
m×n . When t > ‖X‖2 or t < −‖X‖∗,

according to Theorem 3,ΠK(·, ·) is locally a linear function near (t, X) and thus (118)
holds. From now on we always assume that (t, X) satisfies ‖X‖2 ≥ t ≥ −‖X‖∗.

Recall that for any (τ,Y ) ∈ R × R
m×n, (g0(τ, σ (Y )), g(τ, σ (Y ))) is defined by

(75), G(τ,Y ) is defined by (76) and GS(Y ) and G R(τ,Y ) are defined by (78). Since
GS(X) = G(t, X), we have

G(τ,Y )− G(t, X) = GS(Y )− GS(X)+ G R(τ,Y ) ∀ (τ,Y ) ∈ R × R
m×n .

Suppose that U ∈ Om and V ∈ On (depending on Y ) are such that Y =
U [Σ(Y ) 0] V T . By Proposition 8, we know that there exists an open neighborhood
N of X in R

m×n such that for each k ∈ {1, . . . , r}, Pk(·) is twice continuously dif-
ferentiable in N . By taking a smaller N if necessary, we assume that for any Y ∈ N
and k, l ∈ {1, . . . , r},

σi (Y ) > 0, σi (Y ) �= σ j (Y ) ∀ i ∈ ak, j ∈ al and k �= l. (119)

Then, from (43), we obtain that for any Y ∈ N ,

GS(Y )− GS(X) =
r∑

k=1

νk(Pk(Y )− Pk(X)) =
r∑

k=1

νkP ′
k(Y )H + O(‖H‖2)

=
r∑

k=1

νk(U [Γk ◦ S(A)]V T
1 + U [Ξk ◦ T (A)]V T

1 + U [Υk ◦ B]V T
2 )+ O(‖H‖2),
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where A := U T H V1 ∈ R
m×m and B := U T H V2 ∈ R

m×(n−m); and for k ∈
{1, . . . , r}, Γk ∈ R

m×m, Ξk ∈ R
m×m and Υk ∈ R

m×(n−m) are given in (40), (41)
and (42), respectively. Since ΠCm (·, ·) is globally Lipschitz continuous on R × R

m ,
we know that for any (τ,Y ) ∈ R × R

m×n converging to (t, X),

gi (τ, σ (Y )) = νk + O(‖(η, H)‖) ∀ i ∈ ak, k = 1, . . . , r.

Therefore, since U ∈ Om and V ∈ On are uniformly bounded, there exists an open
neighborhood N̂ of (t, X) in R × R

m×n such that for any (τ,Y ) ∈ N̂ ,

GS(Y )− GS(X) = U [Γ ′ ◦ S(A)]V T
1 + U [Ξ ′ ◦ T (A)]V T

1 + U [Υ ′ ◦ B]V T
2

+O(‖(η, H)‖2), (120)

where Γ ′ ∈ R
m×m, Ξ ′ ∈ R

m×m and Υ ′ ∈ R
m×(n−m) are given, respectively, by

(Γ ′)i j =
⎧⎨
⎩

gi (τ, σ (Y ))−g j (τ, σ (Y ))

σi (Y )− σ j (Y )
if i ∈ak, j ∈al and l �=k,

0 otherwise,
k, l =1, . . . , r +1,

(Ξ ′)i j =
⎧
⎨
⎩

gi (τ, σ (Y ))+ g j (τ, σ (Y ))

σi (Y )+ σ j (Y )
if i /∈ b or j /∈ b,

0 otherwise

and

(Υ ′)i j =
⎧⎨
⎩

gi (τ, σ (Y ))

σi (Y )
if i ∈ ak, k = 1, . . . , r,

0 if i ∈ b,
j = 1, . . . , n − m.

Let (τ,Y ) ∈ DΠK ∩ N̂ . Note that by replacing (t, X) with (τ,Y ), we can also
use (71) to define an index integer k̄ for (τ,Y ). We denote this index integer by k̄′ to
distinguish the index integer for (t, X). If β �= ∅, then since ‖X‖2 ≥ t ≥ −‖X‖∗,
from (71) and (72) we know that σk̄+1(X) = θ(t, σ (X)) < σk̄(X). Therefore, since
for any k ∈ β, σk(X) = σk̄+1(X), we have σk̄+|β|+1(X) < θ(t, σ (X)) < σk̄(X) for
any k ∈ β. If β = ∅, we have σk̄+|β|+1(X) < θ(t, σ (X)) < σk̄(X). Therefore, in both
cases, by the continuity of the singular value function σ(·), we may assume that the
integer k̄′ lies in {k̄, k̄ +1, . . . , k̄ +|β|}, i.e., there exists an integer j ∈ {0, 1, . . . , |β|}
such that k̄′ = k̄ + j . Define the corresponding index sets in {1, . . . ,m} for (τ,Y )
by α′ := {i | σi (Y ) > θ(τ, σ (Y ))}, β ′ := {i | σi (Y ) = θ(τ, σ (Y ))}, γ ′ := {i |
σi (Y ) < θ(τ, σ (Y ))}, a′ := {i | σi (Y ) > 0} and b′ := {i | σi (Y ) = 0}. Since
(τ,Y ) ∈ DΠK ∩ N̂ , from Theorem 3 we know that β ′ = ∅. Meanwhile, by (119), we
have

α′ ⊇ α, γ ′ ⊇ γ, a′ ⊇ a and b′ ⊆ b. (121)
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Let δ′ :=
√

1 + k̄′ and ρ′ ∈ R be defined by

ρ′ :=
{
δ′−1

(η + Tr(S(U T
α′ H Vα′))) if τ ≥ −‖Y‖∗,

0 otherwise.
(122)

Define Ω ′
1 ∈ R

m×m, Ω ′
2 ∈ R

m×m and Ω ′
3 ∈ R

m×(n−m) by (79), (80) and (81),
respectively with (t, X) being replaced by (τ,Y ). Therefore, from Theorem 3 we
know that

G ′(τ,Y )(η, H) = U

[
δ′−1ρ′ I|α′| (Ω ′

1)α′γ ′ ◦ S(A)α′γ ′
(Ω ′

1)γ ′α′ ◦ S(A)γ ′α′ S(A)γ ′γ ′

]
V T

1

+U

[
(Ω ′

2)a′a′ ◦ T (A)a′a′ (Ω ′
2)a′b′ ◦ T (A)a′b′

(Ω ′
2)b′a′ ◦ T (A)b′a′ T (A)b′b′

]
V T

1 + U

[
(Ω ′

3)a′c′ ◦ Ba′c′
Bb′c′

]
V T

2 ,

(123)

where A := U T H V1, B := U T H V T
2 and c′ = {1, . . . , n − m}. Let R̂(η, H) :=

G ′(τ,Y )(η, H) − (GS(Y ) − GS(X)). From the formula of ΠCm (τ, σ (Y )) in (54),
we know that gi (τ, σ (Y )) = g j (τ, σ (Y )) for all i, j ∈ α′ and gi (τ, σ (Y )) = σi (Y )
for all i ∈ γ ′. Therefore, by (120) and (123), we obtain from (121) that there exist
Rk(η, H) ∈ R

|ak |×|ak |, k = 1, . . . , r and Rr+1(η, H) ∈ R
|b|×(n−|a|) such that

R̂(η, H) = U

⎡
⎢⎢⎢⎣

R1(η, H) · · · 0 0
...

. . .
...

...

0 · · · Rr (η, H) 0
0 · · · 0 Rr+1(η, H)

⎤
⎥⎥⎥⎦ V T + O(‖(η, H)‖2), (124)

where the formulas of Ri (η, H), i = 1, . . . , r + 1 are determined by the following
two cases:

Case 1: ‖X‖2 ≥ t > −‖X‖∗. In this case, we know that θ(t, σ (X)) > 0 and
there exists r̄ ∈ {0, 1, . . . , r} such that α = ⋃r

k=1 ak, β = ar+1 (or ∅) and γ =⋃r
k=r ′ ak

⋃
b, where r ′ = r + 2 if β �= ∅ and r ′ = r + 1 if β = ∅. Since there exists

an integer j ∈ {0, 1, . . . , |β|} such that k̄′ = k̄ + j , we can define two index sets
β1 := {k̄ + 1, . . . , k̄ + j} and β2 := {k̄ + j + 1, . . . , k̄ +|ar̄+1|}. Therefore, by noting
that α′ = α ∪ β1, γ

′ = β2 ∪ γ and β1 = ∅ if β = ∅, we obtain from (120) and (123)
that
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Rk(η, H) = δ′−1ρ′ I|ak |, k = 1, . . . , r̄ ,

Rr̄+1(η, H) =
[
δ′−1ρ′ I|β1| 0

0 0

]
+
[

0 (Ω ′
1)β1β2

(Ω ′
1)β2β1 E

]
◦ S(Aar̄+1ar̄+1),

Rk(η, H) = S(Aakak ), k = r̄ + 2, . . . , r,
Rr+1(η, H) = [Abb Bbc′] ,

(125)

where E is a (|ar̄+1| − j) by (|ar̄+1| − j) matrix whose entries are all ones.
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Case 2: t = −‖X‖∗. In this case, we know that θ(t, σ (X)) = 0. Therefore, we
have α = ⋃r

k=1 ak = a, β = b and γ = ∅. Also, since there exists an integer
j ∈ {0, 1, . . . , |β|} such that k̄′ = k̄ + j , we can define two index sets β1 := {k̄ +
1, . . . , k̄ + j} and β2 := {k̄ + j + 1, . . . , k̄ + |b|}. Therefore, since α′ = α ∪ β1 and
γ ′ = β2 ∪ γ , we obtain from (120) and (123) that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Rk(η, H) = δ′−1ρ′ I|ak |, k = 1, . . . , r,

Rr+1(η, H) =
[

δ′−1ρ′ I|β1| (Ω ′
1)β1β2 ◦ S(A)β1β2 0

(Ω ′
1)β2β1 ◦ S(A)β2β1 S(A)β2β2 0

]

+
[
(Ω ′

2)β1β1 ◦ T (A)β1β1 (Ω
′
2)β1β2 ◦ T (A)β1β2 (Ω

′
3)β1c′ ◦ Bβ1c′

(Ω ′
2)β2β1 ◦ T (A)β2β1 T (A)β2β2 Bβ2c′

]
.

(126)

Consider the singular value decomposition of X , i.e., X = U [Σ(X) 0] V
T

, where

U ∈ Om and V ∈ On . Then, we have [Σ(X) 0] + U
T

H V = U
T

U [Σ(Y ) 0] V T V .
Let H̃ := U

T
H V , Ũ := U

T
U and Ṽ := V

T
V . Then, U T H V = Ũ T U

T
H V Ṽ =

Ũ T H̃ Ṽ . From (31), we know that there exist Qk ∈ O|ak |, k = 1, . . . , r and Q′ ∈
O|b|, Q′′ ∈ On−|a| such that

Aakak = U T
ak

H Vak = Ũ T
ak

H̃ Ṽak = QT
k H̃akak Qk + O(‖H‖2), k = 1, . . . , r

and [Abb Bbc′] = [
Ũ T

b H̃ Ṽb Ũ T
b H̃ Ṽ2

] = Q′T [H̃bb H̃bc
]

Q′′ + O(‖H‖2). Then,
from (32) and (33) in Proposition 7, we obtain that for each k ∈ {1, . . . , r},

S(Aakak ) = QT
k S(H̃akak )Qk + O(‖H‖2) = Σ(Y )akak −Σ(X)akak + O(‖H‖2),

[Abb Bbc′]= Q′T [H̃bb H̃bc
]

Q′′+O(‖H‖2)= [Σ(Y )bb−Σ(X)bb 0]+O(‖H‖2).

Let h := σ ′(Y ; H). Since σ(·) is strongly semismooth [46], we know that

S(Aakak ) = diag(hak )+ O(‖H‖2), k = 1, . . . , r, (127)

[Abb Bbc′] = [diag(hb) 0
]+ O(‖H‖2). (128)

Therefore, by noting that in each case α′ = α ∪ β1 and γ ′ = β2 ∪ γ and that
0 ≤ (Ω ′

1)i, j ≤ 1 for any i ∈ β1 and j ∈ β2, we obtain from (124), (125), (126), (127)
and (128) that

R̂(η, H) = U

[
δ′−1ρ′ I|α′| 0 0

0 diag(hγ ′) 0

]
V T + O(‖(η, H)‖2). (129)

On the other hand, by the definition of (38), for Y sufficiently close to X , we have
Pk(Y ) = ∑

i∈ak
uiv

T
i , k = 1, . . . , r . Therefore, we obtain that for any (τ,Y ) ∈

DΠK ∩ N̂ (shrinking N̂ if necessary),
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G R(τ,Y ) =
r∑

k=1

∑
i∈ak

[gi (τ, σ (Y ))− gi (t, σ (X))]uiv
T
i +

∑
i∈b

gi (τ, σ (Y ))uiv
T
i .

Note that from Part (iii) of Proposition 10 and Theorem 3, we know that ΠK(·, ·) is
differentiable at (τ,Y ) if and only if ΠCm (·, ·) is differentiable at (τ, σ (Y )). Since
the continuous mapping ΠC(·, ·) is piecewise linear, it is strongly G-semismooth at
(t, σ (X)). Meanwhile, we know that the singular value function σ(·) is strongly semi-
smooth at X . Therefore, we obtain that for any (τ,Y ) ∈ DΠK ∩ N̂ (shrinking N̂ if
necessary),

ΠCm (τ, σ (Y ))−ΠCm (t, σ (X)) = Π ′
Cm
(τ, σ (Y ))(η, σ (Y )− σ(X))+ O(‖(η, H)2‖)

= Π ′
Cm
(τ, σ (Y ))(η, σ ′(Y ; H))+ O(‖(η, H)2‖).

Let (φ0(η, h), φ(η, h)) := Π ′
Cm
(τ, σ (Y ))(η, h). Then, we have

g0(τ, σ (Y ))− g0(t, σ (X)) = φ0(η, h)+ O(‖(η, H)‖2) (130)

and gi (τ, σ (Y )) − gi (t, σ (X)) = φi (η, h) + O(‖(η, H)‖2), i = 1, . . . ,m. Since
U ∈ Om and V ∈ On are uniformly bounded, we know that

G R(τ,Y ) = U

⎡
⎢⎣
φ1(η, h) · · · 0 0

...
. . .

...
...

0 · · · φm(η, h) 0

⎤
⎥⎦ V T + O(‖(η, H)‖2).

From Part (ii) of Proposition 10, we have

φ0(η, h) = δ′−1ρ′, (131)

φi (η, h) = φ0(η, h) for any 1 ≤ i ≤ k̄′ and φi (η, h) = hi for any k̄′ + 1 ≤ i ≤ m.
Thus, from (129), we obtain that

R̂(η, H) = G R(τ,Y )+ O(‖(η, H)‖2). (132)

That is, for any for any (τ,Y ) ∈ DΠK converging to (t, X),

G(τ,Y )−G(t, X)−G ′(τ,Y )(η, H) = GS(Y )−GS(X)−G ′(τ,Y )(η, H)+G R(τ,Y )

= −R̂(η, H)+ G R(τ,Y ) = O(‖(η, H)‖2),

which, together with (77), (131), (116) and (130), shows that (118) holds. ��
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5 Conclusions

In this paper, we have identified a class of matrix cone programming involving the
epigraphs of the l1, l∞, Frobenius, spectral and nuclear norms that has many impor-
tant applications. In order to make this class of problems tractable via variants of the
augmented Lagrange method, we have made efforts to establish several key prop-
erties including the closed form solution, calm B-differentiability and strong semi-
smoothness of the metric projection operator over the epigraph of the l1, l∞, spectral,
and nuclear matrix norm, respectively. These results, together with the known anal-
ogous ones for symmetric cones, will constitute the backbone for using augmented
Lagrangian methods to solve large scale problems of practical significance. Our next
step is to develop numerical algorithms and software along this line. The work done
in this paper on matrix cone programming is by no means complete. There are many
unanswered questions. For example, besides the analytic solution and the first order
differentiability of the metric projector over the epigraphs of the spectral and nuclear
matrix norms, the research on the second order properties of these non-polyhedral
closed convex sets is certainly of paramount necessity for understanding second order
optimality conditions of matrix cone programming. Another direction is to consider
convex matrix cones beyond epigraphs of matrix norms such as the epigraph of the
convex function that is defined as the sum of the first several largest singular values
of a matrix (or the Ky Fan k-norm). It is our firm belief that a better understanding of
the inherent structures of these matrix cones rather than projecting them into higher
dimensional spaces will lead to more efficient optimization methods for solving matrix
cone programming.

Acknowledgments We wish to thank the anonymous referees and the Associate Editor for helpful com-
ments that led to an improved version of the original submission.
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