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Abstract In this paper we consider l0 regularized convex cone programming prob-
lems. In particular, we first propose an iterative hard thresholding (IHT) method and
its variant for solving l0 regularized box constrained convex programming. We show
that the sequence generated by these methods converges to a local minimizer. Also,
we establish the iteration complexity of the IHT method for finding an ε-local-optimal
solution. We then propose a method for solving l0 regularized convex cone program-
ming by applying the IHT method to its quadratic penalty relaxation and establish its
iteration complexity for finding an ε-approximate local minimizer. Finally, we pro-
pose a variant of this method in which the associated penalty parameter is dynamically
updated, and show that every accumulation point is a local izer of the problem.
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1 Introduction

Sparse approximations have over the last decade gained a great deal of popularity in
numerous areas. For example, in compressed sensing [8,11], a large sparse signal is
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126 Z. Lu

decoded by finding a sparse solution to a system of linear equalities and/or inequal-
ities. The similar ideas have also been widely used in linear regression. Recently,
sparse inverse covariance selection becomes an important tool in discovering the con-
ditional independence in graphical models. One popular approach for sparse inverse
covariance selection is to find an approximate sparse inverse covariance while max-
imizing the log-likelihood (see, for example, [10]). Similarly, sparse logistic regres-
sion has been proposed as a promising method for feature selection in classification
problems in which a sparse solution is sought to minimize the average logistic loss
(see, for example, [20]). The common point of these applications is to find a sparse
approximation to a specific instance of a generic class of convex cone programming
problems:

min f (x)

s.t. Ax − b ∈ K∗,
l ≤ x ≤ u

(1)

for some l ∈ �̄n−, u ∈ �̄n+, A ∈ �m×n and b ∈ �m , where K∗ denotes the dual cone
of a closed convex cone K ⊆ �m , i.e., K∗ = {s ∈ �m : sT x ≥ 0,∀x ∈ K}, and �̄n− =
{x : −∞ ≤ xi ≤ 0, 1 ≤ i ≤ n} and �̄n+ = {x ∈ �n : 0 ≤ xi ≤ ∞, 1 ≤ i ≤ n}.
A sparse solution to (1) can be sought by solving the following l0 regularized convex
cone programming problem:

min f (x)+ λ‖x‖0
s.t. Ax − b ∈ K∗,

l ≤ x ≤ u
(2)

for some λ > 0, where ‖x‖0 denotes the cardinality of x . One special case of (2)
with K = {0}, f (x) = ‖Cx − d‖2, li = −∞ and ui = ∞ for all i , that is, the l0-
regularized unconstrained least squares problem, has been well studied in the literature
(e.g., [16,21]), and some methods were developed for solving it. For example, the
iterative hard thresholding (IHT) methods [5,6,13] were proposed to solve this type of
problems and the related l0-constrained problems, respectively. Moreover, Blumensath
and Davies [5] showed that the IHT method converges to a local minimizer of l0-
regularized and -constrained least squares problems. In addition, matching pursuit
algorithms [18,23] and some variants of IHT method [7,9,12,17] were studied for
solving the l0-constrained least squares problems in the context of compressed sensing.
Recently, several approaches have been proposed to solve some sparsity-constrained
recovery problems with nonlinear observations (see, for example, [1,4]). Also, Lu and
Zhang [16] proposed a penalty decomposition method for solving a more general class
of l0-regularized and -constrained minimization problems.

As shown by the extensive experiments in [5,6], the IHT method performs very well
in finding a sparse solution to unconstrained least squares problems. In addition, the
similar type of methods [14,22] were successfully applied to find low rank solutions
in the context of matrix completion. Inspired by these works, in this paper we study
IHT methods for solving l0 regularized convex cone programming problem (2). In
particular, we first propose an IHT method and its variant for solving l0 regularized
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box constrained convex programming. We show that the sequence generated by these
methods converges to a local minimizer.1 Also, we establish the iteration complexity
of the IHT method for finding an ε-local-optimal solution. We then propose a method
for solving l0 regularized convex cone programming by applying the IHT method
to its quadratic penalty relaxation and establish its iteration complexity for finding
an ε-approximate local minimizer of the problem. We also propose a variant of the
method in which the associated penalty parameter is dynamically updated, and show
that every accumulation point is a local minimizer of the problem.

The outline of this paper is as follows. In Sect. 1.1 we introduce some notations that
are used in the paper. In Sect. 2 we present some technical results about a projected gra-
dient method for convex programming. In Sect. 3 we propose IHT methods for solving
l0 regularized box constrained convex programming and study their convergence. In
Sect. 4 we develop IHT methods for solving l0 regularized convex cone programming
and study their convergence. Finally, in Sect. 5 we present some concluding remarks.

1.1 Notation

Given a nonempty closed convex � ⊆ �n and an arbitrary point x ∈ �, N�(x)

denotes the normal cone of � at x . In addition, d�(y) denotes the Euclidean distance
between y ∈ �n and �. All norms used in the paper are Euclidean norm denoted by
‖ · ‖. We use U(r) to denote a ball centered at the origin with a radius r ≥ 0, that is,
U(r) := {x ∈ �n : ‖x‖ ≤ r}.

2 Technical preliminaries

In this section we present some technical results about a projected gradient method
for convex programming that will be subsequently used in this paper.

Consider the convex programming problem

φ∗ := min
x∈X

φ(x), (3)

where X ⊆ �n is a closed convex set and φ : X → � is a smooth convex function
whose gradient is Lipschitz continuous with constant Lφ > 0. Assume that the set of
optimal solutions of (3), denoted by X∗, is nonempty.

Let L ≥ Lφ be arbitrarily given. A projected gradient of φ at any x ∈ X with
respect to X is defined as

g(x) := L [x −�X (x −∇φ(x)/L)] , (4)

where �X (·) is the projection map onto X (see, for example, [19]).

1 Such a convergence result of the IHT method when applied to l0-regularized and -constrained least squares
problems was already established by Blumensath and Davies [5].
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The following properties of the projected gradient can be directly obtained from
Proposition 3 and Lemma 4 of [15] by replacing τ and ∇φ(·)]τX by 1/L and g(·),
respectively.

Lemma 2.1 Let x ∈ X be given and define x+ := �X (x −∇φ(x)/L). Then, for any
given ε ≥ 0, the following statements hold:

(a) ‖g(x)‖ ≤ ε if and only if ∇φ(x) ∈ −NX (x+)+ U(ε).
(b) ‖g(x)‖ ≤ ε implies that ∇φ(x+) ∈ −NX (x+)+ U(2ε).
(c) φ(x+)− φ(x) ≤ −‖g(x)‖2/(2L).
(d) φ(x)− φ(x∗) ≥ ‖g(x)‖2/(2L), where x∗ ∈ Arg min{φ(y) : y ∈ X}.

We next study a projected gradient method for solving (3).

Projected gradient method for (3):
Choose an arbitrary x0 ∈ X . Set k = 0.

(1) Solve the subproblem

xk+1 = arg min
x∈X

{
φ
(

xk
)
+∇φ

(
xk
)T (

x − xk
)
+ L

2
‖x − xk‖2

}
. (5)

(2) Set k ← k + 1 and go to step (1).

end

The convergence properties of the above projected gradient method are established
in the following two theorems, which will be used in the subsequent sections of this
paper. The first theorem shows that the method is sublinearly convergent for a convex
function with Lipschitz gradient. And the second theorem shows that the method is
linearly convergent for a smooth strongly convex function.

Theorem 2.2 Let {xk} be generated by the above projected gradient method. Then
the following statements hold:

(i) For every k ≥ 0 and l ≥ 1,

φ
(

xk+l
)
− φ∗ ≤ L

2l
‖xk − x∗‖2. (6)

(ii) {xk} converges to some optimal solution x∗ of (3).

Proof (i) Since the objective function of (5) is strongly convex with modulus L , it
follows that for every x ∈ X ,

φ
(

xk
)
+ ∇φ

(
xk
)T (

x − xk
)
+ L

2
‖x − xk‖2 ≥ φ

(
xk
)

+∇φ
(

xk
)T (

xk+1 − xk
)
+ L

2
‖xk+1 − xk‖2 + L

2
‖x − xk+1‖2.
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By the convexity of φ, Lipschitz continuity of ∇φ and L ≥ Lφ , we have

φ (x) ≥ φ
(

xk
)
+∇φ

(
xk
)T (

x − xk
)

,

φ
(

xk+1
)
≤ φ

(
xk
)
+∇φ

(
xk
)T (

xk+1 − xk
)
+ L

2
‖xk+1 − xk‖2,

which together with the above inequality imply that

φ(x)+ L

2
‖x − xk‖2 ≥ φ(xk+1)+ L

2
‖x − xk+1‖2, ∀x ∈ X. (7)

Letting x = xk in (7), we obtain that

φ(xk)− φ
(

xk+1
)
≥ L‖xk+1 − xk‖2/2.

Hence, {φ(xk)} is decreasing. Letting x = x∗ ∈ X∗ in (7), we have

φ(xk+1)− φ∗ ≤ L

2

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
, ∀k ≥ 0.

Using this inequality and the monotonicity of {φ(xk)}, we obtain that

l(φ(xk+l)− φ∗) ≤
k+l−1∑

i=k

[φ(xi+1)− φ∗]

≤ L

2

(
‖xk − x∗‖2 − ‖xk+l − x∗‖2

)
, (8)

which immediately yields (6).
(ii) It follows from (8) that

‖xk+l − x∗‖ ≤ ‖xk − x∗‖, ∀k ≥ 0, l ≥ 1. (9)

Hence, ‖xk − x∗‖ ≤ ‖x0 − x∗‖ for every k. It implies that {xk} is bounded.
Then, there exists a subsequence K such that {xk}K → x̂∗ ∈ X . It can be
seen from (6) that {φ(xk)}K → φ∗. Hence, φ(x̂∗) = limk∈K→∞ φ(xk) = φ∗,
which implies that x̂∗ ∈ X∗. Since (9) holds for any x∗ ∈ X∗, we also have
‖xk+l − x̂∗‖ ≤ ‖xk − x̂∗‖ for every k ≥ 0 and l ≥ 1. This together with the fact
{xk}K → x̂∗ implies that {xk} → x̂∗ and hence statement (ii) holds. ��

Theorem 2.3 Suppose that φ is strongly convex with modulus σ > 0.2 Let {xk} be
generated by the above projected gradient method. Then, for any given ε > 0, the
following statements hold:

2 φ is strongly convex with modulus σ > 0 if φ(·)− σ
2 ‖ · ‖2 is convex.
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(i) φ(xk)− φ∗ ≤ ε whenever

k ≥ 2�L/σ�
⌈

log
φ(x0)− φ∗

ε

⌉
.

(ii) φ(xk)− φ∗ < ε whenever

k ≥ 2�L/σ�
⌈

log
φ(x0)− φ∗

ε

⌉
+ 1.

Proof (i) Let M = �L/σ�. It follows from Theorem 2.2 that

φ
(

xk+l
)
− φ∗ ≤ L

2l
‖xk − x∗‖2 ≤ L

σ l

(
φ(xk)− φ∗

)
,

where x∗ is the optimal solution of (3). Hence, we have

φ
(

xk+2M
)
− φ∗ ≤ L

2σ M

(
φ(xk)− φ∗

)
≤ 1

2

(
φ(xk)− φ∗

)
,

which implies that

φ
(

x2 j M
)
− φ∗ ≤ 1

2 j

(
φ(x0)− φ∗

)
.

Let K = �log((φ(x0)− φ∗)/ε)�. Hence, when k ≥ 2KM , we have

φ
(

xk
)
− φ∗ ≤ φ

(
x2KM

)
− φ∗ ≤ 1

2K

(
φ
(

x0
)
− φ∗

)
≤ ε,

which immediately implies that statement (i) holds.
(ii) Let K and M be defined as above. If φ(x2K M ) = φ∗, by monotonicity of {φ(xk)}

we have φ(xk) = φ∗ when k > 2K M , and hence the conclusion holds. We
now suppose that φ(x2K M ) > φ∗. It implies that g(x2K M ) �= 0, where g is
defined in (4). Using this relation, Lemma 2.1 (c) and statement (i), we obtain
that φ(x2K M+1) < φ(x2K M ) ≤ ε, which together with the monotonicity of
{φ(xk)} implies that the conclusion holds. ��

Finally, we consider the convex programming problem

f ∗ := min
{

f (x) : Ax − b ∈ K∗, x ∈ X
}
, (10)

for some A ∈ �m×n and b ∈ �m , where f : X → � is a smooth convex function
whose gradient is Lipschitz continuous gradient with constant L f > 0, X ⊆ �n is a
closed convex set, and K∗ is the dual cone of a closed convex cone K.

The Lagrangian dual function associated with (10) is given by

d(μ) := inf
{

f (x)+ μT (Ax − b) : x ∈ X
}

, ∀μ ∈ −K.
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Assume that there exists a Lagrange multiplier for (10), that is, a vector μ∗ ∈ −K
such that d(μ∗) = f ∗. Under this assumption, the following results are established in
Corollary 2 and Proposition 10 of [15], respectively.

Lemma 2.4 Let μ∗ be a Lagrange multiplier for (10). There holds:

f (x)− f ∗ ≥ −‖μ∗‖dK∗(Ax − b), ∀x ∈ X.

Lemma 2.5 Let ρ > 0 be given and Lρ = L f + ρ‖A‖2. Consider the problem


∗ρ := min
x∈X

{

ρ(x) := f (x)+ ρ

2
[dK∗(Ax − b)]2

}
. (11)

If x ∈ X is a ξ -approximate solution of (11), i.e., 
ρ(x) − 
∗ρ ≤ ξ , then the pair
(x+, μ) defined as

x+ := �X (x −∇
ρ(x)/Lρ),

μ := ρ[Ax+ − b −�K∗(Ax+ − b)]

is in X × (−K) and satisfies μT �K∗(Ax+ − b) = 0 and the relations

dK∗(Ax+ − b) ≤ 1

ρ
‖μ∗‖ +

√
ξ

ρ
,

∇ f (x+)+ AT μ ∈ −NX (x+)+ U(2
√

2Lρξ),

where μ∗ is an arbitrary Lagrange multiplier for (10).

3 l0 regularized box constrained convex programming

In this section we consider a special case of (2) with K = {0}, that is, l0 regularized
box constrained convex programming problem in the form of:

F∗ := min F(x) := f (x)+ λ‖x‖0
s.t. l ≤ x ≤ u

(12)

for someλ > 0, l ∈ �̄n− and u ∈ �̄n+. Recently, Blumensath and Davies [5,6] proposed
an IHT method for solving a special case of (12) with f (x) = ‖Cx − d‖2, li = −∞
and ui = ∞ for all i . Our aim is to extend their IHT method to solve (12) and study its
convergence. In addition, we establish its iteration complexity for finding an ε-local-
optimal solution of (12). Finally, we propose a variant of the IHT method in which
only “local” Lipschitz constant of ∇ f is used.

Throughout this section we assume that f is a smooth convex function in B whose
gradient is Lipschitz continuous with constant L f > 0, and also that f is bounded
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132 Z. Lu

below on the set B, where

B := {
x ∈ �n : l ≤ x ≤ u

}
. (13)

We now present an IHT method for solving problem (12).

Iterative hard thresholding method for (12):
Choose an arbitrary x0 ∈ B. Set k = 0.

(1) Solve the subproblem

xk+1 ∈ Arg min
x∈B

{
f (xk)+ ∇ f (xk)T (x − xk)+ L

2
‖x − xk‖2 + λ‖x‖0

}
.

(14)

(2) Set k ← k + 1 and go to step (1).

end

Remark The subproblem (14) has a closed form solution (see Lemma 3.2).

In what follows, we study the convergence of the above IHT method for (12). Before
proceeding, we introduce some notations that will be used subsequently. Define

BI := {x ∈ B : xI = 0} , ∀I ⊆ {1, . . . , n} , (15)

�B(x) := arg min {‖y − x‖ : y ∈ B} , ∀x ∈ �n, (16)

sL(x) := x − 1

L
∇ f (x), ∀x ∈ B, (17)

I (x) := {i : xi = 0} , ∀x ∈ �n (18)

for some constant L > L f .
The following lemma establishes some properties of the operators sL(·) and

�B(sL(·)), which will be used subsequently.

Lemma 3.1 For any x, y ∈ �n, there hold:

(1) |[sL(x)]2i − [sL(y)]2i | ≤ 4(‖x − y‖ + |[sL(y)]i |)‖x − y‖;
(2) |[�B(sL(x))− sL(x)]2i −[�B(sL(y))− sL(y)]2i | ≤ 4(‖x − y‖+ |[�B(sL(y))−

sL(y)]i |)‖x − y‖.
Proof (1) We observe that

‖sL(x)− sL(y)‖ =
∥∥∥∥x − y − 1

L
(∇ f (x)− ∇ f (y))

∥∥∥∥
≤ ‖x − y‖ + 1

L
‖∇ f (x)− ∇ f (y)‖,

≤
(

1+ L f

L

)
‖x − y‖ ≤ 2‖x − y‖. (19)
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It follows from (19) that

|[sL(x)]2i − [sL(y)]2i | = |[sL(x)]i + [sL(y)]i | · |[sL(x)]i − [sL(y)]i |,
≤ (|[sL(x)]i − [sL(y)]i | + 2|[sL(y)]i |) · |[sL(x)]i − [sL(y)]i |,
≤ 4(‖x − y‖ + |[sL(y)]i |)‖x − y‖.

(2) It can be shown that

‖�B(x)− x + y −�B(y)‖ ≤ ‖x − y‖.

Using this inequality and (19), we then have

| [�B(sL(x))− sL(x)]2
i − [�B(sL(y))− sL(y)]2

i |
≤ (|[�B(sL(x))− sL(x)]i − [�B(sL(y))− sL(y)]i |
+ 2|�B(sL(y))−sL(y)]i |)· |[�B(sL(x))−sL(x)]i−[�B(sL(y))−sL(y)]i |,
≤ (‖sL(x)− sL(y)‖ + 2|[�B(sL(y))− sL(y)]i |) · ‖sL(x)− sL(y)‖,
≤ 4(‖x − y‖ + |[�B(sL(y))− sL(y)]i |)‖x − y‖.

��
The following lemma shows that subproblem (14) has a closed-form solution.

Lemma 3.2 The solution xk+1 of subproblem (14) is given as follows: for
i = 1, . . . , n,

xk+1
i =

⎧⎪⎨
⎪⎩

[
�B(sL(xk))

]
i , if

[
sL(xk)

]2
i −

[
�B(sL(xk))− sL(xk)

]2
i > 2λ

L ,

0, if
[
sL(xk)

]2
i − [�B(sL(xk))− sL(xk)]2i < 2λ

L ,[
�B(sL(xk))

]
i or 0, otherwise.

(20)

Proof Let i ∈ {1, . . . , n} be arbitrarily chosen. One can observe that the objective
function and the constrained set of (14) are both separable. Using this fact, (17), and
dropping some constant, we see that

xk+1
i ∈ Arg min

li≤xi≤ui

L

2

(
xi − [sL(xk)]i

)2 + λ‖xi‖0︸ ︷︷ ︸
h(xi )

.

We divide the proof into several cases below.

Case (1) [sL(xk)]i = 0. Since li ≤ 0 and ui ≥ 0, one can see that xk+1
i = 0 and the

conclusion holds.

Case (2) [sL(xk)]i �= 0. We can observe that [�B(sL(xk))]i �= 0 and moreover

min
li≤xi≤ui ,xi �=0

h(xi ) = L

2

[
�B(sL(xk))− sL(xk)

]2

i
+ λ,
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134 Z. Lu

where the minimal value is achieved at xi = �B(sL(xk))]i �= 0. Notice that
h(0) = L[sL(xk)]2i /2. Using these facts, it is not hard to see that the conclusion again
holds. ��

The following lemma shows that for the sequence {xk}, the magnitude of any
nonzero component xk

i cannot be too small for k ≥ 1.

Lemma 3.3 Let {xk} be generated by the above IHT method. Then there hold:

(i) for all k ≥ 0,

|xk+1
j | ≥ δ := min

i /∈I0
δi > 0, if xk+1

j �= 0, (21)

where I0 = {i : li = ui = 0} and

δi =
⎧⎨
⎩

min(ui ,
√

2λ/L), if li = 0,

min(−li ,
√

2λ/L), if ui = 0,

min(−li , ui ,
√

2λ/L), otherwise,
∀i /∈ I0. (22)

(ii) for all k ≥ 1,

‖xk+1 − xk‖ ≥ δ if I (xk) �= I (xk+1). (23)

Proof (i) Suppose that j is an index such that xk+1
j �= 0. Clearly, j /∈ I0, where I0 is

defined above. It follows from (20) that

xk+1
j =

[
�B(sL(xk))

]
j
�= 0,

[
sL(xk)

]2

j
−
[
�B(sL(xk))− sL(xk)

]2

j
≥ 2λ

L
.

(24)

The second relation of (24) implies that |[sL(xk)] j | ≥ √2λ/L . In addition, by the
first relation of (24) and the definition of �B, we have

xk+1
j =

[
�B(sL(xk))

]
j
= min

(
max([sL(xk)] j , l j ), u j

)
�= 0. (25)

Recall that j /∈ I0. We next show that |xk+1
j | ≥ δ j by considering three separate

cases: (i) l j = 0; (ii) u j = 0; and (iii) l j u j �= 0. For case (i), it follows from
(25) that [sL(xk)] j ≥ 0 and xk+1

j = min([sL(xk)] j , u j ). This together with the

relation |[sL(xk)] j | ≥ √2λ/L and the definition of δ j implies that |xk+1
j | ≥ δ j .

By the similar arguments, we can show that |xk+1
j | ≥ δ j also holds for the other

two cases. It is then easy to see that statement (i) holds.
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(ii) Suppose that I (xk) �= I (xk+1) for some k ≥ 1. Then there exists some i such
that (xk

i �= 0 but xk+1
i = 0) or (xk

i = 0 but xk+1
i �= 0), which together with (i)

implies that |xk
i | ≥ δ or |xk+1

i | ≥ δ and moreover

‖xk+1 − xk‖ ≥ |xk+1
i − xk

i | = max(|xk
i |, |xk+1

i |) ≥ δ.

��
We next establish that the sequence {xk} converges to a local minimizer of (12),

and moreover, F(xk) converges to a local minimum value of (12).

Theorem 3.4 Let {xk} be generated by the above IHT method. Then there hold:

(i) I (xk) changes only finitely often, where I (·) is defined in (18).
(ii) {xk} converges to a local minimizer x∗ of problem (12). Moreover, I (xk) →

I (x∗), ‖xk‖0 → ‖x∗‖0, F(xk)→ F(x∗), and

x∗ ∈ Arg min
{

f (x) : x ∈ BI (x∗)
}
. (26)

Proof (i) Since ∇ f is Lipschitz continuous with constant L f , we have

f
(

xk+1
)
≤ f

(
xk
)
+∇ f

(
xk
)T (

xk+1 − xk
)
+ L f

2
‖xk+1 − xk‖2.

Using this inequality, the fact that L > L f , and (14), we obtain that

F(xk+1) = f (xk+1)+ λ‖xk+1‖0

≤
a︷ ︸︸ ︷

f (xk)+ ∇ f (xk)T (xk+1 − xk)+ L f

2
‖xk+1 − xk‖2 + λ‖xk+1‖0,

≤ f (xk)+ ∇ f (xk)T (xk+1 − xk)+ L

2
‖xk+1 − xk‖2 + λ‖xk+1‖0︸ ︷︷ ︸

b

≤ f (xk)+ λ‖xk‖0 = F(xk),

where the last inequality follows from (14). The above inequality implies that
{F(xk)} is nonincreasing and moreover,

F(xk)− F(xk+1) ≥ b − a = L − L f

2
‖xk+1 − xk‖2. (27)

By the assumption, we know that f is bounded below in B. It then follows that
{F(xk)} is bounded below. Hence, {F(xk)} converges to a finite value as k →∞,
which together with (27) implies that

lim
k→∞‖x

k+1 − xk‖ = 0,
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which together with (23) implies that I (xk) does not change when k is sufficient
large.

(ii) It follows from statement (i) that there exist some K ≥ 0 and I ⊆ {1, . . . , n}
such that I (xk) = I for all k ≥ K . Then one can observe from (14) that

xk+1 = arg min
x∈BI

{
f (xk)+∇ f (xk)T (x − xk)+ L

2
‖x − xk‖2

}
, ∀k > K ,

where BI is defined in (15). It follows from Theorem 2.2 that xk → x∗, where

x∗ ∈ Arg min { f (x) : x ∈ BI } . (28)

It is not hard to see from (28) that x∗ is a local minimizer of (12). In addition,
we know from (21) that |xk

i | ≥ δ for k > K and i /∈ I . It yields |x∗i | ≥ δ for
i /∈ I and x∗i = 0 for i ∈ I . Hence, I (xk) = I (x∗) = I for all k > K , which
clearly implies that ‖xk‖0 = ‖x∗‖0 for every k > K . By continuity of f , we have
f (xk)→ f (x∗). It then follows that

F(xk) = f (xk)+ λ‖xk‖0 → f (x∗)+ λ‖x∗‖0 = F(x∗).

Finally, (26) holds due to (28) and the relation I (x∗) = I . ��
As shown in Theorem 3.4, xk → x∗ for some local minimizer x∗ of (12) and

F(xk) → F(x∗). Our next aim is to establish the iteration complexity of the IHT
method for finding an ε-local-optimal solution xε ∈ B of (12) satisfying F(xε) ≤
F(x∗)+ ε and I (xε) = I (x∗). Before proceeding, we define

α = min
I⊆{1,...,n}

{
min

i

∣∣∣[sL(x∗)]2i − [�B(sL(x∗))− sL(x∗)]2i

− 2λ

L

∣∣∣ : x∗ ∈ Arg min{ f (x) : x ∈ BI }
}
, (29)

β = max
I⊆{1,...,n}

{
max

i
|[sL(x∗)]i | + |�B(sL(x∗))

− sL(x∗)]i | : x∗ ∈ Arg min{ f (x) : x ∈ BI }
}
. (30)

Theorem 3.5 Assume that f is a smooth strongly convex function with modulus σ >

0. Suppose that L > L f is chosen such that α > 0.3 Let {xk} be generated by the
above IHT method, Ik = I (xk) for all k, x∗ = limk→∞ xk , and F∗ = F(x∗). Then,
for any given ε > 0, the following statements hold:

(i) The number changes of Ik is at most
⌊

2(F(x0)−F∗)
(L−L f )δ

2

⌋
.

3 The existence of such L is proven in the “Appendix”.
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(ii) The total number of iterations by the IHT method for finding an ε-local-optimal
solution xε ∈ B satisfying I (xε) = I (x∗) and F(xε) ≤ F∗ + ε is at most
2�L/σ� log θ

ε
, where

θ = (F(x0)− F∗)2
ω+3

2 ,

ω = max
t

{
(d − 2c)t − ct2 : 0 ≤ t ≤

⌊
2(F(x0)− F∗)

(L − L f )δ2

⌋}
, (31)

c = (L − L f )δ
2

2(F(x0)− F∗)
, γ = σ

(√
2α + β2 − β

)2

/32, (32)

d = 2 log(F(x0)− F∗)+ 4− 2 log γ + c.

Proof (i) By Theorem 3.4 (i), we know that Ik only changes for a finite number of
times. Assume that Ik only changes at k = n1 + 1, . . . , n J + 1, that is,

In j−1+1 = · · · = In j �= In j+1 = · · · = In j+1 , j = 1, . . . , J − 1, (33)

where n0 = 0.
We next bound J , i.e., the total number of changes of Ik . In view of (23) and (33),
one can observe that

‖xn j+1 − xn j ‖ ≥ δ, j = 1, . . . , J,

which together with (27) implies that

F(xn j )− F(xn j+1) ≥ 1

2
(L − L f )δ

2, j = 1, . . . , J. (34)

Summing up these inequalities and using the monotonicity of {F(xk)}, we have

1

2
(L − L f )δ

2 J ≤ F(xn1)− F(xn J+1) ≤ F(x0)− F∗, (35)

and hence

J ≤
⌊

2(F(x0)− F∗)
(L − L f )δ2

⌋
. (36)

(ii) Let n j be defined as above for j = 1, . . . , J . We first show that

n j−n j−1 ≤ 2+2�L/σ�
⌈

log
(

F(x0)−( j−1)(L − L f )δ
2/2−F∗

)
− log γ

⌉
,

j = 1, . . . , J, (37)
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where F∗ and γ are defined in (12) and (32), respectively. Indeed, one can observe
from (14) that

xk+1 = arg min
x∈B

{
f (xk)+ ∇ f (xk)T (x − xk)+ L

2
‖x − xk‖2 : xIk+1 = 0

}
.

Therefore, for j = 1, . . . , J and k = n j−1, . . . , n j − 1,

xk+1 = arg min
x∈B

{
f (xk)+∇ f (xk)T (x − xk)+ L

2
‖x − xk‖2 : xIn j

= 0

}
.

We arbitrarily choose 1 ≤ j ≤ J . Let x̄∗ (depending on j) denote the optimal
solution of

min
x∈B

{
f (x) : xIn j

= 0
}

. (38)

One can observe that

‖x̄∗‖0 ≤ ‖xn j−1+1‖0.

Also, it follows from (34) and the monotonicity of {F(xk)} that

F(xn j+1) ≤ F(x0)− j

2
(L − L f )δ

2, j = 1, . . . , J. (39)

Using these relations and the fact that F(x̄∗) ≥ F∗, we have

f (xn j−1+1)− f (x̄∗) = F(xn j−1+1)− λ‖xn j−1+1‖0 − F(x̄∗)+ λ‖x̄∗‖0,
≤ F(x0)− j − 1

2
(L − L f )δ

2 − F∗. (40)

Suppose for a contradiction that (37) does not hold for some 1 ≤ j ≤ J . Hence,
we have

n j−n j−1 > 2+ 2�L/σ�
⌈

log
(

F(x0)− ( j − 1)(L − L f )δ
2/2− F∗

)
−log γ

⌉
.

This inequality and (40) yields

n j − n j−1 > 2+ 2�L/σ�
⌈

log
f (xn j−1+1)− f (x̄∗)

γ

⌉
.

Using the strong convexity of f and applying Theorem 2.3 (ii) to (38) with ε = γ ,
we obtain that

σ

2
‖xn j − x̄∗‖2 ≤ f (xn j )− f (x̄∗) <

σ

32

(√
2α + β2 − β

)2

.
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It implies that

‖xn j − x̄∗‖ <

√
2α + β2 − β

4
. (41)

Using (41), Lemma 3.1 and the definition of β, we have

|[sL(xn j )]2i − [sL(x̄∗)]2i − [�B(sL(xn j ))− sL(xn j )]2i + [�B(sL(x̄∗))
−sL(x̄∗)]2i | ≤ |[sL(xn j )]2i − [sL(x̄∗)]2i | + |[�B(sL(xn j ))− sL(xn j )]2i
−[�B(sL(x̄∗))− sL(x̄∗)]2i | ≤ 4(2‖xn j − x̄∗‖ + β)‖xn j − x̄∗‖ < α,

(42)

where the last inequality is due to (41). Let

I ∗ =
{

i : [sL(x̄∗)]2i − [�B(sL(x̄∗))− sL(x̄∗)]2i <
2λ

L

}

and let Ī ∗ = {1, . . . , n}\ I ∗. Since α > 0, we know that

[sL(x̄∗)]2i − [�B(sL(x̄∗))− sL(x̄∗)]2i >
2λ

L
, ∀i ∈ Ī ∗.

It then follows from (42) and the definition of α that

[sL(xn j )]2i −
[
�B(sL(xn j ))− sL(xn j )

]2
i <

2λ

L
, ∀i ∈ I ∗,

[sL(xn j )]2i −
[
�B(sL(xn j ))− sL(xn j )

]2
i >

2λ

L
, ∀i ∈ Ī ∗.

Observe that [�B(sL(xn j ))]i �= 0 for all i ∈ Ī ∗. This fact together with (20)
implies that

x
n j+1
i = 0, i ∈ I ∗ and x

n j+1
i �= 0, i ∈ Ī ∗.

By a similar argument, one can show that

x
n j
i = 0, i ∈ I ∗ and x

n j
i �= 0, i ∈ Ī ∗.

Hence, In j = In j+1 = I ∗, which is a contradiction to (33). We thus conclude
that (37) holds.

Let Nε denote the total number of iterations for finding an ε-local-optimal solution
xε ∈ B by the IHT method satisfying I (xε) = I (x∗) and F(xε) ≤ F∗ + ε. We next
establish an upper bound for Nε . Summing up the inequality (37) for j = 1, . . . , J ,
we obtain that
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n J ≤
J∑

j=1

{
2+ 2�L/σ�

⌈
log(F(x0)− j − 1

2
(L − L f )δ

2 − F∗)− log γ

⌉}
.

Using this inequality, (35), and the facts that L ≥ σ and log(1 − t) ≤ −t for all
t ∈ (0, 1), we have

n J ≤
J∑

j=1

[
2+ 2�L/σ�

(
log

(
F(x0)− j − 1

2
(L − L f )δ

2 − F∗
)
− log γ + 1

)]
,

≤
J∑

j=1

[
2+ 2�L/σ�

(
log(F(x0)− F∗)− (L − L f )δ

2

2(F(x0)− F∗)
( j − 1)−log γ+1

)]
,

≤ �L/σ�

⎡
⎢⎢⎢⎣
(

2 log(F(x0)−F∗)+ 4− 2 log γ+ (L − L f )δ
2

2(F(x0)− F∗)

)
︸ ︷︷ ︸

d

J

− (L − L f )δ
2

2(F(x0)− F∗)︸ ︷︷ ︸
c

J 2

⎤
⎥⎥⎥⎦ . (43)

By the definition of n J , we observe that after n J + 1 iterations, the IHT method
becomes the projected gradient method applied to the problem

x∗ = arg min
x∈B
{ f (x) : xIn J+1 = 0}.

In addition, combining Theorem 3.4 (i) and (ii) and using the definition of n J , one can
see that I (xk) = I (x∗) for all k > n J . Hence, f (xk) − f (x∗) = F(xk) − F∗ when
k > n J . Using these facts and Theorem 2.3 (ii), we have

Nε ≤ n J + 1+ 2�L/σ�
⌈

log
F(xn J+1)− F∗

ε

⌉
.

Using this inequality, (39), (43) and the facts that F∗ ≥ F∗, L ≥ σ and log(1−t) ≤ −t
for all t ∈ (0, 1), we obtain that

Nε ≤ n J + 1+ 2�L/σ�
(

log(F(x0)− J

2
(L − L f )δ

2 − F∗)+ 1− log ε

)
,

≤ n J + �L/σ�
(

2 log(F(x0)− F∗)− (L − L f )δ
2 J

F(x0)− F∗
+ 3− 2 log ε

)

≤ �L/σ�
[
(d − 2c)J − cJ 2 + 2 log(F(x0)− F∗)+ 3− 2 log ε

]
,
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which together with (36) and (31) implies that

Nε ≤ 2�L/σ� log
θ

ε
.

��
The iteration complexity given in Theorem 3.5 is based on the assumption that

f is strongly convex in B. We next consider a case where B is bounded and f is
convex but not strongly convex. We will establish the iteration complexity of finding an
ε-local-optimal solution of (12) by the IHT method applied to a perturbation of (12)
obtained from adding a “small” strongly convex regularization term to f .

Consider a perturbation of (12) in the form of

F∗ν := min
x∈B
{Fν(x) := fν(x)+ λ‖x‖0}, (44)

where ν > 0 and

fν(x) := f (x)+ ν

2
‖x‖2.

One can easily see that fν is strongly convex in B with modulus ν and moreover ∇ fν
is Lipschitz continuous with constant Lν , where

Lν = L f + ν. (45)

We next establish the iteration complexity of finding an ε-local-optimal solution
of (12) by the IHT method applied to (44). Given any L > 0, let sL , α and β be
defined according to (17), (29) and (30), respectively, by replacing f by fν , and let δ

be defined in (21).

Theorem 3.6 Suppose that B is bounded and f is convex but not strongly convex.
Let ε > 0 be arbitrarily given, D = max{‖x‖ : x ∈ B}, ν = ε/D2, and L > Lν

be chosen such that α > 0. Let {xk} be generated by the IHT method applied to
(44), and let x∗ = limk→∞ xk, F∗ν = Fν(x∗) and F∗ = min{F(x) : x ∈ BI ∗},
where I ∗ = {i : x∗i = 0}. Then, the total number of iterations by the IHT method
for finding an ε-local-optimal solution xε ∈ B satisfying F(xε) ≤ F∗ + ε is at most

2
⌈

D2 L f
ε
+ 1

⌉
log 2θ

ε
, where

θ = (Fν(x0)− F∗ν )2
ω+3

2 ,

ω = max
t

{
(d − 2c)t − ct2 : 0 ≤ t ≤

⌊
2(Fν(x0)− F∗ν )

(L − Lν)δ2

⌋}
,

c = (L − Lν)δ
2

2(Fν(x0)− F∗ν)
, γ = ν

(√
2α + β2 − β

)2

/32,

d = 2 log(Fν(x0)− F∗ν)+ 4− 2 log γ + c.
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Proof By Theorem 3.5 (ii), we see that the IHT method applied to (44) finds an ε/2-
local-optimal solution xε ∈ B of (44) satisfying I (xε) = I (x∗) and Fν(xε) ≤ F∗ν +ε/2
within 2�Lν/ν� log 2θ

ε
iterations. Also, we know from Theorem 3.4 (ii) that

Fν(x∗) = min {Fν(x) : x ∈ BI ∗}.
Hence, we have

F∗ν = Fν(x∗)≤ min
x∈BI∗

f (x)+ νD2

2
≤ F∗ + ε

2
.

In addition, we observe that F(xε) ≤ Fν(xε). Hence, it follows that

F(xε)≤Fν(xε) ≤ F∗ν +
ε

2
≤ F∗ + ε.

Note that F∗ is a local optimal value of (12). Hence, xε is an ε-local-optimal solution
of (12). The conclusion of this theorem then follows from (45) and ν = ε/D2. ��

For the above IHT method, a fixed L is used through all iterations, which may
be too conservative. To improve its practical performance, we can use a “local” L
that is updated dynamically. The resulting variant of the method is presented as fol-
lows. Several approaches have been proposed to address this issue for solving the
l0-constrained least squares problems in the context of compressed sensing (see, for
example, [3,7,9,12,17]).

A variant of IHT method for (12):
Let 0 < Lmin < Lmax, τ > 1 and η > 0 be given. Choose an arbitrary x0 ∈ B and
set k = 0.

(1) Choose L0
k ∈ [Lmin, Lmax] arbitrarily. Set Lk = L0

k .
(1a) Solve the subproblem

xk+1 ∈ Arg min
x∈B

{
f (xk)+ ∇ f (xk)T (x − xk)+ Lk

2
‖x − xk‖2 + λ‖x‖0

}
.

(46)

(1b) If

F(xk)− F(xk+1) ≥ η

2
‖xk+1 − xk‖2 (47)

is satisfied, then go to step (2).
(1c) Set Lk ← τ Lk and go to step (1a).

(2) Set k ← k + 1 and go to step (1).

end

Remark In the above variant of IHT method, the Armijo-type backtracking procedure
is used to find a suitable Lk starting with L0

k , which can be chosen as the one proposed
by Barzilai and Borwein [2], that is,
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L0
k = max

{
Lmin, min

{
Lmax,

� f T �x

‖�x‖2
}}

,

where �x = xk − xk−1 and � f = ∇ f (xk)−∇ f (xk−1).

At each iteration, the IHT method solves a single subproblem in step (1). Never-
theless, its variant needs to solve a sequence of subproblems. We next show that for
each outer iteration, its number of inner iterations is finite.

Theorem 3.7 For each k ≥ 0, the inner termination criterion (47) is satisfied after at

most
⌈

log(L f+η)−log(Lmin)

log τ
+ 2

⌉
inner iterations.

Proof Let L̄k denote the final value of Lk at the kth outer iteration. By (46) and the
similar arguments as for deriving (27), one can show that

F(xk)− F(xk+1) ≥ Lk − L f

2
‖xk+1 − xk‖2.

Hence, (47) holds whenever Lk ≥ L f + η, which together with the definition of L̄k

implies that L̄k/τ < L f + η, that is, L̄k < τ(L f + η). Let nk denote the number of
inner iterations for the kth outer iteration. Then, we have

Lminτ
nk−1 ≤ L0

kτ
nk−1 = L̄k < τ(L f + η).

Hence, nk ≤
⌈

log(L f+η)−log(Lmin)

log τ
+ 2

⌉
and the conclusion holds. ��

We next establish that the sequence {xk} generated by the above variant of IHT
method converges to a local minimizer of (12) and moreover, F(xk) converges to a
local minimum value of (12).

Theorem 3.8 Let {xk} be generated by the above variant of IHT method. Then, xk con-
verges to a local minimizer x∗ of problem (12). Moreover, I (xk)→ I (x∗), ‖xk‖0 →
‖x∗‖0, F(xk)→ F(x∗), and

x∗ ∈ Arg min
{

f (x) : x ∈ BI (x∗)
}
.

Proof Let L̄k denote the final value of Lk at the kth outer iteration. From the proof
of Theorem 3.7, we know that L̄k ∈ [Lmin, τ (L f + η)). Using this fact and a similar
argument as used to prove (21), one can obtain that

|xk+1
i | ≥ δ̄ := min

i /∈I0
δ̄i > 0, if xk+1

j �= 0,

where I0 = {i : li = ui = 0} and δ̄i is defined according to (22) by replacing L by
τ(L f + η) for all i ∈ I0. It implies that for k ≥ 1,

‖xk+1 − xk‖ ≥ δ̄ if I (xk) �= I (xk+1).
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The conclusion then follows from this inequality and the similar arguments as used in
the proof of Theorem 3.4. ��

4 l0-regularized convex cone programming

In this section we consider l0-regularized convex cone programming problem (2) and
propose IHT methods for solving it. In particular, we apply the IHT method proposed
in Sect. 3 to a quadratic penalty relaxation of (2) and establish the iteration complexity
for finding an ε-approximate local minimizer of (2). We also propose a variant of the
method in which the associated penalty parameter is dynamically updated, and show
that every accumulation point is a local minimizer of (2).

Let B be defined in (13). We assume that f is a smooth convex function in B, ∇ f is
Lipschitz continuous with constant L f and that f is bounded below on B. In addition,
we make the following assumption throughout this section.

Assumption 1 For each I ⊆ {1, . . . , n}, there exists a Lagrange multiplier for

f ∗I = min
{

f (x) : Ax − b ∈ K∗, x ∈ BI
}
, (48)

provided that (48) is feasible, that is, there exists μ∗ ∈ −K such that f ∗I = dI (μ
∗),

where

dI (μ) := inf
{

f (x)+ μT (Ax − b) : x ∈ BI

}
, ∀μ ∈ −K.

Remark Problem (48) may be infeasible for some I ⊆ {1, . . . , n}. For example, if
−b /∈ K∗, then (48) is infeasible for I = {1, . . . , n} since BI = {0}. As mentioned
below, any local minimizer of (2) is a minimizer of (48) for some I . Since our aim
is to solve (2), we are thus only interested in those I ⊆ {1, . . . , n} for which (48) is
feasible. As we will later see, the IHT methods proposed for solving (2) become at
their late stage some first-order methods applied to (48) for some I . In addition, it is
common to assume the strong duality holds when solving a convex cone programming
(see, for example, [15]). Assumption 1 is thus very reasonable. ��

Let x∗ be a point in B, and let I ∗ = {i : x∗i = 0}. One can observe that x∗ is a local
minimizer of (2) if and only if x∗ is a minimizer of (48) with I = I ∗. Then, in view
of Assumption 1, we see that x∗ is a local minimizer of (2) if and only if x∗ ∈ B and
there exists μ∗ ∈ −K such that

Ax∗ − b ∈ K∗, (μ∗)T (Ax∗ − b) = 0,

∇ f (x∗)+ AT μ∗ ∈ −NBI∗ (x∗).
(49)

Based on the above observation, we can define an approximate local minimizer
of (2) to be the one that nearly satisfies (49).
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Definition 1 Let x∗ be a point in B, and let I ∗ = {i : x∗i = 0}. x∗ is an ε-approximate
local minimizer of (2) if there exists μ∗ ∈ −K such that

dK∗(Ax∗ − b) ≤ ε, (μ∗)T �K∗(Ax∗ − b) = 0,

∇ f (x∗)+ AT μ∗ ∈ −NBI∗ (x∗)+ U(ε).

In what follows, we propose an IHT method for finding an approximate local
minimizer of (2). In particular, we apply the IHT method or its variant to a quadratic
penalty relaxation of (2) which is in the form of

�∗ρ := min
x∈B

{
�ρ(x) := 
ρ(x)+ λ‖x‖0

}
, (50)

where


ρ(x) := f (x)+ ρ

2
[dK∗(Ax − b)]2 (51)

It is not hard to show that the function 
ρ is convex differentiable and moreover
∇
ρ is Lipschitz continuous with constant

Lρ = L f + ρ‖A‖2 (52)

(see, for example, Proposition 8 and Corollary 9 of [15]). Therefore, problem (50) can
be suitably solved by the IHT method or its variant proposed in Sect. 3.

Under the assumption that f is strongly convex in B, we next establish the itera-
tion complexity of the IHT method applied to (50) for finding an approximate local
minimizer of (2). Given any L > 0, let sL , α and β be defined according to (17), (29)
and (30), respectively, by replacing f by 
ρ , and let δ be defined in (21).

Theorem 4.1 Assume that f is a smooth strongly convex function with modulus σ >

0. Given any ε > 0, let

ρ = t

ε
+ 1√

8‖A‖ (53)

for any t ≥ maxI⊆{1,...,n}minμ∈�I ‖μ‖, where �I is the set of Lagrange multipliers
of (48). Let L > Lρ be chosen such that α > 0. Let {xk} be generated by the IHT
method applied to (50), and let x∗ = limk→∞ xk and �∗ρ = �ρ(x∗). Then the IHT
method finds an ε-approximate local minimizer of (2) in at most

N := 2

⌈
Lρ

σ

⌉
log

8Lρθ

ε2
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iterations, where

θ =
(
�ρ(x0)−�∗ρ

)
2

ω+3
2 ,

ω = max
t

{
(d − 2c)t − ct2 : 0 ≤ t ≤

⌊
2(�ρ(x0)−�∗ρ)

(L − Lρ)δ2

⌋}
,

c = (L − Lρ)δ2

2(�ρ(x0)−�∗ρ)
, γ = σ

(√
2α + β2 − β

)2

/32,

d = 2 log(�ρ(x0)−�∗ρ)+ 4− 2 log γ + c.

Proof We know from Theorem 3.4 (ii) that xk → x∗ for some local minimizer x∗
of (50), I (xk)→ I (x∗), �ρ(xk)→ �ρ(x∗) = �∗ρ , and

x∗ = arg min
x∈BI∗


ρ(x), (54)

where I ∗ = I (x∗). By Theorem 3.5, after at most N iterations, the IHT method
generates x̃ ∈ B such at I (x̃) = I (x∗) and �ρ(x̃) − �ρ(x∗) ≤ ξ := ε2/(8Lρ). It
then follows that 
ρ(x̃)−
ρ(x∗) ≤ ξ . Hence, x̃ is a ξ -approximate solution of (54).
Let μ∗ ∈ Arg min{‖μ‖ : μ ∈ �I ∗}, where �I ∗ is the set of Lagrange multipliers
of (48) with I = I ∗. In view of Lemma 2.5, we see that the pair (x̃+, μ) defined as
x̃+ := �BI∗ (x̃ − ∇
ρ(x̃)/Lρ) and μ := ρ[Ax̃+ − b −�K∗(Ax̃+ − b)] satisfies

∇ f (x̃+)+ AT μ ∈ −NBI∗ (x̃+)+ U(2
√

2Lρξ) = NBI (x̃+)+ U(ε),

dK∗(Ax̃+ − b) ≤ 1

ρ
‖μ∗‖ +

√
ξ

ρ
≤ 1

ρ

(
‖μ∗‖ + ε√

8‖A‖
)
≤ ε,

where the last inequality is due to (53) and the assumption t ≥ t̂ ≥ ‖μ∗‖. Hence, x̃+
is an ε-approximate local minimizer of (2). ��

We next consider finding an ε-approximate local minimizer of (2) for the case
where B is bounded and f is convex but not strongly convex. In particular, we apply
the IHT method or its variant to a quadratic penalty relaxation of a perturbation of (2)
obtained from adding a “small’ ’ strongly convex regularization term to f .

Consider a perturbation of (2) in the form of

min
x∈B

{
f (x)+ ν

2
‖x‖2 + λ‖x‖0 : Ax − b ∈ K∗

}
. (55)

The associated quadratic penalty problem for (55) is given by

�∗ρ,ν := min
x∈B

{
�ρ,ν(x) := 
ρ,ν(x)+ λ‖x‖0

}
, (56)
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where


ρ,ν(x) := f (x)+ ν

2
‖x‖2 + ρ

2
[dK∗(Ax − b)]2 .

One can easily see that 
ρ,ν is strongly convex in B with modulus ν and moreover
∇
ρ,ν is Lipschitz continuous with constant

Lρ,ν := L f + ρ‖A‖2 + ν.

Clearly, the IHT method or its variant can be suitably applied to (56). We next establish
the iteration complexity of the IHT method applied to (56) for finding an approximate
local minimizer of (2). Given any L > 0, let sL , α and β be defined according
to (17), (29) and (30), respectively, by replacing f by 
ρ,ν , and let δ be defined
in (21).

Theorem 4.2 Suppose that B is bounded and f is convex but not strongly convex. Let
ε > 0 be arbitrarily given, D = max{‖x‖ : x ∈ B},

ρ =

(√
D +

√
D + 16t + 2

√
2ε
‖A‖

)2

16ε
, ν = ε

2D
(57)

for any t ≥ maxI⊆{1,...,n}minμ∈�I ‖μ‖, where �I is the set of Lagrange multipliers
of (48). Let L > Lρ,ν be chosen such that α > 0. Let {xk} be generated by the IHT
method applied to (56), and let x∗ = limk→∞ xk and �∗ρ,ν = �ρ,ν(x∗). Then the IHT
method finds an ε-approximate local minimizer of (2) in at most

N := 2

⌈
2DLρ,ν

ε

⌉
log

32Lρ,νθ

ε2

iterations, where

θ =
(
�ρ,ν

(
x0
)
−�∗ρ,ν

)
2

ω+3
2 ,

ω = max
t

{
(d − 2c)t − ct2 : 0 ≤ t ≤

⌊
2
(
�ρ,ν(x0)−�∗ρ,ν

)
(
L − Lρ,ν

)
δ2

⌋}
,

c =
(
L − Lρ,ν

)
δ2

2
(
�ρ,ν(x0)−�∗ρ,ν

) , γ = ν
(√

2αρ,ν + β2
ρ,ν − βρ,ν

)2
/32,

d = 2 log
(
�ρ,ν(x0)−�∗ρ,ν

)
+ 4− 2 log γ + c.

Proof From Theorem 3.4 (ii), we know that xk → x∗ for some local minimizer x∗
of (56), I (xk)→ I (x∗), �ρ,ν(xk)→ �ρ,ν(x∗) = �∗ρ,ν , and

x∗ = arg min
x∈BI∗


ρ,ν(x), (58)
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where I ∗ = I (x∗). By Theorem 3.5, after at most N iterations, the IHT method
applied to (56) generates x̃ ∈ B such at I (x̃) = I (x∗) and �ρ,ν(x̃) − �ρ,ν(x∗) ≤
ξ := ε2/(32Lρ,ν). It then follows that 
ρ,ν(x̃) − 
ρ,ν(x∗) ≤ ξ . Hence, x̃ is a ξ -
approximate solution of (58). In view of Lemma 2.5, we see that the pair (x̃+, μ)

defined as x̃+ := �BI (x̃ −∇
ρ,ν(x̃)/Lρ,ν) and μ := ρ[Ax̃+− b−�K∗(Ax̃+− b)]
satisfies

∇ f (x̃+)+ν x̃++ AT μ ∈ −NBI∗ (x̃+)+ U(2
√

2Lρ,νξ) = −NBI∗ (x̃+)+ U(ε/2),

which together with the fact that ν‖x̃+‖ ≤ νD ≤ ε/2 implies that

∇ f (x̃+)+ AT μ ∈ −ν x̃+ −NBI∗ (x̃+)+ U(ε/2) ⊆ −NBI∗ (x̃+)+ U(ε).

In addition, it follows from Lemma 2.1 (c) that 
ρ,ν(x̃+) ≤ 
ρ,ν(x̃), and hence


ρ,ν(x̃+)−
ρ,ν(x∗) ≤ 
ρ,ν(x̃)−
ρ,ν(x∗) ≤ ξ.

Let 
∗ρ = min{
ρ(x) : x ∈ BI ∗}, where 
ρ is defined in (51). Notice that 
ρ,ν(x∗) ≤

∗ρ + νD2/2. It then follows that


ρ(x̃+)−
∗ρ ≤ 
ρ,ν(x̃+)−
ρ,ν(x∗)+ νD2

2
≤ ξ + εD

4
≤ ε2

32ρ‖A‖2 +
εD

4
.

Let μ∗ ∈ Arg min{‖μ‖ : μ ∈ �I ∗}, where �I ∗ is the set of Lagrange multipliers
of (48) with I = I ∗. In view of Lemma 2.5 and the assumption t ≥ t̂ ≥ ‖μ∗‖, we
obtain that

dK∗(Ax̃+ − b)≤ 1

ρ
‖μ∗‖ +

√
ε2

32ρ2‖A‖2 +
εD

4ρ
≤ 1

ρ

(
t + ε√

32‖A‖
)
+
√

εD

4ρ
= ε,

where the last inequality is due to (57). Hence, x̃+ is an ε-approximate local minimizer
of (2). ��

For the above method, the fixed penalty parameter ρ is used through all iterations,
which may be too conservative. To improve its practical performance, we can update
ρ dynamically. The resulting variant of the method is presented as follows. Before
proceeding, we define the projected gradient of 
ρ at x ∈ BI with respect to BI as

g(x; ρ, I ) = Lρ

[
x −�BI

(
x − 1

Lρ

∇
ρ(x)

)]
, (59)

where I ⊆ {1, . . . , n}, and 
ρ and Lρ are defined in (51) and (52), respectively.

A variant of IHT method for (2):
Let {εk} be a positive decreasing sequence. Let ρ0 > 0, τ > 1, t > maxI⊆{1,...,n}
minμ∈�I ‖μ‖, where �I is the set of Lagrange multipliers of (48). Choose an arbitrary
x0 ∈ B. Set k = 0.
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(1) Start from xk−1 and apply the IHT method or its variant to problem (50) with
ρ = ρk until finding some xk ∈ B such that

dK∗(Axk − b) ≤ t

ρk
, ‖g(xk; ρk, Ik)‖ ≤ min{1, Lρk }εk, (60)

where Ik = I (xk).
(2) Set ρk+1 := τρk .
(3) Set k ← k + 1 and go to step (1).

end

The following theorem shows that xk satisfying (60) can be found within a finite
number of iterations by the IHT method or its variant applied to problem (50) with
ρ = ρk . Without loss of generality, we consider the IHT method or its variant applied
to problem (50) with any given ρ > 0.

Theorem 4.3 Let x0 ∈ B be an arbitrary point and the sequence {xl} be generated by
the IHT method or its variant applied to problem (50). Then, the following statements
hold:

(i) liml→∞ g(xl; ρ, Il) = 0, where Il = I (xl) for all l.
(ii) liml→∞ dK∗(Axl − b) ≤ t̂

ρ
, where t̂ := maxI⊆{1,...,n}minμ∈�I ‖μ‖ and �I is

the set of Lagrange multipliers of (48).

Proof (i) It follows from Theorems 3.4 and 3.8 that xl → x∗ for some local minimizer
x∗ of (50), 
ρ(xl)→ 
ρ(x∗)Il → I ∗, and

x∗ ∈ Arg min
x∈BI∗


ρ(x),

where Il = I (xl) and I ∗ = I (x∗). It then follows from Lemma 2.1 (d) that


ρ(xl)−
ρ(x∗)≥ 1

2Lρ

‖g(xl; ρ, I ∗)‖2, l ≥ N .

Using this inequality and 
ρ(xl) → 
ρ(x∗), we thus have g(xl; ρ, I ∗) → 0.
Since Il = I ∗ for l ≥ N , we also have g(xl; ρ, Il)→ 0.

(ii) Let f ∗I be defined in (48). Applying Lemma 2.4 to problem (48), we know that

f (xl)− f ∗I (l)≥−t̂dK∗(Axl − b), ∀l, (61)

where t̂ is defined above. Let x∗ and I ∗ be defined in the proof of statement (i).
We observe that f ∗I ∗ ≥ 
ρ(x∗). Using this relation and (61), we have that for
sufficiently large l,
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ρ(xl)−
ρ(x∗) = f (xl)+ ρ

2
[dK∗(Axl − b)]2 −
ρ(x∗)

≥ f (xl)− f ∗I ∗ +
ρ

2
[dK∗(Axl − b)]2

= f (xl)− f ∗I (l) +
ρ

2
[dK∗(Axl − b)]2

≥ −t̂dK∗(Axl − b)+ ρ

2
[dK∗(Axl − b)]2,

which implies that

dK∗(Axl − b) ≤ t̂

ρ
+
√


ρ(xl)−
ρ(x∗)
ρ

.

This inequality together with the fact liml→∞
ρ(xl) = 
ρ(x∗) yields statement
(ii). ��

Remark From Theorem 4.3, we can see that the inner iterations of the above method
terminates finitely.

We next establish convergence of the outer iterations of the above variant of the
IHT method for (2). In particular, we show that every accumulation point of {xk} is a
local minimizer of (2).

Theorem 4.4 Let {xk} be the sequence generated by the above variant of the IHT
method for solving (2). Then any accumulation point of {xk} is a local minimizer
of (2).

Proof Let

x̃ k = �BIk

(
xk − 1

Lρk

∇
ρk

(
xk
))

.

Since {xk} satisfies (60), it follows from Lemma 2.1 (a) that

∇
ρk

(
xk
)
∈ −NBIk

(
x̃ k
)
+ U(εk), (62)

where Ik = I (xk). Let x∗ be any accumulation point of {xk}. Then there exists a
subsequence K such that {xk}K → x∗. By passing to a subsequence if necessary, we
can assume that Ik = I for all k ∈ K . Let

μk = ρk

[
Axk − b −�K∗(Axk − b)

]
.

We clearly see that

(
μk
)T

�K∗
(

Axk − b
)
= 0. (63)
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Using (62) and the definitions of 
ρ and μk , we have

∇ f
(

xk
)
+ AT μk ∈ −NBI

(
x̃ k
)
+ U (εk) , ∀k ∈ K. (64)

By (59), (60) and the definition of x̃ k , one can observe that

‖x̃ k − xk‖= 1

Lρk

‖g
(

xk; ρk, Ik

)
‖ ≤ εk . (65)

In addition, notice that ‖μk‖ = ρkdK∗(Axk−b), which together with (60) implies that
‖μk‖ ≤ t for all k. Hence, {μk} is bounded. By passing to a subsequence if necessary,
we can assume that {μk}K → μ∗. Using (65) and upon taking limits on both sides
of (63) and (64) as k ∈ K →∞, we have

(μ∗)T �K∗(Ax∗ − b) = 0, ∇ f (x∗)+ AT μ∗ ∈ −NBI (x∗)

In addition, since xk
I = 0 for k ∈ K , we know that x∗I = 0. Also, it follows from (60)

that dK∗(Ax∗ − b) = 0, which implies that Ax∗ − b ∈ K∗. These relations yield

x∗ ∈ Arg min
x∈BI

{ f (x) : Ax − b ∈ K∗},

and hence, x∗ is a local minimizer of (2). ��

5 Concluding remarks

In this paper we studied IHT methods for solving l0 regularized convex cone program-
ming problems. In particular, we first proposed an IHT method and its variant for solv-
ing l0 regularized box constrained convex programming. We showed that the sequence
generated by these methods converges to a local minimizer. Also, we established the
iteration complexity of the IHT method for finding an ε-local-optimal solution. We then
proposed a method for solving l0 regularized convex cone programming by applying
the IHT method to its quadratic penalty relaxation and established its iteration com-
plexity for finding an ε-approximate local minimizer. Finally, we proposed a variant
of this method in which the associated penalty parameter is dynamically updated, and
showed that every accumulation point is a local minimizer of the problem.

Some of the methods studied in this paper can be extended to solve some l0 regular-
ized nonconvex optimization problems. For example, the IHT method and its variant
can be applied to problem (12) in which f is nonconvex and ∇ f is Lipschitz contin-
uous. In addition, it would be interesting to extend the methods of this paper to solve
rank minimization problems and compare them with the methods studied in [14]. This
is left as a future research.

Acknowledgments The author is grateful to Ting Kei Pong for proofreading and suggestions. He would
also like to thank the anonymous referees for pointing out many relevant references and for suggestions to
improve the presentation.
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Appendix

In this appendix we show that if f is smooth strongly convex, there exists L > L f

such that α > 0, which is required in Theorem 3.5. In particular, we will show that
there exist at most 3n2n−1 number of L such that α = 0; in other words, α > 0 for
almost all L > 0 except at most 3n2n−1 number of points. Therefore, α > 0 is almost
sure for a randomly chosen L and an arbitrary L > L f may be sufficient for practical
implementation of the IHT method for solving problem (12).

To this aim, assume that f is smooth strongly convex, which is imposed in The-
orem 3.5, and let α be defined in (29). We now show that α > 0 for almost all
L > 0 except at most 3n2n−1 values. For simplicity, we only consider the case where
−∞ < li < 0 and 0 < ui <∞ for all i . The proof is similar for the other cases. Let
BI , �B(·) and sL(·) be defined in (15)–(17), respectively. Given any I ⊆ {1, . . . , n}
and 1 ≤ i ≤ n, let

hi (L; I ) := [
sL
(
x∗
)]2

i −
[
�B

(
sL
(
x∗
))− sL

(
x∗
)]2

i −
2λ

L
,

where x∗ ∈ Arg min{ f (x) : x ∈ BI }. Clearly, hi (L; I ) is well-defined since x∗ is
unique for each I due to the strongly convexity of f . Notice that α as defined in (29)
can be rewritten as

α = min
I⊆{1,...,n}min

i
|hi (L; I )|. (66)

As we will later show, for each I ⊆ {1, . . . , n}, hi (L; I ) = 0 has at most two positive
roots L for every i ∈ I and at most one positive root L for any i /∈ I . This together
with (66) implies that for each I ⊆ {1, . . . , n} there exist at most

nI := 2|I | + n − |I | = n + |I |

number of L such that α = 0, where |I | denotes the size of I . Therefore, the total
number of L such that α = 0 is at most

∑
I⊆{1,...,n}

nI =
n∑
|I |=0

nI

(
n
|I |

)
= 3n2n−1.

It remains to show that for each I ⊆ {1, . . . , n}, hi (L; I ) = 0 has at most two
positive roots L for every i ∈ I and at most one positive root L for any i /∈ I .
We prove this result by considering all possible cases below. Let i ∈ {1, . . . , n} and
x∗ = arg min{ f (x) : x ∈ BI }.
(1) [∇ f (x∗)]i = 0: one can see that [sL(x∗)]i = x∗i . Hence, [�B(sL(x∗))]i = x∗i

and hi (L; I ) = (x∗i )2 − 2λ
L . It follows that hi (L; I ) = 0 has at most one positive

root L .
(2) [∇ f (x∗)]i �= 0: by the first-order optimality condition for x∗ = arg min{ f (x) :

x ∈ BI }, one can observe that if i /∈ I and [∇ f (x∗)]i < 0, then x∗i = ui ; if
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i /∈ I and [∇ f (x∗)]i > 0, then x∗i = li . Hence, this case can be divided into three
subcases:
(2a) i ∈ I : it follows that x∗i = 0 and [sL(x∗)]i = − 1

L∇i f (x∗). Let

θ = max

(
−∇i f (x∗)

li
,−∇i f (x∗)

ui

)
.

One can observe that

[sL(x∗)]i ∈
⎧⎨
⎩
[li , ui ] if L > θ,

(−∞, li ] if 0 < L ≤ θ and ∇i f (x∗) > 0,

[ui ,∞) if 0 < L ≤ θ and ∇i f (x∗) < 0.

It follows that

[�B(sL(x∗))]i =
⎧⎨
⎩
[sL(x∗)]i if L > θ,

li if 0 < L ≤ θ and ∇i f (x∗) > 0,

ui if 0 < L ≤ θ and ∇i f (x∗) < 0.

Using this relation and [sL(x∗)]i = − 1
L∇i f (x∗), we have

hi (L; I ) =

⎧⎪⎨
⎪⎩

1
L2 [∇i f (x∗)]2 − λ

2L , if L > θ,

−l2
i − 2li∇i f (x∗)

L − λ
2L , if 0 < L ≤ θ and ∇i f (x∗) > 0,

−u2
i − 2ui∇i f (x∗)

L − λ
2L , if 0 < L ≤ θ and ∇i f (x∗) < 0.

Therefore, one can see that hi (L; I ) = 0 has at most two positive roots L .
(2b) i /∈ I and [∇ f (x∗)]i < 0: as mentioned above, x∗i = ui holds for this

subcase. One can observe that for all L > 0,

[sL(x∗)]i = x∗i −
1

L
∇i f (x∗) > ui ,

and hence [�B(sL(x∗))]i = ui . Using this relation and x∗i = ui , we have

hi (L; I ) = u2
i −

2ui∇i f (x∗)
L

− λ

2L
, ∀L > 0.

Thus, hi (L; I ) = 0 has at most one positive root L .
(2c) i /∈ I and [∇ f (x∗)]i > 0: as mentioned above, x∗i = li holds for this

subcase. By a similar argument as subcase (2b), one can have

hi (L; I ) = l2
i −

2li∇i f (x∗)
L

− λ

2L
, ∀L > 0.

Hence, hi (L; I ) = 0 has at most one positive root L .

Combining all cases above, we obtain the result as desired.
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