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1 Introduction

Stochastic dominance is used to compare the distribution of two random variables [20],
thus providing a way to measure risks. Over the past few years the discussion on sto-
chastic programs with stochastic dominance constraints has garnered more and more
attention. Dentcheva and Ruszczyński [3,4] first introduced optimization problems
with stochastic dominance constraints. This is an attractive approach for managing
risks in an optimization setting. While pursuing expected profits, one avoids high
risks by choosing options that are preferable to a random benchmark.

Much of the work on optimization with stochastic dominance has focused on the
case where the underlying random quantities being compared are unidimensional
[5,6,18,21]. More recently, Dentcheva and Ruszczyński [7] proposed the concept of
positive linear second order stochastic dominance which is a special case of mul-
tivariate stochastic dominance and obtained necessary conditions of optimality for
non-convex problems. The notion of multivariate stochastic dominance refers to the
stochastic ordering of random vectors. It can be used as a tool for multicriterion deci-
sion making, since each component of vectors can be interpreted as the uncertain
outcome of a given criterion. Homem-de-Mello and Mehrota [10] expanded the defin-
ition of positive linear second order dominance to polyhedral second order dominance
and called it P-dominance. They proposed a sample average cutting-surface algorithm
for optimization problems with multidimensional polyhedral linear second order sto-
chastic dominance constraints. Hu et al. [12] extended this work and presented a more
general definition of stochastic dominance over random vectors as natural extension
of the polyhedral linear stochastic dominance concept. More recently, Hu et al. [14]
proposed a new concept of stochastically weighted dominance, in which they treat
the vector of weights as a random vector to deal with large number of weights for
bigger problems. They showed that such an approach is much less restrictive than the
deterministic weighted approach. More recently, Armbruster and Luedtke [1] derived
a linear formulation for multivariate second order stochastic dominance which can be
solved with off the shelf linear programming solvers.

Inspired by the notion of multivariate stochastic dominance and our earlier work
on unidimensional second order stochastic dominance constraints particularly dealing
with nonlinear underlying functions, we study stochastic optimization problems with
multivariate second order stochastic dominance (SSD) constraints. Sun et al. [25]
proposed an exact penalization scheme for unidimensional second order stochastic
dominance. In this paper we effectively extend the methods proposed in [25] to sto-
chastic programs with multivariate second order stochastic dominance constraints. We
propose an exact penalization scheme for such problems and solve the penalized prob-
lem by the level function method proposed by Lemarechal et al. [17] and extended by
Xu [27] and a modified cutting plane method and compare them to the cutting surface
method proposed by Homem-de-Mello and Mehrota [10] and the linearized method
proposed by Armbruster and Luedtke [1].

The main contribution of this paper can be summarized as follows:

• We develop a penalization scheme for stochastic programs with multivariate second
order stochastic dominance constraints. We do so by exploiting Clarke’s exact
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penalty function theorem [2, Proposition 2.4.3] and Robinson’s error bound [23].
We reformulate the multivariate stochastic dominance constraints and demonstrate
that the reformulated problem satisfies the Slater constraint qualification (SCQ)
under some moderate conditions. Furthermore, an exact penalization scheme based
on L∞-norm is derived. Based on the exact penalization formulations, we apply
a well known level function method in nonsmooth optimization as discussed in
[17,27] to the penalized problems. An obvious advantage of this approach is that
we can effectively deal with excessive number of constraints, non-smoothness in
the constraints and nonlinearity of the underlying functions.

• A modified cutting plane method is also proposed. This cutting plane method differs
from those in the literature [24] in that it applies to the maximum of the constraint
functions rather than each constraint function. Moreover, our modified cutting plane
method uses the cutting plane representation proposed in [16], so it differ from the
methods proposed in [10,12]. The idea of applying the cutting-plane method to the
maximum of the constraint functions is similar to the idea in algorithm proposed
by Fábián et al. [8]. However, their method is applied to linear models while our
modified cutting plane method is also applicable to nonlinear case. Therefore we
may regard our algorithm as an extension of theirs. Furthermore, the proposed
numerical methods provides an alternative approach to the existing cutting surface
method for multivariate stochastic dominance introduced by Homem-de-Mello and
Mehrota [10] and the linearized method proposed by Armbruster and Luedtke [1].

• We examine the efficiency of the penalization scheme and the numerical methods
by presenting an academic problem, a generic budget allocation problem, and a
real world portfolio optimization problem. The budget allocation model is inspired
by the homeland security application of Hu et al. [13] and the budget allocation
example of Armbruster and Luedtke [1], in which a limited budget must be allocated
to a set of possible projects, and the allocation must stochastically dominate a given
benchmark. The proposed method proved to be more efficient in sense of CPU
time when solving larger problems compared to the linearized method proposed
in [1]. For the portfolio optimization problem, we use real world test data of three
indices to set up backtest and out-of-sample test to inspect the performance of
the generated portfolio and compare it to the benchmark portfolio and a portfolio
strategy generated by Markowitz model. The results suggested that the portfolio
strategy generated by the proposed model significantly outperforms the benchmark
portfolio and the portfolio generated by Markowitz model.

The rest of this paper is organized as follows. In Sect. 2, we define the optimiza-
tion problem and introduce the exact penalization schemes. In Sect. 3, we discuss the
solution method and correspondingly the algorithms. In Sect. 4, we apply the pro-
posed method to some portfolio optimization problems and report some numerical
test results. Finally, we present conclusions in Sect. 5.

2 Problem Formulation

Let’s start with a note of notation that are used in the following sections. We write
xT y for the scalar product of two vectors x and y, and ‖ · ‖ for the Euclidean norm,
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while ‖ · ‖∞ for the maximum norm of continuous functions defined over a set T .
d(x,D) := infx ′∈D ‖x − x ′‖ and d∞(x,D) := infx ′∈D ‖x − x ′‖ denote the distance
from a point x to a set D in Euclidean norm and L∞-norm, respectively. For a real
valued smooth function f , we use ∇ f (x) to denote the gradient of f at x . The expected
value operator is denoted by E. The standard symbol L1(�,F , P; R

m) (shortly Lm
1 )

denotes the space of all integrable mappings X from � to R
m . If the values are taken

in R the superscript m will be omitted.
The concept of stochastic ordering for scalar random variables has been introduced

in statistics and further applied and developed in economics [9]. Let g(x, ξ) be a
concave function, with decision vector x and random variable ξ . It is said that g(x, ξ)
stochastically dominates a random variable Y (ξ) ∈ L1 in the first order, denoted by
g(x, ξ) �1 Y (ξ) if

F(g(x, ξ); η) ≤ F(Y (ξ); η), ∀η ∈ IR, (2.1)

where F(g(x, ξ); η) and F(Y (ξ); η) are the cumulative distribution functions of
g(x, ξ) and Y (ξ), respectively. Let F2(g(x, ξ); ·) be defined as

F2(g(x, ξ); η) =
η∫

−∞
F(g(x, ξ);α)dα for η ∈ IR.

Similarly, we say that g(x, ξ) dominates in the second order a random variable Y (ξ) ∈
L1 if

F2(g(x, ξ); η) ≤ F2(Y (ξ); η), ∀η ∈ IR. (2.2)

We denote the relation (2.2) as g(x, ξ) �(2) Y (ξ).

Definition 2.1 A random vector G(x, ξ) ∈ Lm
1 linearly dominates a random vector

Y (ξ) ∈ Lm
1 in positive linear second order, written as G(x, ξ) �Plin

(2) Y (ξ), if

νT G(x, ξ) �P
(2) ν

T Y (ξ), ∀ν ∈ IRm+. (2.3)

In the same manner one can define the first and higher order linear dominance relations:
G(x, ξ) �Plin

(k) Y (ξ), k = 1, 2, . . . provided that (k − 1)st moments of G(x, ξ) and
Y (ξ) are finite.

It is clear that the set of scalarizing vectors ν in (2.3) can be truncated, by imposing
the normalization constraint ν ∈ S, where S is the simplex:

S = {
ν ∈ IRm+ : ν1 + ν2 + · · · + νm = 1

}
. (2.4)

This restriction does not change the relation (�Plin
(2) ).

In this paper, we consider the following optimization problem with multivariate
second order stochastic dominance (SSD) constraints:

min
x∈X

E[ f (x, ξ)]
s.t νT G(x, ξ) �Plin

(2) νT Y (ξ), ∀ν ∈ S,
(2.5)
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where f : R
n × R

k → R is convex continuous function and G : R
n × R

k → R

is concave continuous function, both in x and ξ , x ∈ X is a decision vector with X
being a nonempty convex subset of R

n and ξ : � → � ⊂ R
k is a random vector

defined on probability space (�,F , P) with support �, E[·] denotes the expected
value w.r.t. the probability distribution of ξ . The random variable Y (ξ) plays the role
of a benchmark outcome. For example, one may consider Y (ξ) = G(x̄, ξ), where
x̄ ∈ X is some reasonable value of the decision vector, which is currently employed in
the system. We shall investigate the case when G(x, ξ) and Y (ξ) are m-dimensional
random vectors, rather than scalar variables.

Using the properties of second order dominance [22,26] and the definition of posi-
tive linear dominance, we reformulate the multivariate stochastic dominance constraint
in (2.5) as,

E[(νT η − νT G(x, ξ))+] ≤ E[(νT η − νT Y (ξ))+], ∀(η, ν) ∈ IRm × S,

where (νT η − νT G(x, ξ))+ = max(νT η − νT G(x, ξ), 0).
As it was mentioned earlier, multivariate stochastic dominance can be used as a tool

in multicriterion decision making, since each component of vectors can be interpreted
as the uncertain outcome of a given criterion, so it would be beneficial to take η to be
a vector instead of a scalar variable.

Consequently, we reformulate the optimization problem (2.5) as a stochastic semi-
infinite programming problem:

min
x∈X

E[ f (x, ξ)]
s.t. H(x, η, ν) := E[(νT η − νT G(x, ξ))+]

−E[(νT η − νT Y (ξ))+] ≤ 0, ∀(η, ν) ∈ IRm × S.

(2.6)

Our focus is on numerical methods for solving the stochastic semi-infinite program-
ming problem (2.6). There are three issues to deal with: (a) the expectation of random
functions in both the objective and constraints, (b) the infinite number of constraints,
(c) the non-smoothness resulting from the max functions.

Homem-de-Mello and Mehrota [10] introduced a more general notion of dominance
which includes positive linear dominance as a particular case. They considered the case
where the set S is assumed to be a polyhedron. By using the polyhedral properties they
proposed a cutting-surface algorithm. They dealt with the constraints by considering
a cut generation, and solved the problem by a branch-and-cut algorithm. Although
the proposed cutting-surface method is effective, it is computationally demanding. In
particular, even for the case of second-order stochastic dominance, which induces a
convex feasible region, their algorithm requires global optimization of a nonconvex
problem as a subproblem. Furthermore, Armbruster and Luedtke [1] proposed to use
a different notion of multivariate stochastic dominance as a constraint in a stochastic
optimization model. They derived an LP formulation for an SSD constraint which
could be solved using off-the-shelf linear programming solvers.

In what follows, we propose an alternative approach for the stochastic programming
problem with positive linear second order stochastic dominance constraint. Specifi-
cally, we propose an exact penalty function to move the infinite number of constraints
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to the objective and solve the penalized problem using the level function method and
a modified cutting-plane method.

2.1 Exact Penalization with L∞-norm

In this section we develop an exact penalization scheme for solving problem (2.6). We
do so through Robinson’s error bound for convex systems [23] and Clarke’s penaliza-
tion theorem [2, Proposition 2.4.3]. A crucial condition needed is SCQ. Unfortunately
the problem does not satisfy the condition and it may be satisfied through some refor-
mulation. In this section, we go through these technical details, most of which are
extended from similar results of single variate case in [25].

We focus on the case when ξ follows a discrete distribution, that is

min
x

N∑
i=1

pi f (x, ξ i )

s.t.
N∑

i=1

pi (ν
T η−νT G(x, ξ i ))+−

N∑
i=1

pi (ν
T η−νT Y (ξ i ))+ ≤0, ∀(η, ν)∈ IRm ×S,

x ∈ X,
(2.7)

where the random variable ξ has a finite distribution, that is, P(ξ = ξ i ) = pi , for
i = 1, . . . , N .

Problem (2.7) is said to satisfies the SCQ if there exists x0 ∈ X and ε > 0 such that

N∑
i=1

pi (ν
T η − νT G(x0, ξ))+ −

N∑
i=1

(νT η − νT Y (ξ))+ < −ε, ∀(η, ν) ∈ IRm × S.

(2.8)
Unfortunately, this kind of constraint qualification is not satisfied. To see this, as
discussed in [25], for a fixed ν ∈ S let

νT Y (�) := {νT Y (ξ i ) : i = 1, . . . , N },

and
C(ν) := min{νT Y (ξ1), . . . , νT Y (ξ N )}. (2.9)

For any νT η ≤ C(ν), it can be verified that E[(νT η − νT Y (ξ))+] = 0. For those η,
the feasible constraint of problem (2.7) reduces to

E[(νT η − νT G(x, ξ))+] − E[(νT η − νT Y (ξ))+] = 0,

because the left hand term is non-negative. Consequently, there does not exist a feasible
point x0 ∈ X such that (2.8) holds.

Dentcheva and Ruszczyński [3] tackled this issue in unidimensional case by con-
sidering a relaxed problem which restrict η to take value from a specified interval
[a, b]. In other words, the feasible region of the original problem is enlarged. They
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showed that under some conditions, it is possible to choose a set C such that the relaxed
problem satisfies SCQ. For example, if there exists a point x0 ∈ X such that

G(x0, ξ) �(1) Y (ξ),

and for every ξ ∈ �, G(x0, ξ) > η∗, where η∗ = min{Y (ξ1), . . . ,Y (ξ N )}, then x0 is
feasible point of the relaxed problem and

η∫

−∞
F1(G(x0, ξ);α)dα <

η∫

−∞
F1(Y (ξ);α)dα,

for all η > η∗. In such case, it is easy to verify that the SCQ holds for any a > η∗,
while SCQ would fail if [a, b] contains Y (�).

More recently, Homem-de-Mello and Mehrota [10] proposed an alternative
approach to deal with the failure of constraint qualification by considering ε-feasible
solutions:

minx E[ f (x, ξ)],
s.t. E[(νT η − νT G(x, ξ))+] ≤ E[(νT η − νT T (ξ))+] + ε, ∀(η, ν) ∈ IRm × S,

where ε is a small positive number. The relaxed problem (2.1) satisfies SCQ as long as
the original problem is feasible. However, it must be shown that the feasible solution set
of the relaxed problem approximates the feasible solution set of the original problem,
which often in turn requires the original problem to satisfy certain regularity conditions
such as lower semicontinuity of the feasible solution set of the relaxed problem.

In what follows, we propose an alternative way to tackle this problem by reformu-
lating problem (2.6) using [3, Proposition 3.2] and [12] as follows:

min
x

N∑
i=1

pi f (x, ξ i )

s.t.
N∑

i=1

pi (ν
T η j − νT G(x, ξ i ))+ ≤ γ j (ν), ∀ν ∈ S, j = 1, . . . , N ,

x ∈ X,

(2.10)

where η j := Y (ξ j ) and γ j (ν) := ∑N
i=1 pi (ν

T η j − νT Y (ξ i ))+. Note that, the refor-
mulated problem does not satisfy the SCQ either.

Following [25], we use N to denote the power set of {1, . . . , N } excluding the
empty set and for j = 1, . . . , N , define

ψ j (x, ν) := max
J ∈N

∑
i∈J

pi (ν
T η j − νT G(x, ξ i ))− γ j (ν). (2.11)

We would like to represent the constraints in (2.10) in terms ofψ j (x, ν). The following
lemma addresses this.

123



118 Appl Math Optim (2014) 70:111–140

Lemma 2.1 For j = 1, . . . , N, let

ϕ j (x, ν) := max
J ∈N

∑
i∈J

pi (ν
T η j − νT G(x, ξ i )).

Then
N∑

i=1

pi (ν
T η j − νT G(x, ξ i ))+ = max{ϕ j (x, ν), 0}, (2.12)

for each fixed ν ∈ S.

Proof Let ν ∈ S be fixed, we consider two cases. Case 1. ϕ j (x, ν) ≤ 0, and Case 2.
ϕ j (x, ν) > 0.

Case 1. ϕ j (x, ν) ≤ 0 implies that max{ϕ j (x, ν), 0} = 0 and νT η j −νT G(x, ξ i ) ≤
0, for j = {1, . . . , N }. This implies that

N∑
i=1

pi (ν
T η j − νT G(x, ξ i ))+ = 0,

hence (2.12) holds.
Case 2. Now consider case when ϕ j (x, ν) > 0. There exists a nonempty subset

J ⊆ {1, . . . , N } such that

ϕ j (x, ν) =
∑
i∈J

pi (ν
T η j − νT G(x, ξ i )) > 0.

It suffices to show that

∑
i∈J

pi (ν
T η j − νT G(x, ξ i )) =

N∑
i=1

pi (ν
T η j − νT G(x, ξ i ))+,

or equivalently J consists of every index i with

νT η j − νT G(x, ξ i ) > 0.

Note that, if J does not include such an index, then adding it to J would increase the
quantity

∑
J ∈N pi (ν

T η j − νT G(x, ξ i )). This contradicts the fact that ϕ j (x, ν) is the
maximum. Likewise, J does not consist of an index i with

νT η j − νT G(x, ξ i ) < 0,

as removing the index will also increase the quantity
∑

J ∈N pi (ν
T η j −νT G(x, ξ i )).

This completes the proof. ��
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By Lemma 2.1, we can write (2.10) as

min
x

N∑
i=1

pi f (x, ξ i )

s.t. ψ j (x, ν) ≤ 0, ∀ν ∈ S, j = 1, . . . , N ,
x ∈ X.

(2.13)

Compared to (2.10), a clear benefit of (2.13) is that it may satisfy SCQ under some
circumstances.

Assumption 2.1 f (x, ξ i ) and G(x, ξ i ) are continuously differentiable w.r.t. x for
i = 1, . . . , N . Moreover, they are globally Lipschitz over X , that is, there exists
κ(ξ) < +∞ such that

max
(∥∥∥∇x f (x, ξ i )

∥∥∥ ,
∥∥∥∇x G(x, ξ i )

∥∥∥
)

≤ κ(ξ i ), i = 1, . . . , N .

We are now ready to state the main results.

Theorem 2.1 Let G(x, ξ) and Y (ξ) be defined as in problem (2.7) and ψ j (x, ν) be
defined as in (2.11). Let

ψ̄ j (x) := max
ν∈S

ψ j (x, ν) for j = 1, . . . , N .

Then

(i) νT G(x, ξ) �(2) ν
T Y (ξ) for all ν ∈ S if and only if

ψ̄ j (x) ≤ 0, for j = 1, . . . , N ; (2.14)

(ii) problems (2.10) and (2.13) are equivalent;
(iii) if there exists a feasible point x̄ such that νT G(x̄, ξ) �(1) νT Y (ξ) and

νT G(x̄, ξ) > C(ν), where C(ν) is defined as in (2.9) for all ξ ∈ � and for
all ν ∈ S, then the system of inequalities (2.14) satisfies the SCQ.

Proof The proof is similar to that of [25, Theorem 2.1] except that we have to deal
with parameter ν.

Part (i). By [3, Proposition 3.2], νT G(x, ξ) �(2) ν
T Y (ξ) for all ν ∈ S if and only

if

max
ν∈S

N∑
i=1

pi (ν
T η j − νT G(x, ξ i ))+ − γ j (ν) ≤ 0, for j = 1, . . . , N , (2.15)

or equivalently for j = 1, . . . , N ,

max
ν∈S

max

{
N∑

i=1

pi (ν
T η j − νT G(x, ξ i ))+ − γ j (ν), 0

}
= 0.
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By (2.12),

max

{
N∑

i=1

pi (ν
T η j −νT G(x, ξ i ))+−γ j (ν), 0

}
=max

{
max

{
ϕ j (x, ν), 0

}−γ j (ν), 0
}
.

Note that for any value a ∈ IR and r > 0, it is easy to verify that

max{max{a, 0} − r, 0} = max{a − r, 0}. (2.16)

Using (2.16), we have that

max{max{ϕ j (x, ν), 0} − γ j (ν), 0} = max{ϕ j (x, ν)− γ j (ν), 0} = max{ψ j (x, ν), 0}.

The last equality is due to the definition of ψ j . The discussion above demonstrates
that (2.15) is equivalent to (2.14) and hence the conclusion.

Part (ii) follows straightforwardly from Part (i) in that the feasible sets of the two
problems coincide, i.e.,

{
x ∈ X : max

ν∈S

N∑
i=1

pi (ν
T η j − νT G(x, ξ i ))+ − γ j (ν) ≤ 0

}
= {x ∈ X : ψ̄ j (x) ≤ 0}.

Part (iii). Let C(ν) be defined as in (2.9) and γ̂ (ν) := ∑N
i=1 pi (C(ν) −

νT Y (ξ i ))+. Then γ̂ (ν) = ∑N
i=1 pi (C(ν)−νT Y (ξ i ))+ = 0. Likewise, the assumption

νT G(x̄, ξ) > C(ν) for ξ ∈ � implies that

max
ν∈S

max
J ∈N

N∑
i∈J

pi (C(ν)− νT G(x̄, ξ i )) < 0.

This shows

max
ν∈S

⎡
⎣max

J ∈N

∑
i∈J

pi (C(ν)− νT G(x̄, ξ i ))− γ̂ (ν)

⎤
⎦ < 0. (2.17)

For each fixed ν ∈ S, let νT η1, . . . , ν
T ηN , where η j := Y (ξ j ) denote the N elements

in set νT Y (�),

νT η1 ≤ νT η2 ≤ · · · ≤ νT ηN .

Then inequality (2.17) means that

ψ̄1(x̄) :=max
ν∈S

⎡
⎣max

J∈N
∑
i∈J

pi (ν
T η1−νT G(x̄, ξ i ))−

N∑
i=1

pi (ν
T η1−νT Y (ξ i ))+

⎤
⎦<0.

123



Appl Math Optim (2014) 70:111–140 121

In what follows, we show that

ψ̄ j (x̄) < 0, for j = 2, . . . , N .

By definition, for j = 2, . . . , N

ψ̄ j (x̄) = max
ν∈S

⎡
⎣max

J ∈N

N∑
i∈J

pi (ν
T η j − νT G(x̄, ξ i ))−

N∑
i=1

pi (ν
T η j − νT Y (ξ i ))+

⎤
⎦

≤ max
ν∈S

⎡
⎣max

⎧⎨
⎩max

J ∈N

N∑
i∈J

pi (ν
T η j − νT G(x̄, ξ i )), 0

⎫⎬
⎭

−
N∑

i=1

pi (ν
T η j − νT Y (ξ i ))+

]

= max
ν∈S

[
max

{
ϕ j (x, ν), 0

} − γ j (ν)
]

=
(2.12)

max
ν∈S

[
N∑

i=1

pi ((ν
T η j − νT G(x̄, ξ i ))+ − (νT η j − νT Y (ξ i ))+)

]

= max
ν∈S

⎡
⎢⎣
νT η j∫

−∞
(F1(ν

T G(x̄, ξ), α)− F1(ν
T Y (ξ), α))dα

⎤
⎥⎦ . (2.18)

The equality (2.18) is due to the equivalent representation of second order stochastic
dominance [7].

Assume without loss of generality that νT η1 < νT η2 (otherwise ψ̄2(x̄) = ψ̄1(x̄) <
0). Let νT ηmin ∈ (νT η1,min{minξ∈� G(x̄, ξ i ), νT η2}) for a given ν. Note that by
assumption νT η1 < min{minξ∈� G(x̄, ξ i ), νT η2}, νT ηmin exists. Then

max
ν∈S

⎡
⎢⎣
νT η j∫

−∞
(F1(ν

T G(x, ξ), α)− F1(ν
T Y (ξ), α))dα

⎤
⎥⎦

= max
ν∈S

⎡
⎢⎣
νT ηmin∫

−∞
(F1(ν

T G(x̄, ξ), α)− F1(ν
T Y (ξ), α))dα

+
νT η j∫

ηmin

(F1(ν
T G(x, ξ), α)− F1(ν

T Y (ξ), α))dα

⎤
⎥⎦ .
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Note that

max
ν∈S

⎡
⎢⎣
νT ηmin∫

−∞
(F1(ν

T G(x̄, ξ), α)−F1(ν
T Y (ξ), α))dα=0− p1(ν

T ηmin −νT η1)

⎤
⎥⎦<0,

where p1 is the probability that Y (ξ) takes value η1. On the other hand, νT G(x̄, ξ) �(1)
νT Y (ξ) implies

max
ν∈S

⎡
⎢⎣
νT η j∫

η̄

(F1(ν
T G(x̄, ξ), α)− F1(ν

T Y (ξ), α))dα

⎤
⎥⎦ < 0.

This shows that

max
ν∈S

⎡
⎢⎣
νT η j∫

−∞
(F1(ν

T G(x̄, ξ), α)− F1(ν
T Y (ξ), α))dα

⎤
⎥⎦ < 0, for j = 2, . . . , N .

(2.19)
The conclusion follows by combining (2.17)–(2.19). ��
It might be helpful to discuss how strong the conditions in part (iii) of Theorem 2.1 are.
Let us consider the case when ξ follows a finite distribution, that is,� = {ξ1, . . . , ξ N }.
Suppose that there exist a point x̄ ∈ X and i0 ∈ {1, . . . , N } such that for k = 1, . . . ,m

Gk(x̄, ξ
i ) > Yk(ξ

i ), (2.20)

which means at each scenario G(x̄, ·) dominates the benchmark Y (·) in the multiob-
jective sense. Suppose further

G(x̄, ξ i ) � Y (ξ i0) (2.21)

for i = 1, . . . , N , where � is a natural order relation on the m-dimensional space, that
is, there exists a scenario i0 in which the benchmark value Y (ξ i0) is strictly dominated
by the value of G(x̄, ξ) in the multiobjective sense in any scenario ξ ∈ �. Under
condition (2.20), we have for any ν ∈ S,

νT G(x̄, ξ i ) > νT Y (ξ i )

and under additional condition (2.21)

min
i∈{1,...,N } ν

T G(x̄, ξ i ) > min
i∈{1,...,N } ν

T Y (ξ i ).

The assumptions made in the theorem above are not overly strong and depend mostly
on the choice of benchmark Y .
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We now move on to discuss penalty method for solving (2.13). One popular penalty
scheme in optimization is based on the L∞-norm. Here we consider such penalization
scheme for (2.13) as follows:

min
x

N∑
i=1

pi f (x, ξ i )+ ρ max
j∈{1,...,N }(max

ν∈S
ψ j (x, ν))+, (2.22)

and for problem (2.10)

min
x∈X

N∑
i=1

pi f (x, ξ i )+ ρ max
j∈{1,...,N }

(
max
ν∈S

N∑
i=1

pi (ν
T η j − νT G(x, ξ i ))+ − γ j (ν)

)

+
.

(2.23)
In what follows, we show that the two penalty schemes are equivalent, and estimate

the penalty parameter. This will effectively justify the exact penalization function
(2.23) for problem (2.10), although it does not satisfy the SCQ.

Theorem 2.2 Assume that the problem (2.22) satisfies the SCQ and Assumption 2.1
holds; the feasible set of problem (2.13) is bounded. Then

(i) problem (2.22) and (2.23) are equivalent;
(ii) there exist positive constants δ̄ and D̄ such that when

ρ >

N∑
i=1

piκ(ξ
i )δ̄−1 D̄, (2.24)

the set of optimal solutions of (2.13) coincide with that of (2.22) and the set of
optimal solutions of (2.10) coincides with that of (2.23).

Proof Part (i). Through Lemma 2.1 and (2.16), the equivalence of the problem (2.22)
and (2.23) can be verified as follows

max
j∈{1,...,N }(max

ν∈S
ψ j (x, ν))+

= max
j∈{1,...,N }

⎡
⎣max
ν∈S

max
J ∈N

∑
i∈J

pi (ν
T η j − νT G(x, ξ i ))− γ j (ν)

⎤
⎦

+

= max
j∈{1,...,N }

[
max
ν∈S

N∑
i=1

pi (ν
T η j − νT G(x, ξ i ))+ − γ j (ν)

]

+
.

Part (ii). Let Q denote the feasible set of problem (2.13) and define

�(x, ν) := (ψ1(x), . . . , ψN (x))
T .

Since Q is bounded,
∑N

i=1 pi f (x, ξ i ) is Lipschitz continuous with modulus∑N
i=1 piκ(ξ

i ), problem (2.13) is convex and satisfies the SCQ. By virtue of
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[25, Lemma 3.1], there exists real number δ̄ > 0 and D̄ > 0 such that

ρ̄ >

N∑
i=1

piκ(ξ
i )δ̄−1 D̄,

the set of optimal solutions of problem (2.10) coincides with that of (2.23). Moreover,
since problems (2.13) and (2.10) are equivalent, and problems (2.22) and (2.23) are
also equivalent, the set of optimal solutions of problem (2.13) coincides with that of
(2.22). ��

In the rest of this paper, we apply the level function methods, and a modified
cutting-plane method to solve the penalized optimization problem (2.22).

3 Solution Methods

In this section we discuss numerical methods for solving optimization problem (2.22).
Specifically, we apply the following methods: the level function method and a modified
cutting plane method and compare them to the cutting surface algorithm in [10] and
the linearized method proposed in [1].

3.1 Level Function Methods

The level function method is popular numerical approach for solving deterministic
nonsmooth optimization problems. It has been proposed by Lemaréchal et al. [17] for
solving nonsmooth convex optimization problems and extended by Xu [27] for solv-
ing quasiconvex optimization problems. Meskarian et al. [19] recently applied a level
function method to sotchastic programming problems with scalar second order sto-
chastic dominance constraints where the distribution of ξ is discrete. In this subsection,
we apply the level function method in [27] to problems (2.22).

It is well known [27] that a subgradient of the convex function can be used to
construct a level function. In what follows, we apply the level function method to the
exactly penalized problems (2.22). Define ϑ(x, ρ) as follows:

ϑ(x, ρ) :=
N∑

i=1

pi f (xk, ξ
i )+ ρ max

j∈{1,...,N }(max
ν∈S

ψ j (x, ν))+.

Let ζk ∈ ∂xϑ(xk, ρ), then

σxk (x) = ζ T
k (x − xk)/ ‖ζk‖ ,

is a level function of ϑ(x, ρ) at xk . Since the projected level function (PLF) Algorithm
is a classical algorithm we are not going to present the algorithm, however we refer
the reader to [27] for the outline of the algorithm steps.
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Theorem 3.1 Let {xk} be generated by (PLF) Algorithm. Assume that f (x, ξ) and
components of G(x, ξ) are Lipschitz continuous functions with modulus L f (ξ) and
LG(ξ) respectively, where E[L f (ξ)] < +∞, E[LG(ξ)] < +∞ and that the sequence
of level functions {σxk (x)} is uniformly Lipschitz with constant M. Then

�(k) ≤ ε, for k > M2ϒ2ε−2λ−2(1 − λ2)−1,

where ϒ represents the diameter of the solution set X, ε and λ are given in (PLF)
Algorithm.

Proof It is easy to observe that the Lipschitz continuity of G(x, ξ)w.r.t. x with modulus
LG(ξ) implies the Lipschitz continuity of ψ j (x, ν) with the same Lipschitz modulus
E[LG(ξ)]. Along with the Lipschitzness of f (x, ξ), this shows ϑ(x, ρ) is Lipschitz
continuous with modulus E[L f (ξ)]+ρE[LG(ξ)]. On the other hand, since ϑ(x, ρ) is
convex, the function σxk (x) constructed at each iterate is a level function with modulus
1. The rest follows from Xu [27, Theorem 3.3]. ��

In (PLF) Algorithm, penalty parameter in ϑ(x, ρ) is fixed. In some cases, it might
be difficult to estimate a good penalty parameter. One way to tackle this issue is to
start with estimate of penalty parameter and solve the resulting penalized problem
with the above algorithms. The feasibility of the obtained solution is checked: if it is
feasible the optimal solution is obtained, otherwise, the penalty parameter is increased
the process is repeated. This kind of procedure in known as Simple Penalty Function
Method in the literature of optimization, see for instance An alternative way to deal
with the issue of penalty parameters is to solve the following problem

min
x∈X

max
j∈{1,...,N }

(
max
ν∈S

(
N∑

i=1

pi (ν
T η j − νT G(x, ξ i ))+ − γ j (ν)

))
. (3.1)

This can be achieved by applying (PLF) Algorithm directly. The optimal value of (3.1)
effectively gives an upper bound for parameter δ̄ (see Theorem 2.2. Note that these
parameters are dependent of the Slater condition of (2.13).

3.2 Modified Cutting Plane Algorithm

Rodulf and Ruszczyński [24] and Fábián et al. [8] proposed cutting plane methods to
solve stochastic program with second order stochastic dominance constraints when the
underlying random variable has finite distribution. This method is an extension of the
cutting-plane method developed by Haneveld and Ven Der Vlerk [16] for integrated
chance constraints (ICC). In what follows, we consider a modification of the procedure
where a cut is constructed.
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Reformulate the optimization problem (2.13) as:

min
x,z

z

s.t. ψ(x, ν) := max
j∈{1,...,N }ψ̄ j (x) ≤ 0,

N∑
i=1

pi f (x, ξ i )− z ≤ 0,

x ∈ X, z ∈ Z ,

(3.2)

where ψ̄ j (x) := maxν∈S ψ j (x, ν), Z is a closed convex compact subset of IR such
that

{
N∑

i=1

pi f (x, ξ i ) : x ∈ X

}
⊂ Z .

Note that, the existence of set Z is due to the fact that f (x, ξ i ), i = 1, . . . , N , is
a continuous function and X is a compact set. Also the components of G(x, ξ) are
concave and f (x, ξ) is convex w.r.t. x , which implies that ψ(x, ν) is convex w.r.t. x
and

∑N
i=1 pi f (x, ξ i )− z is convex w.r.t. (x, z). We apply the classical cutting-plane

method [15] to both ψ(x, ν) and
∑N

i=1 pi f (x, ξ i ) − z. Specifically, we propose the
following algorithm.

Algorithm 3.1 (Modified cutting plane algorithm) Define the optimization problem
at iteration t as

min
x,z

z

s.t. x ∈ X, z ∈ Z ,
(x, z) ∈ Pt := {

(x, z) ∈ X × Z : aT
l x ≤ bl , dT

l x + el z ≤ kl , l = 1, . . . , t
}
.

(3.3)
Set t := 0, P0 := X × Z . For each t , carry out the following.

Step 1. Solve the optimization problem (3.3), finding the optimal solution (xt , zt ).
If the problem (3.3) is infeasible, stop. Otherwise go to Step 2.
Step 2. Find the solution to max j∈{1,...,N } ψ̄ j (x) and find optimal solution (η∗, ν∗),
and set γ (ν∗

t ) := ∑N
i=1 pi (ν

∗
t

T η∗
t − ν∗

t
T Y (ξ i ))+. If

N∑
i=1

pi (ν
∗T
η∗ − ν∗T G(x, ξ i ))+ ≤ γ (ν∗

t ),

and

N∑
i=1

pi f (xt , ξ
i )− zt ≤ 0,

stop: (xt , zt ) is an optimal solution. Otherwise go to Step 3.
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Step 3. Construct the set

Jt :=
{

i : (ν∗T
η∗ − ν∗T G(x, ξ i )) > 0

}
,

and the feasibility cuts aT
t+1x ≤ bt+1, and dT

t+1x + et+1z ≤ kt+1, where

at+1 = −
∑
i∈Jt

pi∇xν
∗T G(xt , ξ

i ),

bt+1 =
∑
i∈Jt

pi (−∇xν
∗T G(xt , ξ

i )T xt + ν∗T G(xt , ξ
i )− η∗)+ γ (ν∗),

dt+1 = −∇x f (x, ξ), et+1 = −1, kt+1 = −∇x f (xt , ξ)
T xt + f (xt , ξ).

and set

Pt+1 = Pt ∩
{
(x, z) ∈ X × Z : aT

t+1x ≤ bt+1, dT
t+1x + et+1z ≤ kt+1

}
.

Proceed with iteration t + 1.

Remark 1 We make a few comments about Algorithm 3.1.

(i) Algorithm 3.1 differs from the cutting-plane method discussed in [8,24] in the
way how feasible cuts are constructed. In the former, N constraints/cuts are added
at each iteration, these cuts are not necessarily the extreme support of ψ(x, ν)
at xt . In Algorithm 3.1, we exclude all those non-support constraints, instead we
include a cut at the extreme support (to ψ(x, ν) at xt ) which we believe is the
most effective and a single linear cut is adequate to ensure the convergence. All
other non-support constraints/cuts may potentially reduce numerical efficiency.
This approach is similar to the algorithm proposed by Fábián et al. [8]. Note that,
Fábián’s algorithm is applied to linear models while Algorithm 3.1 is applicable
to the nonlinear case. Therefore, we may regard the latter as an extension of the
former.

(ii) In Step 2 of the above algorithm, we solve the following DC-program

max
(η,ν)∈[a,b]×S

ψ(η, ν) :=
N∑

i=1

pi [(νT η − νT G(xt , ξ
i ))+ − (νT η − νT Y (ξ i ))+],

where [a, b] ⊇ {η1, . . . , ηN } and S is defined as in (2.4).
A function is called DC if it minimizes difference of two convex functions over a
closed convex set. There has been extensive work done on development of solu-
tion methods for such problems, we refer interested reader to [11] and references
therein.
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(iii) When f is linear w.r.t. x , there is no need to introduce additional variable z
because the objective is linear.

We now present the convergence results.

Theorem 3.2 Let {(xt , zt )} be a sequence generated by the Algorithm 3.1. Let

P := {(x, z) ∈ X × Z : ψ(x, ν) ≤ 0, E[ f (x, ξ)] − z ≤ 0} ⊂ X × Z ,

whereψ(x, ν) is defined in problem (3.2). Assume: (a) f (x, ξ) and each of the compo-
nent gi (x, ξ) of G(x, ξ) are continuously differentiable and concave w.r.t. x for almost
every ξ , (b) X × Z ∈ R

n is a compact set, (c) there exists a positive constant L such
that the Lipschitz modulus of E[ f (x, ξ)] and ψ(x, ν) are bounded by L on X × Z,
(d) the set P is nonempty. Then, {(xt , zt )} contains a subsequence which converges to
a point (x∗, z∗) ∈ P, where (x∗, z∗) is the optimal solution.

The proof of Theorem 3.2 is included in the Appendix.
In next section, we investigate the efficiency of the above algorithms and compare

them to the cutting surface algorithm proposed in [10] and the linearized method
proposed in [1].

4 Numerical Tests

We have carried out an academic test, a budget allocation example as well as a real
world portfolio optimization problem on the proposed model and algorithms by using
MATLAB 7.10 and IBM ILOG CPLEX 12.4 installed on a HP Notebook PC with
Windows 7 operating system, and Intel Core i7 processor.

We consider primarily an academic test problem introduced in [10, Sect. 2.2] to
examine the penalization approach and efficiency of our proposed methods. Addition-
ally, for comparison purposes we consider a budget allocation problem as discussed in
[1]. Finally, we consider a portfolio optimization problem with real world test data to
further investigate the efficiency of the proposed stochastic programming model with
multivariate SSD constraint and compare it to the return generated by a Markowitz
model and corresponding indices. Furthermore, to estimate the penalty parameter we
have solved the optimization problem (3.24) using (PLF) Algorithm as discussed on
page 12. Another approach is to integrate the Simple Penalty Function Method in
(PLF) Algorithm, to find a suitable penalty parameter. We solved the reformulated
problem with (PLF) Algorithms, 3.1, and the cutting-surface algorithm in [10]. For
(PLF) Algorithm we use ε = 0.0001 and λ = 0.5. In the rest of this section we report
the corresponding results.

4.1 An Academic Example

Example 4.1 Homem-de-Mello and Mehrota [10] considered the following model
using stochastic dominance:
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maxx 3x1 + 2x2,

s.t.

−
⎡
⎣ξ

1 2
2 ξ2

1 0

⎤
⎦
[

x1
x2

]
�(2) −

⎡
⎣ ξ

3

160
ξ4

⎤
⎦ ,

(4.1)

where, ξ i , i = 1, . . . , 4 denotes a random variable. Let ξ1 := 4 ± α, ξ2 := 2 ± α,
ξ3 := 200 ± 10β, and ξ4 := 40 ± 5β where α and β are equal to 1. We write (a ± b)
to indicate that the actual value is random with two equally probable outcomes a + b
and a − b. Consequently, there are 16 scenarios to consider.

To solve the optimization problem (4.1), Homem-de-Mello and Mehrota [10] lin-
earized the program and eliminated the redundant constraints. They obtained the opti-
mal solution of problem (4.1) (with α = β = 1) to be x = (28.18, 34.55) and the
corresponding objective value to be f = 153.44. Here we reformulate the optimiza-
tion problem (4.1) as discussed in Sect. 2.1 and solved the reformulated problem by
the proposed algorithms. We set the penalty parameter ρ = 50 and double it at each
iteration. The optimal solution obtained by the proposed algorithms after 4 iteration
is x = (27.99, 34.66) and the corresponding objective value is f = 153.29.

4.2 A Budget Allocation Model

The purpose of this example is to compare the efficiency of the level function method
based on the exact penalization scheme with the linearized method proposed by Arm-
bruster and Luedtke [1].

In what follows we present the budget allocation problem and study the behavior
of the proposed model and methods to solve a simple budget allocation problem. This
example is inspired by the budget allocation problem of Armbruster and Luedtke [1]
and the example in [13]. Here we restate the problem:

Example 4.2 Given a fixed budget, the problem is to determine what fraction of the
budget to allocate to a set of candidate projects, t ∈ T with |T | = T . The quality of a
budget allocation is characterized by d distinct objectives, for which larger values are
preferred. Each project t ∈ T is characterized by a d-dimensional random vector of
reward rates Rt for these objectives. Thus, given a feasible budget allocation x ∈ X :=
{x ∈ IRT+ : x · 1 = 1}, the values of the d objectives are

∑
t∈T Rt xt . We assume that

we are given a d-dimensional random vector Y that indicates a minimal acceptable
joint performance of these objectives, and we require the performance of the chosen
budget allocation to stochastically dominate Y . Subject to this condition, the goal is
to maximize a weighted combination of the expected values of the measures:

max
x∈X

∑
t∈T

wT
E[Rt ]xt

s.t.
∑

t∈T
Rt xt �Plin

(2) Y,
(4.2)

where w ∈ IRd+ is a given weight vector.
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Table 1 Average solution times in seconds of five instances solved by projected level function algorithm
and the modified cutting plane algorithm

(d, T ) Algorithms N = 100 N = 300 N = 500

(3, 50) PLF Algorithm 2.36 13.05 46.86

Algorithm 3.1 24.13 219.67 739.27

(3, 100) PLF Algorithm 2.69 14.78 53.48

Algorithm 3.1 104.80 – –

(5, 50) PLF Algorithm 5.38 14.04 90.18

Algorithm 3.1 24.10 236.28 527.14

(5, 100) PLF Algorithm 10.20 26.69 98.47

Algorithm 3.1 117.94 – –

The ‘–’ indicate that the algorithms could not solve the problem within 30 min limit

Table 2 Average solution times
in seconds of five instances
solved using linear SSD model
[1]

(d, T ) N = 100 N=300 N=500

(3, 50) 0.3 12.3 86.2

(3, 100) 0.3 8.9 61.6

(5, 50) 0.6 37.8 181.8

(5, 100) 0.7 23.0 105.6

For the test instances, we assumed that the reward rate R := [R1, R2, . . . , RT ]
are one of N equally likely scenarios {R j : j ∈ N } sampled from a joint normal
distribution with mean μ and covariance matrix �. The components of μ are chosen
randomly from U [10, 20] and the covariance matrix� was calculated as follows. The
coefficient of variations were chosen from U [0.2, 1.1]. The correlation of any two
distinct elements (t, k) and (t ′, k′) were chosen from U [−0.2, 0.4] if they share a
project (t = t ′) and from U [−0.1, 0.1] if they share an objective (k = k′) and were
0 otherwise. The benchmark random vector Y was determined from an allocation in
which all projects are allocated an equal fraction of the budget, but to avoid being
overly conservative, was then reduced by a fixed fraction δ of its mean. Specifically,
a given realizations R j

t ∈ IRd , for each scenario j and project t , realization j of Y

has a probability qy( j) = 1/N and is given by Y j = B j − δ
(

1
N

∑N
k=1 Bk

)
where

B j = 1
T

∑
t∈T R j

t . In this example, we set the δ = 0.1 and weight all objectives
equally in the objective, w = (1, . . . , 1).

Table 1 shows the computation times to solve these instances using the exact penal-
ization scheme and solved by the projected level function algorithm and the modified
cutting plane algorithm. For these experiments, we varied the number of objectives
d ∈ {3, 5}, the number of projects T ∈ {50, 100}, and the number of scenarios
N = M ∈ {100, 300, 500}. For each combination of these parameters we display the
average computation time in seconds over five instances at that size.

These results indicate that with the exact penalization scheme and PLF Algorithm
it is possible to solve instances with a relatively large number of scenarios with lower

123



Appl Math Optim (2014) 70:111–140 131

computation time compared to the linear SSD formulation model’s results shown in
Table 2. Although, the opposite is true for lower number of scenario, but one advantage
of the proposed exact penalized model and the solution methods is that they can
deal with both linear and nonlinear underlying functions. Furthermore, Algorithm 3.1
proved to be less efficient. This is because as the sample size increases, the construction
of set Jt in Step 3 of the algorithm takes longer time.

4.3 Portfolio Performance

Suppose that we have a fixed capital to be invested in n assets. Let Ri , i = 1, . . . , n,
denote the return of asset i . In practice, the return is often uncertain and we use a
random variable ξ to describe the uncertainty. Specifically, we write Ri as Ri (ξ) and
in doing so we are assuming that all n assets have an identical random factor depending
on ξ .

To simplify the discussion, we normalize the capital to 1 and use xi , i = 1, . . . , n,
to denote the fraction of capital to be invested in asset i . The portfolio return can then
be formulated as:

f (x, ξ) := R1(ξ)x1 + R2(ξ)x2 + · · · + Rn(ξ)xn . (4.3)

We use the optimization problem (2.5) to optimize our investment strategy. To ease
the presentation, we repeat the model:

min
x∈X

−E[ f (x, ξ)]
s.t νT g(x, ξ) �Plin

(2) νT Y (ξ), ∀ν ∈ S,
(4.4)

where f is defined by (4.3). We need to specify g(x, ξ) and X . The random vari-
able Y (ξ) plays the role of a benchmark outcome. For example, one may consider
Y (ξ) = g(x̄, ξ), where x̄ ∈ X is some reasonable value of the decision vector, which
is currently employed in the system. Note that g(x, ξ) and Y (ξ) are m-dimensional
random vectors, rather than scalar variables. Additionally, we use set of linear con-
straints to define the set S, see (2.4).

To further examine the efficiency of the multivariate SSD model, we calculate
the Conditional Value at Risk (CVaR) for random variable f (x∗, ξ) where x∗ is an
approximate optimal solution obtained from solving (2.23). By definition for a spec-
ified probability level α, the Value at Risk (VaR) of a portfolio is the lowest amount
C such that, with probability α, the profit does not fall below C. The CVaRα is the
conditional expectation of profit below C. In our context,

CVaRα( f (x∗, ξ)) = sup
C

{
C − 1

α
E[(C − f (x∗, ξ))+]

}
, (4.5)

where α ∈ (0, 1) is a pre-specified constant. Three values of α are commonly consid-
ered: 0.90, 0.95, 0.99. However, in our analysis we focus on the case of α = 0.95.
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Let us now estimate the penalty parameter ρ through Theorem 2.2. Referring back
to Lemma 2.2, we need to calculate κ , δ, and D. Let x0 ∈ X be the weights for an
equally weighted portfolio, the

∑N
i=1 piκ(ξ

i ) = 0.0084. The δ can be calculated as
follows:

δ := − max
j∈1,...,N

⎧⎨
⎩max
ν∈S

⎛
⎝max

J ∈N

∑
i∈J

pi (ν
T η j − νT G(x0, ξ

i ))

−
N∑

i=1

pi (ν
T η j − νT Y (ξ i ))+

)}
,

and we found δ ≈ 4.865E−005. We choose D = 1 and estimate the penalty parameter
as follows:

ρ ≥
N∑

i=1

piκ(ξ
i )δ−1 D = 192 (4.6)

Note that the above calculation is accurate with three significant figures.

Example 4.3 We consider m history of percentage returns, for three different group
of n assets. Each of these groups could belong to a different Index. Our aim is to find
an optimal investment strategy for a fixed capital in the n assets which maximized the
expected profit subject to certain risk averse measures. Particularly we consider the
following model:

min
x∈X

−E[ f (x, ξ)]
s.t νT g(x, ξ) �(2) ν

T Y (ξ),

where g(x, ξ) = [g1(x, ξ) g2(x, ξ) g3(x, ξ)] and Y (ξ) = [Y1(ξ) Y2(ξ) Y3(ξ)]. We
apply the exact penalization as explained in Sect. 2 and set the initial penalty parameter
ρ = 200. We set the upper bound and lower bound for the capital invested equal to
0.2 and 0, respectively.

We collected 300 daily historical returns of 53 FTSE100, 53 Nasdaq100 and 30
Dow Jones assets prior to March 2011. We use the first 100 observations to con-
struct the portfolio strategy. We solve the optimization problem using level function
algorithms, modified cutting-plane method, and the cutting surface method. Table 3
shows the result of this example. In this example each component of the vector g(x, ξ)
corresponds to the sum of return of the assets belonging to each of the three indices
computed as described in (4.3).

As it can be seen all four algorithms result in very similar portfolios with identical
expected return and number of assets in the portfolio.

We set up a backtest and use the remaining 200 observations to construct an out-of-
sample test in order to investigate the performance of the selected portfolio. Figures 1
and 2 shows the difference of return on selected portfolio and benchmak portfolio.
The benchmark portfolio represent the average return of the three indices.
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Table 3 Time is in minutes

Algorithm Iter. Time No. Assets Return CVaR

PLF 9 0.0174 6 0.034 0.015

3.1 4 0.0166 6 0.034 0.014

Cutting-surface [10] 6 0.653 6 0.034 0.015

No. Assets refers to the number of assets in the optimal portfolio. The expected return of the benchmark
portfolio Y = [0.0051 0.0085 0.0069]
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Fig. 1 Backtesting of the difference of return on selected portfolios and indices. The benchmark portfolio
is the average return of the indices

It can be seen that in both Figs. 1 and 2, the line lies mostly above the zero line which
means that the generated portfolio return is higher than the benchmark portfolio.

To illustrate the benefit of using multivariate stochastic dominance constraints, we
compare the portfolio strategy constructed by the optimization problem (2.22) with
an investment strategy generated by Markowitz model as described below:

max
x∈X

E[ f (x, ξ)] − λE[R(x, ξ)],
s.t. E[gi (x, ξ)] ≥ Rb

i , i = 1, . . . ,m,
n∑

i=1

xi = 1, x ≥ 0, x ∈ X,

(4.7)
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Fig. 2 Out of sample test of the difference of return on selected portfolios and indices. The benchmark
portfolio is the average return of the indices

Table 4 Time is in minutes

No. Assets refers to the number
of assets in the optimal portfolio

Model No. Assets Return CVaR

Multivariate SSD 6 0.034 0.014

Markowitz 6 0.032 0.018

where λ = 1 is a fixed nonnegative number, E[R(x, ξ)] is the portfolio variance, Rb
i

is the benchmark return set equal to the index i , E[gi (x, ξ)] is the return of the asset
belonging to index i , and E[ f (x, ξ)] is the return defined as in (4.3).

Table 4 compares the portfolio generated by Markowitz model to the generated
portfolio by the multivariate SSD model. As it can be seen, although the number of
assets in the optimal portfolio are the same but the portfolio generated by the Markowitz
model has a lower return and a higher CVaR.

Figures 3 and 4 present the result of the backtest and out-of-sample test as described
earlier. As it can be seen the portfolio generated by the optimization problem (2.23)
outperforms the strategy generated by the Markowitz model (4.7) by having relatively
higher returns both in-sample and out-of-sample.

To investigate the performance of the generated strategy out-of-sample we present
graph of cumulative return of the of portfolio return generated by the multi-SSD
model using the Algorithms 4.2–4.5, Markowtitz model and the benchmark portfolio
in Fig. 5. It can be seen that the return generated by the portfolio strategy based on the

123



Appl Math Optim (2014) 70:111–140 135

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

4

Days

R
et

ur
ns

 %

Multivariate SSD Model
Markowitz Model

Fig. 3 Comparing the backtest of the portfolio return of the optimization problem with multivariate SSD
constraint and the Markowitz model
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Fig. 4 Comparing out-of-sample test of the portfolio return of the optimization problem with multivariate
SSD constraint and the Markowitz model

Multivariate SSD model is much higher compared to the Markowitz model and the
benchmark portfolio.

Moreover, we also use the Sortino ratio to further compare the generated strategies.
The Sortino ratio measures the risk-adjusted return of an investment asset, portfolio
or strategy. It is a modification of the Sharpe ratio but penalizes only those returns
falling below a user-specified target, or required rate of return, while the Sharpe ratio
penalizes both upside and downside volatility equally. We used risk free rate (0.5 %)
and the benchmark portfolio as the required rate of return. We calculated the Sortino
ratio both at the 100th day and 300th day. The results are shown in Table 5. As it can be
seen the portfolio generated by the multivariate SSD model outperforms the portfolio
generated by the Markowitz model by having higher risk-adjusted return.

Furthermore, we test the algorithms for various number of assets and record the CPU
time. Figure 6 presents the result for this test. As it can be seen, all algorithms solve
relatively large problems within a reasonable time. Additionally, we investigate the
performance of the PLF Algorithm, Algorithm 3.1, and Cutting-surface algorithm [10]
as the number of observations increases. This is illustrated in Fig. 7. Although Fig. 7
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Fig. 5 Out-of-sample cumulative return for the generated portfolio strategy based on the Multivariate SSD
models, Markowitz model and the benchmark portfolio)

Table 5 Sortino ratio of the portfolio generated by optimization problem with multivariate SSD constraints
and the Markowitz model

Model Required return 100th day Sortino ratio 300th day Sortino ratio

Multivariate SSD model Benchmark 0.3969 0.3903

Risk-free 0.2643 0.0749

Markowitz model Benchmark 0.1716 0.1308

Risk-free 0.1795 0.0637
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Fig. 6 Graph of CPU time for various number of instruments for each algorithm

shows that the cutting-surface algorithm [10] becomes inefficient, in our numerical
tests increasing the number of observations did not result in a better portfolio.

5 Conclusion

In this paper we studied stochastic programming with multivariate second order sto-
chastic dominance constraints. Specifically, we proposed an exact penalty method for
second order multivariate stochastic dominance constraints. Furthermore, we solved
the penalized problem (2.22) using the level function method discussed by Meskarian
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Fig. 7 Graph of CPU time for various number of instruments for each algorithm

et al. [19] for similar type of problem as well as a modified cutting-plane method
inspired by the methods proposed in [8,24]. These method were compared to the
cutting surface method proposed in [10], and the linearized method proposed in [1].

We applied the penalization scheme and the numerical methods to an academic
test problem, a budget allocation problem, and a portfolio optimization problem. The
academic test results showed that the penalization approach and the numerical meth-
ods results in similar optimal solution as the solution generated in [10, Sect. 2.2].
The budget allocation problem showed that the proposed method solved with PLF
Algorithm is more efficient compared to the linearized method when the sample size
is large. However, this is not the case when sample size in relatively small. The main
advantage of our proposed method to the linearized method is that it can deal with
nonlinear underlying functions. In the portfolio optimization problem. we used data
of 136 assets from three different indices (FTSE100, Nasdaq100, and Daw Jones). To
investigate the performance of generated portfolio strategy, we set up a backtest and
an out-of-sample test and compared the performance of the selected portfolio to the
corresponding indices. We concluded that the generated portfolio performs better than
the indices in sense of higher return both in-sample and out-of-sample.

Furthermore, to illustrate the benefit of considering multivariate stochastic domi-
nance, we introduced the Markowitz model (4.7) and compared the performance of the
two portfolio both in-sample and out-of-sample as well as based on the Sortino ratio.
It was seen that the portfolio optimization problem with multivariate SSD constraints
out perform the portfolio optimization problem based on Markowitz model by having
higher risk-adjusted return.

Moreover, we performed a test to investigate the effect of the number of instruments
on the computation time for each algorithm. These test suggested as anticipated that
the projected level function algorithm and the cutting plane method can solve a large
problem within reasonable time.

Appendix

Proof of Theorem 3.2:
The proof is similar to the results in [15]. Note that, at each iteration t > 0,

at+1 ∈ ∂xψ(xt , ν), dt+1 = ∇E[ f (xt , ξ)], and et+1 = ∇z(E[ f (xt , ξ)] − zt = −1.
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Then aT
t+1x − bt+1 and dT

t+1x + et+1z − kt+1 are the extreme support to the graphs
of ψ(x, ν) and E[ f (x, ξ)] − z at (xt , zt ) respectively. By condition (a), ψ(x, ν) and
E[ f (x, ξ)] are convex and continuous w.r.t. (x, z). Consequently, if (xt , zt ) ∈ P and
max{ψ(x, ν), E[ f (x, ξ)]} ≤ 0, then

max{aT
t+1xt − bt+1, dT

t+1xt + et+1z − kt+1} ≤ 0.

Further, for all (xt , zt ) /∈ P ,

max{aT
t+1xt −bt+1, dT

t+1xt +et+1z−kt+1}=max{ψ(xt , ν), E[ f (xt , ξ)]−zt }>0.

Therefore, when (xt , zt ) /∈ P , the set P and the point (xt , zt ) lie on opposite sides of
the cutting angle max{aT

t+1xt − bt+1, dT
t+1xt + et+1z − kt+1} = 0.

Note that, from the definition of Pt and (xt , zt ), we know that P ⊂ Pt ⊂ Pt−1,
(xt , zt ) minimizes z in Pt and zt−1 ≤ zt . In the case when (xt , zt ) ∈ P , it is easy to
verify that (xt , zt ) is the optimal solution of problem (3.2). Indeed, since (xt , zt ) is an
optimal solution, for every (x, z) ∈ Pt , we have z ≥ zt . Since P ⊂ Pt , then z ≥ zt

for (x, z) ∈ P , which implies optimality of (xt , zt ) over P .
In what follows, we focus on the case when (xt , zt ) /∈ P ∀t . Since X × Z is

a compact set, the sequence {(xt , zt )} contains a subsequence which converges to
(x∗, z∗) ∈ X × Z . Assume without loss of generality that (xt , zt ) → (x∗, z∗). Let
P∗ = ∩t Pt . Since Pt is compact and P ⊂ Pt , we have P ⊂ P∗ and (x∗, z∗) ∈ P∗.
On the other hand, since

z ≥ zt , ∀(x, z) ∈ Pt ,

then
z ≥ z∗, ∀(x, z) ∈ P∗. (6.1)

Indeed, if this is not true, then there exists (x̂, ẑ) ∈ P∗ such that ẑ < z∗. Since zt → z∗,
there exists some sufficiently large t such that ẑ < zt . This is not possible because
(xt , zt ) is an optimal solution in Pt while (x̂, ẑ) ⊂ P∗ ⊂ Pt is a feasible solutions.
This shows that (6.1) holds. Since P ⊂ P∗, the inequality also holds for all (x, z) ∈ P ,
which implies (x∗, z∗) is an optimal solution of problem (3.3) if (x∗, z∗) ∈ P .

In what follows, we show that (x∗, z∗) ∈ P . Note that, (xt , zt ) minimizes z in Pt ,
that is, it satisfies the inequalities:

aT
l+1x − bl+1 ≤ 0, (6.2)

and
dT

l+1x + el+1z − kl+1 ≤ 0, (6.3)

for l = 0, . . . , t − 1 and by condition (c), max{‖al+1‖ , ‖dl+1‖} ≤ L , ∀l. Let
{xt , zt } denote the subsequence. We claim that {max{ψ(xt , ν), E[ f (xt , ξ)] − zt }}
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must converge to 0. Note that since

bl+1 =
∑
i∈Jl

pi (−∇xν
∗T G(xl , ξ

i )T xl + ν∗T G(xl , ξ
i )− η∗)+ γ (ν∗),

= aT
l+1xl − ψ(xl , ν

∗),
= aT

l+1xl − ψ(xl , ν),

then (6.2) implies

ψ(xl , ν)+ aT
l+1(x − xl) ≤ 0.

Similarly, by the definition of el+1, kl+1, we have from (6.3) that

E[ f (xl , ξ)] + dT
l+1(x − xl)− z ≤ 0.

Assume that the desired convergence does not occur. Then there exists an r > 0
independent of t such that

r ≤ max{ψ(xl , ν), E[ f (xl , ξ)] − zl}
≤ max{aT

l+1(xl − xt ), dT
t+1(xl − xt )− (zl − zt )},

≤ (L + 1) ‖(xl , zl)− (xt , zt )‖ ,

for all 0 ≤ l ≤ t − 1, which shows that {(xt , zt )} does not converge, a contradiction.
This shows that

{max{ψ(xt , ν), E[ f (xt , ξ)] − zt }}

converges to 0 and hence (xt , zt ) ∈ P is the optimal solution.
The proof is complete. ��
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