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Abstract Given a polyhedron L with & facets, whose interior contains no integral
points, and a polyhedron P, recent work in integer programming has focused on
characterizing the convex hull of P minus the interior of L. We show that to obtain such
acharacterization it suffices to consider all relaxations of P defined by at mostn(h—1)
among the inequalities defining P. This extends a result by Andersen, Cornuéjols,

and Li.
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1 Introduction

Given polyhedra P, L € R", we denote with

P\L := conv(P — intL), (1
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where “conv” indicates the closed convex hull, “—"" the set difference, and “int” the
topological interior. Let Ax < b be a system of inequalities defining P. We denote by
R1(A, b) the family of the polyhedral relaxations of P that consist of the intersection
of the half-spaces corresponding to at most ¢ inequalities of the system Ax < b. In
this note we prove the following theorem:

Theorem 1 Let P = {x € R" : Ax < b} and L be polyhedra in R" and let h > 2
be the number of facets of L. Then

P\L = N R\L.

ReR"h=1(A,b)

In the next section we provide a proof of this theorem, and we sketch a construction
showing that the result does not hold if one considers polyhedra in R"*=D=1(A, b).
We now motivate it by providing an application to mixed integer programming.

Let P = {x € R" : Ax < b} be a polyhedron and let § = Z?” x R"~7, for some
p, 1 < p < n. A mixed-integer set F is a set of the form {x € P N S}. Most of the
research has focused on obtaining inequalities that are valid for F, or equivalently, for
convF, where “conv” indicates the convex hull. The operator defined in (1) was first
considered in the mixed integer programming community by Andersen et al. [2], and
it may be viewed as a special case of the disjunctive programming approach invented
by Balas [3]. A convex set L is S-free if intL does not contain any point in S. Given
a mixed-integer set F in the form described above and an S-free polyhedron L, F is
obviously contained in P\ L. It follows that any valid inequality for P\L is also valid
for F. The converse is also true: If P is a rational polyhedron and ax < B is a valid
inequality for F, then ax < f is valid for P\ L, for some S-free polyhedron L [13,7].
This provides a motivation for the study of valid inequalities for P\L when L is a
polyhedron, a setting that is receiving extensive interest from the community (see for
example [4,6,10-13]).

Theorem 1 shows that in order to derive the inequalities that are essential in a
description of P\ L, it is necessary and sufficient to consider inequalities that are valid
for a relaxation of P comprising a number of inequalities that is a function of the
dimension of the ambient space and of the number of facets of L.

Let S = ZP x R"P, for some p,1 < p < n. A split is a set L such that
L={xeR": my < (mr,0)x <mo+ 1}, for some & € Z?, mp € Z. Clearly a split is
an S-free convex set. Balas and Perregaard [5] prove Theorem 1 when P is contained
in the unit cube and L is a split of the form {x e R” : 0 < x; < 1},1 <i < p.
Andersen et al. [1] prove Theorem 1 when L is a split, and they pose as an open
question if their result generalizes to other polyhedra L. A shorter proof of the same
result has been recently provided by Dash et al. [9], and uses the equivalence between
split cuts and mixed-integer rounding (MIR) cuts. All these proofs do not seem to be
extendable to a more general case.

Andersen et al. [1] also prove that, if L is a split in R”, in Theorem 1 it is enough
to consider polyhedra in R"(A, b) defined by linearly independent inequalities.
Furthermore they show that if L is defined by only two inequalities, one cannot gen-
erally restrict to polyhedra in R" (A, b) defined by linearly independent inequalities.
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2 Proof of main result

The following lemma is well-known, as itis an equivalent formulation of Carathéodory’s
theorem (see for example [14]).

Lemma 1 Let G be a matrix of size m x d and let ¥ be an extreme ray of the cone
{reR"™ . r >0, rG =0}. Then i has at most d + 1 positive components.

Corollary 1 Let A',i = 1,....k be m" x n matrices and let b',i = 1,... k be
vectors of dimension m'. Let (Fi € ]Rmt, S eR:i=1,..., k) be an extreme ray of
the cone defined by the system

—rTA' 4 r AT =0 i=2,....k
rlbl_rlbl+sl—slzo i:2,...,k
rizo i=1,...,k
siz() i=1,...,k

Then (7', 50 : i =1,...,k) has at most n(k — 1) + k positive components.

Proof The system

A 4 AT = 0 i=2,...,k
rlbl_rlbl+sl—sl:0 i:2,...,k

comprises of (n + 1)(k — 1) equations. By Lemma 1, (F', 5 :i=1,...,k) has at

most (n + 1)(k — 1) + 1 = n(k — 1) + k positive components. O
(In the above proof, if k = 1 we intend the set of indices i = 2, ..., k to be empty.)
Fori = 1,..., k consider polyhedra P = {x € R" : A’.x < _b’} and cones
C':={x e R" : A'x <0}. So C' is the recession cone of P’ if P’ is nonempty.

By Minkowski-Weil’s theorem (see for example [14]) there exist polytopes Q', for
i=1,...,k,such that

P =0 +C!, i=1,... k

where P! = ¢ if and only if Q' = @. Let

k k
P := conv U Qi + cone U Ci, 2)

i=1 i=1
where “cone” denotes the conic hull. Again, P = @ if and only if Uf‘: L0 =0
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Let S’ be the following system of inequalities:
Alxt —biAi <0 i=1,....k (3)

k
x=>x'=0 4
i=1

k
Z,\" =1 5)
i=1

M>0 i=1,... k. (6)

Given a polyhedron P = {(x,y) € R*4 . Ax + Gy < b}, we denote with
proj, P € R” the orthogonal projection of P onto the space of the x-variables. More
precisely proj, P := {x e R", Iy € R? : Ax + Gy < b}. The following theorem is
similar to Balas’ theorem on union of polyhedra [3].

Theorem 2 [8] Given k polyhedra P' = {x € R" : Alx < b'} = Q' 4+ C!, let P
defined as in (2), and let Y' C R"THDK be the polyhedron defined by the system
(3)~(6). Then P = proj, Y’

Furthermore, if either Pi=@,i=1,...,k or if Pi # 0,0 = 1,...,k, then
P =comv | J°, P,

We now prove Theorem 1.

Proof Clearly P\L C ) ReRnt-1 (4. p) R\L, thus we need to show the reverse inclu-
sion.

Every inequality in the system Ax < b is valid for some R € R!(A, b). Since
h>2,ReR"D(A, b)and therefore P D mRERn(hfl)(A’b) R\L.

If L is not full-dimensional, intL = ¢, P\L = P 2 nRERn(h—])(A’b> R\ L, and the
theorem follows. So we assume that L is a full-dimensional polyhedron with /4 facets.
Hence L = {x ¢ R" : cx <8, i = 1,..., h}, where each inequality cix < &8t
defines a facet of L.

Fori = 1,...,h, let Aix < b' be the system obtained from Ax < b by adding
inequality —c'x < —&' and let P/ := {x € R" : Alx < b'}. Let k be defined
as follows. If P = ¢ for every i = 1,...,h,let k = h. Otherwise let k > 1

be the number of nonempty polyhedra among P!,i = 1,...,h, and we assume
that the nonempty polyhedra are P!, ..., PX. It follows from the definition of P\L
that

k
P\L =conv _J P'.

i=1

Let S be the following system, obtained from (3)—(6) by using Egs. (4) and (5) to
eliminate vector x! and scalar A!:
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k k
Alx =AY x4 b D0 <!
i=2 =2
Alxt—pial <0 i=2,...k
k
Z)J' <1
=2
A >0 i=2,...,k

Let Y be the polyhedron defined by S. Note that Y is a polyhedron in R*++D(k=D

involving vectors x,x2, ..., x* and scalars A2, ..., A*. Furthermore Theorem 2

implies that
P\L = proj, Y.
Let U be the set of the extreme rays (+/, s’ : i = 1,..., k) of the cone defined by the
system

—rlA A =0 i=2,... .k (7)

P —rip st s =0 i=2,...k ®)

rP>0 i=1,...,k 9)

st >0 i=1,...,k (10)

Since P\L = proj, Y, it is well-known that
P\L={xeR": rlA'x </ +s", voi,s' :i=1,....k)eU}). (11

Let (¢7,5° : i = 1,...,k) be aray in U, and let ax < B be the corre-
sponding valid inequality for P\L, where ¢ = 7#'A', p = 7'b! 4+ 5'. To prove
P\L 2 N erni-1 (4 py R\L, it suffices to show that there exists a polyhedron R e
R""=D (A, b) such that ax < B is valid for R\L. Since P 2 () gernti-1 4.5 R\L
we assume that the inequality ax < f is not valid for P. We now construct a polyhe-
dron R € R""=D (A, b) such that ax < B is valid for R\L.

Fori = 1,...,k, let R' be the polyhedron defined by the inequalities in Ax < b
corresponding to positive components of 7.

Note that when k < &, by definition of k, P # #and fori =k + 1,...,h, Pl =
PN{x eR" : ¢ix > 8} = . Since P # @, it follows by Carathéodory’s theorem
(see for example [14]) that, fori =k + 1, ..., h, there exist a polyhedron R’ defined
by at most n linearly independent inequalities in Ax < b such that R' N {x € R" :
cix > Si} ={.

We now show that fori = 1, ..., h, inequality ax < g is valid for RN {x e R" :
c'x > 8/} Fori = 1,...,k, by (7)=(11) we have that a = 7' A", B = F'b' + §',
and 7,5 > 0, thus ax < B is valid for RN {x € R" : cix > (Si}. Moreover
fori = k+1,...,h,ax < B is valid for R! N{x e R" : clx > Si} = (. Now
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let R = N, R". Hence ax < B is valid for RN {x € R" : c¢ix > &'} for every
i =1,...,h. This shows that ax < f is valid for R\L.

We finally show R € R”(h_l)(A,b). Fori = 1,...,k, since ax < B is not
valid for P and P € R',ax < P is not valid for R’. Since by (7)—(11) we have
that a = 7' A', B = 7'b' + 5, and 7', 5 > 0, it follows that the component of 7’
corresponding to ¢!x > 8’ must be positive. By Corollary 1 the positive components
of the vector (71 : i = 1,...,k) are at most n(k — 1) + k, and by the previous
argument, the k components of (7' : i = 1, ..., k) corresponding to the inequalities
cix > 8,0 = 1,...,k, are all positive. This shows that ﬂ{;l R is defined by
at most n(k — 1) inequalities of Ax < b. Moreover fori = k + 1,...,h, R is
defined by at most n inequalities of Ax < b. It follows that R is defined by at most
n(k — 1) +n(h — k) = n(h — 1) inequalities of Ax < b, hence R € R""~D(A, b).

O

We conclude this paper showing that the bound given in Theorem 1 is tight. For
n = 1 the result is trivial since L has at most 2 facets, so assume n > 2. For every
n > 2and h > 2, we sketch the construction of a polyhedron P in R” and a polyhedron
L with h facets such that

P\L C N R\L.

ReRMh=D=1(A p)

Figure 1 illustrates the construction forn = 2, h = 3.

Let L'’ ={x e R" : ¢/x < 68", i =1,...,h)} be a full dimensional polyhedron,
where inequalities ¢/x < &' are in one to one correspondence with the & > 2 facets
Fi of L'. For everyi =1,...,h,let f I bea point in the relative interior of F I Let
€ > 0 be such that foreveryi =1,...,h

Fig.1 Constructionforn =2,h =3
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i) the strict inequalities ¢/x < 8/ are valid for f +€B,for j = 1, ..., h with j # i,
where B is the unit ball in R”.

Foreveryi =2, ..., h,let A’x < b’ be asystem of n linearly independent inequalities,

such that:

i) Al fi =,

iii) ¢'x < &' is valid for R := {x e R" : Alx <b'},and R'  N{x e R" : ¢'x =
S=rh

iv) f/+eB C R',forj=1,...,hwith j #1i.

(The existence of such systems follows from the definition of f ii=1,...,h and

byi)). Fori =2,...,hand j = 1,...,n, let alix < ,Bif be the jth inequality of
the system Alx < b, and let Alix < b'i be the system obtained from Alx < bl by
removing a'ix < .

Since fori = 2, ..., h, the polyhedra R’ are translate of polyhedral cones and by
ii) R’ has apex f', it follows from iii) that foreveryi =2,...,h, j=1,...,n,and
8 > 0, there exists a unique point x'/ that satisfies
v) Alixli = bl and ¢'x'i = §' + 8.

Let § > 0 be small enough such that x'/ € f 4 €B foreveryi = 2,...,h and
j=1,...,n

LetL :=f{x e R" : ¢'x <68!, ¢ix <8468, i=2,...,h}andlet P = ', R
Note that P is defined by the system Ax < b consisting of all inequalities in systems
Alx <b',i=2,...,h. Since by iii), fori = 2, ..., h, inequalities ctx < 8 are valid
for Pand§ > 0,then PN {x € R" : clx > & + 6} =0 foreveryi =2,...,h. This
shows that P\L = P N {x € R" : ¢!x > 8!}. Since by i), ¢! f? < 8! and by ii), iv),
f? € P, the inequality ¢'x > 8! is not valid for P, and so ¢'x > 8! is irredundant for
the system defining P\ L.

We now show that for every R € R”(h_l)_l(A, b), the inequality clx > 8! is not
valid for R\ L.

Let R € Rh—D-1 (A, b). Since the system Ax < b contains n(h — 1) inequali-
ties, R contains the polyhedron defined by the system Ax < b deprived of a single
inequality. We assume without loss of generality that this inequality is a*'x < g1,
and so is the first inequality of the system A%x < b2. By v), the point x?! is such that
AZ1x21 = p21 and 2x21 = 82 + 6. By the choice of §, x2' € f2 4 €B, so it follows
by iv) that x2! € R forevery i = 3, ..., h. Hence x?' € R.

Since c2x2! = §2 + 8, and ¢2x < 8% + § is valid for L, x%' does not belong to the
interior of L. This shows that x! belongs to R\ L. Since x>! belongs to f> + ¢ B, then
by i), clx?t < 81 Hence clx > 8! is not valid for R\L.
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