FULL LENGTH PAPER

Disjunctive programming and relaxations of polyhedra

Michele Conforti · Alberto Del Pia

Received: 27 April 2012 / Accepted: 16 January 2013 / Published online: 7 February 2013 © Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013

Abstract Given a polyhedron *L* with *h* facets, whose interior contains no integral points, and a polyhedron *P*, recent work in integer programming has focused on characterizing the convex hull of *P* minus the interior of *L*. We show that to obtain such a characterization it suffices to consider all relaxations of *P* defined by at most *n*(*h*−1) among the inequalities defining *P*. This extends a result by Andersen, Cornuéjols, and Li.

Keywords Mixed integer programming · Disjunctive programming · Polyhedral relaxations

Mathematics Subject Classification (2000) 90C10 · 90C11 · 90C57 · 52B11

1 Introduction

Given polyhedra $P, L \subseteq \mathbb{R}^n$, we denote with

 $P \backslash L := \overline{\text{conv}}(P - \text{int}L),$ (1)

M. Conforti

Dipartimento di Matematica Pura ed Applicata, Universitá degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy e-mail: conforti@math.unipd.it

A. Del Pia (\boxtimes) IFOR, Department of Mathematics, ETH Zürich, 8092 Zürich, Switzerland e-mail: alberto.delpia@math.ethz.ch

Supported by the Progetto di Eccellenza 2008-2009 of the Fondazione Cassa Risparmio di Padova e Rovigo.

where "conv" indicates the closed convex hull, "−" the set difference, and "int" the topological interior. Let $Ax \leq b$ be a system of inequalities defining P. We denote by $\mathcal{R}^{q}(A, b)$ the family of the polyhedral relaxations of *P* that consist of the intersection of the half-spaces corresponding to at most *q* inequalities of the system $Ax \leq b$. In this note we prove the following theorem:

Theorem 1 Let $P = \{x \in \mathbb{R}^n : Ax < b\}$ and L be polyhedra in \mathbb{R}^n and let $h > 2$ *be the number of facets of L. Then*

$$
P \backslash L = \bigcap_{R \in \mathcal{R}^{n(h-1)}(A,b)} R \backslash L.
$$

In the next section we provide a proof of this theorem, and we sketch a construction showing that the result does not hold if one considers polyhedra in $\mathcal{R}^{n(h-1)-1}(A, b)$. We now motivate it by providing an application to mixed integer programming.

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ be a polyhedron and let $S = \mathbb{Z}^p \times \mathbb{R}^{n-p}$, for some $p, 1 \leq p \leq n$. A mixed-integer set *F* is a set of the form $\{x \in P \cap S\}$. Most of the research has focused on obtaining inequalities that are valid for F , or equivalently, for conv $\mathcal F$, where "conv" indicates the convex hull. The operator defined in [\(1\)](#page-0-0) was first considered in the mixed integer programming community by Andersen et al. [\[2](#page-6-0)], and it may be viewed as a special case of the disjunctive programming approach invented by Balas [\[3](#page-6-1)]. A convex set *L* is *S-free* if int*L* does not contain any point in *S*. Given a mixed-integer set $\mathcal F$ in the form described above and an *S*-free polyhedron $L, \mathcal F$ is obviously contained in $P \backslash L$. It follows that any valid inequality for $P \backslash L$ is also valid for *F*. The converse is also true: If *P* is a rational polyhedron and $ax < \beta$ is a valid inequality for *F*, then $ax \leq \beta$ is valid for $P \setminus L$, for some *S*-free polyhedron *L* [\[13](#page-7-0)[,7](#page-7-1)]. This provides a motivation for the study of valid inequalities for $P\setminus L$ when *L* is a polyhedron, a setting that is receiving extensive interest from the community (see for example [\[4](#page-7-2)[,6](#page-7-3),[10](#page-7-4)[–13\]](#page-7-0)).

Theorem [1](#page-1-0) shows that in order to derive the inequalities that are essential in a description of $P \backslash L$, it is necessary and sufficient to consider inequalities that are valid for a relaxation of *P* comprising a number of inequalities that is a function of the dimension of the ambient space and of the number of facets of *L*.

Let $S = \mathbb{Z}^p \times \mathbb{R}^{n-p}$, for some $p, 1 \leq p \leq n$. A *split* is a set *L* such that $L = \{x \in \mathbb{R}^n : \pi_0 \leq (\pi, 0) \, x \leq \pi_0 + 1\}$, for some $\pi \in \mathbb{Z}^p, \pi_0 \in \mathbb{Z}$. Clearly a split is an *S*-free convex set. Balas and Perregaard [\[5](#page-7-5)] prove Theorem [1](#page-1-0) when *P* is contained in the unit cube and *L* is a split of the form $\{x \in \mathbb{R}^n : 0 \le x_i \le 1\}, 1 \le i \le p$. Andersen et al. [\[1\]](#page-6-2) prove Theorem [1](#page-1-0) when *L* is a split, and they pose as an open question if their result generalizes to other polyhedra *L*. A shorter proof of the same result has been recently provided by Dash et al. [\[9](#page-7-6)], and uses the equivalence between split cuts and mixed-integer rounding (MIR) cuts. All these proofs do not seem to be extendable to a more general case.

Andersen et al. [\[1](#page-6-2)] also prove that, if *L* is a split in \mathbb{R}^n , in Theorem [1](#page-1-0) it is enough to consider polyhedra in $\mathcal{R}^n(A, b)$ defined by linearly independent inequalities. Furthermore they show that if *L* is defined by only two inequalities, one cannot generally restrict to polyhedra in $\mathcal{R}^n(A, b)$ defined by linearly independent inequalities.

2 Proof of main result

The following lemma is well-known, as it is an equivalent formulation of Carathéodory's theorem (see for example [\[14\]](#page-7-7)).

Lemma 1 Let G be a matrix of size $m \times d$ and let \overline{r} be an extreme ray of the cone ${r \in \mathbb{R}^m : r \geq 0, rG = 0}.$ Then \bar{r} has at most $d + 1$ positive components.

Corollary 1 Let A^i , $i = 1, ..., k$ be $m^i \times n$ matrices and let b^i , $i = 1, ..., k$ be \forall *vectors of dimension mⁱ*. Let $(\bar{r}^i \in \mathbb{R}^{m^i}, \bar{s}^i \in \mathbb{R} : i = 1, ..., k)$ be an extreme ray of *the cone defined by the system*

$$
-r^{1}A^{1} + r^{i}A^{i} = 0
$$

\n
$$
i = 2, ..., k
$$

\n
$$
r^{1}b^{1} - r^{i}b^{i} + s^{1} - s^{i} = 0
$$

\n
$$
i = 2, ..., k
$$

\n
$$
r^{i} \ge 0
$$

\n
$$
i = 1, ..., k
$$

\n
$$
s^{i} \ge 0
$$

\n
$$
i = 1, ..., k
$$

Then $(\bar{r}^i, \bar{s}^i : i = 1, \ldots, k)$ *has at most n*($k - 1$) + *k positive components.*

Proof The system

$$
-r^{1}A^{1} + r^{i}A^{i} = 0 \t i = 2,..., k
$$

$$
r^{1}b^{1} - r^{i}b^{i} + s^{1} - s^{i} = 0 \t i = 2,..., k
$$

comprises of $(n + 1)(k - 1)$ equations. By Lemma [1,](#page-2-0) $(\bar{r}^i, \bar{s}^i) : i = 1, \ldots, k$ has at most $(n + 1)(k − 1) + 1 = n(k − 1) + k$ positive components.

(In the above proof, if $k = 1$ we intend the set of indices $i = 2, \ldots, k$ to be empty.) For $i = 1, ..., k$ consider polyhedra $P^i = \{x \in \mathbb{R}^n : A^i x \leq b^i\}$ and cones $C^i := \{x \in \mathbb{R}^n : A^i x \leq 0\}$. So C^i is the recession cone of P^i if P^i is nonempty. By Minkowski-Weil's theorem (see for example $[14]$ $[14]$) there exist polytopes Q^i , for $i = 1, \ldots, k$, such that

$$
P^i = Q^i + C^i, \quad i = 1, \ldots, k,
$$

where $P^i = \emptyset$ if and only if $Q^i = \emptyset$. Let

$$
\tilde{P} := \text{conv} \bigcup_{i=1}^{k} Q^{i} + \text{cone} \bigcup_{i=1}^{k} C^{i},\tag{2}
$$

where "cone" denotes the conic hull. Again, $\tilde{P} = \emptyset$ if and only if $\bigcup_{i=1}^{k} Q^{i} = \emptyset$.

Let *S'* be the following system of inequalities:

$$
A^i x^i - b^i \lambda^i \le 0 \quad i = 1, \dots, k \tag{3}
$$

$$
x - \sum_{i=1}^{k} x^{i} = 0
$$
 (4)

$$
\sum_{i=1}^{k} \lambda^{i} = 1
$$
\n(5)

$$
\lambda^i \ge 0 \quad i = 1, \dots, k. \tag{6}
$$

Given a polyhedron $P = \{(x, y) \in \mathbb{R}^{n+d} : Ax + Gy \leq b\}$, we denote with proj_x $P \subseteq \mathbb{R}^n$ the orthogonal projection of *P* onto the space of the *x*-variables. More precisely $proj_x P := \{x \in \mathbb{R}^n, \exists y \in \mathbb{R}^d : Ax + Gy \leq b\}$. The following theorem is similar to Balas' theorem on union of polyhedra [\[3](#page-6-1)].

Theorem 2 [\[8](#page-7-8)] *Given k polyhedra* $P^i = \{x \in \mathbb{R}^n : A^i x \leq b^i\} = Q^i + C^i$, let \tilde{P} *defined as in* [\(2\)](#page-2-1), and let $Y' \subset \mathbb{R}^{n+(n+1)k}$ be the polyhedron defined by the system (3) – (6) *. Then* $\tilde{P} = \text{proj}_x Y'$ *. Furthermore, if either* $P^i = \emptyset$, $i = 1, ..., k$, or if $P^i \neq \emptyset$, $i = 1, ..., k$, then $\tilde{P} = \overline{\text{conv}} \bigcup_{i=1}^{k} P^i.$

We now prove Theorem [1.](#page-1-0)

Proof Clearly $P \setminus L \subseteq \bigcap_{R \in \mathcal{R}^{n(h-1)}(A,b)} R \setminus L$, thus we need to show the reverse inclusion.

Every inequality in the system $Ax \leq b$ is valid for some $R \in \mathbb{R}^1(A, b)$. Since $h \geq 2$, $R \in \mathbb{R}^{n(h-1)}(A, b)$ and therefore $P \supseteq \bigcap_{R \in \mathbb{R}^{n(h-1)}(A, b)} R \setminus L$.

If *L* is not full-dimensional, int $L = \emptyset$, $P \setminus L = P \supseteq \bigcap_{R \in \mathcal{R}^n(h-1)} (A, b) R \setminus L$, and the theorem follows. So we assume that *L* is a full-dimensional polyhedron with *h* facets. Hence $L = \{x \in \mathbb{R}^n : c^i x \leq \delta^i, i = 1, ..., h\}$, where each inequality $c^i x \leq \delta^i$ defines a facet of *L*.

For $i = 1, ..., h$, let $A^i x \leq b^i$ be the system obtained from $Ax \leq b$ by adding inequality $-c^ix \leq -\delta^i$ and let $P^i := \{x \in \mathbb{R}^n : A^ix \leq b^i\}$. Let *k* be defined as follows. If $P^i = \emptyset$ for every $i = 1, ..., h$, let $k = h$. Otherwise let $k \ge 1$ be the number of nonempty polyhedra among P^i , $i = 1, ..., h$, and we assume that the nonempty polyhedra are P^1, \ldots, P^k . It follows from the definition of $P \setminus L$ that

$$
P \backslash L = \overline{\text{conv}} \bigcup_{i=1}^{k} P^{i}.
$$

Let S be the following system, obtained from (3) – (6) by using Eqs. [\(4\)](#page-3-0) and [\(5\)](#page-3-0) to eliminate vector x^1 and scalar λ^1 :

$$
A^{1}x - A^{1} \sum_{i=2}^{k} x^{i} + b^{1} \sum_{i=2}^{k} \lambda^{i} \le b^{1}
$$

$$
A^{i}x^{i} - b^{i}\lambda^{i} \le 0 \quad i = 2, ..., k
$$

$$
\sum_{i=2}^{k} \lambda^{i} \le 1
$$

$$
\lambda^{i} \ge 0 \quad i = 2, ..., k.
$$

Let *Y* be the polyhedron defined by *S*. Note that *Y* is a polyhedron in $\mathbb{R}^{n+(n+1)(k-1)}$ involving vectors x, x^2, \ldots, x^k x, x^2, \ldots, x^k x, x^2, \ldots, x^k and scalars $\lambda^2, \ldots, \lambda^k$. Furthermore Theorem 2 implies that

$$
P \backslash L = \text{proj}_x Y.
$$

Let *U* be the set of the extreme rays $(r^i, s^i : i = 1, ..., k)$ of the cone defined by the system

$$
-r^{1}A^{1} + r^{i}A^{i} = 0 \quad i = 2, ..., k
$$
 (7)

$$
r^{1}b^{1} - r^{i}b^{i} + s^{1} - s^{i} = 0 \quad i = 2, ..., k
$$
 (8)

$$
r^i \ge 0 \quad i = 1, \dots, k \tag{9}
$$

 $s^i > 0$ *i* = 1, ..., *k*. (10)

Since $P \backslash L = \text{proj}_x Y$, it is well-known that

$$
P \backslash L = \{ x \in \mathbb{R}^n : r^1 A^1 x \le r^1 b^1 + s^1, \ \forall (r^i, s^i : i = 1, \dots, k) \in U \}. \tag{11}
$$

Let $(\bar{r}^i, \bar{s}^i : i = 1, ..., k)$ be a ray in *U*, and let $ax \leq \beta$ be the corresponding valid inequality for $P \backslash L$, where $a = \overline{r}^1 A^1$, $\beta = \overline{r}^1 b^1 + \overline{s}^1$. To prove $P \setminus L \supseteq \bigcap_{R \in \mathcal{R}^n(h-1)} (A,b) R \setminus L$, it suffices to show that there exists a polyhedron \overline{R} $\mathcal{R}^{n(h-1)}(A, b)$ such that $ax \leq \beta$ is valid for $\overline{R} \setminus L$. Since $P \supseteq \bigcap_{R \in \mathcal{R}^{n(h-1)}(A, b)} R \setminus L$, we assume that the inequality $ax \leq \beta$ is not valid for *P*. We now construct a polyhedron $\overline{R} \in \mathcal{R}^{n(h-1)}(A, b)$ such that $ax \leq \beta$ is valid for $\overline{R} \backslash L$.

For $i = 1, \ldots, k$, let R^i be the polyhedron defined by the inequalities in $Ax \leq b$ corresponding to positive components of \bar{r}^i .

Note that when $k < h$, by definition of k , $P \neq \emptyset$ and for $i = k + 1, ..., h$, $P^i =$ *P* ∩ {*x* ∈ \mathbb{R}^n : *c*^{*i*}*x* ≥ δ ^{*i*}} = Ø. Since *P* \neq Ø, it follows by Carathéodory's theorem (see for example [\[14](#page-7-7)]) that, for $i = k + 1, \ldots, h$, there exist a polyhedron R^i defined by at most *n* linearly independent inequalities in $Ax \leq b$ such that $R^i \cap \{x \in \mathbb{R}^n :$ $c^ix \geq \delta^i$ } = Ø.

We now show that for $i = 1, ..., h$, inequality $ax \leq \beta$ is valid for $R^i \cap \{x \in \mathbb{R}^n :$ $c^i x \geq \delta^i$. For $i = 1, \ldots, k$, by [\(7\)](#page-4-0)–[\(11\)](#page-4-1) we have that $a = \overline{r}^i A^i$, $\beta = \overline{r}^i b^i + \overline{s}^i$, and \bar{r}^i , $\bar{s}^i \geq 0$, thus $ax \leq \beta$ is valid for $R^i \cap \{x \in \mathbb{R}^n : c^i x \geq \delta^i\}$. Moreover for $i = k + 1, ..., h, ax \leq \beta$ is valid for $R^i \cap \{x \in \mathbb{R}^n : c^i x \geq \delta^i\} = \emptyset$. Now

let $\overline{R} = \bigcap_{i=1}^{h} R^i$. Hence $ax \leq \beta$ is valid for $\overline{R} \cap \{x \in \mathbb{R}^n : c^i x \geq \delta^i\}$ for every $i = 1, \ldots, h$. This shows that $ax \leq \beta$ is valid for $\bar{R} \backslash L$.

We finally show $\overline{R} \in \mathcal{R}^{n(h-1)}(A, b)$. For $i = 1, \ldots, k$, since $ax \leq \beta$ is not valid for *P* and $P \subseteq R^i$, $ax \leq \beta$ is not valid for R^i . Since by [\(7\)](#page-4-0)–[\(11\)](#page-4-1) we have that $a = \bar{r}^i A^i$, $\beta = \bar{r}^i b^i + \bar{s}^i$, and $\bar{r}^i, \bar{s}^i \geq 0$, it follows that the component of \bar{r}^i corresponding to $c^i x \geq \delta^i$ must be positive. By Corollary [1](#page-2-2) the positive components of the vector $(\bar{r}^i : i = 1, \ldots, k)$ are at most $n(k - 1) + k$, and by the previous argument, the *k* components of $(\bar{r}^i : i = 1, \ldots, k)$ corresponding to the inequalities $c^i x \geq \delta^i$, $i = 1, ..., k$, are all positive. This shows that $\bigcap_{i=1}^k R^i$ is defined by at most $n(k - 1)$ inequalities of $Ax \leq b$. Moreover for $i = k + 1, ..., h, R^i$ is defined by at most *n* inequalities of $Ax \leq b$. It follows that \overline{R} is defined by at most *n*(*k* − 1) + *n*(*h* − *k*) = *n*(*h* − 1) inequalities of *Ax* ≤ *b*, hence \overline{R} ∈ $\mathcal{R}^{n(h-1)}(A, b)$. \Box

We conclude this paper showing that the bound given in Theorem [1](#page-1-0) is tight. For $n = 1$ the result is trivial since *L* has at most 2 facets, so assume $n \geq 2$. For every $n \geq 2$ and $h \geq 2$, we sketch the construction of a polyhedron *P* in \mathbb{R}^n and a polyhedron *L* with *h* facets such that

$$
P \backslash L \subset \bigcap_{R \in \mathcal{R}^{n(h-1)-1}(A,b)} R \backslash L.
$$

Figure [1](#page-5-0) illustrates the construction for $n = 2$, $h = 3$.

Let $L' = \{x \in \mathbb{R}^n : c^i x \leq \delta^i, i = 1, ..., h\}$ be a full dimensional polyhedron, where inequalities $c^i x \leq \delta^i$ are in one to one correspondence with the $h \geq 2$ facets *F*^{*i*} of *L*'. For every $i = 1, ..., h$, let f^i be a point in the relative interior of F^i . Let $\epsilon > 0$ be such that for every $i = 1, \ldots, h$

Fig. 1 Construction for $n = 2$, $h = 3$

i) the strict inequalities $c^j x < \delta^j$ are valid for $f^i + \epsilon B$, for $j = 1, ..., h$ with $j \neq i$, where *B* is the unit ball in \mathbb{R}^n .

For every $i = 2, \ldots, h$, let $A^i x \leq b^i$ be a system of *n* linearly independent inequalities, such that:

ii) $A^i f^i = b^i$, iii) $c^i x \leq \delta^i$ is valid for $R^i := \{x \in \mathbb{R}^n : A^i x \leq b^i\}$, and $R^i \cap \{x \in \mathbb{R}^n : c^i x =$ δ^i } = f^i ,

iv)
$$
f^{j} + \epsilon B \subseteq R^{i}
$$
, for $j = 1, ..., h$ with $j \neq i$.

(The existence of such systems follows from the definition of f^i , $i = 1, \ldots, h$, and by i)). For $i = 2, ..., h$ and $j = 1, ..., n$, let $a^{i_j}x < \beta^{i_j}$ be the *j*th inequality of the system $A^i x \leq b^i$, and let $A^{i_j} x \leq b^{i_j}$ be the system obtained from $A^i x \leq b^i$ by removing $a^{i_j}x \leq \beta^{i_j}$.

Since for $i = 2, ..., h$, the polyhedra $Rⁱ$ are translate of polyhedral cones and by ii) R^i has apex f^i , it follows from iii) that for every $i = 2, ..., h, j = 1, ..., n$, and $\delta > 0$, there exists a unique point x^{i_j} that satisfies

v)
$$
A^{i_j} x^{i_j} = b^{i_j}
$$
 and $c^i x^{i_j} = \delta^i + \delta$.

Let $\delta > 0$ be small enough such that $x^{i_j} \in f^i + \epsilon B$ for every $i = 2, ..., h$ and $j = 1, \ldots, n$.

Let $L := \{x \in \mathbb{R}^n : c^1 x \le \delta^1, c^i x \le \delta^i + \delta, i = 2, ..., h\}$ and let $P = \bigcap_{i=2}^h R^i$. Note that *P* is defined by the system $Ax \leq b$ consisting of all inequalities in systems $A^{i}x \leq b^{i}, i = 2, ..., h$. Since by iii), for $i = 2, ..., h$, inequalities $c^{i}x \leq \delta^{i}$ are valid for *P* and $\delta > 0$, then $P \cap \{x \in \mathbb{R}^n : c^i x \ge \delta^i + \delta\} = \emptyset$ for every $i = 2, ..., h$. This shows that $P \setminus L = P \cap \{x \in \mathbb{R}^n : c^1 x \ge \delta^1\}$. Since by i), $c^1 f^2 < \delta^1$ and by ii), iv), $f^2 \in P$, the inequality $c^1 x \ge \delta^1$ is not valid for *P*, and so $c^1 x \ge \delta^1$ is irredundant for the system defining $P \backslash L$.

We now show that for every $R \in \mathcal{R}^{n(h-1)-1}(A, b)$, the inequality $c^1 x > \delta^1$ is not valid for $R \backslash L$.

Let $R \in \mathbb{R}^{n(h-1)-1}(A, b)$. Since the system $Ax \leq b$ contains $n(h-1)$ inequalities, *R* contains the polyhedron defined by the system $Ax \leq b$ deprived of a single inequality. We assume without loss of generality that this inequality is $a^{2}x \le \beta^{2}$, and so is the first inequality of the system $A^2x \leq b^2$. By v), the point x^{21} is such that $A^{2_1}x^{2_1} = b^{2_1}$ and $c^2x^{2_1} = \delta^2 + \delta$. By the choice of δ , $x^{2_1} \in f^2 + \epsilon B$, so it follows by iv) that $x^{2_1} \in R^i$ for every $i = 3, ..., h$. Hence $x^{2_1} \in R$.

Since $c^2x^{2_1} = \delta^2 + \delta$, and $c^2x \leq \delta^2 + \delta$ is valid for *L*, x^{2_1} does not belong to the interior of *L*. This shows that x^{2_1} belongs to $R\backslash L$. Since x^{2_1} belongs to $f^2 + \epsilon B$, then by i), $c^1x^{2_1} < \delta^1$. Hence $c^1x > \delta^1$ is not valid for $R\backslash L$.

References

- 1. Andersen, K., Cornuéjols, G., Li, Y.: Split closure and intersection cuts. Math. Program. A **102**(3), 457–493 (2005)
- 2. Andersen, K., Louveaux, Q., Weismantel, R.: An analysis of mixed integer linear sets based on lattice point free convex sets. Math. Oper. Res. **35**(1), 233–256 (2010)
- 3. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discret. Appl. Math. **89**(1–3), 3–44 (1998)
- 4. Balas, E., Margot, F.: Generalized intersection cuts and a new cut generating paradigm. Math. Program. A **137**(1–2), 19–35 (2013)
- 5. Balas, E., Perregaard, M.: A precise correspondence between lift-and-project cuts, simple disjunctive cuts, and mixed integer gomory cuts for 0-1 programming. Math. Program. **94**(2–3), 221–245 (2003)
- 6. Basu, A., Cornuéjols, G., Margot, F.: Intersection cuts with infinite split rank. Math. Oper. Res. **37**(1), 21–40 (2012)
- 7. Conforti, M., Cornuéjols, G., Zambelli, G.: Eqivalence between intersection cuts and the corner polyhedron. Oper. Res. Lett. **38**(3), 153–155 (2010)
- 8. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer programming. In preparation, (2012)
- 9. Dash, S., Günlük, O., Raack, C.: A note on the MIR closure and basic relaxations of polyhedra. Oper. Res. Lett. **39**(3), 198–199 (2011)
- 10. Del Pia, A.: On the rank of disjunctive cuts. Math. Oper. Res. **37**(2), 372–378 (2012)
- 11. Del Pia, A., Weismantel, R.: On convergence in mixed integer programming. Math. Program. A **135**(1), 397–412 (2012)
- 12. Dey, S.S.: A note on the split rank of intersection cuts. Math. Program. A **130**(1), 107–124 (2011)
- 13. Jörg, M.: *k*-disjunctive cuts and cutting plane algorithms for general mixed integer linear programs. PhD thesis, Technische Universität München, München, (2008)
- 14. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

Copyright of Mathematical Programming is the property of Springer Science & Business Media B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.