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Abstract We express the probability distribution of the solution of a random (standard
Gaussian) instance of a convex cone program in terms of the intrinsic volumes and
curvature measures of the reference cone. We then compute the intrinsic volumes of
the cone of positive semidefinite matrices over the real numbers, over the complex
numbers, and over the quaternions in terms of integrals related to Mehta’s integral. In
particular, we obtain a closed formula for the probability that the solution of a random
(standard Gaussian) semidefinite program has a certain rank.
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1 Introduction

In modern convex optimization it is by now a widely accepted standard to formulate
problems as cone programs [9]. In a cone program the task is to maximize a linear
functional over the intersection of an affine subspace, given by a set of equations, with
a certain cone, which we call the reference cone. This framework generalizes linear,
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106 D. Amelunxen, P. Bürgisser

second-order, and semidefinite programming, where the reference cone is chosen as
the positive orthant, a product of Lorentz cones, and the cone of symmetric positive
semidefinite matrices of a certain format, respectively. In fact, any convex program
can be brought into this conic form.

A first step towards understanding the generic behavior of a cone program is to
perform average analyses of this problem. That is, to analyze the probabilities for
certain outcomes of a random cone program like infeasibility, unboundedness, or that
the solution lies in a predefined region. Arguably, one of the most elementary proba-
bilistic models for a cone program is to assume that the functional to be maximized
and the equations given are i.i.d. standard Gaussian vectors. Assuming this probabilis-
tic model, we will give concrete and simple formulas for the probability distribution
of the solution of a random cone program in terms of certain invariants of the cone,
called the intrinsic volumes and the curvature measures. In the case of linear program-
ming (LP) this has been repeatedly done by various authors [1,10,12,27,38,41], but
no extensions beyond the LP-case has been achieved so far. It should be noted that
although the probabilistic model is rather restricted, the fact that our result holds for
any reference cone makes this result applicable to any convex program. This is our first
main result, cf. Theorem 3.1 and Theorem 3.2. Our proofs heavily rely on the isotropy
of the standard Gaussian distributions. Extending our results (e.g., in an asymptotic
way) to general classes of distributions (e.g., independent entries with subgaussian
distributions) seems challenging. For the related problem of analyzing the condition
number of random matrices, such general results are known [33,39].

Our second main result concerns a particularly important class of reference cones,
the symmetric cones, also known as self-scaled cones, i.e., closed convex cones which
are self-dual and whose automorphism group acts transitively on the interior. Recall
the well-known classification of these cones. It says that every symmetric cone is a
direct product of the following basic families of symmetric cones:

– the Lorentz cones Ln := {x ∈ R
n | xn ≥ (x2

1 + · · · + x2
n−1)

1/2},
– the cones of positive semidefinite matrices over the real numbers, the complex

numbers, or the quaternions,
– the single (exceptional, 27-dimensional) cone of 3×3 positive semidefinite matri-

ces over the octonions.

This result follows from the theory of Jordan algebras, which is intimately related to
the theory of symmetric cones, cf. [14]. Self-scaled cones form the basis of interior-
point methods in convex optimization. This has been observed in the mid 1990s,
cf. [15,20,29,30], cf. also the book [32] and the survey article [21].

The intrinsic volumes and the curvature measures of the Lorentz cones are well
understood, see for example [7, Ex. 2.15]. We give in this paper, apparently for the first
time, an explicit formula for the intrinsic volumes of the cone of positive semidefinite
matrices over the real numbers, over the complex numbers, and over the quaternions,
cf. Theorem 4.1. The resulting formulas involve integrals that are related to Mehta’s
integral [28]. Moreover, we also give formulas for the curvature measures evaluated
at the rank r -strata, so that we obtain a closed formula for the probability that the
solution of a random SDP has a certain rank. To the best of our knowledge, this is the
first result advancing with this question [3] dating from 1997.
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Intrinsic volumes of symmetric cones and applications 107

Another interesting aspect, which deserves further investigation, is the observation
that there seems to be a connection between the curvature measures of the cone of
positive semidefinite matrices and the algebraic degree of semidefinite programming,
cf. [11,31].

The organization of the paper is as follows. In Sect. 2 we explain the notions of
intrinsic volumes and curvature measures in the special case of polyhedral cones. We
also state the spherical kinematic formula, which is the main integral geometric tool
that we need for our first result. Section 3 states the applications to the probabilistic
analysis of random convex programs with the corresponding proofs deferred to Sect. 5.
Section 4 states explicit formulas for the curvature measures of SDP cones evaluated
at the rank r -strata. The derivation of these formulas is the topic of Sect. 6.

This paper is an abridged version of [6] to which we will occasionally refer for
integral geometric background or overly technical details of proofs.

2 Background from spherical convex geometry

2.1 Intrinsic volumes of polyhedral cones

Although intrinsic volumes and curvature measures are defined for general closed
convex cones,1 we provide in this section characterizations of these quantities only
for polyhedral cones. These are cones that arise as the intersection of finitely many
closed half-spaces. The polar of a cone C ⊆ R

d is defined as C̆ := polar(C) := {x ∈
R

d | ∀y ∈ C : 〈x, y〉 ≤ 0}. A cone is called self-dual if C̆ = −C .
If H is a supporting hyperplane of C , then we call F = H ∩ C a face2 of C . Thus

the faces are of the form C ∩ v⊥ for v ∈ C̆ , where v⊥ := {x ∈ R
d | 〈x, v〉 = 0}. The

boundary of the cone C decomposes in the disjoint union of the relative interiors of its
faces. More precisely, we have C = ⋃̇

F∈F F , where F := {relint(C ∩ v⊥) | v ∈ C̆}.
Let F j := {F ∈ F | dim(span F) = j} denote the set of the (relative interiors of)
j-dimensional faces of C for j = 0, 1, . . . , d.

Denoting by �C : R
d → C , x �→ argmin{‖x − y‖ | y ∈ C} the canonical

projection on a polyhedral cone C ⊆ R
d , the intrinsic volumes of C can be defined by

Vj (C) :=
∑

F∈F j

Prob
x∈N (0,Id )

{
�C (x) ∈ F

}
, j = 0, 1, . . . , d, (2.1)

whereN (0, Id) stands for the standard Gaussian distribution on R
d . Note that Vd(C) =

rvol(C ∩ Sd−1) and V0(C) = rvol(C̆ ∩ Sd−1), rvol denoting the normalized volume,
where rvol(Sd−1) = 1.

In order to localize the intrinsic volumes, we denote by B(Rd) the σ -algebra of
Borel measurable sets in R

d , and we define the subalgebra B̂(Rd) := {M ∈ B(Rd) |

1 In fact, intrinsic volumes are usually defined for intersections of convex cones with the unit sphere. We
adopt the conical viewpoint for technical reasons, and also adopt a convenient shift in the indices of the
intrinsic volumes compared to [5,18,19,36].
2 Some authors differentiate between faces and exposed faces, cf. for example [35]. We do not make this
distinction as for the cones we are interested in both notions coincide.
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108 D. Amelunxen, P. Bürgisser

∀λ > 0 : λM = M} of conic Borel measurable sets. We define the j th curvature
measure of a polyhedral cone C ⊆ R

d localized at M ∈ B̂(Rd) by

Φ j (C, M) :=
∑

F∈F j

Prob
x∈N (0,Id )

{
�C (x) ∈ F ∩ M

}
, j = 0, 1, . . . , d. (2.2)

Note that Φd(C, M) = rvol(C ∩ M ∩ Sd−1) and

Φ0(C, M) = V0(C) = rvol(C̆ ∩ Sd−1) if 0 ∈ M, (2.3)

and Φ0(C, M) = 0 otherwise. Moreover, we set Vj (C) := 0 and Φ j (C, M) := 0 for
j > d.

These definitions could be extended to any closed convex cones by using an approx-
imation procedure. A more convenient way is to use a spherical version of Steiner’s
formula for the volume of the tube around a convex set, cf. Proposition 6.1.

The following well-known facts about the intrinsic volumes and the curvature mea-
sures hold for any closed convex cone. They are easily verified for polyhedral cones.

Proposition 2.1 Let C ⊆ R
d be a closed convex cone.

1. Interpreting C as a cone in R
d ′ with d ′ ≥ d does not change the intrinsic volumes

nor the curvature measures. We have Vj (R
i ) = δi j .

2. The intrinsic volumes and the curvature measures are nonnegative and satisfy∑d
j=0 Vj (C) = 1.

3. Vj (QC) = Vj (C) and Φ j (QC, QM) = Φ j (C, M) for Q ∈ O(d) (orthogonal
invariance).

4. We have Vj (C) = Vd− j (C̆).

5. Vj (C1 × C2) =∑ j
i=0 Vi (C1) · Vj−i (C2) for closed convex cones C1, C2.

6. For M ∈ B̂(Rd) we have Probx∈N (0,Id ){�C (x) ∈ M} =∑d
j=0 Φ j (C, M).

7. For a linear subspace W ⊆ R
d of codimension m with orthogonal projection

�W : R
d → W we have Φ j (�W (C),�W (M)) = Φ j+m(C +W⊥, M +W⊥) for

M ∈ B̂(Rd).

Example 2.1 We have V0(R+) = V1(R+) = 1
2 . From (5) we get Vj (R

d+) = (d
j

)
/2d

(d-fold convolution of the symmetric Bernoulli distribution).

Another important property of the intrinsic volumes states that for a closed convex
cone C ⊆ R

d :

V1(C)+ V3(C)+ V5(C)+ · · · = 1

2
· χ(C ∩ Sd−1), (2.4)

where χ denotes the Euler characteristic, cf. [18, Sec. 4.3] or [36, Thm. 6.5.5]. Note
that χ(C ∩ Sd−1) = 1 if C is not a linear subspace.
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Intrinsic volumes of symmetric cones and applications 109

2.2 The kinematic formula

Kinematic formulas for Euclidean space are well documented, cf. the survey [25]
and the references given therein. For our purposes we need the less known spherical
kinematic formulas [36, §6.5].

The Grassmann manifold Grc
m(Rd) consists of the linear subspaces of R

d with
codimension m. The uniform probability distribution on Grc

m(Rd) is characterized as
the unique probability distribution that is invariant under the action of the orthogo-
nal group of O(d). (The kernel of a m × d standard Gaussian matrix is uniform on
Grc

m(Rd).)
The following result is a consequence of a kinematic formula for spheres due to

Glasauer [18], cf. [19] or [25, §2.4].

Theorem 2.1 (Kinematic formula) Let C ⊆ R
d be a closed convex cone and M ∈

B̂(Rd). Fix 1 ≤ m ≤ d − 1 and let W ⊆ R
d be a uniformly random subspace of

codimension m. Then the random intersection C ∩W satisfies

E
[
Φ j (C ∩W, M ∩W )

] = Φm+ j (C, M), for j = 1, 2, . . . , d − m, (2.5)

E
[
V0(C ∩W )

] = V0(C)+ V1(C)+ · · · + Vm(C), (2.6)

and for the random projection �W (C) we have

E
[
Φ j (�W (C),�W (M))

] = Φ j (C, M), for j = 0, 1, . . . , d − m − 1, (2.7)

E
[
Vd−m(�W (C))

] = Vd−m(C)+ Vd−m+1(C)+ · · · + Vd(C). (2.8)

Remark 2.1 A proof for (2.5) is contained in [36, §6.5], whereas the projection for-
mula (2.7) is harder to trace in the literature. See [6, Appendix] for a detailed derivation
of (2.7) from Glasauer’s formula.

Corollary 2.1 Let C ⊂ R
d be a closed convex cone, which is not a linear subspace.

Then for W ⊆ R
d a uniformly random subspace of codimension m

Prob
{
C ∩W = {0}} = 2 · (Vm−1(C)+ Vm−3(C)+ Vm−5(C)+ · · · ).

Proof The Euler characteristic χ(C∩W∩Sd−1) vanishes if C∩W = {0} and equals 1
otherwise, provided C ∩W is not a linear subspace. Moreover, the intersection C ∩W
is almost surely not a linear subspace. Therefore,

Prob
{
C ∩W �= {0}} = E

[
χ(C ∩W ∩ Sd−1)

] (2.4)= 2 ·
∑

j odd

E
[
Vj (C ∩W )

]
.

Moreover, E
[
Vj (C ∩W )

] = Vm+ j (C) by (2.5). Taking into account that the intrinsic
volumes with even/odd indices add up to 1

2 , the assertion follows. ��
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110 D. Amelunxen, P. Bürgisser

3 Probability distributions of solutions of random convex programs

We consider the following forms of convex programming. Let E be a finite-dimensional
Euclidean space with inner product 〈., .〉 : E × E → R. Furthermore, let C ⊆ E be
a closed convex cone. The classical convex programming problem (with reference
cone C) has the inputs a1, . . . , am, z ∈ E and b1, . . . , bm ∈ R, and consists of the task

maximize 〈z, x〉 (CP)

subject to 〈ai , x〉 = bi , i = 1, . . . , m,

x ∈ C,

which is to be solved in x ∈ E . We also consider a homogeneous version, which is
easier to analyze. It has only the inputs a1, . . . , am, z ∈ E , and again is to be solved
in x ∈ E :

maximize 〈z, x〉 (hCP)

subject to 〈ai , x〉 = 0, i = 1, . . . , m,

x ∈ C , ‖x‖ ≤ 1.

The (standard) normal distribution N (E) is defined by requiring that the compo-
nents of z ∈ E with respect to an orthonormal basis are i.i.d. standard normal.

Definition 3.1 We say that an instance of (hCP) is standard Gaussian if a1, . . . , am, z
are i.i.d. in N (E). An instance of (CP) is called standard Gaussian if, additionally,
the random vector (b1, . . . , bm) is almost surely nonzero.

We call F(CP) := {x ∈ C | ∀i : 〈ai , x〉 = bi } the feasible set of (CP). The value
of (CP) is val(CP) := sup{〈z, x〉 | x ∈ F(CP)} and its solution set is defined as
Sol(CP) := {x ∈ F(CP) | 〈z, x〉 = val(CP)}. Similar definitions apply to (hCP).

Note that val(hCP) is a maximum, as the set F(hCP) is compact and contains
the origin. For the affine version (CP) this need not be the case. The feasible set
F(CP) may be unbounded, and the value val(CP) may be ∞, in which case we
say that (CP) is unbounded. Also, the feasible set F(CP) may be empty, so that
val(CP) = sup∅ := −∞. In this case we say that (CP) is infeasible. If Sol(CP)

consists of a single element x0 only, then we write x0 = sol(CP) (and we use a
similar convention for Sol(hCP)). Well-known results from convex geometry, e.g.
[35, Thm. 2.2.9], imply that almost surely Sol(hCP) and Sol(CP) are either empty or
consist of single elements.

The first results of our paper describe the distribution of the solutions of (hCP)
and (CP) in terms of curvature measures.

Theorem 3.1 The probability distribution of the solution of a standard Gaussian
instance of (hCP) is given by Prob

{
sol(hCP) = 0

} =∑m
j=0 Vj (C) and

Prob
{

sol(hCP) ∈ M
} =

d∑

j=m+1

Φ j (C, M),
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where M ∈ B̂(E) with 0 �∈ M. Furthermore, if C is not a linear subspace, then
Prob

{
F(hCP) = {0}} = 2

∑
j V j (C) where the sum is over all 0 ≤ j ≤ m − 1 such

that j ≡ m − 1 mod 2.

Theorem 3.2 The probability distribution of the solution of a standard Gaussian
instance of (CP) is given by

Prob
{
CP infeasible

} =
m−1∑

j=0

Vj (C), Prob
{
CP unbounded

} =
d∑

j=m+1

Vj (C).

Furthermore, for M ∈ B̂(E) we have

Prob
{

sol(CP) ∈ M
} = Φm(C, M), (3.1)

and Prob{sol(CP) ∈ M ∧ val(CP) > 0} = Prob{sol(CP) ∈ M ∧ val(CP) < 0}.
Example 3.1 The intrinsic volumes of the positive orthant R

d+ are given by the sym-
metric binomial distribution Vj (R

d+) = (d
j

)
/2d , cf. Remark 2.1. Plugging this in

Theorem 3.2 yields the corresponding probabilities for linear programming, which
have already been computed in various places, cf. [1,10,12,27,38,41].

Remark 3.1 The random model (standard Gaussian) in Theorems 3.1 and 3.2 can be
relaxed. In fact, the proofs only use the weaker assumptions that (a⊥1 ∩· · ·∩a⊥m , z/‖z‖)
induce the uniform distribution on the product Grc

m(E) × S(E) of the Grassmann
manifold Grc

m(E) with the unit sphere S(E).

3.1 Semidefinite programming

Throughout the paper we use the parameter β ∈ {1, 2, 4} to indicate whether we are
working over the real numbers R, over the complex numbers C, or over the quater-
nions H. We denote the ground (skew) field by Fβ , i.e., F1 := R, F2 := C, and
F4 := H. In particular, H has the R-basis 1, i, j, k satisfying the well-known quater-
nion multiplication rules. The real part of z ∈ Fβ is given by�(z) := (z+ z̄)/2, where
z̄ denotes the conjugation of z.

The space Herβ,n := {A ∈ F
n×n
β | A† = A} of n × n-Hermitian matrices over

Fβ is a real vector space of dimension dβ,n := n + β
(n

2

)
. Here A† = (ā j i ) for A =

(ai j ). We regard Herβ,n as a Euclidean vector space with the inner product given by
A ·B := �(tr(A† B)), where A, B ∈ Herβ,n , and tr(A) denotes the trace. The standard
normal distribution in Herβ,n with respect to this inner product is called the Gaussian
Orthogonal/Unitary/Symplectic Ensemble (GOE/GUE/GSE), briefly denoted GβE for
β = 1, 2, 4.

The cone of positive semidefinite matrices over Fβ defined as

Cβ,n = {A ∈ Herβ,n | ∀x ∈ F
n
β : x† Ax ≥ 0} (3.2)
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112 D. Amelunxen, P. Bürgisser

Fig. 1 The intrinsic volumes of C4,3 and their decompositions in curvature measures. The small numbers
indicate the contributions of the ranks. The probabilities from Corollary 3.1 are indicated for m = 6

is self-dual, i.e., polar(Cβ,n) = −Cβ,n , cf. [8, §II.12]. The cone Cβ,n has a natural
decomposition according to the rank of the matrices: Cβ,n = ⋃n

r=0 Wβ,n,r , with
Wβ,n,r := {A ∈ Cβ,n | rk A = r}, cf. [43] for the quaternion case. For the j th curvature
measure of Cβ,n evaluated at the set of its rank r -matrices we write Φ j (β, n, r) :=
Φ j (Cβ,n,Wβ,n,r ). The decomposition of the cone Cβ,n into the rank r -strata yields
Vj (Cβ,n) =∑n

r=0 Φ j (β, n, r) for j = 0, . . . , dβ,n .
The semidefinite programming task (SDPβ) stands for the task (CP) of convex

programming for the cone C = Cβ,n in E = Herβ,n .
Specializing Theorem 3.2 immediately implies the following result.

Corollary 3.1 The probability distribution of the solution of a standard Gaussian
instance of (SDPβ) is given by Prob{rk(sol(SDPβ))=r}=Φm(β, n, r) for 0≤r≤n.

See Theorem 4.1 for explicit formulas for Φ j (β, n, r). Figure 1 illustrates the case
β = 4, n = 3, m = 6. We note that the self-duality of Cβ,n and Proposition 2.1(5)
imply Vj (Cβ,n) = Vdβ,n− j (Cβ,n).

4 Curvature measures of SDP cones

We state the curvature measures Φ j (β, n, r) in terms of certain integrals for which
we need to introduce some notation first. Consider the Vandermonde determinant
Δ(z) :=∏

1≤i< j≤n(zi−z j ) for z = (z1, . . . , zn). For 0 ≤ r ≤ n let x := (z1, . . . , zr )

and y := (zr+1, . . . , zn), so that z = (x, y). This yields the decomposition

Δ(z)β = Δ(x)β ·Δ(y)β ·
r∏

i=1

n−r∏

j=1

(xi − y j )
β . (4.1)

We regard the rightmost factor in (4.1) as a polynomial in x and decompose it into its
homogeneous parts. For convenience, we change the sign, and define

fβ,k(x; y) :=
(

the x-homog. part of
r∏

i=1

n−r∏

j=1

(xi + y j )
β of degree k

)

. (4.2)
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See (6.19) for a more explicit formula for fβ,k(x; y). The Vandermonde determinant

thus decomposes as Δ(z)β = Δ(x)β ·Δ(y)β ·∑βr(n−r)
k=0 fβ,k(x;−y).

Definition 4.1 We define for 0 ≤ r ≤ n and 0 ≤ k ≤ βr(n − r) the integrals

Jβ(n, r, k) := 1

(2π)n/2 ·
∫

z∈R
n+

e−
‖z‖2

2 · |Δ(x)|β · |Δ(y)|β · fβ,k(x; y) dz, (4.3)

where z = (x, y) with x ∈ R
r , y ∈ R

n−r , and R
n+ denotes the positive orthant in R

n .
We set Jβ(n, r, k) := 0, if k < 0 or k > βr(n − r).

Exchanging the roles of x and y yields the following symmetry relation

Jβ(n, r, k) = Jβ(n, n − r, βr(n − r)− k). (4.4)

For r ∈ {0, n} and k = 0 we obtain the integrand e−
‖z‖2

2 · |Δ(z)|β , which also
appears in Mehta’s integral (cf. [16] and the references therein)

Fn(β/2) := 1

(2π)n/2 ·
∫

z∈Rn

e−
‖z‖2

2 |Δ(z)|β dz =
n∏

j=1

Γ (1+ jβ
2 )

Γ (1+ β
2 )

. (4.5)

It is well-known that the distribution of the joint probability density function for the
eigenvalues of matrices from GβE is given by (cf. [16])

1

(2π)n/2 Fn(β/2)
· e−‖z‖2

2 · |Δ(z)|β. (4.6)

Using this, we see that one can write the integrals Jβ(n, r, k) succinctly as expected
values: choosing A ∈ GβE(r) and B ∈ GβE(n − r),

Jβ(n, r, k) = Fr (β/2) · Fn−r (β/2) · E[
1+(A) · 1+(B) · fβ,k(A; B)

]
,

where 1+(A) = 1 if A is positive semidefinite and 0 otherwise, and fβ,k(A; B) denotes
the evaluation of fβ,k at the eigenvalues of A and B.

Recall that Φ j (β, n, r) = Φ j (Cβ,n,Wβ,n,r ) denotes the j th curvature measures
of Cβ,n evaluated at the set Wβ,n,r of its rank r matrices. Recall also that dβ,n =
n + β

(n
2

)
. The following theorem is another main result of this paper.

Theorem 4.1 Let β ∈ {1, 2, 4} and 0 ≤ r ≤ n. We have for 0 ≤ j ≤ dβ,n

Φ j (β, n, r) =
(

n

r

)

· Jβ(n, r, j − dβ,r )

Fn(β/2)
, (4.7)

where Jβ(n, r, k) and Fn(β/2) are defined in (4.4) and (4.5), respectively.
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Table 1 The values of Φ j (β, 3, 1)

β j

1 2 3 4 5 6 7 8 9

1
√

2
4 − 1

4

√
2

2π
1
2 −

√
2

4 0 0 0 0 0 0

2 3
16 − 1

2π
1

4π
1

2π
1

2π
3

16 − 3
8π

0 0 0 0

4 11
64 − 8

15π
1

40π
4

15π
− 1

16
19

120π
3

32
2

5π
1
16 + 1

6π
1

5π
7

64 − 7
24π

See Table 1 for some values of Φ j (β, n, r); the computation of these values is
explained in [6, §3.4].

Remark 4.1 1. We have Φ j (β, n, r) > 0 iff dβ,r ≤ j ≤ dβ,r + βr(n − r). This is
closely related to Pataki’s inequalities (for β = 1), cf. [3,31], which state that
the rank r of the solution of a generic instance of (SDPβ) almost surely satisfies
dβ,r ≤ m ≤ dβ,r + βr(n − r).

2. The relation (4.4) implies Φ j (β, n, r) = Φdβ,n− j (β, n, n − r), which is a refine-
ment of the duality relation Vj (Cβ,n) = Vdβ,n− j (Cβ,n).

3. Both of the above properties of Φ j (β, n, r) also hold for the algebraic degree of
semidefinite programming, cf. [31, Prop. 9]. There should be a deeper reason for
this coincidence that would be interesting to explore.

5 Proof of Theorems 3.1 and 3.2

In this section we adopt the following convention. Suppose we want to maximize a
function f over a set M . Putting m := sup{ f (y) | y ∈ M}, we write Argmax{ f (x) |
x ∈ M} := {x ∈ M | f (x) = m}. If this set consists of a single element only, then
we denote it by argmax{ f (x) | x ∈ M}. Similarly for Argmin and argmin.

5.1 The homogeneous problem (hCP)

We will see that the homogeneous case (hCP) is easily reformulated in such a way that
the kinematic formula yields the proof of Theorem 3.1. The key observation is made
in the following simple lemma, which is verified easily.

Lemma 5.1 Let C ⊆ R
d be a closed convex cone and let B ⊂ R

d denote the closed
unit ball. Then for v ∈ R

d\{0}

argmax{〈v, x〉 | x ∈ C ∩ B} =
{
‖�C (v)‖−1 ·�C (v) if v �∈ C̆

0 if v ∈ int(C̆).

The problem (hCP) can now be phrased in the following form: We have the closed
convex cone C in d-dimensional Euclidean space E . This cone is intersected with the
closed unit ball B := {x ∈ E | ‖x‖ ≤ 1} and with the linear subspace W := {x ∈ E |
〈a1, x〉 = · · · = 〈am, x〉 = 0}. In other words, we have
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F(hCP) = C ∩W ∩ B.

If the ai are from the standard normal distribution N (E) then W has almost surely codi-
mension m, and W is uniformly distributed among all (d−m)-dimensional subspaces
of E . So we may assume w.l.o.g. that W is a uniformly random (d −m)-dimensional
subspace of E .

Proof (Theorem 3.1) In (hCP) we may replace z by its orthogonal projection z̄ to
W , as this does not change the value of the functional 〈z, ·〉 on W . For fixed W we
thus obtain a conditional distribution for z̄, which, by the well-known properties of
the normal distribution, is again the standard normal distribution (on W ). Hence the
probability that the origin is the solution of (hCP) is given in the following way

Prob
a1,...,am ,z

{sol(hCP) = 0} = E
W

[
Prob

z̄

{
argmax{〈z̄, x〉 | x ∈ W ∩ C ∩ B} = 0

}]

Lem.5.1= E
W

[
Prob

z̄

{
z̄ ∈ polar(W ∩ C)

}] (2.3)= E
W

[
V0(W ∩ C)

] (2.6)=
m∑

j=0

Vj (C),

which shows the first claim in Theorem 3.1. As for the second claim in Theorem 3.1,
let �CW denote the projection onto CW := C ∩ W . Then we obtain for M ∈ B̂(E)

such that 0 �∈ M ,

Prob
a1,...,am ,z

{
sol(hCP) ∈ M

} = E
W

[
Prob

z̄

{
argmax{〈z̄, x〉 | x ∈ W ∩ C ∩ B} ∈ M

}]

Lem.5.1= E
W

[
Prob

z̄

{
�CW (z̄) ∈ M

}]
.

For fixed W we have by Proposition 2.1(6)

Prob
z̄

{
�CW (z̄) ∈ M

} =
d−m∑

j=1

Φ j (C ∩W, M).

For random W we may apply the kinematic formula and continue with

Prob
a1,...,am ,z

{
sol(hCP) ∈ M

} =
d−m∑

j=1

E
W

[
Φ j (C ∩W, M)

] (2.5)=
d−m∑

j=1

Φ j+m(C, M),

which shows the second claim in Theorem 3.1.
Finally, if the cone C is not a linear subspace, we note that F(hCP) = {0} iff

C ∩W = {0} and we conclude with Corollary 2.1. ��

5.2 The inhomogeneous problem (CP)

The geometric interpretation of (CP) is slightly more complicated than in the homo-
geneous case (hCP). The key observation is in the following lemma, which reduces
the d-dimensional to the 2-dimensional case.
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Lemma 5.2 Let v,w ∈ R
d\{0} be such that 〈v,w〉 = 0, let L := span{v,w} denote

the plane spanned by v and w, and consider the affine hyperplane Waff := {x ∈ R
d |

〈w, x〉 = 1}. Further, let �L : R
d → L denote the orthogonal projection onto L. For

a closed convex cone C ⊆ R
d we have

sup{〈v, x〉 | x ∈ C ∩Waff} = sup{〈v, x〉 | x ∈ �L(C) ∩Waff }.

Moreover, M := Argmax{〈v, x〉 | x ∈ C ∩ Waff } and ML := Argmax{〈v, x〉 | x ∈
�L(C) ∩Waff} are related by M = C ∩�−1

L (ML).

Proof Let x ∈ R
d be decomposed in x = x1 + x2 with x1 ∈ L and x2 ∈ L⊥,

i.e., x1 = �L(x). Then we have 〈v, x〉 = 〈v, x1〉 + 〈v, x2〉 = 〈v, x1〉, and similarly
〈w, x〉 = 〈w, x1〉. This implies sup{〈v, x〉 | x ∈ C , 〈w, x〉 = 1} = sup{〈v, x1〉 |
x1 ∈ �L(C) , 〈w, x1〉 = 1}. Analogously, we obtain the second claim. ��

We now discuss the 2-dimensional case. For convenience we assume that v,w are
normalized. So let v,w ∈ S1 with 〈v,w〉 = 0, i.e., the matrix with columns v,w lies
in O(2). The orthogonal group O(2) is isometric to the disjoint union S1 ∪̇ S1 via
the map ϕ : O(2) → S1 × {±1} defined by ϕ(v,w) = (v, 1) iff (v,w) has positive
orientation and ϕ(v,w) = (v,−1) otherwise.

In the following let C̄ ⊂ R
2 be a fixed closed convex cone that is not a linear

subspace, i.e., C̄ is a wedge with an angle between 0 and π . Denote by R1 and R2
the two rays forming the boundary of C̄ . Furthermore, depending on v,w, we write
F̄ := {x ∈ C̄ | 〈w, x〉 = 1}, val := sup{〈v, x〉 | x ∈ F̄}, and Sol := Argmax{〈v, x〉 |
x ∈ F̄}. Assuming that v,w are random vectors with (v,w) ∈ O(2) uniformly
at random, it is easily seen that only four cases appear with positive probability: The
intersection F̄ may be empty, the functional v may be unbounded on F̄ , or the solution
set Sol consists of a single point, which either lies in R1 or in R2. In the latter case we
again adopt the convention to denote the single point by sol.

The following lemma is easily checked.

Lemma 5.3 For uniformly random (v,w) ∈ O(2), we have

Prob
{
F̄ = ∅} = V0(C̄), Prob

{
val = ∞} = V2(C̄).

Furthermore, for M ∈ B̂(R2), we have

Prob
{
sol ∈ M and val > 0

} = Prob
{
sol ∈ M and val < 0

} = 1

2
Φ1(C̄, M).

As in the homogeneous case, we will now transform the problem (CP) into a
geometric form to which we can apply the kinematic formula.

The affine linear subspace

Waff := {x ∈ E | 〈a1, x〉 = b1, . . . , 〈am, x〉 = bm}.
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is a shift of the linear space W := {x ∈ E | 〈a1, x〉 = · · · = 〈am, x〉 = 0}. If
Waff �= W , then there is a unique vector w ∈ S(W⊥) and a unique λ > 0 such that
Waff = W + λw. We write W̃ := W + Rw.

Lemma 5.4 Suppose that a1, . . . , am are i.i.d. standard Gaussian in E and b ∈ R
m

is a random vector such that b �= 0 almost surely. Then, almost surely, W is uniformly
distributed in Grc

m(E). Further, conditional on W , the vector w is uniformly distributed
in S(W⊥). Finally, W̃ is uniformly distributed in Grc

m−1(E).

Proof (Sketch) It suffices to show that, conditional on W , the vector w is uniformly
distributed in S(W⊥). For seeing this, we may assume that E = R

d , W = 0×R
d−m ,

and a1, . . . , am are i.i.d. standard Gaussian in R
m×0. Let

(
A 0

)
denote the m×d matrix

with rows ai , so that A ∈ R
m×m is almost surely invertible. Denote b := (b1, . . . , bm),

and put x := A−1b. It is easy to see that conditional on b �= 0, the vector w = x/‖x‖
is uniformly distributed in Sm−1. Hence the assertion follows. ��

As we are not interested in the specific value of (CP) (provided it is <∞) but only
where the maximum is attained, we may consider W +w instead of Waff = W + λw,
i.e., instead of (CP) we consider

maximize 〈z, x〉 s.t. x ∈ C ∩ W̃ , 〈w, x〉 = 1. (5.1)

Without loss of generality, we may further replace z by its orthogonal projection z̄
on W . For fixed W the induced distribution of z̄ is the normal distribution on W . As z̄
is almost surely nonzero, we may define the normalization v := ‖z̄‖−1 · z̄ ∈ S(W ).
Finally, we denote the plane spanned by v,w by L := span{v,w}.

We can generate the distribution of (W̃ , L , v, w) induced by the standard normal
distributed a1, . . . , am and by b1, . . . , bm in the following way:

1. choose a uniformly random subspace W̃ of E of codimension m − 1,
2. choose a plane L ⊆ W̃ uniformly at random,
3. choose v ∈ S(L) uniformly at random,
4. choose w as one of the points in S(L) ∩ v⊥, each with probability 1

2 .

Proof (Theorem 3.2) Lemma 5.2 tells us that instead of (5.1) we may consider the
following problem in the 2-dimensional plane L

maximize 〈v, x〉 s.t. x ∈ �L(C ∩ W̃ ), 〈w, x〉 = 1. (5.2)

More precisely, using the notation introduced before for the analysis of the situation
in dimension two, we have

C̄ := �L(C ∩ W̃ ), F̄ := {x ∈ C̄ | 〈w, x〉 = 1},
val := sup{〈v, x〉 | x ∈ F̄}, Sol := Argmax{〈v, x〉 | x ∈ F̄},

and we obtain from Lemma 5.2 that (CP) is infeasible iff F̄ = ∅, (CP) is unbounded
iff val = ∞, and Sol(CP) = C ∩�−1

L (Sol). We thus obtain by Lemma 5.3
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Prob
a1,...,am
b1,...,bm

{CP infeasible} = E

W̃ ,L

[
Prob
v,w

{
F̄ = ∅}] = E

W̃ ,L

[
V0(�L(C ∩ W̃ ))

]
.

Applying the kinematic formula twice yields (recall codim W̃ = m − 1)

E

W̃ ,L

[
V0(�L(C ∩ W̃ ))

] (2.7)= E

W̃

[
V0(C ∩ W̃ )

] (2.6)= V0(C)+ V1(C)+ · · · + Vm−1(C),

which proves the first assertion of Theorem 3.2. Analogously, we obtain

Prob
a1,...,am ,z
b1,...,bm

{CP unbounded} = E

W̃ ,L

[
Prob
v,w

{
val = ∞}] 5.3= E

W̃ ,L

[
V2(�L(C ∩ W̃ ))

]

(2.8)= E

W̃

[
V2(C ∩ W̃ )+ V3(C ∩ W̃ )+ · · · + Vd−m+1(C ∩ W̃ )

]

(2.5)= Vm+1(C)+ Vm+2(C)+ · · · + Vd(C),

which proves the second assertion of Theorem 3.2.
As for the claim (3.1), we have for M ∈ B̂(E)

(
sol(CP) ∈ M ∩ W̃ and val(CP) > 0

) ⇐⇒ (
sol ∈ �L(M ∩ W̃ ) and val > 0

)
.

Therefore, Proba1,...,am ,z
b1,...,bm

{sol(CP) ∈ M and val(CP) > 0} equals by Lemma 5.3

E

W̃ ,L

[

Prob
v,w

{
sol ∈ �L(M ∩ W̃ ) and val>0

}
]

= E

W̃ ,L

[
1

2
Φ1(�L(C ∩ W̃ ),�L(M ∩ W̃ ))

]

.

Applying the kinematic formula twice finally yields

E

W̃ ,L

[
1

2
·Φ1(�L(C ∩ W̃ ),�L(M ∩ W̃ ))

]
(2.7)= 1

2
· E

W̃

[
Φ1(C ∩ W̃ , M ∩ W̃ )

]
,

which equals 1
2 · Φm(C, M) by (2.5). An analogous arguments yields the claim with

the constraint val(CP) < 0. ��

6 Proof of Theorem 4.1

In this section we derive the formulas for the curvature measures of the symmetric
cones as stated in Theorem 4.1. For completeness we state in Sect. 6.1 the formula
for the volume of the tube around a spherically convex set, which may serve as a
defining formula for the intrinsic volumes of general convex cones. This formula is
also needed to justify the generalized version of Weyl’s tube formula for cones with
stratified smooth boundary, which we state in Sect. 6.2 without proof. In Sect. 6.3 we
will provide some differential geometric background for the proof of Theorem 4.1,
which we give in Sect. 6.4.
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6.1 Intrinsic volumes of general convex cones

In this and in the subsequent sections we adopt the spherical viewpoint by considering
intersections of convex cones with the unit sphere. The intrinsic volumes and the
curvature measures of a convex cone C can be characterized through the volume
of the (local) tube around the spherically convex set C ∩ Sd−1. We introduce the
following notation for convex cone C ⊆ R

d , a conic Borel set M ∈ B̂(Rd) and an
angle α ∈ [0, π/2)

T (C, α) := {p ∈ Sd−1 | ‖�C (p)‖ ≥ cos(α)},
T (C, α;M) := {p ∈ T (C, α) | �C (p) ∈ M},

where �C denotes the canonical projection map. We suppress the dependence on the
ambient sphere Sd−1 to keep the notation simple.

The following proposition forms the basis for the general definition of the curvature
measures and the intrinsic volumes. For a proof see for example [4,18,23,26,34].

Proposition 6.1 Let C ⊆ R
d be a closed convex cone and M ∈ B̂(Rd) be a conic

Borel set. Then for 0 ≤ α < π/2

rvol T (C, α;M) = Φd(C, M)+
d−1∑

j=1

Φ j (C, M) · rvol T (W j , α), (6.1)

where W j ⊆ R
d denotes a j-dimensional linear subspace.

6.2 Expressing intrinsic volumes in terms of curvature

The characterizations (2.1) and (2.2) provide formulas for the curvature measures of
polyhedral cones. Another class of cones, for which one has closed formulas for the
intrinsic volumes, are the smooth cones, i.e., cones C ⊆ R

d such that the intersection of
its boundary with the unit sphere M := ∂C∩Sd−1 is a smooth (i.e., C∞) hypersurface
of Sd−1. In this case the formulas for the intrinsic volumes involve the curvature of M ,
which we shall describe next.

In general, let M ⊂ Sd−1 be a smooth submanifold of the unit sphere. For p ∈ M we
denote the tangent space of M in p by Tp M , and we denote its orthogonal complement
in Tp Sd−1 = p⊥ by T⊥p M . Let ζ ∈ Tp M be a tangent vector, and η ∈ T⊥p M a normal
vector. It can be shown that if c : R → M is a (smooth) curve with c(0) = p and
ċ(0) = ζ , and if w : R → R

d is a normal extension of η along c, i.e., w(t) ∈ T⊥c(t)M
and w(0) = η, then the orthogonal projection of ẇ(0) onto Tp M neither depends on
the choice of the curve c nor on the choice of the normal extension w of η (cf. for
example [40, Ch. 14] for the hypersurface case, or [13, Ch. 6] for general Riemannian
manifolds). It therefore makes sense to define the map

Wp,η : Tp M → Tp M, ζ �→ −�Tp M (ẇ(0)),
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where w : R → R
d is a normal extension of η along a curve c : R → M which satisfies

c(0) = p and ċ(0) = ζ , and �Tp M denotes the orthogonal projection onto the tangent
space Tp M . The map Wp,η is called the Weingarten map.

It can be shown that Wp,η is a symmetric linear map (cf. [13, Ch. 6]), so that it has
m := dim M real eigenvalues κ1(p, η), . . . , κm(p, η), which are called the principal
curvatures of M at p in direction η. The corresponding eigenvectors are called prin-
cipal directions. Furthermore, we denote the elementary symmetric functions in the
principal curvatures by

σi (p, η) :=
∑

1≤ j1<···< ji≤m

κ j1(p, η) · · · κ ji (p, η). (6.2)

When we are working with orientable hypersurfaces, i.e., with submanifolds of
codimension 1 that are endowed with a global unit normal vector field ν : M → T⊥M ,
i.e., ν(p) ∈ T⊥p M , ‖ν(p)‖ = 1, then we abbreviate σi (p) := σi (p, ν(p)). When
M = ∂C ∩ Sd−1 is the boundary of a convex cone intersected with the unit sphere
as well as a smooth hypersurface of Sd−1, then we always consider M to be endowed
with the unit normal field pointing inwards the cone C (this implies κi (p) ≥ 0 for all
i = 1, . . . , d − 2).

In the context of (spherically) convex sets, Weyl’s classical tube formula [42] says
the following: Let C ⊆ R

d be a closed convex cone such that M = ∂C ∩ Sd−1 is a
smooth hypersurface of Sd−1. Then, for 1 ≤ j ≤ d − 1,

Vj (C) = 1
O j−1·Od− j−1

·
∫

p∈M

σd− j−1(p) d M, (6.3)

where Od−1 := vold−1 Sd−1 = 2πd/2

Γ (d/2)
, and d M denotes the volume element induced

from the Riemannian metric on M .
The problem is that the cones Cβ,n , whose intrinsic volumes we want to compute,

are neither polyhedral nor smooth (for n ≥ 3). But the rank decomposition Cβ,n =
∪n

r=0 Wβ,n,r yields a decomposition of Cβ,n into smooth pieces, which is the basic
idea behind the proof of Theorem 4.1. In the remainder of this section we define the
notion of a stratifiable convex set, which is a generalization of both polyhedral and
smooth convex sets, and we state a suitable generalization of (6.3).

In the following let M ⊂ Sd−1 be a smooth submanifold of the unit sphere. We
may consider the tangent resp. normal bundle of M (cf. [37, Ch. 3]) as submanifolds
of R

d × R
d via

T M =
⋃

p∈M

{p} × Tp M, T⊥M =
⋃

p∈M

{p} × T⊥p M .

Furthermore, we also consider the spherical normal bundle

T S M :=
⋃

p∈M

{p} × T S
p M, T S

p M := T⊥p M ∩ Sd−1. (6.4)
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The tangent and the normal bundle are both so-called vector bundles, as all fibers
of the canonical projection maps (x, v) �→ x are vector spaces. The spherical normal
bundle is a sphere bundle, as all fibers are subspheres of the unit sphere. For the
generalization of Weyl’s tube formula we need to consider another class of fiber
bundles, where each fiber is given by (the relative interior of) a spherically convex set.

Let C ⊆ R
d be a closed convex cone. For p ∈ C we define the normal cone of C

in p by

Np(C) := {v ∈ R
d | �C (v + p) = p},

which is easily seen to be a closed convex cone with Np(C) ⊆ p⊥. For a subset
M ⊆ C , we define the spherical duality bundle via

N S M :=
⋃

p∈M

{p} × N S
p M, N S

p M := relint(Np(C)) ∩ Sd−1. (6.5)

Note that we have not imposed any smoothness assumption yet, but if M ⊆ C ∩ Sd−1

is smooth, then we have N S M ⊆ T S M . Note also that N S M in fact depends on M
and C .

Definition 6.1 Let C ⊆ R
d be a closed convex cone. We call the spherically convex

set K := C ∩ Sd−1 stratifiable if it decomposes into a disjoint union K = ⋃̇t
i=0 Mi ,

such that:

1. For all 0 ≤ i ≤ t , Mi is a smooth connected submanifold of Sd−1.
2. For all 0 ≤ i ≤ t the spherical duality bundle N S Mi is a smooth manifold.

If (1) and (2) are satisfied, then we call K = ⋃̇t
i=0 Mi a valid decomposition. Fur-

thermore, we call a stratum Mi essential if dim N S Mi = d − 2, otherwise we call it
negligible.

The following theorem is the announced generalization of Weyl’s tube formula (6.3)
to stratified sets. A proof may be found in [5, §4.3]. Similar formulas may also be found
in [2].

Theorem 6.1 Let C ⊆ R
d such that K := C ∩ Sd−1 is stratifiable and decomposes

into the valid decomposition K = ⋃̇t
i=0 Mi . Let M0 = int(K ) and M1, . . . , Mk be

the essential and Mk+1, . . . , Mt , k ≤ t the negligible pieces. Then, for 1 ≤ i ≤ k and
1 ≤ j ≤ d − 1,

V j (C) =
k∑

i=1

Φ j (C, Mi ),

Φ j (C, Mi ) = 1

O j−1 ·Od− j−1
·

∫

p∈Mi

∫

η∈N S
p (C)

σ
(i)
di− j−1(p,−η) d N S

p (C) d Mi ,

where di := dim Mi + 2 and σ
(i)
� (p,−η) denotes the �th elementary symmetric

function in the principal curvatures of Mi at p in direction−η (and σ� := 0 if � < 0).
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6.3 Orthogonal, unitary, and (compact) symplectic groups

In this section we discuss the compact Lie groups

G(n) := Gβ(n) := {U ∈ F
n×n
β | U †U = In},

of linear isomorphisms Fβ → Fβ preserving the standard scalar product on F
n
β given

by 〈x, y〉 = x† y = ∑n
i=1 x̄i yi for x, y ∈ F

n
β . The groups Gβ(n) are called the

orthogonal groups, unitary groups, and (compact) symplectic groups depending on
the value of β = 1, 2, 4, cf. for example [17, §7.2]. Note that an element U ∈ Gβ(n)

may be identified with an orthonormal basis of F
n
β by interpreting the matrix U as the

n-tuple of its columns. We drop the index β to simplify the notation.
The Lie algebra of G(n), i.e., the tangent space of G(n) at the identity matrix In ,

is given by the real vector space of skew-Hermitian matrices

Skewn := Skewβ,n := TIn G(n) = {A ∈ F
n×n
β | A† = −A}.

To specify a left-invariant Riemannian metric on G(n) it suffices to declare an R-basis
of the Lie algebra Skewn to be orthonormal (and then extend the metric to G(n) by
pushing it forward via the left-multiplication). For β = 4 we declare the following
basis of Skewn to be orthonormal:

{ιEii | 1 ≤ i ≤ n, ι ∈ {i, j, k}} ∪ {Ei j − E ji | 1 ≤ j < i ≤ n}
∪{ι(Ei j + E ji ) | 1 ≤ j < i ≤ n, ι ∈ {i, j, k}}, (6.6)

and for β = 1, 2 we use its intersections with R
n×n and C

n×n , respectively. It is
readily checked that this yields a bi-invariant metric on G(n) (the bi-invariance in fact
determines the Riemannian metric up to scaling).

Applying the coarea formula [24, Appendix] to the Riemannian submersion
ϕ : G(n) → S(Fn

β) = {x ∈ F
n
β | ‖x‖ = 1}, U �→ U · e1, implies vol G(n) =

vol S(Fn
β) · vol G(n − 1) and hence

vol G(n) =
n∏

i=1

Oβi−1 = 2n · πn(n+1)β/4 ·
n∏

i=1

1

Γ (
βi
2 )

. (6.7)

By a distribution of r ∈ Z>0 we understand a tuple ρ = (ρ1, . . . , ρm) ∈ Z
m
>0 such

that |ρ| := ρ1+· · ·+ρm = r . For such ρ with |ρ| ≤ n we define the closed subgroup
G(n, ρ) of G(n) consisting of the matrices having a block-diagonal form prescribed
by ρ, namely:

G(n, ρ) := {
diag(U1, . . . , Um, U ′) | Ui ∈ G(ρi ), U ′ ∈ G(n − r)

}
. (6.8)

Note that G(n, ρ) with its induced Riemannian metric is isometric to the direct product
G(ρ1)×· · ·×G(ρm)×G(n−r). Furthermore, the homogeneous space G(n)/G(n, ρ)

is a smooth manifold. The case ρ = 1(r) = (1, . . . , 1) (r -times) will be of particular

123



Intrinsic volumes of symmetric cones and applications 123

importance. Note that G(1) = S(Fβ) = {a ∈ Fβ | ‖a‖ = 1}, so that G(n, 1(r)) ∼=
S(Fβ)× · · · × S(Fβ)× G(n − r). We use the notation

Gn,r := G(n)/G(n, 1(r)). (6.9)

Furthermore, we denote by G(n) → Gn,r , U �→ [U ] := U · G(n, 1(r)) the canonical
map, which is a Riemannian submersion. An application of the coarea formula [24,
Appendix] yields

vol Gn,r = vol G(n)

vol G(n, 1(r))
= vol G(n)

Or
β−1 vol G(n − r)

. (6.10)

Note that G(n) has a natural action on Gn,r given by (U1, [U2]) �→ [U1U2] for
U1, U2 ∈ G(n). Moreover, as G(n) acts transitively on Gn,r , there exists up to scaling
at most one Riemannian metric on Gn,r , which is G(n)-invariant.

In the following paragraphs we will give a concrete description of the tangent space
T[In ]Gn,r , and specify on it a G(n)-invariant Riemannian metric. We have

G(n, 1(r)) =
{(

� 0
0 U ′

)∣
∣
∣
∣� = diag(λ1, . . . , λr ), λi ∈ S(Fβ), U ′ ∈ G(n − r)

}

,

hence the tangent space of Gn,r at [In] equals

TIn G(n, 1(r)) =
{(

D 0
0 S

)∣
∣
∣
∣ D = diag(a1, . . . , ar ) , �(ai ) = 0 , S† = −S

}

.

The orthogonal complement of TIn G(n, 1(r)) in TIn G(n) = Skewn , the space of skew-
Hermitian matrices, is given by (X ∈ F

r×r
β , Y ∈ F

(n−r)×r
β )

Skewn := (TIn G(n, 1(r)))⊥ =
{(

X −Y †

Y 0

)∣
∣
∣
∣ X† = −X

}

. (6.11)

It can be shown (cf. [22, Lemma II.4.1]) that there exists an open ball B around the
origin in TIn G(n) = Skewn such that the intersection B ∩ Skewn is diffeomorphic
to an open neighborhood of [In] in Gn,r . Moreover, the tangent space of Gn,r in [In]
may be identified with Skewn , and the restriction of the inner product on Skewn to
Skewn yields a well-defined Riemannian metric on Gn,r , which is G(n)-invariant.
(See [7, §5.2] for a more detailed description of the induced Riemannian metric on a
homogeneous space in a similar situation.)

For β = 4 we have the following orthonormal basis of Skewn , cf. (6.6),

{Ei j − E ji | (i, j) ∈ I} ∪ {ι(Ei j + E ji ) | ι ∈ {i, j, k}, (i, j) ∈ I},
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where I := I1 ∪ I2 = with

I1 := {(i, j) | 1 ≤ j < i ≤ r}, I2 := {(i, j) | r + 1 ≤ i ≤ n , 1 ≤ j ≤ r}. (6.12)

For further use in Section 6.4, we denote this orthonormal basis of Skewn ∼= T[In ]Gn,r

(for β = 4) by

η1
i j := Ei j − E ji , ηι

i j := ι(Ei j + E ji ), (i, j) ∈ I, ι ∈ {i, j, k}. (6.13)

For β = 2 we have the orthonormal basis {ηι
i j | ι ∈ {1, i}, (i, j) ∈ I}, and for β = 1

we have the orthonormal basis {η1
i j | (i, j) ∈ I}.

6.4 Deducing the formulas for Φ j (β, n, r)

We first note that the face structure of Cβ,n described in [8, §II.12] for the real case
extends to the complex and the quaternion case in a straightforward way. We shall see
that Cβ,n is a stratified cone and determine its essential and the negligible pieces.

We change to the spherical viewpoint and write Kn := Cβ,n ∩ S(Herβ,n) = {A ∈
Herβ,n | A ! 0 , ‖A‖ = 1}. In order to see that Kn is stratifiable and to exhibit a
valid decomposition of Kn (cf. Definition 6.1), we define the eigenvalue pattern of an
element A ∈ Kn via

patt(A) := (ρ1, . . . , ρm), iff λ1 = · · · = λρ1 > λρ1+1 = · · · = λρ1+ρ2 > . . . ,

where λ1 ≥ · · · ≥ λr > 0 are the positive eigenvalues of A. Note that patt(A) is a
distribution of r = rk(A). The spherical cap Kn thus decomposes into

Kn =
n
⋃̇

r=1

⋃̇

|ρ|=r

Mn,ρ, Mn,ρ := {A ∈ Kn | patt(A) = ρ}. (6.14)

Note that int(Kn) = ⋃̇
|ρ|=n Mn,ρ and ∂Kn = ⋃̇n−1

r=1
⋃̇
|ρ|=r Mn,ρ . Put

Pr :=
{
λ ∈ Sn−1 | λ1 > λ2 > · · · > λr > 0 = λr+1 = · · · = λn

}
. (6.15)

For the proof of the following result we refer to [6].

Proposition 6.2 The set Mn,ρ , |ρ| ≤ n, defined in (6.14) is a smooth submanifold of
the unit sphere S(Herβ,n). Moreover, the duality bundle N S Mn,ρ defined in (6.5) is a
smooth manifold for all |ρ| ≤ n. Hence (6.14) is a valid decomposition.

The strata
{

Mn,1(r) | 1 ≤ r ≤ n
}
, where 1(r) := (1, 1, . . . , 1), are essential and all

the other strata Mn,ρ are negligible. Moreover,

ϕr : Pr × Gn,r → Mn,1(r) , (λ, [U ]) �→ U · diag(λ) ·U †. (6.16)
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is a well-defined diffeomorphism and its Jacobian determinant satisfies

| det(D(λ,[U ])ϕr )| = 2r(2n−r−1)β/4 ·Δ(λ)β ·
r∏

i=1

λ
β(n−r)
i , (6.17)

where Δ(λ) =∏
1≤i< j≤r (λi − λ j ) denotes the Vandermonde determinant.

Note that dim Mn,1(r) = dim Pr + dim Gn,r = βr(n − r)+ r − 1+ β
(r

2

)
. We next

compute the principal curvatures of the essential strata Mn,1(r) .

Proposition 6.3 Let A = U · diag(λ) · U † ∈ Mn,1(r) with λ ∈ Pr . Furthermore, let

A′′ ∈ Cβ,n−r , so that B := U ·
(

0 0
0 −A′′

)
·U † ∈ NA(Kn) is a vector in the normal cone

of Kn at A. If μ1 ≥ · · · ≥ μn−r ≥ 0 denote the eigenvalues of A′′, then the principal
curvatures of Mn,1(r) at A in direction −B are given by

μ1

λ1
, . . . ,

μn−r

λ1
,

μ1

λ2
, . . . ,

μn−r

λ2
, . . . ,

μ1

λr
, . . . ,

μn−r

λr
(each valueβ-times)

and r − 1+ β
(r

2

)
times the value 0.

Proof By orthogonal invariance we may assume w.l.o.g. that U = In , so that A =
diag(λ) and A′′ = diag(μ). From (6.16) we get that the tangent space of Mn,1(r) at A
is given by (omitting the argument (λ, [In]))

TA Mn,1(r) = Dϕr
(
Tλ Pr × Skewn

)
.

It is easily seen that all the vectors in Dϕr (Tλ Pr × {0}) are principal directions of
Mn,1(r) at A with principal curvature 0, thus giving r − 1 of the claimed r − 1+ β

(r
2

)

zero curvatures.
Concerning the second component, we again only consider the quaternion case

β = 4, the other cases being similar. Let U ι
i j : R → G(n), with ι ∈ {1, i, j, k} and

(i, j) ∈ I (cf. (6.12)) be curves such that the induced curves [U ι
i j ] : R → Gn,r define

the directions ηι
i j , cf. (6.13). We denote the images of Dϕr by

ζ ι
i j := Dϕr (0, ηι

i j ) ∈ TA Mn,1(r) , ι ∈ {1, i, j, k}. (6.18)

We compute the derivative of ϕr in the second component for ι ∈ {i, j, k}:

D(λ,[In ])ϕr (0, ηι
i j ) = d

dt

(
U ι

i j (t) · diag(λ) ·U ι
i j (t)

†)(0)

= ηι
i j · diag(λ)− diag(λ) · ηι

i j

=
{

(λ j − λi ) · ι(Ei j − E ji ) if 1 ≤ j < i ≤ r

λ j · ι(Ei j − E ji ) if r + 1 ≤ i ≤ n, 1 ≤ j ≤ r.
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For ι = 1 one obtains a similar formula (replace Ei j − E ji by Ei j + E ji ). We define
normal extensions of −B = diag(0, μ) along the curves ϕr

(
λ,

[
U ι

i j (t)
])

via

vι
i j (t) := U ι

i j (t) · diag(0, μ) ·U ι
i j (t)

†, ι ∈ {1, i, j, k}.

Differentiating these normal extensions t = 0 yields for ι ∈ {i, j, k}, using ηι
i j =

ι(Ei j + E ji ),

d
dt v

ι(0) = ι(Ei j + E ji ) · diag(0, μ)− diag(0, μ) · ι(Ei j + E ji )

=
{

0 if 1 ≤ j < i ≤ r

−μi−r · ι(Ei j − E ji ) if r + 1 ≤ i ≤ n, 1 ≤ j ≤ r.

Again, the formula for ι = 1 is obtained by replacing Ei j − E ji by Ei j + E ji .
Comparing this with the values of ζ ι

i j given above implies for ι ∈ {1, i, j, k}

d
dt v

ι
i j (0) =

{
0 · ζ ι

i j if 1 ≤ j < i ≤ r

−μi−r
λ j
· ζ ι

i j if r + 1 ≤ i ≤ n, 1 ≤ j ≤ r.

We conclude that the directions ζ 1
i j , ζ

i
i j , ζ

j
i j , ζ

k
i j are principal directions with curvature 0

and μi−r
λ j

, respectively. ��
Before we finally get to the proof of Theorem 4.1 note that we can write the

polynomial fβ,k(x; y), defined in (4.2), in an explicit form if we rearrange

r∏

i=1

n−r∏

j=1

(xi + y j )
β =

r∏

i=1

n−r∏

j=1

( xi
y j
+ 1

)β ·
n−r∏

j=1

yβr
j .

Denoting by σk the kth elementary symmetric function, we obtain

fβ,k(x; y) = σk

(
(x ⊗ y−1)×β

)
·

n−r∏

j=1

yβr
j , (6.19)

where (x ⊗ y−1)×β = (
x ⊗ y−1, . . . , x ⊗ y−1
︸ ︷︷ ︸

β−times

)
, and

x ⊗ y−1 :=
(

x1

y1
, . . . ,

xr

y1
,

x1

y2
, . . . ,

xr

y2
, . . . ,

x1

yn−r
, . . . ,

xr

yn−r

)

∈ R
r(n−r).

(6.20)

Proof (Theorem 4.1) In the stratification (6.14) of Kn = Cβ,n ∩ S(Herβ,n) only the
strata Mn,1(r) are essential, cf. Proposition 6.2. Denoting δ(n, r) := dim Mn,1(r)+2 =
βr(n − r)+ dβ,r + 1 and c := O j−1 ·Odβ,n− j−1 we thus obtain from Theorem 6.1
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Φ j (β, n, r) = c−1
∫

A∈Mn,1(r)

∫

B∈N S
A

σ
(r)
δ(n,r)− j−1(A,−B) d N S

A d Mn,1(r) ,

where the superscript in σ
(r)
δ(n,r)− j−1 indicates the dependence on Mn,1(r) .

In Proposition 6.3 we computed the principal curvatures of Mn,1(r) . Using the nota-
tion (x⊗ y−1)×β = (

x⊗ y−1, . . . , x⊗ y−1
)

(β-times) and x⊗ y−1 defined in (6.20),
we obtain

Φ j (β, n, r) = c−1
∫

A∈Mn,1(r)

∫

B∈N S
A

σδ(n,r)− j−1

(
(λ−1 ⊗ μ)×β

)
d N S

A d Mn,1(r) ,

(6.21)

where λ and μ denote the (positive) eigenvalues of A and−B, respectively. Using the
relation σk(

1
x1

, . . . , 1
xN

) = (x1 · · · xN )−N ·σN−k(x1, . . . , xN ) and observing δ(n, r)−
j − 1 = βr(n − r)+ dβ,r − j , we can rewrite the integrand:

σδ(n,r)− j−1

(
(λ−1 ⊗ μ)×β

)
= σ j−dβ,r

(
(λ⊗ μ−1)×β

)
·

∏n−r
i=1 μ

βr
i

∏r
i=1 λ

β(n−r)
i

. (6.22)

By (6.17), the absolute value of the Jacobian of ϕn equals 2n(n−1)β/4 Δ(μ)β . It is
easy to see that the normal cone of Cβ,n at A ∈ Mn,1(r) is isometric to Cβ,n−r . Further,
Mn−r,1(n−r) equals Kn−r = Cβ,n−r ∩ S(Herβ,n−r ) up to strata of lower dimension.
Applying (6.17) to ϕn−r (note that n needs to be replaced by n− r ), we can transform
the inner integral of (6.21) via the coarea formula [24, Appendix] to obtain

∫

B∈N S
A

f (λ, μ) d N S
A =

∫

Pn−r×Gn−r,n−r

f (λ, μ) · 2(n−r)(n−r−1)β/4 ·Δ(μ)β d(μ, [U2]),

where we have abbreviated f (λ, μ) for the integrand (6.22).
Similarly, we may transform the outer integral of (6.21) by applying the coarea

formula to the map ϕr . As a result we obtain

∫

A∈Mn,1(r)

∫

B∈N S
A

f (λ, μ) d N S
A d Mn,1(r)

=
∫

(λ,[U1])∈Pr×Gn,r

∫

(μ,[U2])∈Pn−r×Gn−r,n−r

f (λ, μ) · 2r(2n−r−1)β/4 ·Δ(λ)β

·
r∏

i=1

λ
β(n−r)
i · 2(n−r)(n−r−1)β/4 ·Δ(μ)β d(μ, [U2]) d(λ, [U1]). (6.23)
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Note that we have

vol Gn,r · vol Gn−r,n−r
(6.10)= vol G(n)

Or
β−1 · vol G(n − r)

· vol G(n − r)

On−r
β−1

= vol G(n)

On
β−1

.

Replacing f (λ, μ) again by (6.22), the integral (6.23) simplifies to

2n(n−1)β/4 vol G(n)

On
β−1

·
∫

Pr

∫

Pn−r

Δ(λ)βΔ(μ)βσ j−dβ,r

(
(λ⊗ μ−1)×β

) n−r∏

i=1

μ
βr
i dλ dμ

(∗)= (2π)n(n−1)β/4 · n!
Fn(β/2)

·
∫

Pr

∫

Pn−r

Δ(λ)βΔ(μ)β fβ, j−dβ,r (λ;μ) dλ dμ, (6.24)

where in (∗) we have used (6.19) and the small computation

vol G(n)

On
β−1

(6.7)=
2nπn(n+1)β/4 ∏n

i=1
1

Γ (
βi
2 )

(2πβ/2/Γ (
β
2 ))n

= π
n(n−1)β

4

n∏

i=1

Γ (
β
2 )

Γ (
βi
2 )

(4.5)= π
n(n−1)β

4 n!
Fn(β/2)

.

The integrand in (6.24) is bihomogeneous in λ and μ. Its degree in λ equals β
(r

2

)+ j−
dβ,r = j−r , and its degree in μ is given by β

(n−r
2

)+βr(n−r)− j+dβ,r = β
(n

2

)− j+r .
The following is easily seen using polar coordinates: let f : R

n\{0} → R be a
homogeneous function of degree k, i.e., f (x) = ‖x‖k · f (‖x‖−1 · x). Then for a Borel
set U ⊆ Sn−1 and Û = {s · p | s ≥ 0 , p ∈ U }

∫

p∈U

f (p) dp = 1

2
n+k

2 −1 · Γ ( n+k
2 )

·
∫

x∈Û

e−
‖x‖2

2 · f (x) dx .

Using this observation twice, we get

(6.24) = (2π)n(n−1)β/4 n!
Fn(β/2)

· 2

2 j/2 · Γ (
j
2 )
· 2

2(β(n
2)− j+n)/2 · Γ (β(n

2)+n− j
2

)

·
∫

P̂r

∫

P̂n−r

e−
‖λ‖2+‖μ‖2

2 ·Δ(λ)β ·Δ(μ)β · fβ, j−dβ,r (λ;μ) dλ dμ

= c n!
Fn(β/2) (2π)n/2 ·

∫

P̂r

∫

P̂n−r

e−
‖λ‖2+‖μ‖2

2 Δ(λ)βΔ(μ)β fβ, j−dβ,r (λ;μ) dλ dμ.

The positive orthant R
r+ decomposes into r ! isometric copies of P̂r , such that their

interiors are disjoint. More precisely, the copies of P̂r are parametrized by the permu-
tations of {1, . . . , r}, which indicate the order of the components of a vector in R

r+. The
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same applies to R
n−r+ and P̂n−r . As the Vandermonde determinant is antisymmetric,

and fβ,k(λ;μ) is symmetric both in λ and in μ, we finally see that Φ j (β, n, r) equals

n!
Fn(β/2) (2π)n/2 ·

∫

P̂r

∫

P̂n−r

e−
‖λ‖2+‖μ‖2

2 Δ(λ)βΔ(μ)β fβ, j−dβ,r (λ;μ) dλ dμ

=
(

n

r

)

· 1

Fn(β/2) · (2π)n/2

∫

ν:=(λ,μ)∈R
n+

e−
‖ν‖2

2 |Δ(λ)|β |Δ(μ)|β fβ, j−dβ,r (λ;μ) dν

(4.3)=
(

n

r

)

· Jβ(n, r, j − dβ,r )

Fn(β/2)
.
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