
SEMANTIC SEARCH TECHNIQUES FOR LEARNING

SMALLER BOOLEAN EXPRESSION TREES

IN GENETIC PROGRAMMING

NICHOLAS C. MILLER* and PHILIP K. CHAN†

Department of Computer Sciences

Florida Institute of Technology
150 W. University Blvd.

Melbourne, FL 32901, USA
*nmiller2011@my.fit.edu

†pkc@cs.fit.edu

Received 28 October 2013

Revised 3 June 2014
Published 25 September 2014

One sub-¯eld of Genetic Programming (GP) which has gained recent interest is semantic GP, in
which programs are evolved by manipulating program semantics instead of program syntax.
This paper introduces a new semantic GP algorithm, called SGPþ, which is an extension of an
existing algorithm called SGP. New crossover and mutation operators are introduced which
address two of the major limitations of SGP: large program trees and reduced accuracy on high-
arity problems. Experimental results on \deceptive" Boolean problems show that programs
created by the SGPþ are 3.8 times smaller while still maintaining accuracy as good as, or better
than, SGP. Additionally, a statistically signi¯cant improvement in program accuracy is ob-
served for several high-arity Boolean problems.
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1. Introduction

Genetic programming, popularized by John Koza,1 represents a program as a tree,

and crossover works by swapping sub-trees. This is an operation on the structure

(or syntax) of the program. The reason for swapping sub-trees is not entirely clear or

justi¯ed ��� why should swapping one part of a random program with another part of

a di®erent random program create a better o®spring program? The relationship

between program syntax and program behavior (i.e., semantics) is a complex one ���
even minor changes to program syntax can have drastic changes to program se-

mantics. There has been an increased interest in semantic GP in recent years as an

alternative to syntax-based GP representations,2 where the goal is to perform a more

direct search in semantic space. Semantic GP can be used to solve \deceptive"

problems, which are problems with a particularly complicated syntax-semantic

mapping which causes traditional GP to fall short. One promising approach ��� the
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SGP algorithm ��� was presented by Moraglio et al.,3 but has the limitation that the

programs are very large.

The goal of this paper is to address that limitation ��� namely, to create

semantically-evolved programs that are smaller overall and are at least as accurate

as the programs created by SGP on both deceptive and nondeceptive problems. As

a by-product of the smaller size, the programs should also execute faster.

A new algorithm, SGPþ, is proposed which evolves smaller programs by intro-

ducing new crossover and mutation operators that take advantage of programs

discovered in prior generations. A random program archive (RPA) is maintained

that contains a history of the semantics of prior programs, and these are used to

direct evolution more quickly towards the target, which results in smaller programs.

Experimental results on deceptive synthetic Boolean problems indicate that

SGPþ creates signi¯cantly smaller programs which are 3.8 times smaller than SGP

programs, on average. The accuracy of these programs is as good as SGP, and in

several cases the accuracy was improved by a statistically signi¯cant amount.

The paper is organized as follows: Section 2 introduces key concepts and ideas

necessary to understand semantic GP algorithms; Sec. 3 discusses prior research into

the sub-¯eld of semantic GP; Sec. 4 presents the SGPþ algorithm; Sec. 5 presents

experimental procedures and observations; ¯nally, Sec. 6 presents conclusions and

areas of future work.

2. Background

The problem can be stated as follows: given a set of n input-output pairs (or

instances) T ¼ fðx1; y1Þ; . . . ; ðxn; ynÞg, ¯nd a model, or hypothesis, h : X ! Y that

interpolates all known input-output pairs:

8 ðxi ; yiÞ 2 T ; hðxiÞ ¼ yi: ð1Þ
This is essentially the problem of supervised machine learning. Each input xi 2 T is a

vector of attributes and each output yi is a single value, sometimes referred to as the

class for discrete domains. The focus of this paper is on the Boolean problem domain,

so the input space (domain) is X ¼ f0; 1gn and the output space (codomain) is

Y ¼ f0; 1g. The restriction to the Boolean domain is primarily for simplicity of

implementation and analysis, but the ideas apply equally well to other domains (e.g.,

regression). The space of hypothesis functions, H, is the space of all possible Boolean

expression trees. An example of a Boolean expression tree is shown in Fig. 1.

The semantics of an expression tree h0 can be expressed as a vector Y 0 corre-
sponding to the output of the tree for each xi 2 T . If visualized in truth table form,

each row represents an instance in T and the ¯nal column represents the semantics.

The notion of semantic space is used throughout. This is the multidimensional

hyperspace of semantic vectors Y 0. The number of dimensions is equal to the number

of input–output pairs in T . The semantics of a hypothesis program h0 can be

represented as a single point in this space, as can the target semantics Y from T . The
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problem of model construction then becomes a search for a suitable hypothesis

program h0 in this semantic space. Also note that a single point can correspond to

many di®erent possible hypotheses. That is, there may be more than one expression

tree that can produce the semantics represented by a point. Using the example from

Fig. 1, a program with equivalent semantics would be (OR (AND (NOT A) B) (AND

(NOT B) A)) and would be represented by the same point in semantic space.

There are several key distinctions between program search in syntactic space and

semantic space. First, syntactic search explores the space of program representations

whereas semantic search explores the space of program behaviors. Second, a single

point in the syntactic space represents a syntactically unique program, and corre-

sponds with a single point in the semantic space (i.e., a program only has one

behavior). In semantic space, a single point represents a semantically unique pro-

gram, and has multiple corresponding points in syntactic space (i.e., behavior can be

represented by multiple di®erent syntactically-unique programs). Finally, and per-

haps most importantly, the syntactic space is in¯nite whereas the semantic space is

¯nite for discrete domains (i.e., there are only so many unique program behaviors).

This means that semantic search should be easier for discrete problems because of the

smaller space.

Many of the Boolean problems discussed are deceptive in nature. In the context of

GP, deceptive means that the search may be deceived if there is not a clear path in

the search space from a promising individual to the individual that solves the

problem. These types of problems are prone to reduced population diversity, as

locally optimum solutions begin crowding the population. The Boolean parity pro-

blems are deceptive in nature, because minor changes to program structure can result

in drastic changes in program ¯tness, which impedes the search from moving in a

potentially promising direction.

3. Related Work

The idea of semantic novelty is introduced by Lehman,4 which is used to ¯nd novel,

or unique, programs during the evolution of a genetic program in an e®ort to promote

diversity and reduce over¯tting in deceptive problem domains. It is a divergent

search, as there is no objective other than to produce novel programs that have

maximal distance to their k nearest neighbors in semantic space. Combining novelty

Fig. 1. Example of an XOR expression tree in H.
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with objective ¯tness (multi-objective search) can often produce better results

overall.5,6 A common pitfall in GP is insu±cient population diversity. One strategy

shown to improve diversity is to ensure there is a su±cient amount of semantic

diversity in the initial population, and to also ensure that the diversity is maintained

using a diversity-promoting crossover operator.7

An investigation into the nature of GP in semantic space is investigated by

McPhee et al.8 They ¯nd that the majority of crossover operations (about 60%)

produce programs that are semantically identical to the parent programs, resulting in

no movement towards the ¯nal objective. Various methods have been proposed for

utilizing program semantics in genetic programming to counteract these ine±cien-

cies. For example, Phong et al.9 create a semantically-aware crossover operator in

order to approximate the Gaussian Q-Function, for which no closed form currently

exists. Similar crossover operators are proposed by Uy et al.10,11 Krawiec et al.12

investigate the semantic similarities and di®erences between a random sampling of

programs. The key result found is that as tasks become more complex, they also

become more modular. This means that an algorithm that can compose a solution

from sub-solutions, or conversely, that can decompose a problem into smaller sub-

problems, may be able to tackle more complex problems.

The idea of program composition is investigated by Krawiec13 by performing

a GP search in the embedded semantic space of small, depth-limited tree-based

programs. The search space is arranged such that nearby programs have similar

semantics. This creates a smoother ¯tness landscape, which is easier to search. The

results indicate that the space can be exploited in a compositional manner to build

larger compound programs, resulting in more e®ective search in the larger space of

programs. Further research by Krawiec14–16 focuses on module identi¯cation and

module exploitation in GP using a monotonicity metric. Problem decomposition in

GP is also used by Kattan et al.17 with promising results in the symbolic regression

domain.

Geometric semantic GP is a sub-type of semantic GP that focuses on producing

o®spring that hold some geometric relationship with their parents in semantic space.

This is desirable because it allows the search to explore the space in a predictable and

manageable way. The idea of semantic mediality is discussed by Krawiec18 where the

goal is to ¯nd an approximately medial (in semantic space) crossover. Several other

geometric crossovers have also been proposed.19,20 A geometric crossover operator is

used in the SGP algorithm,3 but with the relaxed contraint that the o®spring is not

necessarily medial. To provide some intuition about the nature of the growth of a

tree in the SGP algorithm, a few example generations are provided. In generation 0,

the population is initialized with random programs, as depicted in Fig. 2. The in-

ternal nodes of these randomly generated programs are chosen from the function set

fAND, OR, NAND, NORg. At generation 1, crossover and mutation are performed

on the initial programs from generation 0. This is depicted in Fig. 3.

Note that programs in this generation are composed via the IF function. In fact,

this function is used to compose programs for all future generations. This function is
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important because it allows for semantically intermediate o®spring. Depending on

the ¯rst input of the IF node, it will either choose the output of the program at the

second input or the third input. This means that the semantics at the output of the

IF node are a mix of the outputs from the sub-nodes. Because programs are composed

of programs from previous generations, o®spring trees will always be larger than their

parents.

The key result of the SGP paper3 is that crossover and mutation operators are

proven to be geometric and also are not reliant on a generate-and-test methodology

(i.e., they search semantic space directly). This is a powerful property that allows it

to solve many deceptive problems which traditional GP algorithms struggle with.

However, the cost of this property is fairly large ��� namely, the program size grows

exponentially with the number of generations. This is the biggest limitation of the

algorithm and the area that o®ers the most room for improvement.

4. Approach (Improved Semantic-GP)

To address the weakness of tree size in the SGP algorithm, we must consider what

makes the tree grow. The tree grows in depth for every crossover and mutation

operation that occurs. This is dangerous, as it means the tree will grow in size

exponentially with each generation. Therefore, we wish to reduce the number of

crossover and mutation operations by converging to a solution more quickly. The

general strategy will be to choose parents whose crossover is more likely to produce

o®spring closer to the target semantics, at the expense of computational time per

generation. This may slow down the evolution, but should produce smaller trees if

the crossover and mutation operators are indeed choosing better parents.

Fig. 3. Generation 1: Composition of programs from generation 0.

Fig. 2. Generation 0: The \primordial soup" from which to evolve and compose expression trees.
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4.1. Semantic crossover

In the SGP algorithm, the selection of parents for crossover is done using normal GP

selection methods (e.g., tournament selection). These selection methods do not as-

sume a geometric crossover, which means that there may be more e±cient selection

methods that take advantage of the geometricity of o®spring. Because the focus is on

the Boolean domain, hypotheses exist in semantic Hamming space. However, for the

purposes of visualization, Euclidean space is utilized to demonstrate geometric

relationships between programs. In Euclidean space, the o®spring semantics are

represented as a point on the line segment connecting the two parents. With this

knowledge, it seems advisable to select parents which straddle the target in semantic

space. An example of this straddling is shown in Fig. 4. In this example, parents 2

and 4 straddle the target the best, so their o®spring may have a better chance of

landing near the target. This selection is in contrast to ¯tness-proportionate selec-

tion, which would choose parents 1 and 3.

The degree to which two parents straddle the target is referred to as divergence

from geometricity,18 and is calculated using the triangle inequality:

dGðt; p1; p2Þ ¼ jjt; p1jj þ jjt; p2jj � jjp1; p2jj: ð2Þ
Here, jja; bjj represents the Hamming distance between programs a and b. If the

target semantics lie on the line segment between two parents then dG is 0, so parents

should be chosen such that dG is minimized. In practice, it is infeasible to calculate

dG for all pairs of parents, so a small pool of parents is chosen using tournament

selection.

Prior research by Krawiec shows that a medial geometric crossover has optimal

expected ¯tness.18 However, given two parents and a known target, the medial point

may not be optimal. This is illustrated in Fig. 5. The optimal choice of o®spring

semantics (i.e., the one that minimizes the distance to the target) occurs at the

intersection of the line segment between the parents and the corresponding per-

pendicular line that passes through the target semantics. One of the primary dif-

ferences between SGP and SGPþ is the location of the crossover o®spring in

Fig. 4. Example of choosing parents which straddle the target in semantic space. In this case parents 2

and 4 are chosen over parents 1 and 3, despite being further away from the target.
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semantic space. Figure 6 illustrates this di®erence. Both algorithms utilize geometric

crossover, but the o®spring produced by SGPþ is closer to the target.

However, we can't just \choose" the ideal child. Recall that crossover is performed

via the IF operator, where the ¯rst parent (p1) represents the true branch and the

second parent (p2) represents the false branch. The conditional part (pr) determines

the geometric location of the child between the parents (a.k.a crossover mask). In the

extreme cases, the o®spring are identical to one of the parents, which can occur if the

semantics of pr are (0 . . . 0) or (1 . . . 1). Therefore, the problem becomes ¯nding an

appropriate conditional input such that the child produced is closest to the ideal

child. In SGP, this conditional input is chosen as a random program, but in SGPþ, it

is chosen from an archive of previously seen programs with known semantics.

4.1.1. Random program archive

A random program archive (RPA) is maintained which contains a history of programs

observed during evolution. The ¯tness of each of these programs has been previously

(a) (b)

Fig. 6. Each black dot represents a potential o®spring program. (a) SGP crossover is geometric (on the

line segment between parents), but the position along the line is randomly chosen. (b) SGPþ chooses the

o®spring that is closest to the target.

Fig. 5. Example of an ideal geometric crossover in 2D Euclidean semantic space.
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evaluated, so the semantics are fully known. This is useful because these known pro-

grams can be used as inputs to the crossover and mutation operators so that the

semantics of the produced child are more desirable than randomly produced children.

As an example, suppose crossover is to be performed between two parents and the

ideal child has semantics of (00110000), as depicted in Fig. 7.

For this example, there are only four known programs in the RPA. The output

column represents the output of the IF node if that pr were chosen as the conditional

input. When a pr bit is 1, the corresponding bit in p1 appears at the output. Similarly,

if pr is 0, then the corresponding bit in p2 appears at the output. The pr that

minimizes the Hamming distance to the ideal child is chosen.

It is important to have a diverse selection of pr crossover masks to choose from. In

the best case, all possible masks are available, in which case the optimal o®spring can

be produced. In an e®ort to increase the number of pr crossover masks, an archiving

step is added to the main generational loop. A random program archive is main-

tained that will initially contain many small random programs. At each generation, a

randomly chosen subset of the population is added to the archive. This pr archive is

similar to the archive described by Lehman4 in that the archive contains a history of

programs observed throughout all generations. For two given parents, the RPA is

searched for a particular ideal crossover mask, and the program pr that minimizes

distance jjIF ðpr; p1; p2Þ;Goaljj is chosen.
There are two main side-e®ects to using a random program archive. The ¯rst is

that the archive increases linearly in size with each generation, resulting in longer pr
search times for each crossover. The second side-e®ect is that the pr programs

inserted into the overall expression tree can be much larger (i.e., may not just be a

small minterm program). However, this side-e®ect is not a concern in practice, as the

pr tree does not need to be re-evaluated each time it is encountered. When an

expression tree is evaluated, the output of sub-trees is saved, so each pr will only be

evaluated once.

4.2. Semantic mutation

The mutation operator in the SGP algorithm chooses a random program from the

current population and mutates a single semantic bit randomly (either sets or clears

Fig. 7. Selecting a pr from the RPA. If the last pr is chosen, then the Hamming distance to the ideal

child is 0.
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the bit). However, given that we know what the target semantics are, it seems more

e±cient to make the chosen bit match the corresponding bit in the target. In other

words, there is no clear motivation for randomly assigning the bit if we know what

the correct assignment should be. Therefore, the mutation operator in SGPþ iden-

ti¯es the ¯rst semantic bit di®erence between the program to mutate and the target

and sets that bit to match. This is equivalent to taking a step in a single dimension in

semantic space towards the target. Figure 8 illustrates the conceptual di®erence

between mutation in SGP and SGPþ in 2-D semantic Euclidean space.

As an example, suppose the target semantics are (01010000) and the program

(01010111) is randomly chosen to be mutated. The ¯rst bit that di®ers is the sixth

bit, and we'd like to be able to clear that bit in the mutant in order to match the

target. To isolate that bit, we need a program with semantics (00000100). Instead of

searching the RPA for this program, we construct it as a Boolean conjunction of

inputs. In this case, the program (AND (AND x1 (NOT x2)) x3) has semantics

(00000100) and is used to clear the bit in the mutant as depicted in Fig. 9.

Given that we can mutate individual bits to match corresponding bits in the

target, the question arises: Why don't we keep mutating bits until we've matched the

(a) (b)

Fig. 8. (a) Mutation in SGP takes a single step in a random direction. (b) SGPþmutation takes a step in

the direction of the target semantics.

Fig. 9. Mutating pm by clearing a particular bit to match the target.
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target? This is generally a bad idea because the target semantic vector can be pro-

hibitively large. Recall that the expression tree grows in depth for each mutation

performed. If there are k input cases, then the semantic vector is k bits long, and the

resulting expression tree has depth OðkÞ. If k is large, then not only is the tree overly

complex, but the evaluation of the tree takes a prohibitively long time. In general,

mutating a single bit at a time will make tiny incremental steps towards the target,

but crossover can make large jumps, resulting in faster convergence and smaller tree
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sizes. Therefore, crossover should be the preferred operator with mutation playing a

lesser role (controlled by the mutation rate).

4.3. SGP+ algorithm

The structure of the SGPþ algorithm is nearly identical to SGP as described by

Moraglio et al.3 There are three primary di®erences: a new Semantic-Crossover op-

erator, a new Semantic-Mutation operator, and the addition of a random program

archive (RPA). The revised algorithm is detailed in Algorithm 4.1. The random pro-

gram archive is initialized with random minterm subsets (line 3). At the end of each

generation, programs from the current population are archived to improve the di-

versity of the RPA (lines 19 to 21). The number of programs archived is controlled by

the RPA rate. Note that the archived programs are not necessarily ¯t programs. If

programs were archived based on ¯tness, then highly ¯t or similar programs could

begin to dominate the archive, whichwould be counter to the goal of theRPA,which is

to have a diverse collection of unique programs for the purposes of a crossover mask.

The details of the crossover and mutation sub-procedures are ommitted due to

space limitations, but the idea is to choose o®spring that are closest to the target in

semantic space by utilizing the RPA as discussed in Secs. 4.1 and 4.2.

5. Evaluation and Results

There are two main criteria for evaluation of algorithms: program size, which is the

number of internal nodes in tree, and accuracy. Accuracy is de¯ned as the percentage

of correctly classi¯ed instances in the training set:

Accðh0;T Þ ¼ jfh0ðxiÞ ¼ yijðxi; yiÞ 2 Tgj
jT j ; ð3Þ

where h0 is the model returned by the algorithm and T is the training set.

The parameters for the genetic-programming based algorithms are described in

Table 1. The datasets used are Boolean functions with varying number of inputs.

Two functions (PARITY and MUX) are deceptive in nature, which highlights the

di®erence between standard and semantic GP. Nondeceptive problems are also

considered, in order to observe how well the algorithms deal with \easy" problems.

The PARITY* problems compute odd parity, the MUX6 problem computes the

multiplexer function with 4 input bits and two select bits, the OR* problems simply

compute the OR function, the COMP* problems compute the comparator function,

and the RANDOM* problems are completely randomized functions, which may or

may not be deceptive. For instance, RANDOM5 randomly chooses one of the pos-

sible 232 5-input functions.

5.1. Results

First, metrics during evolution are observed during the training/learning process on

the PARITY5 problem.
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A comparison of program accuracy and program size per generation is provided in

Fig. 10. The SGPþ data cuts o® at generation 7 because the problem was solved at or

before generation 7 in all 10 runs. Accuracy per generation increases more for the

SGPþ algorithm than it does for the SGP algorithm. This is primarily due to the

SGPþ crossover operator taking larger and more directed steps in semantic space

towards the target, compared to SGP. Additionally, the SGPþ mutation operator

helps by taking a step in the direction of the target semantics instead of a step in a

random direction. This improved accuracy per generation is essential to keeping the

program size small since the size grows exponentially with the number of generations.

Figure 10 also shows that the program size per generation is roughly equal for

both algorithms. This is expected because the crossover and mutation operators

increment the program size by equal amounts each generation in both SGP and

SGPþ. However, after training is complete the size of the SGPþ program is much

Table 1. Parameters for GP-based algorithms.

Parameter Value

Elitism? Yes

Function Set fAND, OR, NAND, NORg
Population Size 200

Crossover Rate 1.0
Mutation Rate 0.1

Maximum Generations 50

Tournament Size 2
Tournament Probability 0.8

Initialization Method Random

Initial RPA Size (1.4 * Population Size)

RPA Rate 0.45
Parent Pool Size 7

(a) (b)

Fig. 10. (a) Program accuracy vs. Generation. (b) Program size vs. Generation. Comparison on the

PARITY5 problem.
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smaller than the SGP program due to achieving perfect training set accuracy in an

earlier generation.

Accuracy A comparison of program accuracy over all Boolean problems is provided

in Table 2. An additional column is included for the standard GP algorithm. Results

in this column were originally reported by Moraglio.3 Fields marked with a dash were

not reported and are omitted. The ¯nal column is a two-sample T-test to determine

whether SGPþ is signi¯cantly more accurate than SGP at the 95% con¯dence level.

P-values below 0.05 (highlighted) indicate SGPþ is signi¯cantly more accurate.

The ¯rst observation is that the GP algorithm does very poorly on the PARITY

problems. The target semantics for these problems are half 1 sec and half 0 sec, so an

accuracy of 50% could easily be achieved by creating a trivial program that outputs

all 0 sec or all 1 sec. In general, it is expected that standard GP does poorly on any

kind of deceptive problem, hence the desire for semantic-based algorithms.

The SGP algorithm performs well for simple nondeceptive problems and low-arity

deceptive problems. However, the larger PARITY7 and PARITY8 prove di±cult for

SGP, and the evolution is cut o® at the maximum of 50 generations before a solution

is found. The accuracy of SGPþ is nearly perfect in all cases (a solution is found in 10

out of 10 runs), with the exception of one run of the PARITY8 problem on SGPþ.

Most of the di®erences in training set accuracy are insigni¯cant, due to each of the

algorithms solving the problem in all 10 out of 10 runs with perfect accuracy.

However, SGPþ is signi¯cantly more accurate on high-arity deceptive problems

(PARITY7, PARITY8, RAND8). The \SGPþ Improvement" column shows that

the average improvement is 22.03% for these types of problems (simple average of the

three highlighted numbers).

Table 2. A comparison of program accuracy for each algorithm. The GP and SGP columns

contain results originally reported by Moraglio et al.

GP SGP SGPþ SGPþ T-test

Problem Mean Std Mean Std Mean Std Improvement (%) p

PARITY5 0.529 0.024 1.000 0.000 1.000 0.000 0.0 1.0000

PARITY6 0.505 0.007 0.998 0.005 1.000 0.000 0.2 0.9342

PARITY7 0.501 0.002 0.888 0.013 1.000 0.000 12.6 0.0163

PARITY8 0.501 0.002 0.748 0.012 0.997 0.010 33.3 0.0007

MUX6 0.708 0.033 1.000 0.000 1.000 0.000 0.0 1.0000

OR5 ��� ��� 1.000 0.000 1.000 0.000 0.0 1.0000

OR6 ��� ��� 1.000 0.000 1.000 0.000 0.0 1.0000

OR7 ��� ��� 1.000 0.000 1.000 0.000 0.0 1.0000

OR8 ��� ��� 0.999 0.002 1.000 0.000 0.1 0.9480

COMP6 0.802 0.038 1.000 0.000 1.000 0.000 0.0 1.0000

COMP8 0.803 0.028 0.962 0.014 1.000 0.000 4.0 0.3605

RAND5 0.822 0.066 1.000 0.000 1.000 0.000 0.0 1.0000

RAND6 0.836 0.066 1.000 0.000 1.000 0.000 0.0 1.0000

RAND7 0.851 0.053 0.930 0.018 1.000 0.000 7.5 0.1520

RAND8 0.896 0.053 0.832 0.012 1.000 0.000 20.2 0.0013
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The accuracy improvement for high-arity deceptive problems can be attributed to

the fact that SGPþ performs a more direct search in semantic space (i.e., less ran-

domness), so that convergence can occur in earlier generations. The movement

within the search space is greedy in the sense that all o®spring are created so that

they have the highest chance of minimizing the distance to the target. Typically, less

randomness in a GP algorithm is undesirable as it can lead to overcrowding due to

lack of diversity, but with SGPþ the diversity is maintained in the random program

archive. The RPA maintains diversity because the programs it contains are chosen

without bias to the target. As the problem size gets larger, the greedy search per-

formed by SGPþ allows it to converge on the target with higher probability than

SGP, because it e®ectively ignores large portions of the semantic search space that do

not look promising.

Program Size Next, a comparison of program size is provided in Table 3. The

T-test column has p values of a T-test between SGP and SGPþ. Values of p below

0.05 (highlighted) indicate that SGPþ generated a signi¯cantly smaller program. In

all cases, SGPþ produces a signi¯cantly smaller program than SGP.

The CNF/DNF column represents the number of internal nodes that are needed

to represent the conjunctive normal form (CNF) or disjunctive normal form

(DNF) ��� whichever is smaller ��� using only the allowed functions, namely fAND,

OR, NAND, NORg. As an example, the DNF representation of OR5 is (A OR B OR

C OR D OR E), which has equivalent S-expression (OR (OR (OR (OR A B) C) D)

E), which requires 4 internal nodes. To calculate the size of the CNF/DNF programs,

if the truth table contains half ones and half zeros (which we can expect for the

PARITY, MUX, COMP, and RAND problems), then there are 2n�1 clauses, each of

Table 3. Comparison of program size for each algorithm.

SGP SGPþ T-test

Problem Mean Std Mean Std p CNF/DNF

PARITY5 2717.3 355.3 386.0 70.9 8.66E-20 79

PARITY6 6045.1 463.8 1580.8 93.1 8.34E-22 191

PARITY7 8087.9 193.9 3293.9 207.9 1.01E-22 447

PARITY8 9488.1 182.9 5723.0 297.5 1.99E-21 1023

MUX6 4072.3 494.6 386.7 89.5 5.80E-21 191

OR5 184.3 150.9 24.2 0.8 2.38E-11 4

OR6 341.9 257.8 24.2 0.6 5.56E-13 5

OR7 1524.7 1337.4 25.2 1.7 7.92E-16 6

OR8 3583.6 2586.8 26.0 1.8 6.47E-18 7

COMP6 3581.7 370.7 386.4 105.4 8.35E-21 191

COMP8 9281.0 298.9 2126.9 269.4 1.31E-23 1023

RAND5 1597.7 436.4 100.3 40.1 7.69E-18 79

RAND6 5609.0 804.1 1001.3 145.9 6.94E-21 191

RAND7 8031.5 249.9 2201.7 123.5 1.25E-23 447

RAND8 9504.2 200.9 4892.0 333.5 5.16E-22 1023

N. C. Miller & P. K. Chan
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which require ðn� 1Þ nodes. These clauses are then combined with 2n�1 � 1 nodes,

for a total of ðn� 1Þ2n�1 þ 2n�1 � 1 ¼ n2n�1 � 1 nodes. Note that this number does

not include negation of inputs, and represents a lower conservative bound. This

column represents a desirable program size to achieve in the context of genetic

programming.

As expected, SGPþ generates programs larger than those represented by CNF/

DNF for two primary reasons��� node selection within the expression tree is partially

randomized, and nodes are always added to, and never removed from, the tree.

Hence, there is room for improvement. However, one bene¯t of SGPþ is that it can

be adapted to other problem domains, whereas CNF/DNF is strictly for Boolean

problems. For example, to adapt to the regression domain, the internal nodes of the

random programs can be replaced with arithmetic operators fþ,�, *, /g. In the SGP

paper,3 it is proven that geometric crossover is possible in the regression domain if

the o®spring program T3 is constructed from parent programs T1 and T2 and random

program TR as T3 ¼ ðT1 � TRÞ þ ðð1� TRÞ � T2Þ. This is very similar to the IF con-

struction in the Boolean domain in that TR is determining the location of the o®-

spring program somewhere between the two parents. Similarly, mutation can be

accomplished with T3 ¼ T1 þms � ðTR1 � TR2Þ, where TR1 and TR2 are random real

functions andms is the step size. To adapt these crossover and mutation operators to

SGPþ an RPA can be created, similar to the Boolean domain, which tracks a history

of program semantics that can be utilized to perform a more ideal crossover and

mutation.

6. Conclusions and Future Work

A new algorithm, SGPþ, was proposed that directly searches the semantic space

and is an improvement over the existing SGP algorithm, creating programs that

are signi¯cantly smaller in size over all tested problems. Additionally, classi¯cation

accuracy has a signi¯cant 22.03% improvement for high-arity deceptive Boolean

problems, such as the 8-input odd parity problem.

Future work includes extension to the regression domain and implementing steps

to reduce over¯tting and model complexity. One potential solution to over¯tting is

to separate the training data into training and validation sets. Another option is to

grow the tree top down. SGPþ is created bottom-up in that the initial population of

programs resides at the leaf-level and later generations are composed of programs

from the next-lowest level. If this were reversed, then the ¯rst generation of programs

would be at the root of the tree. This might be useful because the majority of

over¯tting occurs in later generations at the leaf level, which means tree pruning

techniques could be applied.

In conclusion, semantic genetic programming is good for solving certain types of

deceptive problems, but further improvements would be necessary to make it a

strong learning algorithm in general.

Semantic Search Techniques
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