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Abstract In recent years, branch-and-cut algorithms have become firmly established
as the most effective method for solving generic mixed integer linear programs
(MILPs). Methods for automatically generating inequalities valid for the convex hull
of solutions to such MILPs are a critical element of branch-and-cut. This paper exam-
ines the nature of the so-called separation problem, which is that of generating a valid
inequality violated by a given real vector, usually arising as the solution to a relaxation
of the original problem. We show that the problem of generating a maximally violated
valid inequality often has a natural interpretation as a bilevel program. In some cases,
this bilevel program can be easily reformulated as a simple single-level mathematical
program, yielding a standard mathematical programming formulation for the sepa-
ration problem. In other cases, no such polynomial-size single-level reformulation
exists unless the polynomial hierarchy collapses to its first level (an event considered
extremely unlikely in computational complexity theory). We illustrate our insights by
considering the separation problem for two well-known classes of valid inequalities.
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1 Introduction

We consider a mixed integer linear program (MILP) of the form

min
{

c�x
∣∣∣ Ax ≥ b, x ∈ Z

|I |
+ × R

|C|
+

}
, (1)

where A ∈ Q
m×n, b ∈ Q

m, c ∈ Q
n, I ⊆ N = {1, . . . , n} is the set of

indices of components that must take integer values in any feasible solution and
C = N\I consists of the indices of the remaining components. We assume that
other bound constraints on the variables (if any) are included among the problem
constraints.

The continuous or linear programming (LP) relaxation of the above MILP is the
mathematical program obtained by dropping the integrality requirement on the vari-
ables in I , namely

min
x∈P

c�x, (2)

where P = {x ∈ R
n+ | Ax ≥ b} is the polyhedron described by the linear constraints

of the MILP (1). It is not difficult to show that the convex hull of the set of feasible
solutions to (1) is also a polyhedron, which we denote by PI = conv(P ∩(ZI+ ×R

C+)).
This means that in principle, the MILP (1) is equivalent to a linear program over this
implicitly defined polyhedron. In fact, Grötschel et al. [13] showed that, under mild
assumptions, the (linear) optimization problem over PI is polynomially equivalent
to the separation problem, defined formally in Sect. 2 below, which is the problem
of determining whether a given vector is in PI and if not, producing a hyperplane
separating the vector from PI .

In this paper, we examine the nature of this separation problem for structured
classes of valid inequalities. We show that the separation problem has a natural inter-
pretation as a bilevel programming problem, which is equivalent to the optimization
problem over the so-called closure for the class. In many cases, this bilevel program-
ming problem has a re-formulation as a single-level mathematical program, which
implies that there is a short certificate of validity for the associated class of valid
inequalities. However, this is not always the case. Our main result is to show for-
mally that for the strongest version of the generalized subtour elimination constraints
(GSECs) for the well-known Capacitated Vehicle Routing Problem (CVRP), the sep-
aration problem cannot be reformulated unless the polynomial hierarchy (described
below) collapses to its first level. This collapse is considered to be extremely unlikely
by computational complexity theorists. Before getting to the main result, we intro-
duce the necessary concepts and definitions from both complexity theory and bilevel
programming.
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1.1 Bilevel programming

A bilevel mixed integer linear program (MIBLP) is a generalization of a standard
MILP that models hierarchical decision processes. In a MIBLP, the variables are
split into a set of upper-level variables, denoted by x below, and a set of lower-level
variables, denoted by y below. Conceptually, the values of the upper-level variables
are fixed first, subject to the restrictions of a set of upper-level constraints, after which
the second-stage variables are fixed by solving an MILP parameterized on the fixed
values of the upper-level variables. The canonical MIBLP is given by

min
{

c1x + d1 y
∣∣∣ x ∈ PU ∩ (ZI1 × R

C1),

y ∈ argmin{d2 y
∣∣∣ y ∈ PL(x) ∩ (ZI2 × R

C2)}
}
,

where

PU =
{

x ∈ R
n1

∣∣∣ A1x ≥ b1, x ≥ 0
}

is the polyhedron defining the upper-level feasible region;

PL(x) =
{

y ∈ R
n2

∣∣∣ G2 y ≥ b2 − A2x, y ≥ 0
}

is the polyhedron defining the lower-level feasible region with respect to a given
x ∈ R

n1 ; A1 ∈ Q
m1×n1 ; b1 ∈ Q

m1 ; A2 ∈ Q
m2×n1 ; G2 ∈ Q

m2×n2 ; and b2 ∈ Q
m2 . The

index sets I1 ⊆ N1 = {1, . . . , n1}, I2 ⊆ N1 = {1, . . . , n1}, C1 = N1\I1, and C2 =
N2\I2 are the bilevel counterparts of the sets I and C defined previously. For more
detailed information, Colson et al. [5] provide an introduction to and comprehensive
survey of the bilevel programming literature, while Moore and Bard [17] introduce
the discrete case. Dempe [10] provides a detailed bibliography.

1.2 The polynomial hierarchy

Informally, the polynomial hierarchy is a scheme for classifying multi-level decision
problems that extends the well-known complexity classes P and NP to problems with
multiple decision-makers (and multiple objectives, in the case of optimization models),
such as those arising in multi-round games. Level zero of the hierarchy is denoted �P

0
and contains the problems that can be solved in polynomial time; in other words,
�P

0 = P. The first level of the hierarchy is formed by the problems in NP = �P
1 and

by their negated versions in co-NP = Π P
1 . Level k of the hierarchy consists of the

problems in class �P
k together with the negated versions of these problems in class

Π P
k . Roughly speaking, a problem is in class �P

k if it can be solved in nondeterministic
polynomial time, given an oracle for solving problems in the class �P

k−1.
Equivalently (and still roughly speaking), the class �P

k contains the problems that
can be expressed by a logical formula that consists of a sequence of k existentially or
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universally quantified discrete variables, followed by a Boolean predicate that depends
on the variables and on the given instance and that can be evaluated in polynomial
time. The first quantifier in the logical formula is an existential quantifier. Hence, the
class NP = �P

1 contains the problems of the form ?∃x ∈ X : S(x), where S(x) is the
aforementioned Boolean predicate. The class �P

2 contains the problems of the form
?∃x ∈ X s.t. S(x, y) ∀y ∈ Y , and so on. Note that

�P
0 ⊆ �P

1 ⊆ �P
2 ⊆ �P

3 ⊆ · · · ⊆ �P
k ⊆ �P

k+1 ⊆ · · ·

It is not known whether any of these inclusions is strict, but in the computational
complexity community, it is strongly conjectured that all of them are strict. It has
been shown that if �P

k = �P
k+1 for some k, then this would imply �P

k = �P
j for all

j ≥ k + 1; in this case, one would say that the polynomial hierarchy collapses to its
kth level. A collapse to level zero would mean that P = NP. A collapse to any other
fixed level would have weaker consequences, but is still considered to be extremely
unlikely.

Stockmeyer’s [19] foundational work introduced the polynomial hierarchy. It also
exhibited for every k ∈ N certain quantified versions of the well-known satisfia-
bility problem that are complete for the class �P

k and that thus constitute the most
difficult problems in the class. A simple way to envision these quantified versions
is to interpret them as a multi-round game with k players who are together deter-
mining the values of the variables in a first-order Boolean formula. Each player in
turn picks the values of a designated subset of the variables, with each “odd” player
attempting to force the expression to eventually (once all variables are fixed) eval-
uate true by tying the hands of the even player who follows her, while said “even”
player attempts to find a way to make the expression false. In fact, it is only nec-
essary for there to be two players, an “even” player and an “odd” player, for this
game to work as described. It is the number of rounds, not the number of players,
that determines the complexity. The relationship between Stockmeyer’s [19] deci-
sion games and optimization was first noted by Jeroslow [14], who showed that the
rather contrived games of Stockmeyer [19] can be reduced to a similar set of k-
level binary optimization problems and thus showed that k-level discrete optimization
problems are �P

k -hard, even when the variables are binary and all constraints are
linear.

1.3 Membership and separation problems

A valid inequality for a set S ⊆ R
n is a pair (α, β), where α ∈ R

n is the coefficient
vector and β ∈ R is a right-hand side, such that α�x ≥ β for all x ∈ S. Associated
with any valid inequality (α, β) is the half-space {x ∈ R

n | α�x ≥ β}, which must
contain S. It is easy to see that any inequality valid for S is also valid for the convex
hull of S.

For a polyhedron Q ⊆ R
n , the so-called separation problem is to generate a valid

inequality violated by a given vector. Formally, we define the problem as follows.
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Definition 1 The separation problem for a polyhedron Q is to determine for a given
x̂ ∈ R

n whether or not x̂ ∈ Q and if not, to produce an inequality (ᾱ, β̄) ∈ R
n+1 valid

for Q and for which ᾱ� x̂ < β̄.

The separation problem is not a traditional decision problem, as stated, since it
requires additional output in case the answer is in the negative. The membership
problem and its complement, the non-membership problem, are decision problems
closely related to the separation problem. The membership problem associated with
a polyhedron Q and a given point x̂ ∈ R

n is the question of whether x̂ is a member
of Q. If Q is described either explicitly by a set of linear inequalities or as the convex
hull of solutions to an explicitly described integer program, there is a short certificate
for the membership problem. This is because we can demonstrate that x̂ ∈ Q by
exhibiting a polynomial number of points in Q whose convex combination yields
x̂ . Carathéodory’s Theorem assures us that such a convex combination exists when
x̂ ∈ Q.

Assuming Q is bounded, one way of constructing a certificate of membership
is to solve a system of equations in which the columns of the coefficient matrix
are the extreme points of Q, the right hand-side is x̂ , and the variable values to be
determined are the weights. By the result of Grötschel et al. [13], solving this system
as a (feasibility) linear program is polynomially equivalent to solving the optimization
problem over Q, which is to determine minx∈Q d�x for a given d ∈ R

n (more about
this below). Note that a certificate of membership is also a certificate for an upper bound
on the optimal solution value of the optimization problem over Q and the membership
problem is thus closely related to the decision version of the optimization problem
over Q.

The non-membership problem may not have a short certificate if optimization over
Q is an NP-hard problem. Although we can obtain a valid inequality violated by x̂
from the Farkas proof of infeasibility, certifying the validity of this inequality requires
certifying a lower bound on the optimal solution value of an optimization problem
over Q. This is a universally quantified decision problem for which a short certificate
can only exist if NP = co-NP whenever optimization over Q is an NP-hard problem.

An optimization problem closely associated with the separation problem is the
maximally violated valid inequality problem (MVVIP) with respect to x̂ ∈ R

n and a
(bounded) polyhedron Q. This problem can in principle be stated as the linear program

min α� x̂ − β (3)

β ≤ α�x, ∀x ∈ E (4)

where E is the set of extreme points of Q. Problem (3)–(4) takes value zero if there
is no violated inequality (the trivial solution (α, β) = (0, 0) is feasible), while it is
otherwise unbounded. The unboundedness arises because scaling can increase the
degree of violation of any given violated valid inequality by an arbitrary amount. In
practice, the solution to this linear program must be normalized in some appropriate
way, requiring the addition of one or more normalization constraints to (3)–(4). There
are a number of alternative ways in which this could be accomplished, e.g., by adding
the constraint ‖α‖1 = 1. The difficulty of solving the resulting mathematical program,
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as well as which valid inequalities may be produced by solving the MVVIP, depends on
the selected normalization. This is largely an empirical issue which is beyond the scope
of the present work. We refer the reader, e.g., to Fischetti et al. [12] for details. Note
that the linear program (3)–(4) is precisely the dual of the linear programming form of
the membership problem mentioned earlier. Solving it is polynomially equivalent to
both optimization over Q and the associated separation problem, again by the result
of Grötschel et al. [13].

1.4 Overview

The remainder of the paper is organized as follows. In Sect. 2, we explain the bilevel
nature of the separation problem. In Sect. 3, we describe in detail some classes of valid
inequalities and analyze the separation problem for each of them in the context of the
framework we have laid out in Sect. 2. In Sect. 3.1, we consider the well-known class
of disjunctive valid inequalities for general MILPs and show that in this particular
case it is quite straightforward to convert the associated bilevel linear program into a
single-level mathematical program. In Sect. 3.2, we show that this reformulation is not
possible for some classes of valid inequalities unless �P

2 = NP (in other words: unless
the polynomial hierarchy collapses to its first level). For the strongest version of the
GSECs for the CVRP, we show formally that the separation problem is complete for
the class �P

2 . Two more examples of separation problems that admit a natural bilevel
formulation are discussed in Sect. 3.3. Finally, in Sect. 5, we draw some conclusions.

2 The separation problem and Bilevel programming

2.1 Classes of valid inequalities

To improve tractability, valid inequalities are often generated by solving (either exactly
or approximately) the MVVIP for one or more relaxations of the original problem.
These relaxations may arise in considering valid inequalities from a specific family
or class, i.e., inequalities that share a special structure. Applegate et al. [1] called
this paradigm for generation of valid inequalities the template paradigm. Generally
speaking, a class of valid inequalities for a given set S is simply a subset of all valid
inequalities for S. Such subsets can be defined in a number of ways and may be either
finite or infinite. Associated with any given class C ⊆ R

n+1 is its closure PC , defined
to be the intersection of all half-spaces associated with inequalities in the class. If the
class is finite, then the closure is a polyhedron. Otherwise, it may or may not be a
polyhedron.

The MVVIP with respect to a given closure is to produce a valid inequality with
maximum violation from a particular class. To formulate such a problem, we must
have a method of verifying membership in the class. Membership may be certified
either by associating members of the class with a certain well-defined combinatorial
structure from which the inequality can be both constructed and verified or by explicitly
describing the closure and certifying validity through an optimization oracle. The
structure, when provided, may itself constitute a certificate of validity for a given
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valid inequality and hence also a certificate of non-membership for any solution that
violates the valid inequality. Next, we describe the role of proofs of validity in more
detail.

2.2 Proofs of validity

In general, any procedure to produce a valid inequality must implicitly produce a proof
of validity. The complexity of producing this proof of validity is closely related to the
complexity of the MVVIP. The validity verification problem (VVP) is that of verifying
the validity of a given inequality with respect to a given polyhedron. The VVP is a
decision problem that is usually easier (in a complexity sense) than that of actually
producing the inequality.

To illustrate, let us consider the problem of proving the validity of a given inequality
with respect to an explicitly described polyhedron. This problem is easy, since we have
simply to produce weights with which the inequalities describing the polyhedron can
be combined to generate the given inequality. This can be done by solving a (feasibility)
linear program. Consider the polyhedron P from (2), for example. We have that (α, β)

is a valid inequality if and only if ∃u ∈ R
m+ such that

α ≥ u A, (5)

β ≤ ub. (6)

Thus, the set of all valid inequalities for a polyhedron is itself a polyhedron. There
are short certificates for both the membership and non-membership problems, and the
MVVIP itself is polynomially solvable.

This basic principle can be extended to proofs of validity for unions of polyhedra.
This technique is at the core of Balas [2] disjunctive procedure, which is to generate
inequalities valid for the convex hull of the union of polyhedra associated with the
individual terms of a fixed linear disjunction. It is easy to show that there are short
certificates for both the membership and non-membership problems, in this case too,
and that the MVVIP itself is polynomially solvable. We describe more details of this
case in Sect. 3.1 below.

In general, proving validity can be understood as equivalent to the problem of
certifying a lower bound on the optimal value of an optimization problem over PC .
Given (α, β), we need to know that

β ≤ min
x∈PC

α�x . (7)

Note the distinction between this and the problem of proving validity for PI directly.
Although this problem is a easier in general (since optimization over the closure is
a relaxation of the original problem), we will see later that it may actually be more
difficult in some cases.

For some classes of valid inequalities, verifying validity is easy. For Chvátal–
Gomory (C–G) cuts for pure integer programs, for example, proving validity consists
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of finding a combination of the inequalities from the original formulation [as in (5)–(6)]
that produces an integral left-hand side vector α and then showing that rounding β up
to the nearest integer value produces the inequality in question. There is thus a certifi-
cate for the non-membership problem of the associated closure (called the elementary
closure) in this case, but this non-membership problem is nevertheless NP-complete.
For classes for which the inequalities arise from combinatorial structure (such as comb
inequalities for TSP, odd holes for stable set, or blossoms for matching), the proof of
validity for members of the class arises from the fact that any inequality conforming to
a certain template structure is provably valid, though many of these inequalities can be
proven valid essentially by applying the C–G procedure with specifically structured
weights.

It is important to distinguish between the problem of determining whether a given
inequality is valid for the closure of the class from that of determining whether a
given inequality is a member of the class. In some cases, the former is difficult, while
the latter is not. Another point of subtle distinction that can affect the complexity of
verifying validity is the form in which the inequality is given. If the inequality is given
along with the certificate (consisting of the weights or the combinatorial structure that
produced it), it may be easier to verify than if it is presented in the standard form
without any additional structural information.

The fact that verifying validity is easy for many of the most commonly known
classes of valid inequalities is actually no coincidence. In some sense, this happens by
design. There is a strong connection between the existence of such a short certificate
and the complexity of the separation problem that can be uncovered by considering
the bilevel structure of the separation problem. We explore this next.

2.3 Bilevel formulation

For now, let us adopt the point of view that verifying validity is equivalent to veri-
fying (7) and consider a given class of valid inequalities C. The bilevel nature of the
MVVIP for a class C then arises as follows. The constraints of the upper level problem
describe the structure of the class, usually in the form of explicit constraints on the
allowable set of coefficient vectors α (though variables other than α may be required to
define the structure). The lower-level problem is to generate the proof of validity, often
by calculating the right-hand side β required to ensure (α, β) is valid. The complex-
ity of the separation problem depends strongly on the complexity of this lower-level
problem, which we refer to as the right-hand side generation problem (RHSGP), when
it can be interpreted as such.

We can now formulate the separation problem, in principle, as the MIBLP

min α� x̂ − β (8)

α ∈ Cα (9)

β = min
x∈PC

α�x, (10)

where PC is the closure and Cα is the set of admissible coefficient vectors (the pro-
jection of C into the space of coefficient vectors). Note that we expressly include the
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constraints (9), though their function is only to ensure that the inequality produced is
a member of the given class. They are technically unnecessary if the goal is simply
to produce an inequality valid for the closure (but not necessarily a member of the
class).

It should be emphasized that the formulation (8)–(10) is conceptual in nature. In
practice, it presents several challenges. Most importantly, to actually write an instance
of this problem down explicitly seems to require that we have compact (linear) descrip-
tions of both the closure PC and the set of admissible coefficient vectors Cα . At the
same time, the objective function (10) is also apparently bilinear, which raises other
practical issues. Note that only the optimal value of the lower-level problem, not the
solution itself, is required for computation of the upper-level objective value. This is
similar to the case of a bilevel program that models direct conflict between the leader
and the follower in a Stackelberg game.

The observations above highlight the crucial points in understanding the nature
of the separation problem. If we do have compact descriptions of PC and Cα (either
explicitly or as the convex hull of integer points inside an explicitly described poly-
hedron), then we can reformulate the separation problem as

min α� x̂ − β (11)

α ∈ Cα (12)

β ≤ α�x ∀x ∈ PC . (13)

Solution of this reformulation technically only requires an oracle for the optimization
problem over the closure PC . However, there is a bit of circular logic involved in this
statement, since the optimization problem over the closure is exactly the separation
problem we are trying to solve. As above, the inequalities (12) are technically unnec-
essary if our goal is only to generate an inequality valid for the closure of the class. In
practice, the inequalities (13) can be replaced by the finite set corresponding to just the
extreme points of PC when this set is a polytope and this separation problem can be
solved using a cutting plane method in which the extreme points of PC are generated
dynamically.

In general, it should be clear that the above separation problem may be very dif-
ficult to solve. In fact, the complexity depends strongly on the complexity of the
RHSGP (when the lower level can be interpreted in this way). A case in which there
exists a simple reformulation of the separation problem as a single-level optimiza-
tion problem is that in which the RHSGP can be solved in closed form or as a
feasibility problem, given the vector α (and possibly some auxiliary information,
such as the combinatorial structure that certifies validity). When generating a valid
inequality from a fixed disjunction, we can solve the RHSGP in closed form, which
leads to the well-known single-level reformulation for this class. Not surprisingly,
when one examines the (exact) separation algorithms appearing in the literature, it
quickly becomes clear that the classes are carefully chosen so as to ensure that the
bilevel program (8)–(10) collapses into a polynomial-size single-level program, gen-
erally linear or mixed integer linear. However, this is not always possible, as we show
below.
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3 Examples

In this section, we illustrate our ideas by reviewing a number of examples. The first
example (Sect. 3.1) allows a reformulation as a single-level mathematical program of
polynomial size, whereas the second example (Sect. 3.2) does not allow this unless
the polynomial hierarchy collapses. Two further examples are discussed in Sect. 3.3.

3.1 Disjunctive valid inequalities for general MILPs

Given an MILP in the form (1), Balas [2] showed how to derive a valid inequality by
exploiting any disjunction described by linear inequalities. In particular, the procedure
applies to disjunctions of the form

π�x ≤ π0 OR π�x ≥ π0 + 1 ∀x ∈ R
n, (14)

where π ∈ Z
|I | × 0|C| and π0 ∈ Z, which are always valid for (1). The family of

inequalities valid for the union of the two polyhedra, denoted by P1 and P2, obtained
from P by adding inequalities (−π,−π0) and (π, π0 + 1), respectively, are called
split cuts. Here, we describe the separation problem for split cuts in light of the bilevel
formulation given in the previous section.

For a given disjunction of the form (14), the separation problem for the associated
family of disjunctive inequalities with respect to a given vector x̂ ∈ P can be written
as the bilevel LP

min α� x̂ − β (15)

α j ≥ u� A j − u0π j j ∈ I ∪ C (16)

α j ≥ v� A j + v0π j j ∈ I ∪ C (17)

u, v, u0, v0 ≥ 0 (18)

u0 + v0 = 1 (19)

β = min
x∈P1∪P2

α�x . (20)

Constraints (16) and (17) together with the non-negativity requirements on the dual
multipliers (18) ensure that the inequality (α, β) is valid for each of the polyhedra
obtained by adding a term of the disjunction (14) to the original formulation. This
means that (α, β) satisfies the requirements for being a valid disjunctive inequality
corresponding to the disjunction (14) (see Sect. 2.2 for more details). Constraint (19) is
one of the possible normalizations to make the mathematical program above bounded.
Once the coefficient vector and the corresponding dual multipliers are known, the
RHSGP is easy to solve. To obtain a valid inequality, one has only to set β to min{u�b−
u0π0, v

�b + v0(π0 + 1)}, which is the smallest of the right-hand sides obtained by
the sets of multipliers (u, u0) and (v, v0) corresponding to the constraints of P1 and
P2, respectively.

It is easy to convert the bilevel LP above into a single-level linear program.
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Proposition 1 The bilevel LP (15)–(20) can be reformulated as the following single-
level LP of polynomial size:

min α� x̂ − β (21)

α j ≥ u� A j − u0π j j ∈ I ∪ C

α j ≥ v� A j + v0π j j ∈ I ∪ C
β ≤ u�b − u0π0 (22)

β ≤ v�b + v0(π0 + 1) (23)
u0 + v0 = 1

u, v, u0, v0 ≥ 0.

Proof Note that for given values of the remaining variables, any value of β satisfying
the two inequalities (22) and (23) above yields a valid disjunctive constraint. Further-
more, these two inequalities ensure that β ≤ min{u�b − u0π0, v

�b + v0(π0 + 1)},
while the objective function (21) ensures that the largest possible value of β is indeed
selected, i.e., β = min{u�b − u0π0, v

�b + v0(π0 + 1)}. In other words, the objective
function (21) yields the best value of the right-hand side for free, thus returning a
maximally violated valid inequality. �
If we wish to select the disjunction and generate a corresponding valid inequality, then
we observe that the problem rises one level higher in the polynomial hierarchy. For
example, the split closure is the closure with respect to all inequalities arising from
general disjunctions of the form (14). When solving the MVVIP for this closure, the
vectors π and π0 become (integer) variables and the problem is ostensibly a mixed
integer non-linear optimization problem. It was shown by Cook et al. [6] that the split
closure is a polyhedron. The complexity of the MVVIP was shown to be NP-hard and
the non-membership problem shown to be NP-complete by Caprara and Letchford [4].
On the other hand, Balas and Saxena [3] and Dash et al. [9] both derive approximate
methods of optimizing over the split closure that require solving a sequence of MILPs,
indicating that the membership problem may also be difficult (though the complexity
is still not known)

Disjunctive inequalities represent an example in which the bilevel nature of the
separation problem is only useful to express the problem. In the next section, we will
discuss instead a case in which no reformulation of polynomial size exists (modulo
the previously mentioned conjectures from complexity theory).

3.2 GSECs for the CVRP

Here, we consider the classical Capacitated Vehicle Routing Problem, as introduced
by Dantzig and Ramser [8], in which a quantity di of a single commodity is to be
delivered to each customer i ∈ N = {1, . . . , n} from a central depot {0} using a
homogeneous fleet of k vehicles, each with capacity K . The objective is to minimize
total cost, with ci j ≥ 0 denoting the fixed cost of transportation from location i to
location j , for 0 ≤ i, j ≤ n. The costs are assumed to be symmetric, i.e., ci j = c ji

and cii = 0.
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This problem is naturally associated with the complete undirected graph consisting
of nodes N ∪ {0}, edge set E = N ∪ {0} × N ∪ {0}, and edge costs ci j for {i, j} ∈ E .
In this graph, a solution is the union of k cycles whose node sets share only the depot
node in common and whose union includes all customers. By associating an integer
variable with each edge in the graph, we obtain the following integer programming
formulation:

min
∑
e∈E

cexe

∑
e={0, j}∈E

xe = 2k (24)

∑
e={i, j}∈E

xe = 2 ∀i ∈ N (25)

∑
e={i, j}∈E
i∈S, j �∈S

xe ≥ 2b(S) ∀S ⊂ N , |S| > 1 (26)

0 ≤ xe ≤ 1 ∀e = {i, j} ∈ E, i, j �= 0 (27)

0 ≤ xe ≤ 2 ∀e = {0, j} ∈ E (28)

xe ∈ Z ∀e ∈ E . (29)

Constraints (24) and (25) are the degree constraints. In constraints (26), referred to
as the capacity constraints, b(S) is any of several lower bounds on the number of
vehicles required to service the customers in set S. These constraints can be viewed as
a generalization of the subtour elimination constraints from the Traveling Salesman
Problem and serve both to enforce the connectivity of the solution and to ensure that no
route has total demand exceeding the capacity K . The easily calculated lower bound∑

i∈S di/K on the number of trucks is enough to ensure the formulation (24)–(29) is
correct, but increasing this bound through the solution of a more sophisticated RHSGP
will yield a stronger version of the constraints.

The MVVIP for capacity constraints with a generic lower bound b(S) can be for-
mulated as a MIBLP of the form (8)–(10) as follows. Because we are looking for a
set S̄ ⊂ N for which an inequality (26) is maximally violated, we define the binary
variables

yi =
{

1 if customer i belong to S̄
0 otherwise

i ∈ N , (30)

and

ze =
{

1 if edge e belong to δ(S̄)

0 otherwise
e ∈ E, (31)

where δ(S̄) denotes the set of edges in E with one endpoint in S̄, to model selection
of the members of the set S̄ and the coefficients of the corresponding inequality. Thus,
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the formulation is

min
∑
e∈E

x̂eze − 2b(S̄) (32)

ze ≥ yi − y j ∀e = {i, j} (33)

ze ≥ y j − yi ∀e = {i, j} (34)

max b(S̄) (35)

b(S̄) is a valid lower bound. (36)

For improved tractability, the RHSGP (35)–(36) can be replaced by the calculation of
a specific bound. One of the strongest possible lower bounds is obtained by solving
to optimality the (strongly NP-hard) Bin Packing Problem (BPP) with the customer
demands in set S̄ being packed into the minimum number of bins of size K ([7] describe
a further strengthening of the right-hand side, but we do not consider this bound here).
The RHSGP based on the BPP can be modeled by using the binary variables

w�
i =

{
1 if customer i is served by vehicle �

0 otherwise
i ∈ N , � = 1, . . . , k, (37)

and

h� =
{

1 if vehicle � is used
0 otherwise

� = 1, . . . , k. (38)

Then, the full separation problem reads as follows:

min
∑
e∈E

x̂eze − 2b (39)

ze ≥ yi − y j ∀e = {i, j} (40)

ze ≥ y j − yi ∀e = {i, j} (41)

b = min
n∑

�=1

h� (42)

n∑
�=1

w�
i = yi ∀i ∈ N (43)

∑
i∈N

diw
�
i ≤ K h� � = 1, . . . , n, (44)

where of course all variables y, z, w and h are binary according to definitions (30),
(31), (37), and (38), respectively. We refer to this class of inequalities as strengthened
GSECs.

Intuitively, it is clear that the MIBLP (39)–(44) cannot be straightforwardly reduced
to a single-level program because the sense of the optimization of the RHSGP is
opposed to that of the MVVIP, i.e., absence of the lower-level objective would result
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in a BPP solution using the largest number of bins instead of the smallest number. More
formally, certifying validity requires certifying a lower bound on the optimal value
to the BPP, which is a universally quantified decision problem that, when embedded
inside an existentially quantified optimization problem, yields a problem that is hard
for the second level of the polynomial hierarchy. This intuition is supported by the
following result.

Theorem 1 The MVVIP for the strengthened GSECs is �P
2 -hard.

We delay presentation of the (somewhat lengthy and very technical) proof of this
theorem until the following section in order to continue with the development of the
consequences of this theorem, which are quite serious.

Corollary 1 There is no polynomial-size single-level MILP reformulation of problem
(39)–(44) unless the polynomial hierarchy collapses to its first level.

Proof Suppose that the MIBLP can be reformulated as a single-level MILP of poly-
nomial size. As single-level MILPs of polynomial size can only express problems in
NP, the MIBLP would also have to be in NP. However, as we show in the proof of
Theorem 1, solution of the MIBLP (39)–(44) is a �P

2 -hard problem, which would
then imply that �P

2 = NP. Hence, the polynomial hierarchy would collapse to its first
level. �
A rather counterintuitive aspect of this result is that the separation problem for the
closure of this class is a problem one level higher in the polynomial hierarchy than the
separation problem for the convex hull of solutions to the CVRP. In fact, the VVP for
this class is as difficult as the VVP for the CVRP itself. This gives a strong theoretical
basis for the idea that this class probably should not be used in practice.

To make the problem a bit more tractable, we can simplify the RHSGP by relaxing
the integrality requirement on w and h to obtain

b = min
n∑

�=1

h� (45)

n∑
�=1

w�
i = yi ∀i ∈ N (46)

∑
i∈N

diw
�
i ≤ K h� � = 1, . . . , n (47)

w�
i ∈ [0, 1], h� ∈ [0, 1] i ∈ N , � = 1, . . . , n, (48)

which is also a lower bound for the BPP. In this case, the RHSGP can be solved in
closed form, with an optimal solution being

b =
∑

i∈N di yi

K
. (49)
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Hence, the MVVIP reduces to a single-level MILP that can in turn be solved in poly-
nomial time by transforming it into a network flow problem as proven by McCormick
et al. [16].

An intermediate valid lower bound is obtained by rounding the bound (49), i.e.,

using b =
⌈∑

i∈N di yi
K

⌉
. Although such rounding can be done after the fact, relaxing

the integrality on w, but not h, i.e., replacing conditions (48) by

w�
i ∈ [0, 1], h� ∈ {0, 1} i ∈ N , � = 1, . . . , n,

results in reduction of the MVVIP to the single-level MILP

min
∑
e∈E

x̂eze − 2b

ze ≥ yi − y j ∀e = {i, j}
ze ≥ y j − yi ∀e = {i, j}∑

i∈N di yi

K
+ 1 − ε ≥ b

b ∈ Z

yi ∈ {0, 1}, ze ∈ {0, 1} ∀i ∈ N ,∀e ∈ E,

which was shown by Cornuéjols and Harche [7] to be NP-hard.

3.3 Further examples

In this section we briefly present two more examples of separation problems that
immediately call for a bilevel interpretation.

The first example is on the positive side, i.e., it is a case in which it is rather easy
to reformulate the separation problem as a single-level MIP. Precisely, we are again
considering the Capacitated Vehicle Routing Problem, but this time we consider the
exponential-size formulation

min
∑
C∈C

γC xC (50)

∑
C∈C

xC = k (51)

∑
C∈Ci

xC = 1 ∀i ∈ N (52)

xC ∈ {0, 1} ∀C ∈ C. (53)

We denote by C the collection of all feasible cycles for a vehicle, by Ci ⊆ C the set of
cycles visiting customer i , and by γC the cost of a cycle C ∈ C, i.e., the sum of the costs
of the arcs in the cycle. Then, for each of the cycles C , we introduce a binary variable
xC that takes value 1 if and only if the cycle belongs to the solution, and 0 otherwise.
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Consequently, constraint (51) simply states that any solution must be comprised of k
cycles, while constraints (52) guarantee that each customer i is visited exactly once.
(Note that the requirements of any cycle visiting the depot and on the capacity of the
vehicle are implicitly included in the requirement of any C being feasible.)

As anticipated, this formulation has an exponential number of variables, one for
each cycle C ∈ C. Thus, the continuous relaxation of the problem is solved by column
generation techniques (see, e.g., Desaulniers et al. [11]). Roughly speaking, this boils
down to starting with a subset of the columns, solving the restricted LP, and generating
(and adding) additional columns on the fly when needed, solving the so-called pricing
problem. Those columns correspond to constraints of the dual of (50)–(52), namely

z +
∑

i∈NC

yi ≤ γC ∀C ∈ C, (54)

where z is the dual variable associated with constraint (51), yi is that associated with
the i th constraint (52), and NC ⊆ N denotes the set of customers visited by cycle C . Of
course, the set of constraints (54) is exponential in size as well, so solving the pricing
problem amounts to separation of constraints (54) in the dual. This latter problem has
a natural bilevel formulation. Given a fractional (dual) solution (ẑ, ŷ), one is looking
for a feasible cycle C̄ ∈ C maximizing

ẑ +
∑

i∈NC̄

ŷi − γC̄ . (55)

In other words, we are seeking the most violated constraint (54), if any exists. After
associating the variables required to model nodes and arcs in the associated graph,
quantity (55) becomes the objective function of the upper level model, while γC̄
represents the lower level objective function, i.e., the right-hand side of (54). Clearly,
given a set of customers T there are many ways of visiting them, making this problem
apparently difficult to solve. Fortunately, the strongest inequality (54) associated with
any given set T is the one with the smallest value for γT , i.e., among all possible
cycles visiting the customers in T and the depot, one is looking for the shortest one.
In turn, this choice also maximizes the upper level objective function (55), where γ

appears with negative sign; thus, the two objective functions “agree” and a single-level
formulation can be developed straightforwardly.

The second example is instead on the negative side. Specifically, following our
separation framework, Mattia [15] has modeled the separation of a special class of
valid inequalities for the Network Loading Problem as a bilevel programming problem.
Given an undirected network, the problem consists in installing integer capacities on
the edges of the network so as to be able to simultaneously route a set of point-to-point
traffic demands at a minimum cost. The case of the network loading problem is similar
to the one of the capacitated vehicle routing problem described in Sect. 3.2. The family
of constraints considered by Mattia [15] is the class of the co-called metric inequalities
of which several variants have been proposed. In particular, computing the right-hand
side of those inequalities amounts to solving an NP-hard optimization problem, so
weaker versions of the inequalities have been used corresponding to the continuous
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relaxation of such a problem or its rounded version. The separation of the strongest
version, called tight metric inequalities, has been addressed by bilevel programming
by Mattia [15] and solved in practice through a special purpose (heuristic) algorithm,
with promising computational results. Although there is no formal proof of the fact
that the separation of tight metric inequalities cannot be reformulated as a polynomial-
size single-level MIP, Mattia [15] considers that very unlikely, especially in light of
the results given here and the similarity to the GSEC case.

4 Proof of theorem 1

This entire section is centered around the following auxiliary subset selection problem.
As earlier, we will denote N = {1, . . . , n}.

Problem: Good- Subset
Instance: The complete, undirected graph on the vertex set N ∪{0}. Every vertex
i ∈ N has a non-negative integer size κ(i), and every edge i j ∈ N × N has a
non-negative integer weight λ(i j). A bin size κ∗ and a weight bound λ∗.
Question: Does there exist a subset N ′ ⊆ N such that (i) the weight of the edge
cut induced by N ′ is at most λ∗, and such that (ii) the vertices with sizes κ(i)
for i ∈ N ′ cannot be packed into two bins of size κ∗?

Our objective is to prove that problem Good- Subset is �P
2 -hard. The reduction will

be done from an appropriate quantified satisfiability variant, which is easily seen to
be �P

2 -complete by combining the results of Stockmeyer [19] with a reduction of
Schaefer [18].

Problem: 2- Quantified 1- in- 3- Sat
Instance: Two sets X = {x1, . . . , xt } and Y = {y1, . . . , yt }of Boolean variables.
A set C = {c1, . . . , ct } of (disjunctive) clauses over X ∪ Y where every clause
consists of exactly three distinct literals. A truth setting of X ∪Y satisfies a clause
c, if exactly one of the three literals in c is true.
Question: Does there exist x1, . . . , xt such that ∀y1, . . . , yt , we have ¬φ(X, Y )

is true?

Here, φ is a Boolean function that is true if and only if all of the clauses in C evaluate
to true. In other words, the goal in 2- Quantified 1- in- 3- Sat is to fix the truth
values for X in such a way that every possible truth setting for Y violates at least one
of the clauses in C . A clause is violated if exactly 0 or 2 or 3 of its literals are set to
true.

Hence let us consider an arbitrary instance of 2- Quantified 1- in- 3- Sat, and
let us construct a corresponding instance of Good- Subset from it. For every literal
� = xi or � = ¬xi , we define an integer value

f (�) =
∑ {

10 j : literal � occurs in clause c j

}
. (56)
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Note that all literals satisfy f (�) < 10t+1. Now let us specify the 6t + 2 vertices in
the Good- Subset instance together with their sizes κ .

– For every literal � ∈ {xi ,¬xi } there are two corresponding vertices A1(�) and
A2(�). The size of vertex A1(�) is 103t+i + f (�) and the size of vertex A2(�) is
102t+i + f (�). Note that the total size of A1(�) and A2(¬�) equals the total size
of A1(¬�) and A2(�).

– For every literal � ∈ {yi ,¬yi } there is a corresponding vertex B(�) of size 10t+i +
f (�).

– There is a dummy vertex D1 of size 105t + ∑t
i=1 102t+i + ∑t

i=1 10i , and there is
another dummy vertex D2 of size 105t + ∑t

i=1 103t+i .

Most of the edge weights λ are zero, and the only non-zero weights are defined as
follows. For every literal � ∈ {xi ,¬xi }, the weight of the edge from vertex 0 to vertex
A1(�) is 2i , and the weight of the edge between vertices A1(�) and A2(¬�) is +∞ (or
some forbiddingly large number). Finally the bin size is defined as

κ∗ = 105t +
4t∑

i=t+1

10i + 2
t∑

i=1

10i , (57)

and the weight bound is defined as

λ∗ =
t∑

i=1

2i . (58)

We will show that the newly constructed instance of Good- Subset has answer YES,
if and only if the underlying instance of 2- Quantified 1- in- 3- Sat has answer
YES.

Lemma 1 If the constructed instance of Good- Subset has answer YES, then the
underlying 2- Quantified 1- in- 3- Sat instance also has answer YES.

Proof Consider a vertex set N ′ that certifies the answer YES for the instance of Good-
Subset. In other words, the weight of the corresponding edge cut is at most λ∗ and
N ′ cannot be packed into two bins of size κ∗. We prove several statements on the
structure of N ′.

(a) Without loss of generality, N ′ contains both dummy vertices D1 and D2 and
all the vertices B(�).

Statement (a) is straightforward, since these vertices do not increase the weight of the
cut.

(b) For every variable xi exactly one of A1(xi ) and A1(¬xi ) is in N ′.

Statement (b) is proved by induction on i , starting with i = t and going down to
i = 1. In the inductive step, it is easy to see that N ′ cannot simultaneously con-
tain both vertices A1(xi ) and A1(¬xi ), since this would bring the weight of the cut
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(to vertex 0) above the weight bound λ∗. Furthermore, the size of vertex A1(xi ) alone
is bigger than the sizes of all the vertices A1(x j ) with j < i and all the vertices A2(�)

together; an analogous statement holds for vertex A1(¬xi ). If N ′ contains neither of
these of these two bulky vertices, then N ′ could easily be packed into two bins of size
κ∗.

(c) For every variable xi , set N ′ contains either both vertices A1(xi ) and A2(¬xi ),
or both vertices A1(¬xi ) and A2(xi ).

This follows by using statement (b), and by avoiding inclusion of edges of infinite
weight in the cut. Statements (a), (b), (c) fully describe the structure of set N ′. Based
on statement (c), we introduce the following truth setting for X : Whenever N ′ contains
A1(xi ) and A2(¬xi ), we set variable xi to true; otherwise, we set variable xi to false.
We claim that this is the desired truth setting of X that certifies that the underlying
2- Quantified 1- in- 3- Sat instance has answer YES.

Suppose for the sake of contradiction that there exists a truth setting of Y such that
every clause in φ(X, Y ) contains exactly one true literal. We translate this truth setting
into a packing of N ′: All vertices A1(�) in N ′ go into the first bin together with D1, and
all vertices A2(�) in N ′ go into the second bin together with D2. Whenever a literal
� ∈ {yi ,¬yi } is true under the considered truth setting of Y , vertex B(�) is packed
into the first bin and vertex B(¬�) is packed into the second bin. Then the f (�)-parts
of the vertex sizes in the first bin sum up to

∑t
i=1 10i (since every clause contains

exactly one true literal), and the f (�)-parts of the vertex sizes in the second bin sum up
to 2

∑t
i=1 10i (since every clause contains exactly two false literals). Hence, we have

found a packing of N ′ into two bins of size κ∗, which yields the desired contradiction.
We conclude that the 2- Quantified 1- in- 3- Sat instance indeed has answer YES.

�

Lemma 2 If the 2- Quantified 1- in- 3- Sat instance has answer YES, then the
constructed instance of Good- Subset also has answer YES.

Proof We start from the truth setting of the variables in X that makes the
2- Quantified 1- in- 3- Sat instance true (whose existence is guaranteed by the
lemma). Whenever some literal � ∈ {xi ,¬xi } is set to true, we select the two ver-
tices A1(�) and A2(¬�) into the set N ′. Furthermore, we select all vertices B(�) with
� ∈ {yi ,¬yi }, and both dummy vertices D1 and D2 into the set N ′. This completes
the description of set N ′. The weight of the corresponding cut for N ′ exactly equals
the weight bound λ∗, and the total size of all vertices in N ′ exactly equals 2κ∗.

We claim that the vertices in N ′ cannot be packed into two bins of size κ∗. Suppose
for the sake of contradiction that such a packing exists. Without loss of generality we
assume that the (huge) dummy vertex D2 is packed into the second bin.

(a) the (large) dummy vertex D2 is packed into the second bin.

Then the dummy vertex D1 and the vertices A1(�) in N ′ do not fit anymore into this
second bin, and hence they all must go into the first bin.

(b) Vertex D1 and all vertices A1(�) in N ′ are packed into the first bin.
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The first bin has now been filled up so much that there is not enough room for any of
the vertices A2(�) in N ′.

(c) All vertices A2(�) in N ′ are packed into the second bin.

Next, we work through the remaining vertices B(yi ) and B(¬yi ) in decreasing order
of index. An easy inductive argument shows that they cannot both be packed together
into the same bin; hence, one of them goes into the first bin and the other one goes
into the second bin.

(d) One of the vertices B(yi ) and B(¬yi ) is packed into the first bin and the
other one into the second bin.

From this, we derive a truth setting for the variables in Y : If vertex B(yi ) is in the first
bin, then we set variable yi to true and otherwise we set variable yi to false.

Let us ignore for the moment the low-order digits in the f (�)-parts of the vertex
sizes. Then the total size of the vertices assigned to the first bin is κ∗ − ∑t

i=1 10i and
the total size of the vertices assigned to the second bin is κ∗ − 2

∑t
i=1 10i . Therefore

the f (�)-parts of the vertices in the first bin must sum to
∑t

i=1 10i . Since there are
no carry-overs in the addition, (56) yields that every clause contains exactly one true
literal. That’s the desired contradiction, and hence the vertices in N ′ cannot be packed
into two bins of size κ∗. We conclude that the Good- Subset instance indeed has
answer YES. �

Lemmas 1 and 2 together yield the following theorem.

Theorem 2 Problem Good- Subset is hard for the complexity class �P
2 .

Now let us take the final steps and prove Theorem 1. This is done by embedding
problem Good- Subset into the MIBLP (39)–(44). Hence we consider the instance
of Good- Subset as constructed above, and we interpret it as the following instance
of CVRP:

– vertex 0 is the depot in CVRP;
– the vertices in N = {1, . . . , n} form the customers in CVRP;
– the demand di of vertex i in CVRP coincides with the size κ(i);
– the cost of edge i j in CVRP is defined as ci j = 10−tλ(i j).

For a subset N ′ ⊆ N of the vertices/customers, let c(N ′) denote the weight of the
edge cut induced by N ′, and let b(N ′) denote the smallest number of bins of size κ∗
into which N ′ can be packed.

Lemma 3 A subset N ′ ⊆ N forms a YES-certificate for the instance of Good-
Subset if and only if

c(N ′) − 2 b(N ′) ≤ 10−tλ∗ − 6. (59)

Proof First, assume that the subset N ′ is a YES-certificate for Good- Subset. Then
c(N ′) ≤ 10−tλ∗ holds, as the edge costs ci j are the edge weights λ(i j) multiplied by
the scaling factor 10−t , and b(N ′) ≥ 3 holds as N ′ cannot be packed into two bins.
Hence N ′ satisfies (59).
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Next, assume that N ′ satisfies (59). We observe that all vertices in the instance (and
hence all vertices in N ′) can easily be packed into three bins of size κ∗ (for instance:
put dummy vertex D1 into the first bin, dummy vertex D2 into the second bin, and all
the remaining vertices into the third bin). This implies b(N ′) ≤ 3. Since c(N ′) ≥ 0
and since 10−tλ∗ < 1, inequality (59) yields

2 (b(N ′) − 3) ≥ c(N ′) − 10−t λ(N ′) > − 1.

This implies b(N ′) ≥ 3. We conclude b(N ′) = 3, and N ′ indeed cannot be packed
into two bins. Finally, with b(N ′) = 3 we get c(N ′) ≤ 10−tλ∗ from (59). Hence
λ(N ′) ≤ λ∗ indeed holds, and N ′ has all the desired properties. �

The minimization in the MIBLP (39)–(44) searches for the smallest possible objective
value c(N ′) − 2 b(N ′). If we know the optimal objective value, then we also know
whether there exists a set N ′ that satisfies (59), and by Lemma 3 this amounts to
deciding the �P

2 -hard problem Good- Subset. Consequently, the MIBLP (39)–(44)
itself is �P

2 -hard. Since the MVVIP can easily be reduced to the MIBLP, the proof of
Theorem 1 is complete.

5 Conclusions

We have presented a conceptual framework for the formulation of general separation
problems as bilevel programs. This framework reflects the inherent bilevel nature of
the separation problem arising from the fact that calculation of a valid right-hand
side for a given coefficient vector is itself an optimization problem. In cases where
this optimization problem is difficult in a complexity sense, it is generally not pos-
sible to formulate the separation problem as a traditional mathematical program. We
conjecture that the finding the maximally violated valid inequality for most classes
of valid inequalities can be thought of as having this hierarchical structure, but that
certain of them can nonetheless be reformulated effectively. This is either because the
right-hand side generation problem is easy to solve or because it goes “in the right
direction” with respect to finding the most violated valid inequality itself. We believe
that the paradigm presented here can be useful for the analysis of other intractable
classes of valid inequalities, a first example of that being the paper by Mattia [15]. In
a future study, we plan to further formalize the conceptual framework presented here
with more investigation of the complexity issues, additional examples of these phe-
nomena, and an assessment of whether these ideas may be useful from a computational
perspective.
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