
International Journal of Computer Mathematics, 2014
Vol. 91, No. 8, 1730–1743, http://dx.doi.org/10.1080/00207160.2013.860449

A new linearization technique for minimax linear
fractional programming

Hongwei Jiao and Sanyang Liu∗

Department of Mathematics, Xidian University, Xi’an 710071, China

(Received 1 June 2013; second revision received 29 July 2013; third revision received 24 October 2013; fourth revision
received 21 October 2013; accepted 22 October 2013)

This paper presents a deterministic global optimization algorithm for solving minimax linear fractional
programming (MLFP). In this algorithm, a new linearization technique is proposed, which uses more
information of the objective function of the (MLFP) than other techniques. By utilizing this new lineariza-
tion technique, the initial nonconvex programming problem (MLFP) is reduced to a sequence of linear
relaxation programming (LRP) problems, which can provide reliable lower bound of the optimal value.
The proposed algorithm is convergent to the global minimum of the (MLFP) through the successive refine-
ment of the feasible region and solutions of a series of the (LRP). Compared with the known algorithms,
numerical results show that the proposed algorithm is robust and effective.

Keywords: global optimization; minimax linear fractional programming; linearization technique; branch-
and-bound; linear relaxation programming

2010 AMS Subject Classifications: 90C30; 90C32; 65K05

1. Introduction

The minimax linear fractional programming (MLFP) problems can be formulated as the following
nonlinear optimization problems:

(MLFP) :

⎧⎪⎨
⎪⎩

min max

{
n1(x)

d1(x)
,

n2(x)

d2(x)
, . . . ,

np(x)

dp(x)

}

s.t. x ∈ D = {x ∈ Rn | Ax ≤ b, x ≥ 0},
where A ∈ Rm×n, b ∈ Rm, nj(x) and dj(x), j = 1, . . . , p, are all linear affine functions, D is a
nonempty compact set.

The problem (MLFP) is a special class of fractional programming problem, which has attracted
the interest of practitioners and researchers for at least 30 years [1,26,30,33,36,44]. During the
past 20 years, interest in these problems has been especially intense. In part, this is because since
its initial development it has spawn a wide variety of applications, specially in measuring the effi-
ciency or productivity of system [37], the design of electronic circuits [4], signal processing [11],
neural networks [3], optimal design [2], iterative parameter estimation [13], financial planning

∗Corresponding author. Email: liusanyang@126.com

© 2014 Taylor & Francis

mailto:liusanyang@126.com

International Journal of Computer Mathematics 1731

[20], system identification [10,12,14,15,32,39] and so on. Another reason for the strong interest
in this class of problems is that from a research point of view, these problems pose significant
theoretical and computational challenges. This is mainly because these problems are global opti-
mization problems, i.e. they are known to generally possess multiple local optima that are not
globally optima. So it is necessary to put forward good solution method for the (MLFP).

During the past years, many algorithms have been proposed for globally solving MLFP. For
instance, parametric programming method [9], partial linearization algorithm [6], interior-point
algorithm [18], monotonic optimization approach [34], cutting plane algorithm [5], branch-
and-bound algorithms [16,17], method of centres [35], dinkelbach-type algorithms [7,31],
prox-regularization method [21]. In recent several years, some significant progress in this area of
theoretical research has been obtained for solving MLFP or nonlinear fractional programming.
For examples, when data both in the objective and constraints are uncertainty, Jeyakumar et al.
[25] proposed a strong duality for robust minimax fractional programming problems; Gao and
Rong [19] established the optimality conditions and duality for a class of nondifferentiable mul-
tiobjective generalized fractional programming problems; using a parametric approach, Lai et al.
[29] presented the Kuhn–Tucker type necessary optimality conditions and proved the existence
theorem of optimality for complex minimax fractional programming in the framework of gen-
eralized convexity; Zheng and Cheng [43] derived the Kuhn–Tucker type sufficient optimality
conditions and established weak, strong and converse duality theorems for minimax fractional
programming under nonsmooth generalized (F, ρ, θ)-d-univexity; Lai and Huang [27] established
the sufficient optimality conditions for a minimax programming problem involving p fractional
n-set functions under generalized invexity; Husain et al. [24] presented a second-order duality
theorems for minimax fractional programming. In addition, in this area of algorithm research,
when the denominator and numerator of each ratio are all continuous real-valued functions, Chen
et al. [8] proposed a generic algorithm for generalized fractional programming; Strodiot et al.
[38] proposed an inexact proximal point method for solving generalized fractional program with
convex data; Wen and Wu [42] presented a parametric approach to solve the continuous-time
linear fractional max–min problems. Recently, Gupta and Dangar [22] and Hu et al. [23] pro-
posed two different second-order dualities for nondifferentiable minimax fractional programming
problem, respectively; Lai and Huang [28] presented optimality conditions and parametric duality
for nondifferentiable minimax fractional programming problem; Wen [40] derived some prop-
erties of the auxiliary parametric continuous-time generalized fractional programming problem,
and concluded that solving the class of problem is equivalent to determine the root of the non-
linear equation. These properties make it possible to develop a numerical algorithm for solving
the continuous-time generalized fractional programming problem; based on Ref. [40], Wen [41]
presented an interval-type computational procedure for solving the continuous-time generalized
fractional programming problem. But the most of the above literatures only presented optimality
conditions or duality theory for MLFP problem, or can only find its local optimal solution, or can
only solve the special form of MLFP problems. Therefore, in addition to the above-mentioned
algorithms, up to now, although there has been significant progress in the development of theories
for solving MLFP or nonlinear fractional programming, to our knowledge, less work has been
still done for globally solving MLFP problem investigated in this paper.

In this paper, we present a branch-and-bound algorithm for globally solving MLFP problem.
First, we transform the problem (MLFP) into an equivalent problem (EQ). Second, in order
to obtain the lower bound of the problem (EQ), a new linearization technique is proposed for
establishing linear relaxation programming (LRP) problem of the (EQ), which is incorporated into
the branch-and-bound framework. Third, compared with the linear relaxation method in Ref. [17],
the proposed new linearization technique uses more information of the objective function of the
(MLFP). Compared with the similar previous linear relaxation techniques in Refs. [16,17], the new
linearization technique for computing lower bounds can provide a tighter lower bound, which can

1732 H. Jiao and S. Liu

suppress the rapid growth of branching tree in the branch-and-bound search procedure for solving
the (MLFP) to improve the computational efficiency of the algorithm. Finally, the numerical
experimental results show that the proposed algorithm has higher computational efficiency than
Refs. [16,17], and can be used to globally solve the MLFP problems with large scale of fractional
objective functions.

The remainder of this article is organized as follows. In Section 2, by using a transformation
technique, the problem (EQ) is derived that is equivalent to the problem (MLFP). In Section 3, a
new linearization technique is presented, then the LRP of the (EQ) is established. A rectangular
branching rule and an algorithm for globally solving the (MLFP) are introduced in Section 4. In
Section 5, the numerical results for some test examples in recent literatures with the proposed
algorithm are reported. Finally, a few concluding remarks are given in Section 6.

2. Preliminaries

To globally solve the problem (MLFP), for each i = 1, 2, . . . , n, we need to compute the initial
lower bound xi = minx∈D xi and upper bound x̄i = maxx∈D xi of each variable xi by solving linear
programming problems, then we can derive an initial rectangle

X0 = {x|xi ≤ xi ≤ x̄i, i = 1, . . . , n}.
For each j ∈ {1, . . . , p}, let Fj(x) = nj(x)/dj(x), we can establish the equivalent problem (EQ) of
the (MLFP) as follows.

(EQ) :

⎧⎪⎨
⎪⎩

min t

s.t. Fj(x) − t ≤ 0, j = 1, . . . , p,

Ax ≤ b, x ∈ X0.

Lemma 1 The problems (MLFP) and (EQ) have the same global optimal solutions and optimal
value.

Proof The proof of this lemma follows easily from the monotonic character of function, here it
is omitted. �

Lemma 2 For each j ∈ {1, . . . , p}, by the continuity of the function nj(x)/dj(x), we have dj(x) �=
0.

Proof The proof of this lemma can be easily followed from the continuity of the function dj(x),
therefore, it is omitted. �

By Lemma 2, we have dj(x) > 0 or dj(x) < 0. If dj(x) < 0, through letting nj(x)/dj(x) =
−nj(x)/−dj(x), obviously, the denominator can be transformed into a positive value function.
Hence, in the problem (EQ), we can always assume that dj(x) > 0 holds. In addition, for each
j ∈ {1, . . . , p}, if nj(x) is an arbitrary function, there always exist a large enough positive number
Mj such that nj(x) + Mjdj(x) > 0. since

nj(x)

dj(x)
= nj(x) + Mjdj(x)

dj(x)
− Mj,

therefore, in the following, without loss of generality, we can always assume that nj(x) > 0 and
dj(x) > 0, j = 1, . . . , p.

International Journal of Computer Mathematics 1733

In the following, we will only consider solving the problem (EQ), the principal construction in
the development of a solution procedure for solving the problem (EQ) is construction of a LRP
for obtaining the lower bounds of the optimal value for this problem. For the problem (EQ), we
only need to construct a linear lower bounding function of each constraint function Fj(x). The
developed method uses a new linearization technique to derive the linear lower bounding function
of every Fj(x), j = 1, . . . , p.

3. New linearization technique

In this section, for each Fj(x) in constraints, we will construct its linear lower bounding function.
By the above assumption, we can let

Fj(x) = exp[ln(nj(x)) − ln(dj(x))].

First, for ∀x ∈ Xk ⊆ X0, for any j ∈ {1, . . . , p}, some notations can be introduced as follows:

nl
j = min

x∈Xk
nj(x), nu

j = max
x∈Xk

nj(x),

dl
j = min

x∈Xk
dj(x), du

j = max
x∈Xk

dj(x),

Cj = ln(nu
j) − ln(nl

j)

nu
j − nl

j

, Dj = ln(du
j) − ln(dl

j)

du
j − dl

j

.

For the concave function ln(Z), we can construct its linear lower bounding function L(ln(Z))

and linear upper bounding function U(ln(Z)) over the interval [Zl, Zu] as follows:

L(ln(Z)) = C(Z − Zl) + ln Zl,

U(ln(Z)) = CZ − 1 − ln C,
(1)

such that

L(ln(Z)) ≤ ln(Z) ≤ U(ln(Z)), (2)

where

C = ln Zu − ln Zl

Zu − Zl
,

Based on the above discussion, for any j ∈ {1, . . . , p}, substituting the above notations Z , Zu,
Zl and C, in the forms (1) and (2), by the corresponding notations nj(x), nu

j , nl
j , Cj, dj(x), du

j , dl
j

and Dj, then we can obtain the following inequalities:

Cj[nj(x) − nl
j] + ln nl

j ≤ ln (nj(x)) ≤ Cjnj(x) − 1 − ln Cj, (3)

Dj[dj(x) − dl
j] + ln dl

j ≤ ln (dj(x)) ≤ Djdj(x) − 1 − ln Dj, (4)

By the inequalities (3) and (4), then finally we can derive the lower bounding function Fl
j (x)

and the upper bounding function Fu
j (x) of the function Fj(x) for each j ∈ {1, . . . , p}, which

1734 H. Jiao and S. Liu

underestimates and overestimates the value of the function Fj(x) as follows:

Fl
j (x) = exp{Cj[nj(x) − nl

j] + ln nl
j − [Djdj(x) − 1 − ln Dj]},

Fu
j (x) = exp{Cjnj(x) − 1 − ln Cj − Dj[dj(x) − dl

j] − ln dl
j },

such that

Fl
j (x) ≤ Fj(x) ≤ Fu

j (x), for ∀ x ∈ Xk ⊆ X0.

Second, for ∀x ∈ Xk , we first let

Zj = Cj[nj(x) − nl
j] + ln nl

j − [Djdj(x) − 1 − ln Dj],
Zu

j = max
x∈Xk

{Cj[nj(x) − nl
j] + ln nl

j − [Djdj(x) − 1 − ln Dj]},

Zl
j = min

x∈Xk
{Cj[nj(x) − nl

j] + ln nl
j − [Djdj(x) − 1 − ln Dj]},

Bj = exp(Zu
j) − exp(Zl

j)

Zu
j − Zl

j

.

For each convex function exp(Zj), we can construct its linear lower bounding function
L(exp(Zj)) over the interval [Zl

j , Zu
j] as follows:

Lj(exp(Zj)) = Bj(1 + Zj − ln Bj), (5)

such that

Lj(exp(Zj)) ≤ exp(Zj). (6)

Based on the above discussion, for each j ∈ {1, . . . , p}, by Equations (5) and (6), then finally
we derive the linear lower bounding function Lj(x) of Fl

j (x), which underestimates the value of
the function Fl

j (x) as follows:

Lj(x) = Bj{1 + Cj[nj(x) − nl
j] + ln nl

j − [Djdj(x) − 1 − ln Dj] − ln Bj},

such that

Lj(x) ≤ Fl
j (x), for ∀ x ∈ Xk ⊆ X0.

According to the above linearization technique, for ∀Xk ⊆ X0, we can construct the LRP
problem of the (EQ) in Xk as follows:

(LRP) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min t

s.t. Lj(x) − t ≤ 0, j = 1, . . . , p,

Ax ≤ b,

x ∈ Xk .

Theorem 1 For ∀x ∈ Xk = [x, x̄] ⊆ X0, let uj = nu
j /nl

j , vj = du
j /dl

j , then the error �j = Fj(x) −
Lj(x) → 0 as ‖x̄ − x‖ → 0.

International Journal of Computer Mathematics 1735

Proof Let

�j = [Fj(x) − Fl
j (x)] + [Fl

j (x) − Lj(x)] = �j1 + �j2,

then, first, we consider the difference �j1. Let

Gj(x) = Cjnj(x) − 1 − ln Cj − Dj[dj(x) − dl
j] − ln dl

j ,

Hj(x) = Cj[nj(x) − nl
j] + ln nl

j − [Djdj(x) − 1 − ln Dj],
it follows

�j1 = Fj(x) − Fl
j (x)

≤ Fu
j (x) − Fl

j (x)

= exp{Cjnj(x) − 1 − ln Cj − Dj[dj(x) − dl
j] − ln dl

j }
− exp{Cj[nj(x) − nl

j] + ln nl
j − [Djdj(x) − 1 − ln Dj]}

= exp(Gj(x)) − exp(Hj(x))

≤ ‖Gj(x) − Hj(x)‖ sup
ξj∈L(Gj(x),Hj(x))

exp(ξj)

where

L(Gj(x), Hj(x)) = αGj(x) + (1 − α)Hj(x), for ∀α ∈ [0, 1].
Let

Gj(x) − Hj(x) = {Cjnj(x) − 1 − ln Cj − Dj[dj(x) − dl
j] − ln dl

j }
− {Cj[nj(x) − nl

j] + ln nl
j − [Djdj(x) − 1 − ln Dj]}

= {[Cjnj(x) − 1 − ln Cj] − [Cj[nj(x) − nl
j] + ln nl

j]}
+ {[Djdj(x) − 1 − ln Dj] − [Dj[dj(x) − dl

j] + ln dl
j]}

= {[Cjnj(x) − 1 − ln Cj] − ln(nj(x))}
+ {ln(nj(x)) − [Cj[nj(x) − nl

j] + ln nl
j]}

+ {[Djdj(x) − 1 − ln Dj] − ln(dj(x))}
+ {ln(dj(x)) − [Dj[dj(x) − dl

j] + ln dl
j]}

= �j1.1 + �j1.2 + �j1.3 + �j1.4.

Since �j1.1 is a convex function about nj(x), it follows that it can attain the maximum �max
j1.1 at

the point nu
j or nl

j . Then through computing, we derive

�max
j1.1 = ln uj

uj − 1
− 1 − ln

ln uj

uj − 1
.

Since �j1.2 is a concave function about nj(x), we can know �j1.2 can attain the maximum �max
j1.2

at the point nj(x) = 1/Cj. Then through computing, we derive

�max
j1.2 = ln uj

uj − 1
− 1 − ln

ln uj

uj − 1
.

Since uj → 1 as ‖x̄ − x‖ → 0, then we have �max
j1.1 → 0 and �max

j1.2 → 0 as ‖x̄ − x‖ → 0.

1736 H. Jiao and S. Liu

Similarly, we can prove that, since vj → 1 as ‖x̄ − x‖ → 0, then we have

�max
j1.3 = �max

j1.4 = ln vj

vj − 1
− 1 − ln

ln vj

vj − 1
→ 0 as ‖x̄ − x‖ → 0.

Therefore, we have

‖Gj(x) − Hj(x)‖ = ‖�j1.1 + �j1.2 + �j1.3 + �j1.4‖ ≤ ‖�j1.1‖ + ‖�j1.2‖ + ‖�j1.3‖ + ‖�j1.4‖.

By the above proof, we have

‖Gj(x) − Hj(x)‖ → 0, as ‖x̄ − x‖ → 0.

Since exp(ξj) is a continuous and bounded function about variable x, we have

�j1 → 0, as ‖x̄ − x‖ → 0.

Second, we consider the difference �j2, it follows that

�j2 = Fl
j (x) − Lj(x)

= exp{Cj[nj(x) − nl
j] + ln(nl

j) − [Djdj(x) − 1 − ln Dj]} − Bj{1 + Cj[nj(x) − nl
j]

+ ln(nl
j) − [Dj(dj(x)) − 1 − ln Dj] − ln Bj}

= exp(Zj) − Bj{1 + Zj − ln Bj}

Since �j2 is a convex function about Zj, for any Zj ∈ [Zl
j , Zu

j] defined in the former. Then, it follows
that �j2 can obtain the maximum �max

j2 at the points Zl
j or Zu

j . Let

Tj = exp(Zu
j − Zl

j) − 1

Zu
j − Zl

j

,

then through computing, we can derive the following form:

�max
j2 = �j2(Z

l
j) = �j2(Z

u
j) = exp(Zl

j)(1 − Tj + Tj ln Tj).

Since Tj → 1 as |Zu
j − Zl

j | → 0, and |Zu
j − Zl

j | → 0 as ‖x̄ − x‖ → 0. So it is obvious that �max
j2 → 0

as ‖x̄ − x‖ → 0. Therefore, we have �j2 → 0 as ‖x̄ − x‖ → 0.
By the above discussion, it is obvious that the conclusion is followed. �

The above theorem ensures each Lj(x) will approximate the corresponding function Fj(x) as
‖x̄ − x‖ → 0.

Based on the above construction method of the LRP, for ∀Xk ⊆ X0, the problem LRP(Xk)

provides a valid lower bound for the optimal value of the problem EQ(Xk).

4. Algorithm and its convergence

In this section, we present a branch-and-bound algorithm for globally solving the (EQ). The
critical element in guaranteeing convergence to a global minimum is the choice of a suitable
partitioning strategy. In this paper, we choose a standard bisection rule. This branching rule is given

International Journal of Computer Mathematics 1737

as follows. Consider any node sub-problem identified by the hyper-rectangle X = [x, x̄] ⊆ X0 ,
let q ∈ arg max{x̄i − xi : i = 1, . . . , n} and partition X by subdividing the interval [xq, x̄q] into the
subintervals [xq, (xq + x̄q)/2] and [(xq + x̄q)/2, x̄q].

Let LB(Xk) be the optimal value of the (LRP) on the sub-hyper-rectangles Xk and xk = x(Xk)

be an element of corresponding argmin. In order to validate the robustness and efficiency of our
method, here we use the same algorithm step as Refs. [16,17] with new LRP problem, the basic
steps of the algorithm are summarized as follows.

Step 1. (Initialization)

Initialize the convergence tolerance ε; the feasible error ε1; the iteration counter k := 0; the set
of active node 	0 = X0; the upper bound UB = +∞; the set of feasible points F := ∅.

Solve the LRP(X0), obtain LB0 := LB(X0) and (x0, t0). With feasible error ε1, if (x0, t0) is
feasible to the (EQ), update F and UB, if necessary. If UB − LB0 ≤ ε, then stop with x0 as the
prescribed solution to the (EQ); otherwise, proceed to Step 2.

Step 2. (Bounding)

Let

UB = min
(x,t)∈F

t.

If F �= ∅, then the known best feasible solution is

x̃ = arg min
(x,t)∈F

max {F1(x), F2(x), . . . , Fp(x)}.

Step 3. (Branching)

Partition Xk into two new sub-hyper-rectangles according to the above branching rule. Call the
set of new partitioned rectangles as X̄k .

Step 4. (Bounding)

For each X ∈ X̄k , compute the lower bound LB(X) and (x(X), t(X)) by solving the LRP(X). If
LB(X) > UB, then let X̄k := X̄k\X, else if (x(X), t(X)) is feasible to the (EQ) with feasible error
ε1, then update UB, F and x̃, if necessary, and let

	k = (k\X) ∪ X̄k ,

update lower bound

LBk = inf
X∈	k

LB(X).

Step 5. (Termination)

Let

	k+1 = 	k\{X : UB − LB(X) ≤ ε, X ∈ 	k}.
If 	k+1 = ∅, then algorithm stops, UB is the global optimal value for the (EQ), and x̃ is a
global optimization solution for the (EQ). Otherwise, let k := k + 1, select Xk such that Xk =
arg minX∈	k LB(X), return to Step 3.

Theorem 2 The above algorithm either terminates finitely with the solution being optimal to the
(MLFP), or generates an infinite sequence of iterations such that along any infinite branch of the
branch-and-bound tree, and accumulation point of the sequence {xk} will be the global optimal
solution of the (MLFP).

Proof The proof of the theorem can be similarly given by the Theorem 3 in Ref. [16]. �

1738 H. Jiao and S. Liu

5. Computational results

In order to compare our algorithm (using new LRP problem) with known algorithms (recent
literatures Refs. [16,17,34]) with respect to robustness (finding the optimum), and efficien-
cies (number of function evaluations), some numerical examples appeared in recent literatures
(Refs. [16,34]) and an example randomly generated are implemented on a Intel(R) Core(TM)2
Duo CPU (1.58G HZ) microcomputer. The algorithm is coded in C++ program and each lin-
ear programming is solved by using the simplex method, and the convergence tolerance is
set to ε = 5 × 10−8 in our experiment. For the test problems, the results obtained using the
above algorithm are illustrated in Tables 1–4. For Examples 1–9, feasible error ε1 are set by
0.005, 0.001, 0.001, 0.005, 0.001, 0.001, 0.001, 0.001, 0.001, respectively.

In Tables 1–4, the notations have been used for column headers: Iter, number of algorithm
iterations; Lmax, the maximal number of algorithm active nodes necessary; Time, execution time
of algorithm in seconds.

Example 1 (Refs. [16,34])

min max

{
3x1 + x2 − 2x3 + 0.8

2x1 − x2 + x3
,

4x1 − 2x2 + x3

7x1 + 3x2 − x3

}

s.t. x1 + x2 − x3 ≤ 1,

− x1 + x2 − x3 ≤ −1,

12x1 + 5x2 + 12x3 ≤ 34.8,

12x1 + 12x2 + 7x3 ≤ 29.1,

− 6x1 + x2 + x3 ≤ −4.1,

1.0 ≤ x1 ≤ 1.1, 0.55 ≤ x2 ≤ 0.65, 1.35 ≤ x3 ≤ 1.45.

Example 2 (Refs. [16,34])

max min

{
37x1 + 73x2 + 13

13x1 + 13x2 + 13
,

63x1 − 18x2 + 39

13x1 + 26x2 + 13

}

s.t. 5x1 − 3x2 = 3, 1.5 ≤ x1 ≤ 3.

Table 1. Numerical comparison with Refs. [16,34] for Examples 1–4.

Example Ref. Optimal solution Optimal value Iter Lmax Time (s)

1 [34] (1.015695, 0.590494, 1.403675) 0.573102 1 – 0.06
[16] (1.015678086, 0.590676676, 1.403391837) 0.572810738 6 5 0.017700826
This paper (1.015569677, 0.591847484, 1.401570580) 0.571392040 1 2 0.00692539

2 [34] (1.5, 1.5) 1.489510 1 – 0.00
[16] (1.5, 1.5) 1.49072061 6 7 0.00680581
This paper (1.5, 1.5) 1.49661806 3 4 0.00487959

3 [16] (1.016666667, 0.55, 1.45) 1.346854863 8 8 0.0228725
This paper (1.016666667, 0.55, 1.45) 1.344502171 4 4 0.0144057

4 [16] (1.008333333, 0.5, 1.45) 2.284427051 7 8 0.0288736
This paper (1.008333333, 0.5, 1.45) 2.280126353 3 4 0.0197122

International Journal of Computer Mathematics 1739

Table 2. Numerical comparison with Ref. [16] for Example 5.

Algorithm of [16] This paper
Example 5

(p, M, N) Iter Lmax Time (s) Iter Lmax Time (s)

(5, 4, 3) 81 57 0.235426 71 50 0.275371234
(6, 5, 5) 176 162 0.981466 70 59 0.693835
(7, 5, 6) 174 159 1.313451 103 94 1.615823
(7, 5, 7) 61 50 0.596088 44 27 1.078511772
(9, 6, 7) 822 782 10.026984 584 571 16.093457809
(9, 7, 10) 3581 3400 79.042373 2329 2172 49.680818639
(20, 7, 10) 141 74 5.909754 11 12 1.847142886
(45, 7, 10) 146 26 17.423466 18 12 6.381171066
(50, 7, 10) 45 46 7.727302 32 33 12.693666502

Table 3. Numerical comparison with Ref. [17] for Example 5.

Algorithm of [17] This paper
Example 5

(p, M, N) Iter Lmax Time (s) Iter Lmax Time (s)

(2, 1, 5) 1809 1693 2.83591 46 43 0.232999
(2, 3, 5) 1811 1695 3.63135 42 39 0.230242
(3, 3, 5) 15,978 14,521 64.1806 62 61 0.357087
(4, 3, 3) 330 310 0.53731 17 18 0.037901
(10, 2, 3) 112 107 0.379368 26 27 0.144406
(11, 3, 3) 9213 8505 42.2537 17 18 0.154271
(12, 3, 5) 12,804 12,096 143.786 39 38 0.722472
(18, 3, 5) 1655 1502 17.5244 107 108 2.798912
(25, 10, 4) 677 654 17.5517 19 20 0.612503

Table 4. Numerical comparison with Ref. [17] for Examples 6–9.

Example Ref. Optimal solution Optimal value Iter Lmax Time (s)

6 [17] (1.0, 0.55, 1.45) 1.160759760 113 106 0.235226
This paper (1.0, 0.55, 1.45) 1.160998779 6 7 0.0104895

7 [17] (1.339843750, 0.50, 1.943285553) 0.985599329 580 420 1.19123
This paper (1.345382850, 0.50, 1.946283817) 0.989117392 21 20 0.0557114

8 [17] (1.504882813, 0.350, 1.550) 1.117065399 747 638 1.68613
This paper (1.504885652, 0.350, 1.550) 1.117070767 20 20 0.0819911

9 [17] (1.753906250, 0.350, 1.550) 1.117416325 2901 2534 6.52166
This paper (1.752859889, 0.350, 1.550) 1.117793086 26 22 0.148766

Example 3 (Ref. [16])

min max

{
2x1 + 2x2 − x3 + 0.9

x1 − x2 + x3
,

3x1 − x2 + x3

8x1 + 4x2 − x3

}

s.t. x1 + x2 − x3 ≤ 1,

− x1 + x2 − x3 ≤ −1,

12x1 + 5x2 + 12x3 ≤ 34.8,

12x1 + 12x2 + 7x3 ≤ 29.1,

− 6x1 + x2 + x3 ≤ −4.1,

1740 H. Jiao and S. Liu

1.0 ≤ x1 ≤ 1.2,

0.55 ≤ x2 ≤ 0.65,

1.35 ≤ x3 ≤ 1.45.

Example 4 (Ref. [16])

min max

{
3x1 + x2 − 2x3 + 0.8

2x1 − x2 + x3
,

4x1 − 2x2 + x3

7x1 + 3x2 − x3
,

3x1 + 2x2 − x3 + 1.9

x1 − x2 + x3
,

4x1 − x2 + x3

8x1 + 4x2 − x3

}

s.t. x1 + x2 − x3 ≤ 1,

− x1 + x2 − x3 ≤ −1,

12x1 + 5x2 + 12x3 ≤ 34.8,

12x1 + 12x2 + 7x3 ≤ 29.1,

− 6x1 + x2 + x3 ≤ −4.1,

1.0 ≤ x1 ≤ 1.2,

0.55 ≤ x2 ≤ 0.65,

1.35 ≤ x3 ≤ 1.45.

Example 5

min max

{∑N
i=1 n1ixi + n̄1∑N
i=1 d1ixi + d̄1

,

∑N
i=1 n2ixi + n̄2∑N
i=1 d2ixi + d̄2

, . . . ,

∑N
i=1 npixi + n̄p∑N
i=1 dpixi + d̄p

}

s.t. Ax ≤ b,

0 ≤ xi ≤ 3, i = 1, . . . , N ,

where A is an M × N matrix, b is an M dimension vector, all elements of nji, dji, j = 1, . . . , p, i =
1, . . . , N , are randomly generated between 0 and 1; all elements of n̄j, d̄j, j = 1, . . . , p, are randomly
generated between 0 and p; all elements of A are randomly generated between 0 and 1; all elements
of b are randomly generated between 0 and 16.

In Tables 2–3, the notations have been also used for column headers: p is the number of linear
fractional function in the objective function; M represents the number of rows for A; N stands for
the dimension of considered problem.

Example 6

min max

{
2.1x1 + 2.2x2 − x3 + 0.8

1.1x1 − x2 + 1.2x3
,

3.1x1 − x2 + 1.3x3

8.2x1 + 4.1x2 − x3

}

s.t. x1 + x2 − x3 ≤ 1,

− x1 + x2 − x3 ≤ −1,

12x1 + 5x2 + 12x3 ≤ 40,

12x1 + 12x2 + 7x3 ≤ 50,

− 6x1 + x2 + x3 ≤ −2,

1.0 ≤ x1 ≤ 1.2, 0.55 ≤ x2 ≤ 0.65, 1.35 ≤ x3 ≤ 1.45.

International Journal of Computer Mathematics 1741

Example 7

min max

{
3x1 + 4x2 − x3 + 0.5

2x1 − x2 + x3 + 0.5
,

3x1 − x2 + 3x3 + 0.5

9x1 + 5x2 − x3 + 0.5
,

4x1 − x2 + 5x3 + 0.5

11x1 + 6x2 − x3
,

5x1 − x2 + 6x3 + 0.5

12x1 + 7x2 − x3 + 0.9

}

s.t. x1 + x2 − x3 ≤ 1,

− x1 + x2 − x3 ≤ −1,

12x1 + 5x2 + 12x3 ≤ 42,

12x1 + 12x2 + 7x3 ≤ 55,

− 6x1 + x2 + x3 ≤ −3,

1.0 ≤ x1 ≤ 2.0,

0.50 ≤ x2 ≤ 2.0,

0.50 ≤ x3 ≤ 2.0.

Example 8

min max

{
3x1 + 4x2 − x3 + 0.9

2x1 − x2 + x3 + 0.5
,

3x1 − x2 + 3x3 + 0.5

9x1 + 5x2 − x3 + 0.5
,

4x1 − x2 + 5x3 + 0.5

11x1 + 6x2 − x3 + 0.9
,

5x1 − x2 + 6x3 + 0.5

12x1 + 7x2 − x3 + 0.9
,

6x1 − x2 + 7x3 + 0.6

11x1 + 6x2 − x3 + 0.9

}

s.t. 2x1 + x2 − x3 ≤ 2,

− 2x1 + x2 − 2x3 ≤ −1,

11x1 + 6x2 + 12x3 ≤ 45,

11x1 + 13x2 + 6x3 ≤ 52,

− 7x1 + x2 + x3 ≤ −2,

1.0 ≤ x1 ≤ 2.0,

0.35 ≤ x2 ≤ 0.9,

1.0 ≤ x3 ≤ 1.55.

Example 9

min max

{
5x1 + 4x2 − x3 + 0.9

3x1 − x2 + 2x3 + 0.5
,

3x1 − x2 + 4x3 + 0.5

9x1 + 3x2 − x3 + 0.5
,

4x1 − x2 + 6x3 + 0.5

12x1 + 7x2 − x3 + 0.9
,

7x1 − x2 + 7x3 + 0.5

11x1 + 9x2 − x3 + 0.9
,

7x1 − x2 + 7x3 + 0.7

11x1 + 7x2 − x3 + 0.8

}

s.t. 2x1 + 2x2 − x3 ≤ 3,

− 2x1 + x2 − 3x3 ≤ −1,

11x1 + 7x2 + 12x3 ≤ 47,

1742 H. Jiao and S. Liu

13x1 + 13x2 + 6x3 ≤ 56,

− 6x1 + 2x2 + 3x3 ≤ −1,

1.0 ≤ x1 ≤ 2.0,

0.35 ≤ x2 ≤ 0.9,

1.0 ≤ x3 ≤ 1.55.

From the experimental results in Tables 1–4, it is seen that the proposed algorithm has higher
computational efficiency than Refs. [16,17], and can be used to globally solve the MLFP problems
with large scale of fractional objective functions.

6. Concluding remarks

To solve the problem (MLFP), a global optimization algorithm is presented, which combines
branch-and-bound scheme with the new linearization technique. The proposed algorithm is con-
vergent to the global minimum through the successive refinement of linear relaxation of the
feasible region and the subsequent solutions of a series of LRP problems. The main work of the
algorithm involves solving ordinary linear programming problems that do not grow in size from
iteration to iteration, and these problems can be efficiently solved by using the simplex method.
Numerical results for several examples are given to illustrate the feasibility and effectiveness of
the presented algorithm. It is hoped that the ideas and methods used to create the algorithm will
offer useful tools for solving MLFP problem.

Acknowledgements

This paper is supported by the National Natural Science Foundation of China under Grant (61373174) and the Key
Technology Projects of Henan Province (122102110038).

References

[1] I. Ahmad and Z. Husain, Duality in nondifferentiable minimax fractional programming with generalized convexity,
Appl. Math. Comput. 176 (2006), pp. 545–551.

[2] C. Bajona-Xandri and J.E. Martinez-Legaz, Lower subdifferentiability in minimax fractional programming,
Optimization 45 (1999), pp. 1–12.

[3] P. Balasubramaniam and S. Lakshmanan, Delay-interval-dependent robust-stability criteria for neutral stochas-
tic neural networks with polytopic and linear fractional uncertainties, Int. J. Comput. Math. 88(10) (2011),
pp. 2001–2015.

[4] I. Barrodale, Best rational approximation and strict quasiconvexity, SIAM J. Numer. Anal. 10 (1973), pp. 8–12.
[5] A.I. Barros and J.B.G. Frenk, Generalized fractional programming and cutting plane algorithms, J. Optim. Theory

Appl. 87 (1995), pp. 103–120.
[6] Y. Benadada and J.A. Fedand, Partial linearization for generalized fractional programming, Z. Oper. Res. 32 (1988),

pp. 101–106.
[7] J. Borde and J.P. Crouzeix, Convergence of a dinkelbach-type algorithm in generalized fractional programming,

Z. Oper. Res. 31(1) (1987), pp. A31–A54.
[8] H.J. Chen, S. Schaible, and R.L. Sheu, Generic algorithm for generalized fractional programming, J. Optim. Theory

Appl. 141 (2009), pp. 93–105.
[9] J.P. Crouzeix, J.A. Ferland, and S. Schaible, An algorithm for generalized fractional programs, J. Optim. Theory

Appl. 47 (1985), pp. 135–149.
[10] F. Ding, Coupled-least-squares identification for multivariable systems, IET Control Theory Appl. 7(1) (2013),

pp. 68–79.
[11] F. Ding, Decomposition based fast least squares algorithm for output error systems, Signal Process. 93 (2013),

pp. 1235–1242.
[12] F. Ding, Hierarchical multi-innovation stochastic gradient algorithm for hammerstein nonlinear system modeling,

Appl. Math. Model. 37 (2013), pp. 1694–1704.

International Journal of Computer Mathematics 1743

[13] F. Ding, Two-stage least squares based iterative estimation algorithm for CARARMA system modeling, Appl. Math.
Model. 37 (2013), pp. 4798–4808.

[14] F. Ding and Y. Gu, Performance analysis of the auxiliary model-based least-squares identification algorithm for
one-step state-delay systems, Int. J. Comput. Math. 89(15) (2012), pp. 2019–2028.

[15] F. Ding, X. Liu, and J. Chu, Gradient-based and least-squares-based iterative algorithms for Hammerstein systems
using the hierarchical identification principle, IET Control Theory Appl. 7(2) (2013), pp. 176–184.

[16] Q. Feng, H. Jiao, H. Mao, and Y. Chen, A deterministic algorithm for min-max and max-min linear fractional
programming problems, Int. J. Comput. Intell. Syst. 4 (2011), pp. 134–141.

[17] Q. Feng, H. Mao, and H. Jiao, A feasible method for a class of mathematical problems in manufacturing system,
Key Eng. Mater. 460–461 (2011), pp. 806–809.

[18] R.W. Freund and F. Jarre, An interior-point method for fractional programs with convex constraints, Math. Program.
67 (1994), pp. 407–440.

[19] Y. Gao and W.-D. Rong, Optimality conditions and duality for a class of nondifferentiable multiobjective generalized
fractional programming problems, Appl. Math. Ser. B 23(3) (2008), pp. 331–344.

[20] M.H. Goedhart and J. Spronk, Financial planning with fractional goals, Eur. J. Oper. Res. 82 (1995), pp. 111–124.
[21] M. Gugat, Prox-regularization methods for generalized fractional programming, J. Optim. Theory Appl. 99(3)

(1998), pp. 691–722.
[22] S.K. Gupta and D. Dangar, On second-order duality for nondifferentiable minimax fractional programming,

J. Comput. Appl. Math. 255(1) (2014), pp. 878–886.
[23] Q. Hu, Y. Chen, and J. Jian, Second-order duality for non-differentiable minimax fractional programming, Int.

J. Comput. Math. 89(1) (2012), pp. 11–16.
[24] Z. Husain, I. Ahmad, and Sarita Sharma, Second order duality for minmax fractional programming, Optim. Lett. 3

(2009), pp. 277–286.
[25] V. Jeyakumar, G.Y. Li, and S. Srisatkunarajah, Strong duality for robust minimax fractional programming problems,

Eur. J. Oper. Res. 228 (2013), pp. 331–336.
[26] H. Jiao, A branch and bound algorithm for globally solving a class of nonconvex programming problems, Nonlinear

Anal. Theory 70 (2009), pp. 1113–1123.
[27] H.-C. Lai and T.-Y. Huang, Optimality conditions for nondifferentiable minimax fractional programming with

complex variables, J. Math. Anal. Appl. 359 (2009), pp. 229–239.
[28] H.C. Lai and T.Y. Huang, Nondifferentiable minimax fractional programming in complex spaces with parametric

duality, J. Global Optim. 53 (2012), pp. 243–254.
[29] H.C. Lai, J.C. Liu, and S. Schaible, Complex minimax fractional programming of analytic functions, J. Optim.

Theory Appl. 137 (2008), pp. 171–184.
[30] X. Li, R. Ding, and L. Zhou, Least-squares-based iterative identification algorithm for Hammerstein nonlinear

systems with non-uniform sampling, Int. J. Comput. Math. 90(7) (2013), pp. 1524–1534.
[31] J.Y. Lin and R.L. Sheu, Modified dinkelbach-type algorithm for generalized fractional programs with infinitely many

ratios, J. Optim. Theory Appl. 126(2) (2005), pp. 323–343.
[32] Y.J. Liu and R. Ding, Consistency of the extended gradient identification algorithm for multi-input multi-output

systems with moving average noises, Int. J. Comput. Math. 90(9) (2013), pp. 1840–1852.
[33] H. Liu, X. Li, and Y. Huang, Trust-region method for box-constrained semismooth equations and its applications to

complementary problems, Int. J. Comput. Math. 89(17) (2012), pp. 2281–2306.
[34] N.T.H. Phuong and H. Tuy, A unified monotonic approach to generalized linear fractional programming, J. Global

Optim. 26 (2003), pp. 229–259.
[35] A. Roubi, Method of centers for generalized fractional programming, J. Optim. Theory Appl. 107(1) (2000),

pp. 123–143.
[36] M. Soleimani-Damaneh, On fractional programming problems with absolute-value functions, Int. J. Comput. Math.

88(4) (2011), pp. 661–664.
[37] I.M. Stancu-Minasian, Fractional Programming: Theory, Methods and Applications, Kluwer, Dordrecht, 1997.
[38] J.-J. Strodiot, J.-P. Crouzeix, J.A. Ferland, andV.H. Nguyen, An inexact proximal point method for solving generalized

fractional programs, J. Global Optim. 42 (2008), pp. 121–138.
[39] W. Wang, J.H. Li, and R.F. Ding, Maximum likelihood parameter estimation algorithm for controlled autoregressive

models, Int. J. Comput. Math. 88(16) (2011), pp. 3458–3467.
[40] C.-F. Wen, Continuous-time generalized fractional programming problems. Part I: Basic theory, J. Optim. Theory

Appl. 157 (2013), pp. 365–399.
[41] C.-F. Wen, Continuous-time generalized fractional programming problems, Part II: An interval-type computational

procedure, J. Optim. Theory Appl. 156 (2013), pp. 819–843.
[42] C.-F. Wen and H.-C. Wu, Using the parametric approach to solve the continuous-time linear fractional max-min

problems, J. Global Optim. 54 (2012), pp. 129–153.
[43] X.J. Zheng and L. Cheng, Minimax fractional programming under nonsmooth generalized (F, ρ, θ)-d-univexity,

J. Math. Anal. Appl. 328 (2007), pp. 676–689.
[44] J. Zhu, H. Liu, and B. Hao, A new semismooth newton method for NCPs based on the penalized KK function, Int.

J. Comput. Math. 89(4) (2012), pp. 543–560.

Copyright of International Journal of Computer Mathematics is the property of Taylor &
Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

	1 Introduction
	2 Preliminaries
	3 New linearization technique
	4 Algorithm and its convergence
	5 Computational results
	6 Concluding remarks
	Acknowledgements
	References

