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Abstract In this study, a new filter algorithm is presented for solving the nonlinear semidefinite

programming. This algorithm is inspired by the classical sequential quadratic programming method.

Unlike the traditional filter methods, the sufficient descent is ensured by changing the step size instead

of the trust region radius. Under some suitable conditions, the global convergence is obtained. In the

end, some numerical experiments are given to show that the algorithm is effective.
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1 Introduction

1.1 Motivation

It is considered the following nonlinear semidefinite programming (SDP) problem:

min f(x)

s.t. gi(x) = 0, i ∈ I = {1, 2, . . . , l},
A(x) � 0,

(1.1)

where x ∈ R
n, the functions f : R

n → R, g : R
n → R

l, A : R
n → Sm are sufficiently smooth,

and Sm denotes the set of the m-th order real symmetric matrices. A(x) � 0 (or A(x) ≺ 0)
means that A(x) is negative semidefinite (or negative definite).

Nonlinear SDP (1.1) is an extension of the standard linear SDP which has been attracting
a lot of research in recent decade [7, 21, 23, 24, 26]. Recently, several papers have studied on
theoretical properties and numerical methods for solving (1.1). For example, sequence SDP
methods [20], original dual interior point methods [27], augmented Lagrangian method [22],
successive linearization methods [1], interior point methods [12], and so on. The above methods
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all use penalty function to get the global convergence. However, the choice of penalty parameter
for the penalty function often leads to some numerical difficulties and bad conditions.

Given an initial point x0, a sequence {xk} is generated and close to x∗ which satisfies some
optimal conditions for (1.1). For the k-th iteration, the search direction dk is obtained by
solving the following quadratic semidefinite subproblem (QSD):

min qk(d) = Df(xk)T d + 1
2dT Mkd

s.t. gi(xk) + Dgi(xk)T d = 0, i ∈ I,

Ak(d) � 0,

(1.2)

where Mk � 0, Ak(d) = A(xk) +
∑n

i=1 di
∂A(xk)

∂xi
. The general iteration formula at xk is

xk+1 = xk + tkdk, where tk is the step size. Let the minimum value tmin
k be defined as follows:

tmin
k

�
=

1
2

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min
{

1 − β,
γh(xk)

−Df(xk)T dk
,

δh(xk)2

−Df(xk)T dk
,

h(xk)
(l + 1)dT

k Mkdk

}

,

min
{

1 − β,
h(xk)

(l + 1)dT
k Mkdk

}

,

if Df(xk)T dk < 0,

otherwise,

(1.3)

where 0 < δ, γ, β < 1, while h(xk) is the value of the constraint violation h(x) (please see the
definition (2.1)) at xk.

An efficient algorithm [20] was proposed to solve the problem (1.1) by using a series of
QSD (1.2). However, when QSD (1.2) was solved, there was a problem that (1.2) was not
consistent or its solution was unbounded. The filter method [3] was firstly proposed to solve
the nonlinear programming. It is well known that this method can avoid the choice of penalty
function, so it follows that the filter method has been widely studied (see [4]). The sequence
semidefinite programming method [5] was applied for the general nonlinear SDP. The sequence
semidefinite programming (SSP) method [15, 16] based on the filter technique was proposed to
avoid penalty function for solving (1.1), where the search direction was controlled by changing
the trust region radius in each trial step.

In this study, we present a new filter algorithm to solve the problem (1.1). Here, the
filter technique is applied to QSD (1.2). Unlike existing filter methods, we ensure the sufficient
descent by changing the step size instead of the trust region radius (see [25]), and it doesn’t need
any penalty function. Finally, the global convergence is got under some suitable assumptions.

1.2 Notations

Some notations are introduced as follows. We use Df(x) and Dg(x) to express the derivative
of functions f(x) and g(x) at points x, respectively. For the matrices A, B ∈ R

m×m, their trace
product is defined as 〈A, B〉 = A • B = tr(ABT ), where tr(C) :=

∑m
i=1 cii denotes the trace

of the matrix C ∈ R
m×m. It is easy to see that the operator • defines a scalar product on

the set of matrices R
m×m. In our analysis, ‖ · ‖ denotes the Frobenius norm for a matrix and

the 2-norm for a vector. Furthermore, for any given matrix A ∈ Sm, λj(A) denotes the j-th
eigenvalue with λ1(A) ≥ λ2(A) ≥ · · · ≥ λm(A), and A+ denotes the matrix defined by

A+ := Pdiag((λ1)+, . . . , (λm)+)PT ,
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where (λj)+ = max{0, λj}, while P satisfies the spectrum decomposition A = Pdiag(λ1, . . . ,

λm)PT .
For a given matrix-value function A(·), its differential operator is evaluated at x with the

following notation:

DA(x) :=
(

∂A(x)
∂xi

)n

i=1

=
(

∂A(x)
∂x1

, . . . ,
∂A(x)
∂xn

)T

.

The above notation generates the following operator:

DA(x)y =
n∑

i=1

yi
∂A(x)
∂xi

, ∀y ∈ R
n.

We define the adjoint operator as follows:

DA(x)∗Z =
(〈

∂A(x)
∂x1

, Z

〉

, . . . ,

〈
∂A(x)
∂xn

, Z

〉)T

, ∀Z ∈ Sm.

2 Filter

In this section, we define the constraint violation as

h(x) = λ1(A(x))+ + ‖g(x)‖. (2.1)

Definition 2.1 A point x1 is called to dominate another point x2 in the filter F iff

f(x1) ≤ f(x2) and h(x1) ≤ h(x2), ∀x2 ∈ F. (2.2)

When a new point xk is added into the filter F , other points in the filter F , which are
dominated by xk, must be removed from F , see [3].

In practical application, a point xk is determined whether to be accepted by filter via the
following criterion.

Definition 2.2 A point xk is called to be accepted by the filter if

h(xk) < βh(xj) or f(xk) < f(xj) − γh(xk), ∀xj ∈ F, (2.3)

where γ, β are constant such that 0 < γ < β < 1, and γ → 0, β → 1.

Definition 2.3 If the iteration point xk is acceptable to the filter, and it holds that

f(xk) − f(xk + tkdk) ≥ η(qk(0) − qk(tkdk)) and Δqk = qk(0) − qk(tkdk) > δh2(xk), (2.4)

where 0 < δ, η < 1, then the corresponding iteration is said to be an f-type iteration. If the
right inequality of (2.4) does not hold, then the iteration is said to be an h-type iteration. When
the h-iteration iteration exists, the current iteration point xk will be included into the filter.

3 QSD Filter Algorithm

We now state the QSD filter algorithm for solving (1.1) as follows. For convenience, we give
the following notations:

τk = min
xt∈Fk

{h(xt)}, P j
k = h(xj+1

k ) − h(xj
k),

where Fk is the filter at the k-th iteration.

Algorithm 3.1
(S.0) Choose x0 ∈ R

n, M0 � 0, 0 < δ, η < 1, 0 < γ < β < 1, 0 < η1 < β, F0 := {x0}, k := 0.
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(S.1) Set tk = 1.
(S.2) Calculate the search direction dk by solving QSD (1.2). If dk = 0, the KKT point xk

is obtained and stop.
(S.3) If QSD (1.2) is incompatible, we get xr

k by using Algorithm 3.2, and set xk := xr
k. Go

back to (S.1).
(S.4) If tk < tmin

k , go to Algorithm 3.2. Set xk := xr
k and go back to (S.1).

(S.5) Filtering criterion: if xk + tkdk is accepted by the filter, go to (S.6), otherwise set
tk := 1

2 tk, go to (S.4).
(S.6) Compute rk = f(xk)−f(xk+tkdk)

qk(0)−qk(tkdk) . If rk < η and Δqk = qk(0) − qk(tkdk) > δh2(xk), set
tk := 1

2 tk, and go back to (S.4).
(S.7) If Δqk = qk(0) − qk(tkdk) ≤ δh2(xk), add the point xk into the filter, update Fk+1

and τk+1, otherwise, set Fk+1 = Fk, τk+1 = τk.
(S.8) Update Mk+1, and let xk+1 = xk + tkdk, k := k + 1. Go back to (S.1).

By using the following Recovery algorithm, we can reduce the constraint violation h(xk).

Algorithm 3.2 (Recovery algorithm)
(R.0) Let x0

k = xk, t0k = 1, 0 < η1 < β, and set j := 0.
(R.1) Solve the following subproblem

min qj
k(tjkdj

k) = ‖g(xj
k) + Dg(xj

k)T tjkdj
k‖ + λ1(A(x) + DA(x)tjkdj

k)+ − h(xj
k)

s.t. 1 ≤ ‖dj
k‖ ≤ 2

(3.1)

to get dj
k.

(R.2) Calculate

rj
k =

P j
k

qj
k(tkdj

k)
. (3.2)

(R.3) If rj
k ≤ η, set xj+1

k = xj
k, tj+1

k = 1
2 tjk, j := j + 1, go back to (R.2). Otherwise, set

xj+1
k = xj

k + tjkdj
k, tj+1

k = 2tjk, j := j + 1, and go to (R.4).
(R.4) If h(xj

k) ≤ min{η1τ
k, ‖tjkdj

k‖}, set xr
k = xj

k, and go back to (S.1), otherwise, go back
to (R.1).

4 Convergence Analysis

In this section, we establish the global convergence of the QSD filter algorithm for nonlinear
SDP (1.1). First, we make the following general assumptions.

Assumption 4.1
(A.1) Objective function f(x) and constraint functions g(x),A(x) are twice continuous

differentiable on an open set containing X.
(A.2) The sequence {xk} ∈ X is bounded.
(A.3) ∀xk ∈ Fk, {Dgi(xk), i ∈ I} is linearly independent.
(A.4) For solving (3.1), we have

qj
k(tjkdj

k) = ‖g(xj
k) + Dg(xj

k)T tjkdj
k‖ + λ1(A(xj

k) + DA(xj
k)tjkdj

k)+ − h(xj
k)

≤ −η2 min{h(xj
k), tjkdj

k}.
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(A.5) ∀x∗, if λ∗, Z∗ satisfy that

DA(x∗)∗Z∗ +
p∑

j=1

λ∗jDhj(x∗) = 0, Tr(Z∗A(x∗)) = 0, Z∗  0,A(x∗) � 0, h(x∗) = 0,

it holds that Z∗ = 0.
(A.6) There exists a constant M > 0 such that the sequence of Hessian matrices {Mk}

satisfies ‖Mk‖ ≤ M for all k.

According to Assumption 4.1, we know that the Hessian matrices of f and the constraint
functions gi and A(x) are bounded on X. Without loss of generality, we assume that there is
a constant M such that ‖D2f(xk)‖ ≤ M , ‖D2gi(xk)‖ ≤ M , ‖D2A(xk)‖ ≤ M for all xk ∈ X.

x∗ ∈ R
n is called to be a stationary point of the original problem (1.1), if x∗ is a feasible

point of (1.1), and the corresponding Lagrange multiplier (λ∗, Z∗) ∈ R
l ×Sm satisfies the KKT

condition as follows,

Df(x∗) + DA(x∗)∗Z∗ + Dg(x∗)T λ∗ = 0,

〈Z∗, A(x∗)〉 = 0,

Z∗  0.

In addition to the KKT condition, it is also needed the FJ necessary condition defined by
below. If x∗ is a feasible point of (1.1) and the direction set

{d ∈ R
n|Df(x∗)T d < 0, Dg(x∗)T d = 0, ET

∗ (DA(x∗)d)E∗ ≺ 0} = ∅, (4.1)

where the columns of E∗ are the standard orthogonal eigenvectors corresponding to those zero
eigenvalues, we call the point x∗ ∈ Sn as an FJ point.

Suppose Assumption 4.1 (A.5) holds, it is easy to see that every FJ point satisfies the KKT
condition [15].

The following results are based on Assumption 4.1. First, we investigate the optimal prop-
erties of Algorithm 3.1.

Lemma 4.1 τk = minxt∈Fk
{h(xt)} > 0.

Proof If the conclusion is not true, then h(xk∗) = 0 for some xk∗ ∈ Fk∗ . Since d = 0 is a
feasible point for the QSD (1.2) and h(xk∗) = 0, we have

qk∗(0) − qk∗(dk∗) = −Df(xk∗)T dk∗ − 1
2
dT

k∗Mk∗dk∗ > 0.

Combining with tk∗ ∈ (0, 1] and Mk∗ � 0, we have

qk∗(0) − qk∗(tk∗dk∗) = −tk∗

(

Df(xk∗)T dk∗ +
1
2
tk∗dT

k∗Mk∗dk∗

)

= −tk∗

(

Df(xk∗)T dk∗ +
1
2
dT

k∗Mk∗dk∗

)

+
1
2
(tk∗ − t2k∗)dT

k∗Mk∗dk∗

> 0 = δh(xk∗)2,

which contradicts the definition of h-type iteration, so the point xk∗ will not be added into the
filter. The proof is finished. �

Similarly, we can obtain the following result [17].

Lemma 4.2 Suppose there are an infinite number of points to be added to the filter. Then
limk→∞ h(xk) = 0.
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Proof If the result is not true, there would have infinite components in K1 which is defined
as follows,

K1 = {k |h(xk) > ε}.
Since Assumption 4.1 holds, without loss of generality, we assume that |f(xk)| ≤ M for all k,
where M is a positive constant. Then we analyze with two cases.

(1) If mini∈K1{f(x1)} exists. Let f(xkc) = mini∈K1{f(x1)} and h(xkc) be the corresponding
value related to (2.1). Then, according to the definition of the filter, the other components,
which lie behind xk in the filter, satisfy h(xk) ≤ h(xkc) and f(xk) ≥ f(xkc). Then, all the filter
points, which enter the filter behind xkc, can be covered with a square, whose area is no more
than 2Mh(xkc). We consider the area lies to the south-west of the filter in this square. When
a new point xkc enters the filter, the nest point xkc+1 should lie to south-west of the point in
the filter Fkc, and the area which lies to south-west of the Fkc+1 in the square is smaller than
that of Fkc. Therefore, we think that the area is reduced if a new point enter the filter. If a
new point enters K1 of the filter, the area of the square more than (1− β)γε2, will be reduced.
In fact, when a point is added to the filter, its h value is less than every point, which lies to the
left of this point, to more than (1 − β)ε, its f value is less than every point, which lies to the
below of the point, to more than γε. Therefore, the area of the square, more than (1 − β)γε2

will be reduced. Thus, the area will be reduced to zero after finite time. When the area is zero,
it means that a point can not enter K1, which contradicts the infiniteness of K1.

(2) If mini∈K1{f(x1)} does not exists. From the conditions in this lemma, let f(xkc) =
infi∈K1{f(x1)}. From the definition of inf, there exist f(xkc) ≥ f(xc) and f(xkc) ≤ f(xc)+ γε.
Then, according to the definition of the filter, the other components, which lie behind in the
filter, satisfy h(xk) ≤ h(xkc) and f(xk) ≥ f(xkc) − γε. Using the same techniques as that in
the case (1), the result is got.

Thus, the conclusion is obtained. �

Lemma 4.3 If there are just finite points to be added into the filter and infinite points to be
added into the sequence, then limk→∞ h(xk) = 0.

Proof If the result is not true. There would have an infinite components in K1, which is
defined as follows:

K1 = {k |h(xk) > 
}. (4.2)

Since f(xk) is bounded by Assumption 4.1, there exists some K2 such that

+ ∞ >
∑

k≥K2

f(xk) − f(xk+1), (4.3)

f(xk) − f(xk+1) = f(xk) − f(xk + tkdk) ≥ η(qk(0) − qk(tkdk)) ≥ ηδh2(xk), ∀k > K2, (4.4)

so f(xk) is monotonically decreasing. However,
∑

k≥K2

f(xk) − f(xk+1) >
∑

k∈K1,k≥K2

δ
2 = +∞,

which contradicts (4.3). So, the conclusion is true. �
For the restoration algorithm, similar to [18, 19], we can obtain the following result, which

shows that Algorithm 3.2 is well defined.

Lemma 4.4 The recovery algorithm terminates finitely.
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Proof If the result is not true, there exists a positive parameter 
 satisfies h(xj
k) > 
 for all

upper index j. Since qj
k(tjkdj

k) ≤ −η2 min{h(xj
k), tjkdj

k} ≤ 0, Recovery algorithm (R.3) yields
P j

k = h(xj+1
k ) − h(xj

k) ≤ 0 (when rj
k ≤ η, we have P j

k = h(xj+1
k ) − h(xj

k) = h(xj
k) − h(xj

k) = 0,
when rj

k > η, P j
k = h(xj+1

k ) − h(xj
k) = 1

rj
k

qj
k(tjkdj

k) ≤ 0). It is easy to see that the sequence

{h(xj
k)} is monotonously decreasing and

+∞ >

∞∑

j=1

h(xj−1
k ) − h(xj

k) ≥ −η

∞∑

j=1

qj
k(tjkdj

k) ≥ ηη2

∑

rj
k≥η

min{
, ‖tjkdj
k‖},

while ‖dj
k‖ ≥ 1, and limrj

k≥η tjkdj
k → 0. So limj→∞ tjk = 0.

Based on the Taylor expanding, it follows that

h(xj
k + tjkdj

k) = ‖g(xj
k + tjkdj

k)‖ + λ1(A(xj
k + tjkdj

k))+

= ‖g(xj
k) + Dg(xj

k)T tjkdj
k + o(tjkdj

k)‖ + λ1(A(xj
k) + DA(xj

k)tjkdj
k + o(tjkdj

k))+

= ‖g(xj
k) + Dg(xj

k)T tjkdj
k‖ + λ1(A(xj

k) + DA(xj
k)tjkdj

k)+ + o(tjkdj
k),

i.e.,

h(xj
k) − h(xj

k + tjkdj
k) = qj

k(tjkdj
k) − o(tjkdj

k) = qj
k(tjkdj

k) − o(tjk).

So qj
k(tjkdj

k) = P j
k + o(tjk) as tjk → 0. Since tj+1

k = 2tjk from Recovery Algorithm 3.2 (R.3),
we known that {tjk} is a strictly monotone increasing sequence when tjk is small enough. It
contradicts limj→∞ tjk = 0. Thus, the conclusion holds. �

Next, we would introduce the following result [3].

Lemma 4.5 Consider minimizing a quadratic function φ(α) : R → R with φ(0) < 0 on the
interval α ∈ [0, 1]. A necessary and sufficient condition for the minimizer to be at α = 1 is
φ′′ + φ′ ≤ 0. In this case, it follows that φ(0) − φ(1) ≥ −1

2φ′(0).

Lemma 4.6 Suppose Assumption 4.1 holds. If dk is a feasible solution of the QSD (1.2) at
xk, then it follows that

f(xk + tkdk) − f(xk) ≤ qk(tkdk) + M‖tkdk‖2, (4.5)

h(xk + tkdk) ≤ (1 − tk)h(xk) +
1
2
(l + 1)M‖tkdk‖2. (4.6)

Proof Under Assumption 4.1(A.6), based on the Taylor expanding, it is easy to see that

f(xk + tkdk) = f(xk) + Df(xk)T tkdk +
1
2
(tkdk)T D2f(y)(tkdk),

where y locates on the line segment between xk and xk + tkdk. So

f(xk + tkdk) − f(xk) = qk(tkdk) +
1
2
(tkdk)T (D2f(y) − Mk)(tkdk) ≤ qk(tkdk) + M‖tkdk‖2.

Moreover, from the Taylor expandings about g(xk + tkdk) and A(xk + tkdk) at the point xk,
we have

‖g(xk + tkdk)‖ ≤ ‖g(xk) + tkDg(xk)T dk‖ +
1
2
lM‖tkdk‖2,

λ1(A(xk + tkdk))+ ≤ λ1(Ak(tkdk))+ +
1
2
M‖tkdk‖2.

(4.7)

Since dk is a feasible solution of the QSD (1.2) at the point xk, it holds that

A(xk) +
n∑

i=1

dki
∂A(xk)

∂xi

� 0,
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gi(xk) + Dgi(xk)T dk = 0, i = 1, 2, . . . , l.

Thereby, we have

Ak(tkdk) = A(xk) + tk

n∑

i=1

dki
∂A(xk)

∂xi

� (1 − tk)A(xk),

gi(xk) + tkDgi(xk)T dk = (1 − tk)gi(xk), i = 1, 2, . . . , l.

Combining with (4.7), we can get

‖g(xk + tkdk)‖ ≤ (1 − tk)‖g(xk)‖ +
1
2
lM‖tkdk‖2,

λ1(A(xk + tkdk))+ ≤ (1 − tk)λ1(A(xk))+ +
1
2
M‖tkdk‖2,

that is,

h(xk + tkdk) ≤ (1 − tk)h(xk) +
1
2
(l + 1)M‖tkdk‖2.

The conclusion holds. �
To obtain two main results of this paper, we establish the following important result.

Lemma 4.7 Suppose Assumption 4.1 holds, and x∗ ∈ X is a feasible point of the original
problem (1.1) but not the KKT point. Then, there exist a neighborhood N at x∗ and some
positive constants ε, μ, κ, such that ∀xk ∈ N ∩X, the feasible set of the QSD (1.2) is not empty
and the feasible direction dk of QSD (1.2) satisfies

μh(xk) ≤ ‖dk‖ ≤ κ, (4.8)

and
qk(0) − qk(dk) ≥ 1

3
‖dk‖ε. (4.9)

If ‖tkdk‖ ≤ (1−η)ε
3M , we have

f(xk) − f(xk + tkdk)
qk(0) − qk(tkdk)

≥ η. (4.10)

Proof Suppose Assumption 4.1 holds, x∗ is not an FJ point, there exists a vector d∗ ∈ R
n

with ‖d∗‖ = 1 and satisfies (4.1). Set

Ak := (Dg(xk)(Dg(xk))T )−1Dg(xk), pk :=

⎧
⎨

⎩

−AT
k g(xk), if l ≥ 1,

0, otherwise,

and

sk :=

⎧
⎨

⎩

(I − Dg(xk)T Ak)d∗/‖(I − Dg(xk)T Ak)d∗‖, if l ≥ 1,

d∗, otherwise.

Based on (4.1) and the continuity of Df and DA, there exist a small neighborhood N and a
positive constant ε such that

sT
k Df(xk) < −ε and ET

k (DA(xk)sk)Ek ≺ −εI (4.11)

for all xk ∈ N , where the columns of Ek are the standard orthogonal eigenvectors corresponding
to these zero eigenvalues of A(xk).
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Let Pk = [Ek, Fk] be the orthogonal matrix, such that

PT
k A(xk)Pk =

⎛

⎝
ET

k A(xk)Ek

FT
k A(xk)Ek

ET
k A(xk)Fk

FT
k A(xk)Fk

⎞

⎠ =

⎛

⎝
ΛEk

0

0

ΛFk

⎞

⎠ ,

where ΛEk
and ΛFk

are diagonal matrices. Without loss of generality, we assume ΛFk
≺ 0 for

any xk ∈ N ∩ X.
For any vk with vk ≥ ‖pk‖, we define dα

k = pk + αvksk, α ∈ [0, 1]. When α = 1, since pk, sk

are orthogonal and ‖sk‖ = 1, we have

vk ≤ ‖d1
k‖ =

√‖pk‖2 + v2
k ≤ √

2vk. (4.12)

Next, we prove that d1
k is a feasible solution of (1.2). First, from the definition of pk, it

is easy to obtain g(xk) + Dg(xk)T dα
k = 0, α ∈ [0, 1]. So d1

k satisfies the equality constraint
conditions of (1.2). Moreover,

A(xk) + DA(xk)d1
k = Pk

⎛

⎝

⎛

⎝
ΛEk

0

0

ΛFk

⎞

⎠ +

⎛

⎝
ET

k DA(xk)d1
kEk

F T
k DA(xk)d1

kEk

ET
k DA(xk)d1

kFk

F T
k DA(xk)d1

kFk

⎞

⎠

⎞

⎠ P T
k

= Pk

⎛

⎝
ΛEk + ET

k DA(xk)d1
kEk

F T
k DA(xk)d1

kEk

ET
k DA(xk)d1

kFk

ΛFk + F T
k DA(xk)d1

kFk

⎞

⎠ P T
k .

From the boundedness of DA(xk) on N ∩ X, there exist two positive parameters ā and c̄,
of which one is independent from d1

k, such that

‖FT
k DA(xk)d1

kFk‖ ≤ ‖d1
k‖ā, λ1(ΛFk

) < −c̄, ∀xk ∈ N ∩ X. (4.13)

It follows that

ΛFk
+ FT

k DA(xk)d1
kFk � ΛFk

+ ‖d1
k‖āI ≺ (‖d1

k‖ā − c̄)I.

Then, if ‖d1
k‖ ≤ c̄

ā , we have

Θ := ΛFk
+ FT

k DA(xk)d1
kFk ≺ 0, ∀xk ∈ N ∩ X.

On the other hand, it holds that, for all xk ∈ N ∩ X,

ΛEk
+ ET

k DA(xk)d1
kEk − ET

k DA(xk)d1
kFkΘ−1FT

k DA(xk)d1
kEk

= ΛEk
+ ET

k DA(xk)pkEk + vkET
k DA(xk)skEk

− ET
k DA(xk)pkFkΘ−1FT

k DA(xk)pkEk − 2vkET
k DA(xk)pkFkΘ−1FkvT

k DA(xk)skEk

− v2
kET

k DA(xk)skFkΘ−1FT
k DA(xk)skEk

� vk(−εI + vk(−ET
k DA(xk)skFkΘ−1FT

k DA(xk)skEk)) + ΛEk

+ ET
k DA(xk)pkEk − ET

k DA(xk)pkFkΘ−1FT
k DA(xk)pkEk

− 2vkET
k DA(xk)pkFkΘ−1FT

k DA(xk)skEk. (4.14)

Let Br := {xk | ‖xk − x∗‖ ≤ r} with the radius r > 0, and we define the non-negative value
br := maxx∈Br

{λ1(−ET
k DA(x)skFkΘ−1FT

k DA(x)skEk)}. Two cases are discussed as follows.
The first case: For r̄ > 0, with br̄ = 0, we have

ET
k DA(x)skFkΘ−1FT

k DA(x)skFk ≡ 0,
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as −ET
k DA(x)SkFkΘ−1FT

k DA(x)SkFk  0 for all xk ∈ Br̄.
From (4.14), we obtain the sufficient condition for A(xk) + DA(xk)d1

k � 0 as follows:

− vkεI + ΛEk
+ ET

k DA(xk)pkEk − ET
k DA(xk)pkFkΘ−1FT

k DA(xk)pkEk

− 2vkET
k DA(xk)pkFkΘ−1FT

k DA(xk)skEk � 0. (4.15)

Moreover, let

Ψ1 : = ET
k DA(xk)pkEk − ET

k DA(xk)pkFkΘ−1FT
k DA(xk)pkEk,

Ψ2 : = 2c̄ET
k DA(xk)pkFkΘ−1FT

k DA(xk)skEk/ā.

Then (4.15) holds under the following condition

vk ≥ max
{

0,
λ1(ΛEk

) + ‖Ψ1‖ + ‖Ψ2‖
ε

}

= O(h(xk)).

The second case: br �= 0 for all r > 0. In this case, we know that ‖pk‖ → 0 and 1
br

increases
as r → 0 for all xk ∈ N ∩ Br. So, there exists a sufficiently small r̄ which satisfies vk ≤ ε

2br̄
.

When vk ≤ ε
2br̄

, we have

−εI + vkET
k DA(xk)skFkΘ−1FT

k DA(xk)skEk � − ε
2 . (4.16)

From (4.14) and (4.16) we know the sufficient condition for A(xk) + DA(xk)d1
k � 0 as follows:

− vk
ε

2
I + ΛEk

+ ET
k DA(xk)pkEk − ET

k DA(xk)pkFkΘ−1FT
k DA(xk)pkEk

− 2vkET
k DA(xk)pkFkΘ−1FT

k DA(xk)skEk � 0. (4.17)

Moreover, let

Ψ1 : = ET
k DA(xk)pkEk − ET

k DA(xk)pkFkΘ−1FT
k DA(xk)pkEk,

Ψ2 : = 2c̄ET
k DA(xk)pkFkΘ−1FT

k DA(xk)skEk/ā.

Then (4.17) is true under the following condition:

vk ≥ max
{

0,
2(λ1(ΛEk

) + ‖Ψ1‖ + ‖Ψ2‖)
ε

}

= O(h(xk)).

Hence, if κ ≤ min{ c̄
ā ,

√
2ε

2br̄
}, (4.8) holds for any xk ∈ N ∩ Br̄ in this case. Combining the above

two cases, d1
k satisfies the negative semidefinite constraint conditions of (1.2). So d1

k is a feasible
solution of (1.2). The first conclusion is proved.

From the definition of pk, we have

‖d1
k‖ ≥ vk ≥ ‖pk‖ = O(g(xk)). (4.18)

From the negative semidefinite constraint condition, we have

A(xk) � −DA(xk)d1
k and λ1(A(xk))+ ≤ M‖d1

k‖.
So,

‖d1
k‖ ≥ 1

M
λ1(A(xk))+ = O(λ1(A(xk))+). (4.19)

Combining with (4.18) and (4.19), it holds that ‖d1
k‖ ≥ O(h(xk)). Furthermore, there exists

some sufficiently large parameters μ, such that (4.8) satisfies for any xk ∈ N ∩ X.
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Let φ(α) = qk(pk + αvkSk). It is easy to have that

φ′(α) = vksT
k Dqk(pk + αvksk) = vksT

k (Df(xk) + Mk(pk + αvksk)).

Using (4.11), if ‖dk‖ ≤
√

2
2

ε
M , we have

φ′(0) = vksT
k (Df(xk) + Mkpk) ≤ vk(sT

k Mkpk − ε)

≤ vk(Mvk − ε) ≤
√

2‖dk‖
(√

2
2

M‖dk‖ − ε

)

≤ 0,

and φ′′ = v2
ksT

k Mksk ≤ v2
kM ≤ ‖dk‖2M . Then

φ′′ + φ′(0) ≤ M‖dk‖2 +
√

2‖dk‖
(√

2
2

M‖dk‖ − ε

)

≤
√

2‖dk‖(
√

2M‖dk‖ − ε) ≤ 0.

Furthermore, if ‖dk‖ ≤ (1 − 2
√

2
3 ) ε

M , we have

qk(0) − qk(dk) ≥
√

2
2

‖dk‖
(

ε −
√

2
2

M‖dk‖
)

=
√

2
4

‖dk‖(ε − M‖dk‖) ≥ 1
3
‖dk‖ε, (4.20)

and

qk(0) − qk(tkdk) ≥ 1
3
‖tkdk‖ε. (4.21)

The second conclusion is proved.
According to (4.6) and (4.20), if ‖tkdk‖ ≤ (1−η)ε

3M , we have

f(xk) − f(xk + tkdk)
qk(0) − qk(tkdk)

≥ 1 − ‖tkdk‖2M

qk(0) − qk(tkdk)
≥ 1 − 3‖tkdk‖2M

‖tkdk‖ε
= 1 − 3‖tkdk‖M

ε
≥ η.

The last conclusion is proved. So, the conclusion holds. �
Based on Lemma 4.4, we can get one point xj

k with h(xj
k) < min{η1τ

k, ‖tikdj
k‖} from the

recovery algorithm. Then, according to Lemma 4.7, the loop between (S.1) and (S.3) terminates
finitely.

Theorem 4.8 Suppose Assumption 4.1 holds. A new point will be added into the sequence
{xk}.
Proof Based on the Taylor expanding about f(xk + tkdk) at the point xk and Mk � 0, it is
easy to get

f(xk + tkdk) = f(xk) + tkDf(xk)T dk +
1
2
(tkdk)T D2f(y)(tkdk)

< f(xk) + tkDf(xk)T dk +
1
2
M(tkdk)T (tkdk),

where y locates on the segment between xk and xk + tkdk. When qk(0) − qk(tkdk) > δh(xk)2,
we have

tkDf(xk)T dk < −δh(xk)2 − 1
2
t2kdT

k Mkdk < 0,

and

f(xk) − f(xk + tkdk)
qk(0) − qk(tkdk)

≥ 1 − ‖tkdk‖2M

qk(0) − qk(tkdk)
≥ 1 −

M
‖Mk‖(δh(xk)2 + tkDf(xk)T dk)

δh(xk)2
. (4.22)
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There exists t̄k1 ≥ δh(xk)2

−Df(xk)T dk
≥ 2tmin

k such that

f(xk) − f(xk + tkdk)
qk(0) − qk(tkdk)

≥ η, ∀tk ≤ t̄k1.

There are two cases to be discussed as follows.
The first case: h(xk) = 0, there exists t̄k2 ≥ tmin

k = 0, such that h(xk + tkdk) ≤ 1
2 (l +

1)M‖tkdk‖2 < βτk, ∀tk ≤ t̄k2. Therefore, xk + tkdk satisfies filter criterion.
The second case: h(xk) > 0. Just as (S.3), we only need to consider the situation involving

Algorithm 3.2.
According Lemma 4.4, a point xr

k, which is generated by Algorithm 3.2, satisfies h(xr
k) ≤

η1τ
k < βτk. So, there exists t̄k3 ≥ 2h(xk)

(l+1)dT
k Mkdk

≥ 2tmin
k , such that

h(xk + tkdk) = (1 − tk)h(xk) + O(‖tkdk‖2) ≤ βτk, ∀tk ≤ t̄k3.

Therefore, xk + tkdk satisfies filter criterion.
Combining the above two cases with (4.22), we can get a new point xk+1 = xk + tkdk which

is added into the sequence {xk}. �

Theorem 4.9 Suppose Assumption 4.1 holds. The sequence {xk} generated by Algorithm 3.1,
either terminates at the KKT point, or produces an accumulation point which satisfies the KKT
conditions.

Proof First, we consider the case that {xk} contains an infinite number of h-type iterations.
For an h-type iteration, xk is always entered into the filter for a complete iteration, so it
follows from Lemma 4.2 that h(xk) → 0 on this subsequence. It must also follow that τk → 0.
Moreover, only h-type iteration can reset τk, so there exists a thinner infinite subsequence on
which τk+1 < h(xk) = τk is satisfied. Because X is bounded, there exist an accumulation point
x∗ and a subsequence index K, such that xk → x∗, h(xk) → 0, k ∈ K, and τk+1 < h(xk) = τk.
So x∗ is a feasible point. If x∗ is not a KKT point, we show that this leads to a contradiction.
Lemma 4.7 shows that the subproblem (1.2) is compatible at xk, and

qk(0) − qk(tkdk) ≥ 1
3
‖tkdk‖ε > δh2(xk), ∀0 < tk ≤ 1.

Thus, for k ∈ K large enough, an f -type iteration will hold. This contradicts with the fact that
the subsequence is generated by h-type iterations. So x∗ is a KKT point.

Next, we consider the alternative case that the sequence {xk} contains only a finite number
of h-type iterations. Hence, there exists an index K1 such that all iterations are f -type iterations
for all k ≥ K1. It follows that xk+1 is always acceptable to xk, and

f(xk) − f(xk + tkdk) ≥ η(qk(0) − qk(tkdk)) ≥ δh(xk)2 > 0.

So, the sequence {f(xk)} is strictly monotonically decreasing for k ≥ K1. Therefore, it follows
from Lemma 4.3 that lim h(xk) → 0, hence any accumulation point x∗ is a feasible point. Since
f(x) is bounded on X, it also follows that

∑
k≥K1

(f(xk) − f(xk+1)) is convergent. If one
accumulation point is not a KKT point, there exist a subsequence K2 and a constant 
 > 0,
such that ‖dk‖ > 
 for all k ∈ K2.

From (4.6), if h(xk) ≤ βτk and ‖tkdk‖ ≤
√

2βτk

(l+1)Mk
, we have

h(xk + tkdk) ≤ βτk. (4.23)
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We analyze by contradiction. If ‖tkdk‖ ≤ (1−η)ε
3M , we have

f(xk) − f(xk + tkdk) ≥ η(qk(0) − qk(tkdk)).

It follows as above that sufficient condition for accepting an f -type point is that

tkμh(xk) ≤ ‖tkdk‖ ≤ min{tkκ, 2τk

(l+1)Mkκ , (1−η)ε
3M }. (4.24)

Since min{ 2τk

(l+1)Mkκ , (1−η)ε
3M } on the right-hand side of (4.24) is a constant recorded as td, while

the left side converges to zero and tk is decreasing in the inner loop, if κ ≥ td, (4.24) holds
with ‖tkdk‖ ≥ 1

2 td; if κ < td, (4.24) holds with tk = 1. We then know from (4.24) that
‖tkdk‖ ≥ min{ 1

2 td, 
}.
According to the fact that min{ 1

2 td, 
} � h2(xk), we have

qk(0) − qk(tkdk) ≥ 1
6
εmin{td, 2
} ≥ δh2(xk).

Then
∑

k≥K1

f(xk) − f(xk+1) =
∑

k≥K1

f(xk) − f(xk + tkdk) ≥
∑

k∈K1,k≥K2

η(qk(0) − qk(tkdk))

≥
∑

k∈K1,k≥K2

1
6
ηεmin{td, 2
} = +∞,

which contradicts the fact that
∑

k≥K1
(f(xk) − f(xk+1)) is convergent. Thus x∗ is a KKT

point. The proof is finished. �

5 Numerical Experiments

In this section, a MATLAB code is written for the filter algorithm presented in Section 3.
We use Jos Sturm’ SeDuMi code [8] to test the feasibility of problem (1.2) and Restoration
algorithm. The link between the MATLAB code and the SeDuMi is provided by the parser
YALMIP [2].

In order to make a preliminary test of the algorithm, we select some examples of the publicly
available benchmark collection COMPleib [10, 11], and some references therein.

With the data contained in COMPleib, it is possible to construct particular nonlinear
semidefinite optimization problems arising in feedback control design [10]. We consider in our
numerical tests only the basic Static (or reduced order) Output Feedback, H2-SDP and H∞-BMI
problem. The reader can find more details on the motivation of this problem [2, 6, 9, 13, 14].

The following NLSDP formulation of the H2-SDP and H∞-BMI problems are considered,

min{Tr(LB1B
T
1 )|AT

F L + LAF + CT
F CF = 0, AT

F V + V AF ≺ 0, V � 0} (5.1)

min Tr(X)

s.t. AF Q + QAT
F + B1B

T
1 � 0, Q � 0,

⎡

⎣
X

QCT
F

CF Q

Q

⎤

⎦  0, (5.2)

where AF = A+BFC and CF = C1 +D12FC. The data A, B1, B, C1, C and D12 are extracted
from COMPleib. In the problem (H2-NSDP) the variables are the matrices L, V and F . The
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L, V are symmetric and real, but the F , associated with SDP control law, is in general not
square.

For all these numerical tests, the parameter values are selected as follows: δ = 0.2, η = 0.1,

γ = 0.1, β = 0.9, η1 = 0.5, ε = 10−6, and

F0 =

⎡

⎢
⎢
⎢
⎣

1
...

1

· · ·
. . .

· · ·

1
...

1

⎤

⎥
⎥
⎥
⎦

n3×n5

, L0 = V0 =

⎡

⎢
⎢
⎢
⎣

1

0

. . .

0

1

⎤

⎥
⎥
⎥
⎦

n1×n1

. (5.3)

The results obtained for (H2-NSDP) are given in the next table.
Table 1 The detail information of numerical experiments

Date set n1 n3 n5 P f-itr h-itr FLV-norm f(x∗) h(x∗) CPU-time

AC1 5 2 3 36 0 18 1.613720E-10 4.400000E-03 1.146600E-10 7.910595

AC2 5 5 3 45 0 17 5.345901E-11 5.600000E-03 1.645729E-10 7.32821

AC3 5 2 4 38 0 11 3.260891E-07 2.098550E+01 1.594100E-12 4.79347

AC4 4 2 1 22 0 2 1.993300E-08 1.215917E+02 5.329769E-13 1.349766

AC5 4 4 2 28 0 1 1.825143E-11 -5.198035E+00 5.329769E-13 0.461226

AC6 7 7 2 70 0 1 9.673774E-09 1.871739E+02 4.786215E-08 1.608399

AC7 9 1 1 91 1 1 4.213213E-12 1.542351E-03 9.317730E-12 2.722906

AC8 9 2 1 95 0 1 3.692761E-08 -3.348557E+00 3.776700E-07 2.132902

AC12 4 1 3 23 17 13 4.797330E-07 -9.643317E+00 1.007377E-09 14.120128

REA1 4 4 2 28 0 3 2.176100E-07 1.899313E+00 3.510300E-11 1.859684

REA2 4 4 2 28 0 2 2.176100E-07 3.332248E+00 4.941137E-11 1.705555

ROC2 10 1 1 154 2 6 9.361000E-07 -4.335303E-04 1.844348E-11 13.7017

HE1 4 2 2 24 0 7 3.527703E-10 -1.926451E-01 1.713281E-11 2.777024

HE2 4 4 2 28 0 1 4.616000E-10 -3.714650E+01 2.910100E-11 0.663644

HE3 8 10 4 112 0 23 1.116385E-09 1.101073E+00 8.991523E-10 29.580323

HE5 8 4 4 88 0 2 1.467400E-10 1.526623E+01 3.214600E-11 3.433427

DIS1 8 8 4 104 5 28 3.145000E-08 -6.805860E+01 6.180000E-10 32.989876

DIS2 3 3 2 18 4 2 3.379800E-08 -2.728800E+00 5.231000E-11 2.446329

DIS3 6 6 4 66 6 8 1.373000E-07 -4.834950E+01 2.180800E-10 9.572058

DIS4 6 6 4 66 8 11 4.224800E-09 -1.262960E+01 6.298700E-11 16.753892

DIS5 4 3 2 26 0 1 2.548700E-11 -4.010000E-02 8.696200E-11 0.513626

TG1 10 10 2 130 0 2 5.999700E-09 3.846617E+02 5.047515E-11 7.832082

WEC1 10 10 3 140 0 6 6.197960E-08 6.919465E+03 6.919465E+03 13.320438

EB1 10 2 1 112 1 2 2.913952E-08 -6.786449E-01 2.451396E-12 7.945267

EB2 10 2 1 112 1 3 2.000544E-12 -7.946488E-01 2.482662E-12 8.515224

EB3 10 2 1 112 0 5 3.580103E-11 -5.353461E+00 5.034508E-10 9.107625

NN1 3 3 1 15 0 2 1.614203E-10 -6.611111E+00 4.636953E-11 1.184888

NN2 2 2 1 8 0 1 1.023375E-10 -2.500000E+00 1.153396E-12 0.435164

NN3 4 1 1 21 2 3 5.872802E-07 6.908271E-01 1.495332E-10 2.354346

NN5 7 7 1 63 0 2 8.429720E-07 7.972685E+03 4.687160E-11 2.482027

NN6 9 9 1 99 0 2 5.671721E-09 2.410376E+05 3.011982E-10 4.130557

NN7 9 3 1 93 0 5 1.534142E-08 1.232876E+00 7.378014E-12 7.953678

NN10 8 2 3 78 0 3 2.864549E-07 0.000000E+00 1.063402E-10 6.269913

NN12 16 3 3 281 0 5 7.167800E-11 1.950000E-02 1.742000E-11 14.483057

NN13 6 6 2 54 0 1 3.512800E-12 -1.031476E+03 2.938816E-12 0.686661

NN14 6 3 2 48 0 1 5.290971E-11 6.972569E+02 8.789821E-11 0.709556

NN15 3 4 2 20 0 7 1.063860E-11 6.089412E-03 2.335593E-11 2.271124
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The results obtained for H∞-BMI are given in the next table.
Table 2 The detail information of numerical experiments

Date set n1 n3 n4 n5 P f-itr h-itr FLV-norm f(x∗) h(x∗) CPU-time

AC1 5 3 2 3 27 6 2 1.270074E-08 4.803525E-02 5.621072E-12 3.361243

AC2 5 3 5 3 39 5 4 4.330750E-08 1.999563E-01 1.788460E-09 4.649376

AC3 5 2 5 4 38 4 2 2.871300E-10 2.873052E+01 2.299779E-12 3.221253

AC6 7 2 6 4 51 6 1 1.024628E-08 2.792167E+01 2.253981E-07 5.442844

AC7 9 1 1 2 48 1 2 1.073717E-08 1.553869E-03 5.437485E-07 2.407462

AC8 9 1 2 5 53 16 4 6.241822E-08 4.530955E+00 9.897606E-09 13.819975

AC15 4 2 6 3 37 4 5 5.460600E-07 2.788135E+02 6.021619E-07 4.546079

AC16 4 2 6 5 41 3 3 6.902790E-07 1.844990E+02 3.229229E-08 2.956544

AC17 4 1 4 2 22 2 2 5.591396E-10 1.894837E+01 1.067774E-09 1.836845

REA1 4 2 4 3 26 4 6 1.459189E-09 4.211260E+00 4.491661E-09 3.594247

HE2 4 2 4 2 24 1 7 2.167184E-08 1.210467E+01 5.173020E-08 2.807093

DIS1 8 4 8 4 88 37 3 9.857044E-07 4.617351E+01 5.679505E-09 18.537

DIS2 3 2 3 2 16 3 2 1.441517E-09 6.136059E+00 1.757512E-09 1.806747

DIS3 6 4 6 4 58 3 2 1.315240E-08 7.950581E+00 1.530289E-08 2.922814

DIS4 6 4 6 6 66 3 4 2.368565E-11 5.789123E+00 9.437750E-12 4.1261

MFP 4 3 4 2 26 2 8 9.010079E+01 9.010079E+01 4.583344E-08 3.767903

EB1 10 1 2 1 60 2 12 6.127437E-07 3.307067E+00 2.096467E-08 15.333061

EB3 10 1 2 1 59 0 2 4.723363E-09 8.845746E-01 7.848463E-09 2.508197

NN2 2 1 2 1 7 2 2 1.073834E-10 2.501830E+00 3.415311E-10 1.262522

NN4 4 2 4 3 26 4 2 7.889474E-11 7.293037E+00 6.516140E-12 2.187475

NN8 3 2 3 2 16 1 5 1.529508E-12 5.268370E+00 1.679649E-12 1.983806

NN10 8 3 2 3 48 0 1 5.042174E-12 2.050249E-12 2.759750E-11 0.615728

NN15 3 2 3 2 16 3 1 2.185543E-07 7.834253E-03 7.148670E-11 1.325343

NN17 3 2 2 1 11 8 1 9.127584E-07 7.769225E-01 2.02E-09 3.046686

PSM 7 2 5 3 49 1 3 5.918773E-08 4.176420E+00 8.08E-07 2.37508

Date set = the name of the example of COMPleib.

n1 = the dimension of the variable L, V.

n3 = the row number of the variable F.

n5 = the column number of the variable F.

P = n1 ∗ (n1 + 1) + n3 ∗ n5, number of variable.

FLV-norm = ‖vec(F ); vec(L); vec(V )‖, infinity norm used in Algorithm.

f -iter = the number of f -iterations.

h-iter = the number of h-iterations.

cpu time = the total cpu time (sec.) including restoration and the inner loops.

f(x∗) = the value of f at the optimum.

h(x∗) = ‖AT
F∗L∗ + L∗AF∗ + CF∗CF∗‖2 + λ1(AT

F∗V ∗ + V ∗AF∗)+ + λ1(−V ∗)+,

the value of h at the optimum.

6 Conclusion

In this paper, we propose a filter algorithm by changing the step size for nonlinear semidef-
inite programming. The global convergence of the filter method was obtained under quite
mild assumptions, like MFCQ, boundedness, etc. The QSD subproblems at each step of the
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algorithm are actually linear semidefinite programming problems. We have performed some
numerical experiments which are applied to optimal SDP problems. The restoration algorithm
is described in a very simple way, which is just tried to obtain a feasible point by minimizing
the constraint violation function h.
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References
[1] Christian, K., Christian, N., Hirokazu, K., et al.: Successive linearization methods for nonlinear semidefinite

programs. Comput. Optimiz. and Applic., 31(3), 251–273 (2005)

[2] Fberg, J. L.: YALMIP: A toolbox for modeling and optimization in matlab. Computer Aided Control

Systems Design, 9, 284–289 (2004)

[3] Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Programming, 91(2),

239–269 (2002)

[4] Fletcher, R., Leyffer, S., Toint, P. L.: On the global convergence of a filter-SQP algorthm. SIAM J.

Optimiz., 13(1), 44–59 (2002)

[5] Freund, R. W., Jarre, F., Vogelbusch, C. H.: Nonlinear semidefinite programming: sensitivity, convergence,

and an application in passive reduced order modeling. Math. Programming, 109(2–3), 581–611 (2007)

[6] Gomez, W., Ramirez, H.: A filter algorithm for nonlinear semidefinite programming. Comput. Applied

Math., 29(2), 297–328 (2010)

[7] Helmberg, C.: Semidefinite Programming for Combinatorial Optimization, Konrad-Zuse-Zentrum fur In-

formationstechnik, Berlin, 2000

[8] Huang, Y. S., MacTralance, A. G. J.: Multivariable Feedback: A Quasi-classical Approach. Lectures Notes

in Control and Information, Springer-Verlag, New York, 1982

[9] Leibfritz, F., Lipinski, W.: Description of the brnchmark examples in compleib. Technical report, University

of Trier, Department of Mathematics, D-54286 Trier, Germany, 2003

[10] Leibfritz, F.: Compleib: Constrained matrix-optimization problem library — a collection of test examples

for nonlinear semidefinite programming, control system design and related problems. Technical report,

University of Trier, Department of Mathematics, D-54286 Trier, Germany, 2004

[11] Leibfritz, F., Lipinski, W.: Compleib 1.0-user manual and quick reference. Technical report, University of

Trier, Department of Mathematics, D-54286 Trier, Germany, 2004

[12] Leibfritz, F., Mostafa, E. M. E.: An interior point constrained trust region method for a special class of

nonlinear semidefinite programming problems. SIAM J. Optimiz., 12(4), 1048–1074 (2002)

[13] Leibfritz, F., Mostafa, M. E.: An interior point constrained trust region method for a special class of

nonlinear semidefinite programming problems. Math. Programming, 12(4), 1048–1074 (2004)

[14] Leibfritz, F., Mostafa, M. E.: Trust region methods for solving the optimal output feed-back design problem.

Intern. J. Control, 76(5), 501–519 (2003)

[15] Li, C. J., Sun, W. Y.: A filter-successive linearization methods for nonlinear semidefinite programs. Sci.

China, Ser. A, 39(8), 977–995 (2009)

[16] Li, C. J., Sun, W. Y.: Some properties for nonconvex semidefinite programming. Numer. Math. J. Chin.

Univ., 30, 184–192 (2008)

[17] Nie, P. Y.: A trust region filter method for general non-linear programming. Appl. Math. Comput., 172(2),

1000–1017 (2006)

[18] Nie, P. Y.: Sequential penalty quadratic programming filter methods for nonlinear programming. Nonlinear

Anal.: Real World Applications, 8(1), 118–129 (2007)

[19] Nie, P. Y.: Composite-step like filter method for equality constraint problems. J. Comput. Math., 21(5),

613-624 (2003)

[20] Rafael, C., Hector, R. C.: A global algorithm for nonlinear semidefinite programming. SIAM J. Optimiz.,

15(1), 303–318 (2004)

[21] Sun, D. F.: The strong second-order sufficient condition and constraint nondegeneracy in nonlinear semidef-

inite programming and their imlications. Math. Operations Research, 31(4), 761–776 (2006)



1826 Zhu Z. B. and Zhu H. L.

[22] Sun, D. F., Sun, J., Zhang. L. W.: The rate of convergence of the augmented Lagrangian method for

nonlinear semidefinite programming. Math. Programming, 114(2), 349–391 (2008)

[23] Todd, M.: Semidefinite optimization. Acta Numerica, 10, 515–560 (2001)

[24] Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Review, 38(1), 49–95 (1996)

[25] Wang, X. L., Zhu, Z. B., Huang, Q. Q.: An SQP-filter method for inequality constrained optimization and

its global convergence. Appl. Math. Comput., 217(24), 10224–10230 (2011)

[26] Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming Theory, Algorithms,

and Applications, Kluwer Academic Publishers, Boston-Dordrecht-London, 2000

[27] Yamashita, Y., Yabe, H.: Local and superlinear convergence of a primal-dual interior point method for

nonlinear semidefinite programming. Math. Programming, 132(1–2), 1–30 (2012)



Copyright of Acta Mathematica Sinica is the property of Springer Science & Business Media
B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv
without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.


