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We present a density matrix approach for computing global solutions of restricted open-shell
Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds
on the Hartree-Fock energy of quantum systems. While wave function approaches to Hartree-Fock
theory yield an upper bound to the Hartree-Fock energy, we derive a semidefinite relaxation of
Hartree-Fock theory that yields a rigorous lower bound on the Hartree-Fock energy. We also develop
an upper-bound algorithm in which Hartree-Fock theory is cast as a SDP with a nonconvex constraint
on the rank of the matrix variable. Equality of the upper- and lower-bound energies guarantees that
the computed solution is the globally optimal solution of Hartree-Fock theory. The work extends
a previously presented method for closed-shell systems [S. Veeraraghavan and D. A. Mazziotti,
Phys. Rev. A 89, 010502(R) (2014)]. For strongly correlated systems the SDP approach provides an
alternative to the locally optimized Hartree-Fock energies and densities with a certificate of global
optimality. Applications are made to the potential energy curves of C2, CN, Cr2, and NO2. © 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4868242]

I. INTRODUCTION

The most widely used approach to obtain the ground-
state Hartree-Fock (HF) energy and density matrix has been to
solve the Euler-Lagrange equations associated with the mini-
mization of the Hartree-Fock energy. In 1951 Roothaan1, 2 and
Hall3 proposed the first self-consistent-field (SCF) method
to solve the Hartree-Fock equations. However, the method
was soon discovered to converge only for well-behaved cases.
Since then numerous algorithms have been proposed to mod-
ify the SCF method to improve its convergence properties, in-
cluding level-shifting,4, 5 damping,6, 7 and direct inversion of
the iterative subspace (DIIS).8, 9 DIIS is currently the most
popular SCF algorithm because of its computational effi-
ciency in most cases. Nevertheless, it is not globally con-
vergent, and in many cases it is known to fail even with a
good initial guess. A method is globally convergent when
it converges to a local minimum from any initial guess.
Level-shifting is globally convergent for a large enough shift
parameter,10 but its speed of convergence decreases as the
shift parameter increases.

Since SCF methods do not ensure an energy decrease at
each iteration, a potentially more natural approach to solv-
ing the Hartree-Fock problem is to minimize the Hartree-
Fock energy directly as a function of the density matrix us-
ing gradient or Hessian-based methods. In 1956, McWeeny11

proposed direct-minimization methods,12–18 but they have not
yet found wide applicability either due to their slow con-
vergence or prohibitive cost. Recently, a combination of the
monotonic energy decrease property of direct-minimization
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methods and the speed of SCF methods was achieved
in the relaxed-constraints algorithms19, 20 and trust-region
methods21–23 which are both globally convergent and effi-
cient. However, none of these methods can certify that the
computed solution is the global minimum.

Convex minimization problems possess the attractive
property that the existence of a local minimum implies that
it is the global minimum. Semidefinite programs (SDP) are a
class of convex optimization problems in which a linear func-
tion of a positive semidefinite matrix is optimized subject to
linear constraints. For an N-electron system the minimization
of the ground-state energy as a functional of the two-electron
reduced density matrix (2-RDM) subject to N-representability
constraints24–26 has been expressed as a SDP,24, 27–30 and the
resulting variational 2-RDM method24, 26–37 in conjunction
with large-scale SDP solvers34, 38 has been applied to com-
puting directly the 2-RDMs of strongly correlated systems
including molecules like polyaromatic hydrocarbons39 and
firefly luciferin40 as well as quantum dots,41 quantum phase
transitions,42 and one- and two-dimensional spin models.37, 43

We recently presented two SDP algorithms that yield upper
and lower bounds on the ground-state energy from Hartree-
Fock theory.84 Here we extend these algorithms to treat re-
stricted open-shell Hartree-Fock (ROHF) theory. While wave
function approaches to Hartree-Fock theory yield an upper
bound to the Hartree-Fock energy, we derive a semidefinite
relaxation of Hartree-Fock theory that yields a rigorous lower
bound on the Hartree-Fock energy. In the lower-bound SDP
algorithm the idempotency constraint on the one-electron
density matrix is relaxed. We also develop an upper-bound
algorithm in which Hartree-Fock theory is cast as a SDP with
a nonconvex constraint on the rank of the matrix variable.
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Whenever the upper and lower bounds are equal to each other,
they provide a certificate of global optimality to the obtained
solution.

To illustrate these algorithms, we apply them to comput-
ing the symmetry-broken spin-restricted Hartree-Fock poten-
tial energy curves for C2, CN, Cr2, and NO2. This problem is
challenging because there are multiple local minima of dif-
ferent spatial symmetries on the potential energy surfaces.
Traditional methods that solve the Euler-Lagrange equations
often converge to minima higher in energy than the global
minimum. In principle, Čížek-Paldus stability analysis can
be applied to locate multiple solutions to the Euler-Lagrange
equations, but it can be computationally expensive and it
cannot determine whether a local solution is also a global
solution. We find that the upper-bound SDP algorithm con-
sistently converges to the lowest energy solutions and that the
lower-bound SDP algorithm generates a tight lower bound.
Neither the upper- or lower-bound SDP algorithm relies on
the quality of the initial guess for the density matrix, and in
all SDP calculations presented here the initial density matrix
is equated to a matrix whose elements are formed by a ran-
dom number generator. When the upper and lower bounds are
equal, the SDP algorithms provide a certificate of global opti-
mality for the Hartree-Fock solution. The energetically degen-
erate symmetry-broken solutions are important because they
can be combined convexly into an ensemble density matrix
that not only has the desired molecular symmetry but also
yields a size-consistent energy. All of the Hartree-Fock so-
lutions that we obtain using the SDP approach are restricted,
i.e., 〈S2〉 has exactly the correct expectation value. In many
strongly correlated cases, as shown in Sec. III, employing the
symmetry-broken Hartree-Fock wave function as a reference
in single-reference correlation methods like coupled cluster
singles-doubles improves the correlated solution.

II. THEORY

A. Canonical Hartree-Fock theory

The quantity that we have been discussing as the den-
sity matrix can be more precisely called the one-particle
reduced density matrix (1-RDM), which we denote as 1D.
The Hartree-Fock problem for an N-electron system in an
orthonormal basis of rank r is typically expressed as the
following minimization problem over the set of Hermitian
matrices (Hr ):

minimize
1D∈Hr

EHF(1D), (1)

subject to Tr(1D) = N, (2)

1D2 = 1D. (3)

The self-consistent-field Hartree-Fock method for an N-
electron system iteratively solves a system of Euler-Lagrange
equations for a stationary point. The stationary point yields a
ground-state Hartree-Fock energy and a set of N occupied or-
bitals. The computed Hartree-Fock energy is not guaranteed
to be the global-energy minimum. From the perspective of
reduced density matrices (RDMs),24, 25 we can understand the

self-consistent-field method as iteratively checking extreme
points of the set of 1-RDMs for satisfaction of the Euler-
Lagrange equations where each extreme point corresponds
to a 1-RDM with a Slater-determinant preimage.26, 44, 45 The
set of extreme 1-RDMs (those with an N-electron Slater
determinant as a preimage) can be characterized by the
idempotency constraint in Eq. (3).

B. SDP Hartree-Fock theory

1. Convex relaxation

The optimization of the Hartree-Fock energy over the
set of extreme 1-RDMs can be replaced without approxi-
mation by an optimization over the larger (and convex) set
of N-representable 1-RDMs (those with any N-electron wave
function as a preimage),10, 46

minimize
1D, 1Q∈Hr+

EHF(1D), (4)

subject to Tr(1D) = N, (5)

1D + 1Q = I, (6)

where EHF is the following quadratic function of the 1-RDM:

EHF(1D) =
r∑
ij

1Ki
j

1Di
j +

r∑
ijkl

1Di
k

2V ik
jl

1D
j

l , (7)

1Ki
j = 〈i|ĥ|j 〉, (8)

2V ik
jl = 1

2
(〈ij |kl〉 − 〈ij |lk〉). (9)

The one-electron Hamiltonian operator ĥ contains the kinetic
energy operator and electron-nuclei potential, 〈ij|kl〉 repre-
sents the electron-electron repulsion integrals, and the indices
i, j, k, and l denote the orbitals in the one-electron basis set
of rank r. The notation 1D, 1Q ∈ Hr

+, equivalent to 1D � 0
and 1Q � 0, indicates that both the 1-particle RDM 1D and the
1-hole RDM 1Q are contained in the set of r × r Hermitian
positive semidefinite matrices.

The reduced-density-matrix formulation of Hartree-Fock
theory can be recast as a convex semidefinite program by em-
bedding the quadratic product of 1-RDMs in EHF in a higher
dimensional (two-electron) matrix 2M ∈ Hr2

+ . Rewriting EHF

as a linear functional of 2M,

E(1D, 2M) = Tr(1K 1D) + Tr(2V 2M), (10)

we can relax the non-convex Hartree-Fock optimization to a
convex semidefinite program,

minimize
1D, 1Q∈Hr+, 2M∈Hr2

+
E(1D, 2M), (11)

subject to Tr(1D) = N, (12)

Tr(2M) ≤ N, (13)
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1D + 1Q = I, (14)

r∑
j=1

2Mik
jj = N 1Di

k. (15)

The solution of this SDP relaxation yields a lower bound
to the Hartree-Fock energy. Because the constraints on the
matrix 2M are minimal, this convex SDP formulation will
typically yield energies that are significantly below the
Hartree-Fock energy. To reproduce Hartree-Fock, further
constraints on 2M are required.

2. Upper-bound SDP algorithm

Two separate sets of additional conditions on the matrix
2M that yield upper and lower bounds on the Hartree-Fock
energy, respectively, will be considered. The first set of con-
straints, yielding the upper bound, consists of a single rank
constraint,

rank (2M) = 1. (16)

The 2M ∈ Hr2

+ matrix with its rank-one constraint and the
contraction constraint in Eq. (15), we can show, is a tensor
product of two identical 1-RDMs,

2Mik
jl = 1Di

k
1D

j

l . (17)

It follows that the solution of the optimization program in
Eqs. (11)–(15) with the rank constraint in Eq. (16) is equiv-
alent to the solution of the RDM formulation of Hartree-
Fock theory in Eqs. (4)–(9). We have mapped Hartree-Fock
theory exactly onto a rank-constrained semidefinite program
(rc-SDP HF).47 The rank-constrained semidefinite program
is convex except for the rank constraint; the nonconvexity
of the Hartree-Fock energy functional in the RDM formula-
tion has been transferred to the rank restriction in the SDP
formulation. Because of the rank constraint, the solution of
rc-SDP HF is not necessarily a global solution, meaning
that the solution can be a local minimum in the Hartree-
Fock energy and hence, an upper bound on the global energy
minimum. Unlike traditional formulations of Hartree-Fock
theory, however, rc-SDP HF optimizes the 1-RDM over the
convex set of N-representable 1-RDMs, and in practice, we
find that this difference makes it much more robust than
traditional formulations in locating the global solution.

3. Lower-bound SDP algorithm

The second set of conditions, yielding a lower bound,
consists of four constraints including

r∑
j=1

2M
ij

jk = 1Di
k (18)

and three additional constraints from permuting the indices
i and j and/or j and k symmetrically. These convex condi-
tions are a relaxation of the idempotency of the 1-RDM. They
are necessary but not sufficient for the idempotency of the 1-
RDM at the Hartree-Fock solution, and hence, optimization of

the SDP program in Eqs. (11)–(15) with these additional con-
straints (lb-SDP) is a SDP relaxation of the reduced-density-
matrix formulation of Hartree-Fock theory in Eqs. (4)–(9).
The lb-SDP method yields a lower bound on the energy from
the global Hartree-Fock solution. In practice, this lower bound
is found to be quite tight, and in some cases it agrees ex-
actly with the global Hartree-Fock solution. If lb-SDP pro-
duces a 1-RDM solution that is idempotent, then that solu-
tion is the global Hartree-Fock solution. Furthermore, when
the upper and lower bounds from rc-SDP and lb-SDP agree,
we have a guaranteed certificate that these computed bounds
correspond to the global energy minimum of Hartree-Fock
theory.

4. Closed- and open-shell spin restriction

We have formulated rc-SDP HF and lb-SDP in the spin-
orbital basis set. To perform RHF and ROHF calculations
in a spatial-orbital basis set, one needs to take into account
the spin structure of the Hamiltonian and density matrices.
For any RHF or ROHF calculation on an N-electron sys-
tem, 1D, 2M, 1K, and 2V will have the following block
structures:

1D =
[

1Dα 0

0 1Dβ

]
2M =

[
2Mαα

2Mαβ

2Mt
αβ

2Mββ

]
, (19)

1K =
[

1Kα 0

0 1Kα

]
2V =

[
2Vαα

2Vαβ

2Vαβ
2Vαα

]
. (20)

For RHF the two 1D blocks and the four blocks of 2M are
identical. Therefore, the only necessary modifications in rc-
SDP HF and lb-SDP are replacing N by N/2, r by r/2, and
rewriting E as follows:

E(1Dα, 2Mαβ)

= 2 Tr(1Kα
1Dα) + Tr(2V 2Mαβ), (21)

2V = 2(2Vαα + 2Vαβ), (22)

2V ik
j l = 2〈ij |kl〉 − 〈ij |lk〉. (23)

For ROHF the α and β blocks of 1D are not identical but
(assuming Nα > Nβ) because the spatial orbitals of paired
electrons are required to be the same, the row space of 1Dβ

is a subset of the row space of 1Dα . In order to enforce
this relation, 1D is divided into closed-shell and open-shell
blocks which are 1Dc = 1Dβ and 1Do = 1Dα − 1Dβ , respec-
tively. With these blocks E and SDP ROHF can be rewritten as
follows:

E(1Dc,
1Do,

2M)

= 2 Tr(1Kα
1Dc) + Tr(1Kα

1Do) + Tr(2V 2M) (24)
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minimize
1Dc, 1Do, 1Q∈Hr+, 2M∈Hr2

+
E(1Dc,

1Do,
2M)

subject to Tr(1Dc) = Nβ

Tr(1Do) = Nα − Nβ

1Dc + 1Do + 1Q = I

r∑
j=1

2Miαkα
jαjα = Nα

(1Dc
i
k + 1Do

i
k

)
r∑

j=1

2M
iβkβ

jβjβ = Nβ
1Dc

i
k

r∑
j=1

2Miαkα
jβjβ = Nβ

(
1Dc

i
k + 1Do

i
k

)
r∑

j=1

2M
iβkβ

jαjα = Nα
1Dc

i
k.

For rc-SDP ROHF, the only additional constraint is on the
rank, as in the spin-orbital formulation

rank (2M) = 1. (25)

For lb-SDP, the set of four constraints described earlier in
Eq. (18) have to be enforced for all the four blocks of M as
follows:

r∑
j=1

2M
iαjα

jαkα = (
1Dc

i
k + 1Do

i
k

)
, (26)

r∑
j=1

2M
iβjβ

jβkβ = 1Dc
i
k, (27)

r∑
j=1

2M
iαjα

jβkβ = 1Dc
i
k, (28)

r∑
j=1

2M
iβjβ

jαkα = 1Dc
i
k. (29)

Although formally there are 16 constraints in all, 6 of them are
redundant due to the Hermiticity of M resulting in 10 linearly
independent constraints.

III. APPLICATIONS

To illustrate the rc-SDP and lb-SDP methods, we apply
them to computing the dissociation curves for C2, CN, Cr2,
and NO2.

A. Methodology

The GAMESS electronic structure package is used
to perform self-consistent-field Hartree-Fock calculations
(SCF HF with DIIS) and coupled cluster singles doubles
(CCSD)48–50 calculations. The rc-SDP and lb-SDP are solved
using the SDP solver RRSDP.34 Since DIIS is the standard
accelerator for SCF HF calculations, we compare rc-SDP HF
results with DIIS results. Both rc-SDP HF and DIIS methods

are performed without enforcing a specific spatial symmetry.
The DIIS solution at the internuclear distance R′ where R′ is
differentially larger than the distance R is obtained by using
the DIIS solution at R as an initial guess.

The SDP solver RRSDP imposes the semidefinite con-
straint on each matrix M through the factorization M = RRT.
For rc-SDP HF, the rank-one constraint on 2M is readily en-
forced by defining R to be a rectangular r × 1 matrix. Scaling
of RRSDP34 is determined by the RRT matrix multiplication
for the largest matrix block, which is 2M for both rc-SDP and
lb-SDP. For rc-SDP the rank of 2M is one, and hence, the
matrix multiplication scales approximately as r4. For lb-SDP
the rank of 2M scales as r after applying the bound on the
maximum rank from Pataki51 and Barvinok,52 and hence, the
matrix multiplication scales approximately as r5.

B. C2 stretch

Because the C2 molecule has many low-lying excited
states, it is a significantly multireferenced system even at
equilibrium, which makes it a challenging system for both
Hartree-Fock and correlation energy calculations.53 Figure 1
shows various RHF energy curves and the lower bound in the
6-31G∗ basis set as a function of the C–C bond distance. The
D4h and D2h curves,54 generated by seeding the scan of the
potential energy surface at two different values of R were ob-
tained using DIIS. The rc-SDP curve corresponds to D4h for R
< 1.1 Å, Cs for 1.1 Å <R < 1.2 Å, D2h for 1.2 Å < R < 2 Å,
and to Ci for R > 2 Å. The rc-SDP curve bifurcates from the
D4h curve and joins the D2h curve without ever being non-
differentiable. For R < 1.5 Å and R > 2.9 Å the lb-SDP
solution is lower than the rc-SDP solution by less than
0.005 a.u. thereby certifying it to be the global minimum
within that threshold. For the intermediate region, rc-SDP
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FIG. 1. The ground-state restricted Hartree-Fock energies from rc-SDP and
DIIS and the lower bound from lb-SDP are shown as functions of the C–C
internuclear distance R. When the energies from rc-SDP and lb-SDP agree,
the solution from rc-SDP is guaranteed to be the global solution of Hartree-
Fock theory. While DIIS locates a D4h and a D2h solution depending on the
initial guess used, rc-SDP locates the energetically lowest solution which has
a different symmetry for different internuclear distances. Although the rc-
SDP solution has Ci symmetry for R > 2 Å it has a qualitatively correct
shape for dissociation. By 3 Å the D2h and Ci solutions differ by 0.148 a.u.
(92.8 kcal/mol).
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FIG. 2. The Hartree-Fock energies from rc-SDP and DIIS and the lower
bound from lb-SDP are shown as functions of the Cr–Cr internuclear dis-
tance R. DIIS obtains a D4h solution on seeding from smaller values of R to
larger ones. While for R > 1.2 Å (shown) the rc-SDP solution has C2 sym-
metry, for R < 1.2 Å (not shown) it smoothly joins the D4h curve of DIIS.
Even in the equilibrium region, for R = 1.5 Å the D4h energy is 0.127 a.u.
(80 kcal/mol) higher than the C2 energy which is certified by lb-SDP to be
globally optimal within 0.008 a.u. By 2.5 Å the energy difference increases
to 0.772 a.u. (485 kcal/mol) where the C2 solution is globally optimal within
0.05 a.u.

likely continues to give the globally optimal curve although
we do not have a formal mathematical guarantee.

C. Cr2 stretch

Cr2 is known to be an extremely challenging molecule to
describe correctly by ab initio electronic structure theory.55–63

Figure 2 shows the HF energy in the valence triple-zeta
(TZV)64 basis set as a function of the Cr–Cr distance.
The large number of HF solutions that are energetically
close to each other, shown in Fig. 3, provides a novel
characterization of the substantial multireference correla-
tion in Cr2. The number of energetically close HF solu-
tions is comparable in the STO-6G basis, indicating that
this feature is not significantly dependent upon the basis set.
The solution found by DIIS has D4h symmetry for all R
whereas the solution found by rc-SDP has D4h symmetry for
R < 1.2 Å and C2 symmetry for R > 1.2 Å. Although the rc-
SDP solution is symmetry-broken for R > 1.2 Å, it is globally
optimal within the bound provided by lb-SDP. Further verifi-
cation of the rc-SDP solutions being HF minima is provided
by the fact that DIIS is able to obtain them when they are
employed as initial guesses.

Changes in Hartree-Fock energies and densities can im-
pact correlation energy calculations in two ways: (1) any
change in the Hartree-Fock energy changes the correlation
energy by its very definition and (2) any change in the
Hartree-Fock density (or the Hilbert space spanned by the
molecular orbitals) changes the reference wave function em-
ployed in many-electron correlation methods including cou-
pled cluster48–50 and parametric RDM methods.65, 66 In this
and other examples considered, rc-SDP helps to identify
symmetry-broken Hartree-Fock solutions that often gener-
ate improved CCSD solutions. While rc-SDP may identify
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FIG. 3. All the local Hartree-Fock solutions found are shown in order to
provide a visual depiction of the substantial multireference correlation that
exists in Cr2 and the concomitant difficulty in obtaining global Hartree-Fock
solutions.

a piecewise smooth potential energy surface, each piece can
be analytically continued to generate a smooth Hartree-Fock
surface from which a smooth CCSD surface can be computed.
Cr2 is known to be extremely challenging for single-reference
methods like coupled cluster theories.67 Figure 4 explores the
effect of using the global symmetry-broken C2 solution rather
than the local D4h solution as the reference wave function in
CCSD. The results in Fig. 4 show that much of the failure
noted in the literature can be attributed to the D4h reference
wave function rather than CCSD. While CCSD with the D4h

reference diverges beyond 1.7 Å , CCSD with the C2 refer-
ence at least yields a physically realistic dissociation curve
for the ground state.

D. CN stretch

The CN radical is of astrophysical interest due its pres-
ence in the interstellar medium.68 Although its low-lying
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FIG. 4. The potential energy curves of Cr2 from CCSD with the D4h and C2
Hartree-Fock wave functions are compared. The CCSD method applied with
the D4h reference yields an unphysical curve. In contrast, CCSD with the C2
reference yields a physically realistic dissociation curve. Consequently, the
energy divergence from CCSD can be attributed to the D4h reference wave
function.
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FIG. 5. The Hartree-Fock energies from rc-SDP and DIIS and the lower
bound from lb-SDP are shown as functions of the C–N internuclear distance.
In spite of there being multiple solutions, rc-SDP successfully obtains the
lowest energy solution for all internuclear distances. By 3 Å the difference
between the C4v and C2v solutions is 0.156 a.u. (98 kcal/mol).

excited states69 enhance its utility as a optical probe70, 71 for
studying various properties, they also make it a multirefer-
enced system. Figure 5 shows various HF energy curves and
the lower bound in the cc-pVDZ basis72 plotted as a function
of the C–N internuclear distance R. The C4v, C2v, and C′

2v

curves were obtained using DIIS. The rc-SDP curve corre-
sponds to C4v for R < 1.2 Å and to C2v for all other values
of R. The rc-SDP method manages to obtain the lowest curve
among three different Hartree-Fock curves for all values of R.
As is evident from the figure, the ground-state Hartree-Fock
curve is a piecewise defined function of the three Hartree-
Fock curves with there being three points of non-smoothness
where the curves intersect at R = 1.2, 1.8, and 2.25 Å . If DIIS
is given the Hückel guess, it converges to different curves in
different regions which are not always the lowest solutions
for those regions. If DIIS is used to generate the curve from
left to right with the solution for a smaller bond distance be-
ing the guess for a larger bond distance, only the C4v curve
is obtained. Consistent generation of the C4v curve might be
the reason why the C2v and C’2v curves have not been previ-
ously reported.73 The fact that the lb-SDP curve is never lower
than rc-SDP by more than 0.006 a.u. for R ≤ 1.6 Å provides a
certificate of global optimality for those rc-SDP points within
that threshold. After 1.6 Å rc-SDP likely continues to give
the globally optimal curve although we do not have a formal
mathematical guarantee. This is corroborated by the fact that
the rc-SDP (and C2v) curve is size consistent, meaning that
it is asymptotically equal to exactly the sum of Hartree-Fock
energies of doublet N and singlet C. The energy of doublet
N and singlet C is the same from both rc-SDP and DIIS and
certified by lb-SDP to be globally optimal within 0.002 a.u.
and 0.0004 a.u., respectively.

It is also worth noting that rc-SDP (and the C2v curve)
does not dissociate CN into quadruplet N and triplet C in spite
of them being lower in energy than doublet N and singlet C,
respectively. This is not due to convergence to a local mini-
mum but instead is due to the inability of “restricted” orbitals
in ROHF (and RHF) to dissociate a molecule into fragments
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FIG. 6. The potential energy curves of CN from CCSD with the C4v and
C2v Hartree-Fock references are shown as functions of the C–N internu-
clear distance. Like the C4v and C2v Hartree-Fock solutions, the C4v and C2v
CCSD solutions provide good descriptions at equilibrium and dissociation,
respectively.

which have spatially separated electron pairs. This is a conse-
quence of using the same spatial orbital to describe electron
pairs. Since (doublet) CN has one unpaired electron, ROHF
can describe its dissociation into fragments which have a total
of one unpaired electron at most which is why it dissociates
CN into doublet N and singlet C.

Figure 6 shows the CCSD curves obtained using the C4v

and C2v Hartree-Fock solutions of which the latter was iden-
tified using rc-SDP. As is evident from the figure, although
the CCSD with the C4v reference curve is lower in energy for
R ≤ 1.4 Å , it rises rapidly after that point as it dissociates
into charged species. The CCSD with the C2v reference curve
is lower in energy after 1.4 Å and gives a qualitatively correct
representation of dissociation into neutral species. It is also
worth noting that the C4v and C2v Hartree-Fock curves cross at
1.2 Å, which is before the corresponding CCSD curves cross.

E. NO2 bend

The NO2 radical is known to have a complicated, ex-
tensively studied photochemistry.74 It has a conical inter-
section between the ground and first excited states.75, 76

Figure 7 shows various HF energy curves (C2v symmetry) and
the lower bound in the cc-pVDZ basis72 plotted as a function
of the O–N–O angle (θ ) for a symmetric configuration with a
N–O bond length of 1.197 Å . Despite the existence of mul-
tiple HF minima which are energetically close, rc-SDP ob-
tains the lowest minimum for all bond angles. For θ ≤ 70◦,
θ ≥ 135◦ lb-SDP certifies the C2v curve from both DIIS and
rc-SDP to be globally optimal. Furthermore, since lb-SDP is
never lower than rc-SDP by more than 0.01 a.u., the entire
rc-SDP curve is globally optimal within that threshold. Al-
though the rc-SDP curve for 85◦ ≤ θ ≤ 120◦ corresponds to
a saddle point on the complete NO2 potential energy surface
(as a function of the two bond lengths in addition to the bond
angle) it is indeed the global minimum (within 0.01 a.u.) for
the fixed values of N–O bond lengths used in the calculation.
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FIG. 7. The Hartree-Fock energies from rc-SDP and DIIS (all of which cor-
respond to C2v symmetry) and the lower bound from lb-SDP are shown as
functions of the ONO angle. Despite there being multiple C2v solutions, rc-
SDP always finds the energetically lowest solution. Furthermore, lb-SDP cer-
tifies global optimality for the solutions <70◦ and >135◦.

IV. DISCUSSION

A RDM formulation of Hartree-Fock theory, based on
semidefinite programming, has been presented that yields up-
per and lower bounds on the Hartree-Fock solution. When
these bounds are equal, they provide a certificate guarantee-
ing the globally optimal Hartree-Fock solution. As electrons
become more strongly correlated, methods for Hartree-Fock
based on the self-consistent-field approach like DIIS con-
verge to stationary points of Hartree-Fock theory with poten-
tially non-global energies and densities. In most instances we
have been able to certify global optimality for known solu-
tions of Hartree-Fock theory for the first time. Although there
are methods to determine whether the obtained stationary
point is a local minimum, maximum, or saddle point,77, 78 our
approach is unique in that it certifies global optimality.

Semidefinite relaxation of Hartree-Fock theory, which we
derived in Sec. II B 3, yields a rigorous lower bound on the
Hartree-Fock energy. In contrast, wave function approaches
to Hartree-Fock theory, such as the traditional optimization
of a Slater determinant, yield upper bounds on the Hartree-
Fock energy. Minimization of the electronic energy with re-
spect to the orbitals of a Slater determinant generates a local
stationary point which may or may not be the global mini-
mum. Higher derivatives, such as those found in stability anal-
ysis, can be employed to search for additional local minima,
each of which provides an upper bound on the energy of the
global minimum. While not previously developed, the lower-
bound approach enables us in many cases to certify that a so-
lution is the global minimum of Hartree-Fock theory. If the
1-RDM obtained by the lower-bound SDP algorithm is idem-
potent, then the 1-RDM and its associated energy represent
the global solution to the Hartree-Fock calculation. Further-
more, even if the 1-RDM is not idempotent, agreement of
the lower-bound energy with the upper-bound energy from ei-
ther a traditional wave function-based Hartree-Fock calcula-
tion or a SDP-based upper-bound calculation guarantees that
the computed energy is the global minimum. As shown in

Sec. II, an upper bound to the Hartree-Fock energy can be
computed through a rank-constrained SDP in which a non-
convex rank constraint is added to the optimization. Impor-
tantly, this upper-bound formulation shows that Hartree-Fock
theory is convex except for the presence of the rank constraint.

Symmetry breaking and restoration can be employed
to capture correlation effects at a lower computational
cost.79 Recently, they have been employed in variational
quasi-particle theory80 to compute the ground-state energies
from an antisymmetrized geminal power wave function81 at
an r4 computational cost where r is the number of orbitals. In
the presence of strong electron correlation the lowest energy
solutions of Hartree-Fock theory can be spatially symmetry
broken. We employ the SDP methods to distinguish the
global solution from multiple local solutions of different spa-
tial symmetries. The symmetry breaking generates multiple
wave functions at the global minimum that are energetically
degenerate. In the present case symmetry restoration can
be accomplished by two methods. First, the full molecular
symmetry can be reestablished by taking the ensemble of
the energetically degenerate symmetry-broken solutions. The
ensemble nature of the ground-state density matrix is a con-
sequence of pursuing a mean-field description of the strongly
correlated system. Second, a linear combination of the
symmetry-broken solutions can be taken to generate a wave
function by a non-orthogonal configuration interaction.82, 83

In the second approach the degenerate Hartree-Fock solutions
become entangled to form a pure density matrix composed of
a single correlated wave function. While in the present work
we pursue the first approach, the second approach provides
insight into how the different symmetry-broken solutions of
Hartree-Fock theory contribute information to the correlated
ground-state wave function.

Direct computation of the 2-RDM has been previously
accomplished by minimizing the energy as a functional of the
2-RDM subject to N-representability conditions.24, 26–37 Con-
strained optimization is performed by SDP. Although we have
taken a different path in the derivation of the SDP algorithms
for Hartree-Fock theory, they can be viewed within variational
2-RDM theory as the addition of further constraints on the 2-
RDM to ensure that it represents the mean-field (or Hartree-
Fock) limit. The upper-bound algorithm requires a nonconvex
rank constraint, and the lower-bound algorithm requires re-
laxed idempotency conditions. As described above, the com-
bination of the upper-bound and lower-bound SDP algorithms
provides a mechanism for certifying the global minimum of
Hartree-Fock theory. We have shown that global solutions are
useful for seeding either wave function or reduced density
matrix methods for describing strongly correlated quantum
systems. The SDP-based restricted closed- and open-shell
Hartree-Fock method, described here, is directly extendable
to an unrestricted Hartree-Fock method, which will be pre-
sented elsewhere.
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