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Abstract
This paper studies undefined behavior arising in systems 
programming languages such as C/C++. Undefined behav-
ior bugs lead to unpredictable and subtle systems behavior, 
and their effects can be further amplified by compiler opti-
mizations. Undefined behavior bugs are present in many 
systems, including the Linux kernel and the Postgres data-
base. The consequences range from incorrect functionality 
to missing security checks.

This paper proposes a formal and practical approach, 
which finds undefined behavior bugs by finding “unstable 
code” in terms of optimizations that leverage undefined 
behavior. Using this approach, we introduce a new static 
checker called Stack that precisely identifies undefined 
behavior bugs. Applying Stack to widely used systems has 
uncovered 161 new bugs that have been confirmed and fixed 
by developers.

1. INTRODUCTION
The specifications of many programming languages desig-
nate certain code fragments as having undefined behavior 
(Section 2.3 in Ref.18). For instance, in C “use of a nonportable 
or erroneous program construct or of erroneous data” leads 
to undefined behavior (Section 3.4.3 in Ref.23); a comprehen-
sive list of undefined behavior is available in the C language 
specification (Section J.2 in Ref.23).

One category of undefined behavior is simply program-
ming mistakes, such as buffer overflow and null pointer deref-
erence. The other category is nonportable operations, the 
hardware implementations of which often have subtle differ-
ences. For example, when signed integer overflow or division 
by zero occurs, a division instruction traps on x86 (Section 
3.2 in Ref.22), while it silently produces an undefined result 
on PowerPC (Section 3.3.8 in Ref.30). Another example is shift 
instructions: left-shifting a 32-bit one by 32 bits produces zero 
on ARM and PowerPC, but one on x86; however, left-shifting 
a 32-bit one by 64 bits produces zero on ARM, but one on x86 
and PowerPC.

By designating certain programming mistakes and non-
portable operations as having undefined behavior, the specifi-
cations give compilers the freedom to generate instructions 
that behave in arbitrary ways in those cases, allowing com-
pilers to generate efficient and portable code without extra 
checks. For example, many higher-level programming lan-
guages (e.g., Java) have well-defined handling (e.g., runtime 
exceptions) on buffer overflow, and the compiler would 
need to insert extra bounds checks for memory access opera-
tions. However, the C/C++ compiler does not to need to insert 
bounds checks, as out-of-bounds cases are undefined. 

It is the programmer’s responsibility to avoid undefined 
behavior.

According to the C/C++ specifications, programs that invoke 
undefined behavior can have arbitrary problems. As one sum-
marized, “permissible undefined behavior ranges from ignoring 
the situation completely with unpredictable results, to having 
demons fly out of your nose.”45 But what happens in practice? 
The rest of this paper will show that modern compilers increas-
ingly exploit undefined behavior to perform aggressive optimi-
zations; with these optimizations many programs can produce 
surprising results that programmers did not anticipate.

2. RISKS OF UNDEFINED BEHAVIOR
One risk of undefined behavior is that a program will observe 
different behavior on different hardware architectures, 
operating systems, or compilers. For example, a program 
that performs an oversized left-shift will observe different 
results on ARM and x86 processors. As another example, 
consider a simple SQL query:

SELECT ((-9223372036854775808) : : int8) / (-1);

This query caused signed integer overflow in the Postgres 
database server, which on a 32-bit Windows system did not 
cause any problems, but on a 64-bit Windows system caused 
the server to crash, due to the different behavior of division 
instructions on the two systems.44

In addition, compiler optimizations can amplify the effects 
of undefined behavior. For example, consider the pointer 
overflow check buf + len < buf shown in Figure 1, where 
buf is a pointer and len is a positive integer. The program-
mer’s intention is to catch the case when len is so large that 
buf + len wraps around and bypasses the first check in 
Figure 1. We have found similar checks in a number of sys-
tems, including the Chromium browser, the Linux kernel, 
and the Python interpreter.44

While this check appears to work with a flat address space, 
it fails on a segmented architecture (Section 6.3.2.3 in Ref.32). 
Therefore, the C standard states that an overflowed pointer 
is undefined (Section 6.5.6 in Ref.23(p8)), which allows gcc to 
simply assume that no pointer overflow ever occurs on any 
architecture. Under this assumption, buf + len must be larger 
than buf, and thus the “overflow” check always evaluates to 

The original version of this paper is entitled “Towards 
 Optimization-Safe Systems: Analyzing the Impact of 
Undefined Behavior” and was published in the Proceedings 
of the 24th ACM Symposium on Operating Systems Principles 
(SOSP’13).44
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false. Consequently, gcc removes the check, paving the way 
for an attack to the system.17

As another example, Figure 2 shows a mild defect in the 
Linux kernel, where the programmer incorrectly placed the 
dereference tun−>sk before the null pointer check !tun. 
Normally, the kernel forbids access to page zero; a null tun 
pointing to page zero causes a kernel oops at tun−>sk and 
terminates the current process. Even if page zero is made 
accessible (e.g., via mmap or some other exploits24, 38), the 
check !tun would catch a null tun and prevent any further 
exploits. In either case, an adversary should not be able to go 
beyond the null pointer check.

Unfortunately, when gcc first sees the dereference 
tun−>sk, it concludes that the pointer tun must be non-null, 
because the C standard states that dereferencing a null 
pointer is undefined (Section 6.5.3 in Ref.23). Since tun is 
non-null, gcc further determines that the null pointer check 

is unnecessary and eliminates the check, making a privilege 
escalation exploit possible that would not otherwise be.13

To further understand how compiler optimizations exploit 
undefined behavior, we conduct a study using six real-world 
examples in the form of sanity checks, as shown in the top 
row of Figure 3. All of these checks may evaluate to false 
and become dead code under optimizations, because they 
invoke undefined behavior. We will use them to test existing 
compilers next.

• The check p + 100 < p resembles Figure 1.
• The null pointer check !p with an earlier dereference 

resembles Figure 2.
• The check x + 100 < x with a signed integer x caused a 

harsh debate in gcc’s bugzilla.5

• The check x + + 100 < 0 tests whether optimizations 
perform more elaborate reasoning; x+ is known to be 
positive.

• The shift check !(1 << x) was intended to catch a large 
shifting amount x, from a patch to the ext4 file system.6

• The check abs (x) < 0, intended to catch the most nega-
tive value (i.e., −2n−1), tests whether optimizations under-
stand library functions.7

We chose 12 well-known C/C++ compilers to see what 
they do with the above code examples: 2 open-source com-
pilers (gcc and clang) and 10 recent commercial compil-
ers (HP’s aCC, ARM’s armcc, Intel’s icc, Microsoft’s msvc, 
AMD’s open64, PathScale’s pathcc, Oracle’s suncc, TI’s 
TMS320C6000, Wind River’s Diab compiler, and IBM’s XL 
C compiler). For every code example, we test whether a com-
piler optimizes the check into false, and if so, we find the low-
est optimization level −0n at which it happens. The result is 
shown in Figure 3.

We further use gcc and clang to study the evolution of 
optimizations, as the history is easily accessible. For gcc, we 
chose the following representative versions that span more 
than a decade:

struct tun_struct *tun = ...;
struct sock *sk = tun->sk;
if (!tun)

return POLLERR;
/* write to address based on tun */

Figure 2. A null pointer dereference vulnerability (CVE-2009-1897) in 
the Linux kernel, where the dereference of pointer tun is before the 
null pointer check. The code becomes exploitable as gcc optimizes 
away the null pointer check.13

if (p + 100 < p) ∗p; if (!p) if (x + 100 < x) if (x+ + 100 < 0) if (!(1 << x)) if (abs(x) < 0)

O1

gcc-4.2.1 O0 – O2 O2
gcc-4.9.1 – O2
clang-1.0 O1
clang-3.4 O1 – O1 – O1 –

O3
O2

O1
open64-4.5.2 O1 – O2 O2
pathcc-1.0.0 O1 – O2 O2

gcc-3.4.6 – O2 O1

icc-14.0.0 –
msvc-11.0 –

suncc-5.12 – O3
ti-7.4.2 O0 –

– –

– –

gcc-2.95.3 – –

armcc-5.02 – –

windriver-5.9.2 – – O0

– – –
– – –
– –

– – –

– –
– –

– – –
xlc-12.1 O3

O2 O2 O2 O2
– – – – –

aCC-6.25 – – – – –

O2 O1 O2
– – – –

– – – –
O0 O2

– – – – –

Figure 3. Optimizations of unstable code in popular compilers. This includes gcc, clang, aCC, armcc, icc, msvc, open64, pathcc, suncc, TI’s 
TMS320C6000, Wind River’s Diab compiler, and IBM’s XL C compiler. In the examples, p is a pointer, x is a signed integer, and x + is a positive 
signed integer. In each cell, “0n” means that the specific version of the compiler optimizes the check into false and discards it at optimization 
level n, while “−” means that the compiler does not discard the check at any level.

char *buf = ...;
char *buf_end = ...;
unsigned int len = ...;
if (buf + len >= buf_end)

return;  /* len too large */
if (buf + len < buf)

return;  /* overflow, buf+len wrapped around */
/* write to buf[0..len-1] */

Figure 1. A pointer overflow check found in several code bases. The code 
becomes vulnerable as gcc optimizes away the second if statement.17
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• gcc 2.95.3, the last 2.x, released in 2001;
• gcc 3.4.6, the last 3.x, released in 2006;
• gcc 4.2.1, the last GPLv2 version, released in 2007 and 

still widely used in BSD systems;
• gcc 4.9.1, released in 2014.

For comparison, we chose two versions of clang, 1.0 released 
in 2009, and 3.4 released in 2014.

We can see that exploiting undefined behavior to elimi-
nate code is common among compilers, not just in recent 
gcc versions as some programmers have claimed.26 Even gcc 
2.95.3 eliminates x + 100 < x. Some compilers eliminates code 
that gcc does not (e.g., clang on 1 << x).

These optimizations can lead to baffling results even 
for veteran C programmers, because code unrelated to the 
undefined behavior gets optimized away or transformed 
in unexpected ways. Such bugs lead to spirited debates 
between compiler developers and practitioners that use 
the C language but do not adhere to the letter of the official 
C specification. Practitioners describe these optimizations 
as “make no sense”40 and merely the compiler’s “creative 
reinterpretation of basic C semantics.”26 On the other hand, 
compiler writers argue that the optimizations are legal 
under the specification; it is the “broken code”5 that pro-
grammers should fix. Worse yet, as compilers evolve, new 
optimizations are introduced that may break code that 
used to work before; as we show in Figure 3, many compilers 
have become more aggressive over the past 20 years with 
such optimizations.

3. CHALLENGES OF UNDEFINED  
BEHAVIOR DETECTION
Given the wide range of problems that undefined behavior 
can cause, what should programmers do about it? The naïve 
approach is to require programmers to carefully read and 
understand the C language specification, so that they can 
write careful code that avoids invoking undefined behavior. 
Unfortunately, as we demonstrate in Section 2, even experi-
enced C programmers do not fully understand the intrica-
cies of the C language, and it is exceedingly difficult to avoid 
invoking undefined behavior in practice.

Since optimizations often amplify the problems due to  
undefined behavior, some programmers (such as the Postgres 
developers) have tried reducing the compiler’s optimization 
level, so that aggressive optimizations do not take advantage 
of undefined behavior bugs in their code. As we see in Figure 3, 
compilers are inconsistent about the optimization levels at 
which they take advantage of undefined behavior, and sev-
eral compilers make undefined behavior optimizations even 
at optimization level zero (which should, in principle, dis-
able all optimizations).

Runtime checks can be used to detect certain undefined 
behaviors at runtime; for example, gcc provides an −ftrapv 
option to trap on signed integer overflow, and clang provides 
an −fsanitize=undefined option to trap several more 
undefined behaviors. There have also been attempts at pro-
viding a more “programmer-friendly” refinement of C,14, 29  
which has less undefined behavior, though in general it 
remains unclear how to outlaw undefined behavior from 

the specification without incurring significant perfor-
mance overhead.14, 42

Certain static-analysis and model checkers identify classes 
of bugs due to undefined behavior. For example, compilers 
can catch some obvious cases (e.g., using gcc’s −Wall), but 
in general this is challenging (Part 3 in Ref.27); tools that find 
buffer overflow bugs11 can be viewed as finding undefined 
behavior bugs, because referencing a location outside of a 
buffer’s range is undefined behavior. See Section 6 for a more 
detailed discussion of related work.

4. APPROACH: FINDING DIVERGENT BEHAVIOR
Ideally, compilers would generate warnings for developers 
when an application invokes undefined behavior, and this 
paper takes a static analysis approach to finding unde-
fined behavior bugs. This boils down to deciding, for each 
operation in the program, whether it can be invoked with 
arguments that lead to undefined behavior. Since many 
operations in C can invoke undefined behavior (e.g., signed 
integer operations, pointer arithmetic), producing a warning 
for every operation would overwhelm the developer, so it is 
important for the analysis to be precise. Global reasoning 
can precisely determine what values an argument to each 
operation can take, but it does not scale to large programs.

Instead of performing global reasoning, our goal is to 
find local invariants (or likely invariants) on arguments to 
a given operation. We are willing to be incomplete: if there 
are not enough local invariants, we are willing to not report 
potential problems. On the other hand, we would like to 
ensure that every report is likely to be a real problem.1

The local likely invariant that we exploit in this paper 
has to do with unnecessary source code written by program-
mers. By “unnecessary source code” we mean dead code, 
unnecessarily complex expressions that can be transformed 
into a simpler form, etc. We expect that all of the source 
code that programmers write should either be necessary 
code, or it should be clearly unnecessary; that is, it should 
be clear from local context that the code is unnecessary, 
without relying on subtle semantics of the C language. For 
example, the programmer might write if (0) {. . .}, which is 
clearly unnecessary code. However, our likely invariant tells us 
that programmers would never write code like a = b << c; 
if (c >= 32) {. . .}, where b is a 32-bit integer. The if statement 
in this code snippet is unnecessary code, because c could never 
be 32 or greater due to undefined behavior in the preceding 
left-shift. The core of our invariant is that programmers are 
unlikely to write such subtly unnecessary code.

To formalize this invariant, we need to distinguish “live 
code” (code that is always necessary), “dead code” (code 
that is always unnecessary), and “unstable code” (code that 
is subtly unnecessary). We do this by considering the dif-
ferent possible interpretations that the programmer might 
have for the C language specification. In particular, we con-
sider C to be the language’s official specification, and C′ to 
be the specification that the programmer believes C has. For 
the purposes of this paper, C′ differs from C in which opera-
tions lead to undefined behavior. For example, a program-
mer might expect shifts to be well-defined for all possible 
arguments; this is one such possible C′. In other words, C′ is 
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5.1. A definition of unstable code
We now give a formal definition of unstable code. A code 
fragment e is a statement or expression at a particular source 
location in program P. If the compiler can transform the 
fragment e in a way that would change P’s behavior under C* 
but not under C, then e is unstable code.

Let P [e/e′ ] be a program formed by replacing e with 
some fragment e′ at the same source location. When is it 
legal for a compiler to transform P into P [e/e′], denoted as 
P � P [e/e′ ]? In a language specification without undefined 
behavior, the answer is straightforward: it is legal if for every 
input, both P and P [e/e′] produce the same result. In a lan-
guage specification with undefined behavior, the answer is 
more complicated; namely, it is legal if for every input, one 
of the following is true:

• both P and P [e/e′] produce the same results without 
invoking undefined behavior, or

• P invokes undefined behavior, in which case it does not 
matter what P [e/e′ ] does.

Using this notation, we define unstable code below.

Definition 1 (Unstable code). A code fragment e in program 
P is unstable w.r.t. language specifications C and C* iff there 
exists a fragment e′ such that P � P [e/e ′ ] is legal under C but 
not under C*.

For example, for the sanity checks listed in Figure 3, a C 
compiler is entitled to replace them with false, as this is legal 
according to the C specification, whereas a hypothetical C* 
compiler cannot do the same. Therefore, these checks are 
unstable code.

5.2. Algorithms for identifying unstable code
The above definition captures what unstable code is, but 
does not provide a way of finding unstable code, because it is 
difficult to reason about how an entire program will behave. 
As a proxy for a change in program behavior, Stack looks for 
code that can be transformed by some optimizer O under 
C but not under C*. In particular, Stack does this using a 
two-phase scheme:

1. run O without taking advantage of undefined behav-
ior, which captures optimizations under C*; and

2. run O again, this time taking advantage of undefined 
behavior, which captures (more aggressive) optimiza-
tions under C.

If O optimizes extra code in the second phase, we assume 
the reason O did not do so in the first phase is because it 
would have changed the program’s semantics under C*, and 
so Stack considers that code to be unstable.

Stack’s optimizer-based approach to finding unstable 
code will miss unstable code that a specific optimizer can-
not eliminate in the second phase, even if there exists some 
optimizer that could. This approach will also generate false 
reports if the optimizer is not aggressive enough in eliminat-
ing code in the first phase. Thus, one challenge in Stack’s 

a relaxed version of the official C, by assigning certain inter-
pretations to operations that have undefined behavior in C.

Using the notion of different language specifications, we 
say that a piece of code is live if, for every possible C′, the code 
is necessary. Conversely, a piece of code is dead if, for every 
possible C′, the code is unnecessary; this captures code like 
if (0) {. . .}. Finally, a piece of code is unstable if, for some C′ 
variants, it is unnecessary, but in other C′ variants, it is neces-
sary. This means that two programmers that do not precisely 
understand the details of the C specification might disagree 
about what the code is doing. As we demonstrate in the rest of 
this paper, this heuristic often indicates the presence of a bug.

Building on this invariant, we can now detect when a 
program is likely invoking undefined behavior. In particu-
lar, given an operation o in a function f, we compute the set 
of unnecessary code in f under different interpretations of 
undefined behavior at o. If the set of unnecessary code is 
the same for all possible interpretations, we cannot say any-
thing about whether o is likely to invoke undefined behavior. 
However, if the set of unnecessary code varies depending on 
what undefined behavior o triggers, this means that the pro-
grammer wrote unstable code. However, by our assumption, 
this should never happen, and we conclude that the program-
mer was likely thinking they’re writing live code, and simply 
did not realize that o would trigger undefined behavior for 
the same set of inputs that are required for the code to be live.

5. THE Stack TOOL
To find undefined behavior bugs using the above approach, 
we built a static analysis tool called Stack. In practice, it is 
difficult to enumerate and consider all possible C′ variants. 
Thus, to build a practical tool, we pick a single variant, called 
C*. C* defines a null pointer that maps to address zero, and 
wrap-around semantics for pointer and integer arithmetic.31 
We believe this captures the common semantics that pro-
grammers (mistakenly) believe C provides. Although our 
C* deals with only a subset of undefined behaviors in the 
C specification, a different C* could capture other seman-
tics that programmers might implicitly assume, or handle 
undefined behavior for other operations that our C* does 
not address.

Stack relies on an optimizer O to implicitly flag unnec-
essary code. Stack’s O eliminates dead code and performs 
expression simplifications under the semantics of C and C*, 
respectively. For code fragment e, if O is not able to rewrite 
e under neither semantics, Stack considers e as “live code”; 
if O is able to rewrite e under both semantics, e is “dead code”; 
if O is able to rewrite e under C but not C*, Stack reports it 
as “unstable code.”

Since Stack uses just two interpretations of the language 
specification (namely, C and C*), it might miss bugs that 
could arise under different interpretations. For instance, 
any code eliminated by O under C* would never trigger 
a warning from Stack, even if there might exist another 
C′ which would not allow eliminating that code. Stack’s 
approach could be extended to support multiple interpreta-
tions to address this potential shortcoming.
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design is coming up with an optimizer that is sufficiently 
aggressive to minimize these problems.

In order for this approach to work, Stack requires an optimizer 
that can selectively take advantage of undefined behavior. 
To build such optimizers, we formalize what it means to “take 
advantage of undefined behavior” in Section 5.2.1, by intro-
ducing the well-defined program assumption, which captures 
C’s assumption that programmers never write programs that 
invoke undefined behavior. Given an optimizer that can take 
explicit assumptions as input, Stack can turn on (or off) opti-
mizations based on undefined behavior by supplying (or not) 
the well-defined program assumption to the optimizer. We 
build two aggressive optimizers that follow this approach: one 
that eliminates unreachable code (Section 5.2.2) and one that 
simplifies unnecessary computation (Section 5.2.3).

Well-defined program assumption. We formalize what 
it means to take advantage of undefined behavior in an 
optimizer as follows. Consider a program with input x. Given 
a code fragment e, let Re(x) denote its reachability condition, 
which is true iff e will execute under input x; and let Ue(x) 
denote its undefined behavior condition, or UB condition 
for short, which indicates whether e exhibits undefined 
behavior on input x, as summarized in Figure 4.

Both Re(x) and Ue(x) are boolean expressions. For example, 
given a pointer dereference *p in expression e, one UB condi-
tion Ue(x) is p = NULL (i.e., causing a null pointer dereference).

Intuitively, in a well-defined program to dereference pointer 
p, p must be non-null. In other words, the negation of its UB 
condition, p ¹ NULL, must hold whenever the expression exe-
cutes. We generalize this below.

Definition 2 (Well-defined program assumption). 
A code fragment e is well-defined on an input x iff executing e never 
triggers undefined behavior at e:

Re(x) → ¬Ue(x). (1)

Furthermore, a program is well-defined on an input iff every frag-
ment of the program is well-defined on that input, denoted as ∆:

∆(x) = ∧
e ∈P

 Re(x) → ¬Ue(x).  (2)

Eliminating unreachable code. The first algorithm identifies 
unstable statements that can be eliminated (i.e., P � P [e/∅] 
where e is a statement). For example, if reaching a statement 
requires triggering undefined behavior, then that statement 
must be unreachable. We formalize this below.

Theorem 1 (Elimination). In a well-defined program P, an 
optimizer can eliminate code fragment e, if there is no input 
x that both reaches e and satisfies the well-defined program 
assumption ∆(x):

x : Re(x) ∧ ∆(x). (3)

The boolean expression Re(x) ∧ ∆(x) is referred as the elimination 
query.

Proof. Assuming ∆(x) is true, if the elimination query 
Re(x) ∧ ∆(x) always evaluates to false, then Re(x) must be false, 
meaning that e must be unreachable. One can then safely 
eliminate e. £

Consider Figure 2 as an example. There is one input tun 
in this program. To pass the earlier if check, the reachability 
condition of the return statement is !tun. There is one 
UB condition tun = NULL, from the pointer dereference 
tun−>sk, the reachability condition of which is true. As a 
result, the elimination query Re(x) ∧ ∆(x) for the return 
statement is:

!tun ∧ (true → ¬(tun =  NULL)).

Clearly, there is no tun that satisfies this query. Therefore, 
one can eliminate the return statement.

With the above definition it is easy to construct an algo-
rithm to identify unstable code due to code elimination 
(see Figure 5). The algorithm first removes unreachable frag-
ments without the well-defined program assumption, and 
then warns against fragments that become unreachable 
with this assumption. The latter are unstable code.

Code fragment Sufficient condition Undefined behavior

Core language:
p + x p∞ + x∞ ∉ [0, 2n −1]
∗p p = NULL Null pointer dereference
x ops y x∞ ops y∞∞∉ [−2n−1, 2n−1 −1]∞
x / y, x % y Division by zero
x << y, x >> y

y = 0
y  < 0 ∨ y ≥ n Oversized shift

a[x] x  < 0 ∨ x ≥ ARRAY_SIZE(a)

Pointer overflow

Signed integer overflow

Buffer overflow

Standard library:
abs(x) x = –2n–1 Absolute value overflow
memcpy(dst, src, len) |dst – src| < len Overlapping memory copy
use q after free(p) alias(p, q) Use after free
use q after p′ := realloc(p, ...) alias(p, q) ∧ p′ ≠ NULL Use after realloc

Figure 4. Examples of C/C++ code fragments and their undefined behavior conditions. We describe their sufficient (though not necessary) 
conditions under which the code is undefined (Section J.2 in Ref.23). Here p, p ′, q are n-bit pointers; x, y are n-bit integers; a is an array, the 
capacity of which is denoted as ARRAY_SIZE(a); ops refers to binary operators +, −, *, /, % over signed integers; x∞ means to consider x as 
infinitely ranged; NULL is the null pointer; alias(p, q) predicates whether p and q point to the same object.
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false. This time the simplification query is:

( p + 100 < p) ¹ false 
∧ true ∧ (true → ¬( p∞ + 100∞ ∉ [0, 2n −1])).

Since there is no pointer p that satisfies this query, one can 
fold p + 100 < p into false.

With the above definition it is straightforward to construct 
an algorithm to identify unstable code due to simplification 
(see Figure 6). The algorithm consults an oracle for every pos-
sible simpler form e′ for expression e. Similar to elimination, 
it warns if it finds e′ that is equivalent to e only with the well-
defined program assumption.

5.3. Implementation
We implemented Stack using the LLVM compiler frame-
work28 and the Boolector solver.4 Stack consists of approxi-
mately 4000 lines of C++ code. To make the tool scale to large 
code bases, Stack implements an approximate version of the 
algorithms described in Section 5.2. Interested readers can 
refer to our SOSP paper for details.44

Stack focuses on identifying unstable code by exploring 
two basic optimizations, elimination because of unreachabil-
ity and simplification because of unnecessary computation. 
It is possible to exploit the well-defined program assumption 
in other forms. For example, instead of discarding code, some 
optimizations reorder instructions and produce unwanted 
code due to memory aliasing41 or data races,3 which Stack does 
not implement.

Stack implements two oracles, boolean and algebra, 
for proposing new expressions for simplification. One can 
extend it by introducing new oracles.

5.4. Main results
From July 2012 to March 2013, we periodically applied 
Stack to systems software written in C/C++, including OS 
kernels, virtual machines, databases, multimedia encoders/
decoders, language runtimes, and security libraries. Based 
on Stack’s bug reports, we submitted patches to the corre-
sponding developers. The developers confirmed and fixed 
161 new bugs.

We also applied Stack to all 17,432 packages in the Debian 
Wheezy archive as of March 24, 2013. Stack checked 8575 
of them that contained C/C++ code. Building and analyz-
ing these packages took approximately 150 CPU-days on 

Simplifying unnecessary computation. The second algo-
rithm identifies unstable expressions that can be optimized 
into a simpler form (i.e., P � P [e/e ′] where e and e′ are 
expressions). For example, if evaluating a boolean expression 
to true requires triggering undefined behavior, then that 
expression must evaluate to false. We formalize this below.

Theorem 2 (Simplification). In a well-defined program 
P, an optimizer can simplify expression e with another e′, if there 
is no input x that evaluates e(x) and e′(x) to different values, 
while both reaching e and satisfying the well-defined program 
assumption ∆(x):

∃e′x : e(x) ¹ e′(x) ∧ Re(x) ∧ ∆(x). (4)

The boolean expression e(x) ¹ e′(x) ∧ Re(x) ∧ ∆(x) is referred as 
the simplification query.

Proof. Assuming ∆(x) is true, if the simplification query 
e(x) ¹ e′(x) ∧ Re(x) ∧ ∆(x) always evaluates to false, then either 
e(x) = e′(x), meaning that they evaluate to the same value; or 
Re(x) is false, meaning that e is unreachable. In either case, 
one can safely replace e with e′. £

Simplification relies on an oracle to propose e′ for a given 
expression e. Note that there is no restriction on the pro-
posed expression e′. In practice, it should be simpler than 
the original e since compilers tend to simplify code. Stack 
currently implements two oracles:

• Boolean oracle: propose true and false in turn for a 
boolean expression, enumerating possible values.

• Algebra oracle: propose to eliminate common terms on 
both sides of a comparison if one side is a subexpres-
sion of the other. It is useful for simplifying noncon-
stant expressions, such as proposing y < 0 for x + y < x, 
by eliminating x from both sides.

As an example, consider simplifying p + 100 < p using the 
boolean oracle, where p is a pointer. For simplicity assume its 
reachability condition is true. From Figure 4, the UB condi-
tion of p + 100 is p∞ + 100∞ ∉ [0, 2n − 1]. The boolean oracle first 
proposes true. The corresponding simplification query is:

( p + 100 < p) ¹ true 
∧ true ∧ (true → ¬(p∞ + 100∞ ∉ [0, 2n −1])).

Clearly, this is satisfiable. The boolean oracle then proposes 

Figure 5. The elimination algorithm. It reports unstable code that 
becomes unreachable with the well-defined program assumption.

1: procedure ELIMINATE(P)
2: for all e ∈ P do
3: if  Re(x) is UNSAT then
4: REMOVE(e) � trivially unreachable
5: else
6: if  Re (x)∧ ∆(x) is UNSAT then
7: REPORT(e)
8: REMOVE(e) � unstable code eliminated

1: procedure SIMPLIFY(P, oracle)
2: for all  e ∈ P do
3: for all e′ ∈ PROPOSE(oracle, e) do
4: if e(x) ≠ e′(x) ∧ Re(x) is UNSAT then
5: REPLACE(e, e′)
6: break � trivially simplified
7: if e(x) ≠ e′(x) ∧ Re(x) ∧ ∆(x) is UNSAT then
8: REPORT(e)
9: REPLACE(e, e′)

10: break � unstable code simplified

Figure 6. The simplification algorithm. It asks an oracle to propose 
a set of possible e′, and reports if any of them is equivalent to e with 
the well-defined program assumption.
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Intel Xeon E7-8870 2.4 GHz processors. For 3471 (40%) out 
of these 8575 packages, Stack issued at least one warning.

The results show that undefined behavior is widespread, 
and that Stack is useful for identifying undefined behavior. 
Please see our paper for more complete details.44

6. RELATED WORK
To the best of our knowledge, we present the first definition 
and static checker to find unstable code, but we build on sev-
eral pieces of related work. In particular, earlier surveys25, 35, 42 
and blog posts27, 33, 34 collect examples of unstable code, which 
motivated us to tackle this problem. We were also motivated 
by related techniques that can help with addressing unstable 
code, which we discuss next.

6.1. Testing strategies
Our experience with unstable code shows that in practice 
it is difficult for programmers to notice certain critical 
code fragments disappearing from the running system as 
they are silently discarded by the compiler. Maintaining a 
comprehensive test suite may help catch “vanished” code 
in such cases, though doing so often requires a substantial 
effort to achieve high code coverage through manual test 
cases. Programmers may also need to prepare a variety of 
testing environments as unstable code can be hardware- 
and compiler-dependent.

Automated tools such as KLEE9 can generate test cases 
with high coverage using symbolic execution. These tools, 
however, often fail to model undefined behavior correctly. 
Thus, they may interpret the program differently from the 
language standard and miss bugs. Consider a check x + 100 < x, 
where x is a signed integer. KLEE considers x + 100 to wrap 
around given a large x; in other words, the check catches a 
large x when executing in KLEE, even though gcc discards 
the check. Therefore, to detect unstable code, these tools 
need to be augmented with a model of undefined behavior, 
such as the one we proposed in this paper.

6.2. Optimization strategies
We believe that programmers should avoid undefined behav-
ior. However, overly aggressive compiler optimizations are 
also responsible for triggering these bugs. Traditionally, com-
pilers focused on producing fast and small code, even at the 
price of sacrificing security, as shown in Section 2. Compiler 
writers should rethink optimization strategies for generating 
secure code.

Consider x + 100 < x with a signed integer x again. The lan-
guage standard does allow compilers to consider the check to 
be false and discard it. In our experience, however, it is unlikely 
that the programmer intended the code to be removed. 
A programmer- friendly compiler could instead generate 
efficient overflow checking code, for example, by exploiting 
the overflow flag available on many processors after evaluat-
ing x + 100. This strategy, also allowed by the language stan-
dard, produces more secure code than discarding the check. 
Alternatively, the compiler could produce warnings when 
exploiting undefined behavior in a potentially surprising way.8

Currently, gcc provides several options to alter the com-
piler’s assumptions about undefined behavior, such as

• −fwrapv, assuming signed integer wraparound for 
addition, subtraction, and multiplication;

• -fno-strict-overflow, assuming pointer arith-
metic wraparound in addition to −fwrapv; and

• -fno-delete-null-pointer-checks,37 assuming 
unsafe null pointer dereferences.

These options can help reduce surprising optimizations, at 
the price of generating slower code. However, they cover an 
incomplete set of undefined behavior that may cause unsta-
ble code (e.g., no options for shift or division). Another down-
side is that these options are specific to gcc; other compilers 
may not support them or interpret them in a different way.42

6.3. Checkers
Many existing tools can detect undefined behavior as listed 
in Figure 4. For example, gcc provides the −ftrapv option to 
insert runtime checks for signed integer overflows (Section 
3.18 in Ref.36); IOC15 (now part of clang’s sanitizers12) and 
Kint43 cover a more complete set of integer errors; Saturn16 
finds null pointer dereferences; several dedicated C interpret-
ers such as kcc19 and Frama-C10 perform checks for undefined 
behavior. See Chen et al.’s survey11 for a summary.

In complement to these checkers that directly tar-
get undefined behavior, Stack finds unstable code that 
becomes dead due to undefined behavior. In this sense, 
Stack can be considered as a generalization of Engler et 
al.’s inconsistency cross-checking framework.16, 20 Stack, 
however, supports more expressive assumptions, such as 
pointer and integer operations.

As explored by existing checkers,2, 21, 39 dead code is an 
effective indicator of likely bugs. Stack finds undefined 
behavior bugs by finding subtly unnecessary code under dif-
ferent interpretations of the language specification.

6.4. Language design
Language designers may reconsider whether it is neces-
sary to declare certain constructs as undefined behavior, 
since reducing undefined behavior in the specification is 
likely to avoid unstable code. One example is left-shifting 
a signed 32-bit one by 31 bits. This is undefined behavior 
in C (Section 6.5.7 in Ref.23), even though the result is con-
sistently 0x80000000 on most modern processors. The 
committee for the C++ language standard has assigned 
well-defined semantics to this operation in the latest 
specification.29

7. SUMMARY
This paper demonstrates that undefined behavior bugs are 
much more prevalent than was previously believed, that they 
lead to a wide range of significant problems, that they are 
often misunderstood by system programmers, and that 
many popular compilers already perform unexpected opti-
mizations, leading to misbehaving or vulnerable systems. 
We introduced a new approach for identifying undefined 
behavior, and developed a static checker, Stack, to help 
system programmers identify and fix bugs. We hope that 
compiler writers will also rethink optimization strategies 
against undefined behavior. Finally, we hope this paper 
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encourages language designers to be careful with using 
undefined behavior in the language specification. Almost 
every language allows a developer to write programs that 
have undefined meaning according to the language specifi-
cation. This research indicates that being liberal with what 
is undefined can lead to subtle bugs. All of Stack’s source 
code is publicly available at http://css.csail.mit.edu/stack/.
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