
MARCH 2016 | VOL. 59 | NO. 3 | COMMUNICATIONS OF THE ACM 99

A Differential Approach to
Undefined Behavior Detection
By Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama

DOI:10.1145/2885256

Abstract
This paper studies undefined behavior arising in systems
programming languages such as C/C++. Undefined behav-
ior bugs lead to unpredictable and subtle systems behavior,
and their effects can be further amplified by compiler opti-
mizations. Undefined behavior bugs are present in many
systems, including the Linux kernel and the Postgres data-
base. The consequences range from incorrect functionality
to missing security checks.

This paper proposes a formal and practical approach,
which finds undefined behavior bugs by finding “unstable
code” in terms of optimizations that leverage undefined
behavior. Using this approach, we introduce a new static
checker called Stack that precisely identifies undefined
behavior bugs. Applying Stack to widely used systems has
uncovered 161 new bugs that have been confirmed and fixed
by developers.

1. INTRODUCTION
The specifications of many programming languages desig-
nate certain code fragments as having undefined behavior
(Section 2.3 in Ref.18). For instance, in C “use of a nonportable
or erroneous program construct or of erroneous data” leads
to undefined behavior (Section 3.4.3 in Ref.23); a comprehen-
sive list of undefined behavior is available in the C language
specification (Section J.2 in Ref.23).

One category of undefined behavior is simply program-
ming mistakes, such as buffer overflow and null pointer deref-
erence. The other category is nonportable operations, the
hardware implementations of which often have subtle differ-
ences. For example, when signed integer overflow or division
by zero occurs, a division instruction traps on x86 (Section
3.2 in Ref.22), while it silently produces an undefined result
on PowerPC (Section 3.3.8 in Ref.30). Another example is shift
instructions: left-shifting a 32-bit one by 32 bits produces zero
on ARM and PowerPC, but one on x86; however, left-shifting
a 32-bit one by 64 bits produces zero on ARM, but one on x86
and PowerPC.

By designating certain programming mistakes and non-
portable operations as having undefined behavior, the specifi-
cations give compilers the freedom to generate instructions
that behave in arbitrary ways in those cases, allowing com-
pilers to generate efficient and portable code without extra
checks. For example, many higher-level programming lan-
guages (e.g., Java) have well-defined handling (e.g., runtime
exceptions) on buffer overflow, and the compiler would
need to insert extra bounds checks for memory access opera-
tions. However, the C/C++ compiler does not to need to insert
bounds checks, as out-of-bounds cases are undefined.

It is the programmer’s responsibility to avoid undefined
behavior.

According to the C/C++ specifications, programs that invoke
undefined behavior can have arbitrary problems. As one sum-
marized, “permissible undefined behavior ranges from ignoring
the situation completely with unpredictable results, to having
demons fly out of your nose.”45 But what happens in practice?
The rest of this paper will show that modern compilers increas-
ingly exploit undefined behavior to perform aggressive optimi-
zations; with these optimizations many programs can produce
surprising results that programmers did not anticipate.

2. RISKS OF UNDEFINED BEHAVIOR
One risk of undefined behavior is that a program will observe
different behavior on different hardware architectures,
operating systems, or compilers. For example, a program
that performs an oversized left-shift will observe different
results on ARM and x86 processors. As another example,
consider a simple SQL query:

SELECT ((-9223372036854775808) : : int8) / (-1);

This query caused signed integer overflow in the Postgres
database server, which on a 32-bit Windows system did not
cause any problems, but on a 64-bit Windows system caused
the server to crash, due to the different behavior of division
instructions on the two systems.44

In addition, compiler optimizations can amplify the effects
of undefined behavior. For example, consider the pointer
overflow check buf + len < buf shown in Figure 1, where
buf is a pointer and len is a positive integer. The program-
mer’s intention is to catch the case when len is so large that
buf + len wraps around and bypasses the first check in
Figure 1. We have found similar checks in a number of sys-
tems, including the Chromium browser, the Linux kernel,
and the Python interpreter.44

While this check appears to work with a flat address space,
it fails on a segmented architecture (Section 6.3.2.3 in Ref.32).
Therefore, the C standard states that an overflowed pointer
is undefined (Section 6.5.6 in Ref.23(p8)), which allows gcc to
simply assume that no pointer overflow ever occurs on any
architecture. Under this assumption, buf + len must be larger
than buf, and thus the “overflow” check always evaluates to

The original version of this paper is entitled “Towards
 Optimization-Safe Systems: Analyzing the Impact of
Undefined Behavior” and was published in the Proceedings
of the 24th ACM Symposium on Operating Systems Principles
(SOSP’13).44

http://doi.acm.org/10.1145/2885256

research highlights

100 COMMUNICATIONS OF THE ACM | MARCH 2016 | VOL. 59 | NO. 3

false. Consequently, gcc removes the check, paving the way
for an attack to the system.17

As another example, Figure 2 shows a mild defect in the
Linux kernel, where the programmer incorrectly placed the
dereference tun−>sk before the null pointer check !tun.
Normally, the kernel forbids access to page zero; a null tun
pointing to page zero causes a kernel oops at tun−>sk and
terminates the current process. Even if page zero is made
accessible (e.g., via mmap or some other exploits24, 38), the
check !tun would catch a null tun and prevent any further
exploits. In either case, an adversary should not be able to go
beyond the null pointer check.

Unfortunately, when gcc first sees the dereference
tun−>sk, it concludes that the pointer tun must be non-null,
because the C standard states that dereferencing a null
pointer is undefined (Section 6.5.3 in Ref.23). Since tun is
non-null, gcc further determines that the null pointer check

is unnecessary and eliminates the check, making a privilege
escalation exploit possible that would not otherwise be.13

To further understand how compiler optimizations exploit
undefined behavior, we conduct a study using six real-world
examples in the form of sanity checks, as shown in the top
row of Figure 3. All of these checks may evaluate to false
and become dead code under optimizations, because they
invoke undefined behavior. We will use them to test existing
compilers next.

• The check p + 100 < p resembles Figure 1.
• The null pointer check !p with an earlier dereference

resembles Figure 2.
• The check x + 100 < x with a signed integer x caused a

harsh debate in gcc’s bugzilla.5

• The check x + + 100 < 0 tests whether optimizations
perform more elaborate reasoning; x+ is known to be
positive.

• The shift check !(1 << x) was intended to catch a large
shifting amount x, from a patch to the ext4 file system.6

• The check abs (x) < 0, intended to catch the most nega-
tive value (i.e., −2n−1), tests whether optimizations under-
stand library functions.7

We chose 12 well-known C/C++ compilers to see what
they do with the above code examples: 2 open-source com-
pilers (gcc and clang) and 10 recent commercial compil-
ers (HP’s aCC, ARM’s armcc, Intel’s icc, Microsoft’s msvc,
AMD’s open64, PathScale’s pathcc, Oracle’s suncc, TI’s
TMS320C6000, Wind River’s Diab compiler, and IBM’s XL
C compiler). For every code example, we test whether a com-
piler optimizes the check into false, and if so, we find the low-
est optimization level −0n at which it happens. The result is
shown in Figure 3.

We further use gcc and clang to study the evolution of
optimizations, as the history is easily accessible. For gcc, we
chose the following representative versions that span more
than a decade:

struct tun_struct *tun = ...;
struct sock *sk = tun->sk;
if (!tun)

return POLLERR;
/* write to address based on tun */

Figure 2. A null pointer dereference vulnerability (CVE-2009-1897) in
the Linux kernel, where the dereference of pointer tun is before the
null pointer check. The code becomes exploitable as gcc optimizes
away the null pointer check.13

if (p + 100 < p) ∗p; if (!p) if (x + 100 < x) if (x+ + 100 < 0) if (!(1 << x)) if (abs(x) < 0)

O1

gcc-4.2.1 O0 – O2 O2
gcc-4.9.1 – O2
clang-1.0 O1
clang-3.4 O1 – O1 – O1 –

O3
O2

O1
open64-4.5.2 O1 – O2 O2
pathcc-1.0.0 O1 – O2 O2

gcc-3.4.6 – O2 O1

icc-14.0.0 –
msvc-11.0 –

suncc-5.12 – O3
ti-7.4.2 O0 –

– –

– –

gcc-2.95.3 – –

armcc-5.02 – –

windriver-5.9.2 – – O0

– – –
– – –
– –

– – –

– –
– –

– – –
xlc-12.1 O3

O2 O2 O2 O2
– – – – –

aCC-6.25 – – – – –

O2 O1 O2
– – – –

– – – –
O0 O2

– – – – –

Figure 3. Optimizations of unstable code in popular compilers. This includes gcc, clang, aCC, armcc, icc, msvc, open64, pathcc, suncc, TI’s
TMS320C6000, Wind River’s Diab compiler, and IBM’s XL C compiler. In the examples, p is a pointer, x is a signed integer, and x + is a positive
signed integer. In each cell, “0n” means that the specific version of the compiler optimizes the check into false and discards it at optimization
level n, while “−” means that the compiler does not discard the check at any level.

char *buf = ...;
char *buf_end = ...;
unsigned int len = ...;
if (buf + len >= buf_end)

return; /* len too large */
if (buf + len < buf)

return; /* overflow, buf+len wrapped around */
/* write to buf[0..len-1] */

Figure 1. A pointer overflow check found in several code bases. The code
becomes vulnerable as gcc optimizes away the second if statement.17

MARCH 2016 | VOL. 59 | NO. 3 | COMMUNICATIONS OF THE ACM 101

• gcc 2.95.3, the last 2.x, released in 2001;
• gcc 3.4.6, the last 3.x, released in 2006;
• gcc 4.2.1, the last GPLv2 version, released in 2007 and

still widely used in BSD systems;
• gcc 4.9.1, released in 2014.

For comparison, we chose two versions of clang, 1.0 released
in 2009, and 3.4 released in 2014.

We can see that exploiting undefined behavior to elimi-
nate code is common among compilers, not just in recent
gcc versions as some programmers have claimed.26 Even gcc
2.95.3 eliminates x + 100 < x. Some compilers eliminates code
that gcc does not (e.g., clang on 1 << x).

These optimizations can lead to baffling results even
for veteran C programmers, because code unrelated to the
undefined behavior gets optimized away or transformed
in unexpected ways. Such bugs lead to spirited debates
between compiler developers and practitioners that use
the C language but do not adhere to the letter of the official
C specification. Practitioners describe these optimizations
as “make no sense”40 and merely the compiler’s “creative
reinterpretation of basic C semantics.”26 On the other hand,
compiler writers argue that the optimizations are legal
under the specification; it is the “broken code”5 that pro-
grammers should fix. Worse yet, as compilers evolve, new
optimizations are introduced that may break code that
used to work before; as we show in Figure 3, many compilers
have become more aggressive over the past 20 years with
such optimizations.

3. CHALLENGES OF UNDEFINED
BEHAVIOR DETECTION
Given the wide range of problems that undefined behavior
can cause, what should programmers do about it? The naïve
approach is to require programmers to carefully read and
understand the C language specification, so that they can
write careful code that avoids invoking undefined behavior.
Unfortunately, as we demonstrate in Section 2, even experi-
enced C programmers do not fully understand the intrica-
cies of the C language, and it is exceedingly difficult to avoid
invoking undefined behavior in practice.

Since optimizations often amplify the problems due to
undefined behavior, some programmers (such as the Postgres
developers) have tried reducing the compiler’s optimization
level, so that aggressive optimizations do not take advantage
of undefined behavior bugs in their code. As we see in Figure 3,
compilers are inconsistent about the optimization levels at
which they take advantage of undefined behavior, and sev-
eral compilers make undefined behavior optimizations even
at optimization level zero (which should, in principle, dis-
able all optimizations).

Runtime checks can be used to detect certain undefined
behaviors at runtime; for example, gcc provides an −ftrapv
option to trap on signed integer overflow, and clang provides
an −fsanitize=undefined option to trap several more
undefined behaviors. There have also been attempts at pro-
viding a more “programmer-friendly” refinement of C,14, 29
which has less undefined behavior, though in general it
remains unclear how to outlaw undefined behavior from

the specification without incurring significant perfor-
mance overhead.14, 42

Certain static-analysis and model checkers identify classes
of bugs due to undefined behavior. For example, compilers
can catch some obvious cases (e.g., using gcc’s −Wall), but
in general this is challenging (Part 3 in Ref.27); tools that find
buffer overflow bugs11 can be viewed as finding undefined
behavior bugs, because referencing a location outside of a
buffer’s range is undefined behavior. See Section 6 for a more
detailed discussion of related work.

4. APPROACH: FINDING DIVERGENT BEHAVIOR
Ideally, compilers would generate warnings for developers
when an application invokes undefined behavior, and this
paper takes a static analysis approach to finding unde-
fined behavior bugs. This boils down to deciding, for each
operation in the program, whether it can be invoked with
arguments that lead to undefined behavior. Since many
operations in C can invoke undefined behavior (e.g., signed
integer operations, pointer arithmetic), producing a warning
for every operation would overwhelm the developer, so it is
important for the analysis to be precise. Global reasoning
can precisely determine what values an argument to each
operation can take, but it does not scale to large programs.

Instead of performing global reasoning, our goal is to
find local invariants (or likely invariants) on arguments to
a given operation. We are willing to be incomplete: if there
are not enough local invariants, we are willing to not report
potential problems. On the other hand, we would like to
ensure that every report is likely to be a real problem.1

The local likely invariant that we exploit in this paper
has to do with unnecessary source code written by program-
mers. By “unnecessary source code” we mean dead code,
unnecessarily complex expressions that can be transformed
into a simpler form, etc. We expect that all of the source
code that programmers write should either be necessary
code, or it should be clearly unnecessary; that is, it should
be clear from local context that the code is unnecessary,
without relying on subtle semantics of the C language. For
example, the programmer might write if (0) {. . .}, which is
clearly unnecessary code. However, our likely invariant tells us
that programmers would never write code like a = b << c;
if (c >= 32) {. . .}, where b is a 32-bit integer. The if statement
in this code snippet is unnecessary code, because c could never
be 32 or greater due to undefined behavior in the preceding
left-shift. The core of our invariant is that programmers are
unlikely to write such subtly unnecessary code.

To formalize this invariant, we need to distinguish “live
code” (code that is always necessary), “dead code” (code
that is always unnecessary), and “unstable code” (code that
is subtly unnecessary). We do this by considering the dif-
ferent possible interpretations that the programmer might
have for the C language specification. In particular, we con-
sider C to be the language’s official specification, and C′ to
be the specification that the programmer believes C has. For
the purposes of this paper, C′ differs from C in which opera-
tions lead to undefined behavior. For example, a program-
mer might expect shifts to be well-defined for all possible
arguments; this is one such possible C′. In other words, C′ is

research highlights

102 COMMUNICATIONS OF THE ACM | MARCH 2016 | VOL. 59 | NO. 3

5.1. A definition of unstable code
We now give a formal definition of unstable code. A code
fragment e is a statement or expression at a particular source
location in program P. If the compiler can transform the
fragment e in a way that would change P’s behavior under C*
but not under C, then e is unstable code.

Let P [e/e′] be a program formed by replacing e with
some fragment e′ at the same source location. When is it
legal for a compiler to transform P into P [e/e′], denoted as
P � P [e/e′]? In a language specification without undefined
behavior, the answer is straightforward: it is legal if for every
input, both P and P [e/e′] produce the same result. In a lan-
guage specification with undefined behavior, the answer is
more complicated; namely, it is legal if for every input, one
of the following is true:

• both P and P [e/e′] produce the same results without
invoking undefined behavior, or

• P invokes undefined behavior, in which case it does not
matter what P [e/e′] does.

Using this notation, we define unstable code below.

Definition 1 (Unstable code). A code fragment e in program
P is unstable w.r.t. language specifications C and C* iff there
exists a fragment e′ such that P � P [e/e ′] is legal under C but
not under C*.

For example, for the sanity checks listed in Figure 3, a C
compiler is entitled to replace them with false, as this is legal
according to the C specification, whereas a hypothetical C*
compiler cannot do the same. Therefore, these checks are
unstable code.

5.2. Algorithms for identifying unstable code
The above definition captures what unstable code is, but
does not provide a way of finding unstable code, because it is
difficult to reason about how an entire program will behave.
As a proxy for a change in program behavior, Stack looks for
code that can be transformed by some optimizer O under
C but not under C*. In particular, Stack does this using a
two-phase scheme:

1. run O without taking advantage of undefined behav-
ior, which captures optimizations under C*; and

2. run O again, this time taking advantage of undefined
behavior, which captures (more aggressive) optimiza-
tions under C.

If O optimizes extra code in the second phase, we assume
the reason O did not do so in the first phase is because it
would have changed the program’s semantics under C*, and
so Stack considers that code to be unstable.

Stack’s optimizer-based approach to finding unstable
code will miss unstable code that a specific optimizer can-
not eliminate in the second phase, even if there exists some
optimizer that could. This approach will also generate false
reports if the optimizer is not aggressive enough in eliminat-
ing code in the first phase. Thus, one challenge in Stack’s

a relaxed version of the official C, by assigning certain inter-
pretations to operations that have undefined behavior in C.

Using the notion of different language specifications, we
say that a piece of code is live if, for every possible C′, the code
is necessary. Conversely, a piece of code is dead if, for every
possible C′, the code is unnecessary; this captures code like
if (0) {. . .}. Finally, a piece of code is unstable if, for some C′
variants, it is unnecessary, but in other C′ variants, it is neces-
sary. This means that two programmers that do not precisely
understand the details of the C specification might disagree
about what the code is doing. As we demonstrate in the rest of
this paper, this heuristic often indicates the presence of a bug.

Building on this invariant, we can now detect when a
program is likely invoking undefined behavior. In particu-
lar, given an operation o in a function f, we compute the set
of unnecessary code in f under different interpretations of
undefined behavior at o. If the set of unnecessary code is
the same for all possible interpretations, we cannot say any-
thing about whether o is likely to invoke undefined behavior.
However, if the set of unnecessary code varies depending on
what undefined behavior o triggers, this means that the pro-
grammer wrote unstable code. However, by our assumption,
this should never happen, and we conclude that the program-
mer was likely thinking they’re writing live code, and simply
did not realize that o would trigger undefined behavior for
the same set of inputs that are required for the code to be live.

5. THE Stack TOOL
To find undefined behavior bugs using the above approach,
we built a static analysis tool called Stack. In practice, it is
difficult to enumerate and consider all possible C′ variants.
Thus, to build a practical tool, we pick a single variant, called
C*. C* defines a null pointer that maps to address zero, and
wrap-around semantics for pointer and integer arithmetic.31
We believe this captures the common semantics that pro-
grammers (mistakenly) believe C provides. Although our
C* deals with only a subset of undefined behaviors in the
C specification, a different C* could capture other seman-
tics that programmers might implicitly assume, or handle
undefined behavior for other operations that our C* does
not address.

Stack relies on an optimizer O to implicitly flag unnec-
essary code. Stack’s O eliminates dead code and performs
expression simplifications under the semantics of C and C*,
respectively. For code fragment e, if O is not able to rewrite
e under neither semantics, Stack considers e as “live code”;
if O is able to rewrite e under both semantics, e is “dead code”;
if O is able to rewrite e under C but not C*, Stack reports it
as “unstable code.”

Since Stack uses just two interpretations of the language
specification (namely, C and C*), it might miss bugs that
could arise under different interpretations. For instance,
any code eliminated by O under C* would never trigger
a warning from Stack, even if there might exist another
C′ which would not allow eliminating that code. Stack’s
approach could be extended to support multiple interpreta-
tions to address this potential shortcoming.

MARCH 2016 | VOL. 59 | NO. 3 | COMMUNICATIONS OF THE ACM 103

design is coming up with an optimizer that is sufficiently
aggressive to minimize these problems.

In order for this approach to work, Stack requires an optimizer
that can selectively take advantage of undefined behavior.
To build such optimizers, we formalize what it means to “take
advantage of undefined behavior” in Section 5.2.1, by intro-
ducing the well-defined program assumption, which captures
C’s assumption that programmers never write programs that
invoke undefined behavior. Given an optimizer that can take
explicit assumptions as input, Stack can turn on (or off) opti-
mizations based on undefined behavior by supplying (or not)
the well-defined program assumption to the optimizer. We
build two aggressive optimizers that follow this approach: one
that eliminates unreachable code (Section 5.2.2) and one that
simplifies unnecessary computation (Section 5.2.3).

Well-defined program assumption. We formalize what
it means to take advantage of undefined behavior in an
optimizer as follows. Consider a program with input x. Given
a code fragment e, let Re(x) denote its reachability condition,
which is true iff e will execute under input x; and let Ue(x)
denote its undefined behavior condition, or UB condition
for short, which indicates whether e exhibits undefined
behavior on input x, as summarized in Figure 4.

Both Re(x) and Ue(x) are boolean expressions. For example,
given a pointer dereference *p in expression e, one UB condi-
tion Ue(x) is p = NULL (i.e., causing a null pointer dereference).

Intuitively, in a well-defined program to dereference pointer
p, p must be non-null. In other words, the negation of its UB
condition, p ¹ NULL, must hold whenever the expression exe-
cutes. We generalize this below.

Definition 2 (Well-defined program assumption).
A code fragment e is well-defined on an input x iff executing e never
triggers undefined behavior at e:

Re(x) → ¬Ue(x). (1)

Furthermore, a program is well-defined on an input iff every frag-
ment of the program is well-defined on that input, denoted as ∆:

∆(x) = ∧
e ∈P

 Re(x) → ¬Ue(x).  (2)

Eliminating unreachable code. The first algorithm identifies
unstable statements that can be eliminated (i.e., P � P [e/∅]
where e is a statement). For example, if reaching a statement
requires triggering undefined behavior, then that statement
must be unreachable. We formalize this below.

Theorem 1 (Elimination). In a well-defined program P, an
optimizer can eliminate code fragment e, if there is no input
x that both reaches e and satisfies the well-defined program
assumption ∆(x):

x : Re(x) ∧ ∆(x). (3)

The boolean expression Re(x) ∧ ∆(x) is referred as the elimination
query.

Proof. Assuming ∆(x) is true, if the elimination query
Re(x) ∧ ∆(x) always evaluates to false, then Re(x) must be false,
meaning that e must be unreachable. One can then safely
eliminate e. £

Consider Figure 2 as an example. There is one input tun
in this program. To pass the earlier if check, the reachability
condition of the return statement is !tun. There is one
UB condition tun = NULL, from the pointer dereference
tun−>sk, the reachability condition of which is true. As a
result, the elimination query Re(x) ∧ ∆(x) for the return
statement is:

!tun ∧ (true → ¬(tun =  NULL)).

Clearly, there is no tun that satisfies this query. Therefore,
one can eliminate the return statement.

With the above definition it is easy to construct an algo-
rithm to identify unstable code due to code elimination
(see Figure 5). The algorithm first removes unreachable frag-
ments without the well-defined program assumption, and
then warns against fragments that become unreachable
with this assumption. The latter are unstable code.

Code fragment Sufficient condition Undefined behavior

Core language:
p + x p∞ + x∞ ∉ [0, 2n −1]
∗p p = NULL Null pointer dereference
x ops y x∞ ops y∞∞∉ [−2n−1, 2n−1 −1]∞
x / y, x % y Division by zero
x << y, x >> y

y = 0
y < 0 ∨ y ≥ n Oversized shift

a[x] x < 0 ∨ x ≥ ARRAY_SIZE(a)

Pointer overflow

Signed integer overflow

Buffer overflow

Standard library:
abs(x) x = –2n–1 Absolute value overflow
memcpy(dst, src, len) |dst – src| < len Overlapping memory copy
use q after free(p) alias(p, q) Use after free
use q after p′ := realloc(p, ...) alias(p, q) ∧ p′ ≠ NULL Use after realloc

Figure 4. Examples of C/C++ code fragments and their undefined behavior conditions. We describe their sufficient (though not necessary)
conditions under which the code is undefined (Section J.2 in Ref.23). Here p, p ′, q are n-bit pointers; x, y are n-bit integers; a is an array, the
capacity of which is denoted as ARRAY_SIZE(a); ops refers to binary operators +, −, *, /, % over signed integers; x∞ means to consider x as
infinitely ranged; NULL is the null pointer; alias(p, q) predicates whether p and q point to the same object.

research highlights

104 COMMUNICATIONS OF THE ACM | MARCH 2016 | VOL. 59 | NO. 3

false. This time the simplification query is:

(p + 100 < p) ¹ false
∧ true ∧ (true → ¬(p∞ + 100∞ ∉ [0, 2n −1])).

Since there is no pointer p that satisfies this query, one can
fold p + 100 < p into false.

With the above definition it is straightforward to construct
an algorithm to identify unstable code due to simplification
(see Figure 6). The algorithm consults an oracle for every pos-
sible simpler form e′ for expression e. Similar to elimination,
it warns if it finds e′ that is equivalent to e only with the well-
defined program assumption.

5.3. Implementation
We implemented Stack using the LLVM compiler frame-
work28 and the Boolector solver.4 Stack consists of approxi-
mately 4000 lines of C++ code. To make the tool scale to large
code bases, Stack implements an approximate version of the
algorithms described in Section 5.2. Interested readers can
refer to our SOSP paper for details.44

Stack focuses on identifying unstable code by exploring
two basic optimizations, elimination because of unreachabil-
ity and simplification because of unnecessary computation.
It is possible to exploit the well-defined program assumption
in other forms. For example, instead of discarding code, some
optimizations reorder instructions and produce unwanted
code due to memory aliasing41 or data races,3 which Stack does
not implement.

Stack implements two oracles, boolean and algebra,
for proposing new expressions for simplification. One can
extend it by introducing new oracles.

5.4. Main results
From July 2012 to March 2013, we periodically applied
Stack to systems software written in C/C++, including OS
kernels, virtual machines, databases, multimedia encoders/
decoders, language runtimes, and security libraries. Based
on Stack’s bug reports, we submitted patches to the corre-
sponding developers. The developers confirmed and fixed
161 new bugs.

We also applied Stack to all 17,432 packages in the Debian
Wheezy archive as of March 24, 2013. Stack checked 8575
of them that contained C/C++ code. Building and analyz-
ing these packages took approximately 150 CPU-days on

Simplifying unnecessary computation. The second algo-
rithm identifies unstable expressions that can be optimized
into a simpler form (i.e., P � P [e/e ′] where e and e′ are
expressions). For example, if evaluating a boolean expression
to true requires triggering undefined behavior, then that
expression must evaluate to false. We formalize this below.

Theorem 2 (Simplification). In a well-defined program
P, an optimizer can simplify expression e with another e′, if there
is no input x that evaluates e(x) and e′(x) to different values,
while both reaching e and satisfying the well-defined program
assumption ∆(x):

∃e′x : e(x) ¹ e′(x) ∧ Re(x) ∧ ∆(x). (4)

The boolean expression e(x) ¹ e′(x) ∧ Re(x) ∧ ∆(x) is referred as
the simplification query.

Proof. Assuming ∆(x) is true, if the simplification query
e(x) ¹ e′(x) ∧ Re(x) ∧ ∆(x) always evaluates to false, then either
e(x) = e′(x), meaning that they evaluate to the same value; or
Re(x) is false, meaning that e is unreachable. In either case,
one can safely replace e with e′. £

Simplification relies on an oracle to propose e′ for a given
expression e. Note that there is no restriction on the pro-
posed expression e′. In practice, it should be simpler than
the original e since compilers tend to simplify code. Stack
currently implements two oracles:

• Boolean oracle: propose true and false in turn for a
boolean expression, enumerating possible values.

• Algebra oracle: propose to eliminate common terms on
both sides of a comparison if one side is a subexpres-
sion of the other. It is useful for simplifying noncon-
stant expressions, such as proposing y < 0 for x + y < x,
by eliminating x from both sides.

As an example, consider simplifying p + 100 < p using the
boolean oracle, where p is a pointer. For simplicity assume its
reachability condition is true. From Figure 4, the UB condi-
tion of p + 100 is p∞ + 100∞ ∉ [0, 2n − 1]. The boolean oracle first
proposes true. The corresponding simplification query is:

(p + 100 < p) ¹ true
∧ true ∧ (true → ¬(p∞ + 100∞ ∉ [0, 2n −1])).

Clearly, this is satisfiable. The boolean oracle then proposes

Figure 5. The elimination algorithm. It reports unstable code that
becomes unreachable with the well-defined program assumption.

1: procedure ELIMINATE(P)
2: for all e ∈ P do
3: if Re(x) is UNSAT then
4: REMOVE(e) � trivially unreachable
5: else
6: if Re (x)∧ ∆(x) is UNSAT then
7: REPORT(e)
8: REMOVE(e) � unstable code eliminated

1: procedure SIMPLIFY(P, oracle)
2: for all e ∈ P do
3: for all e′ ∈ PROPOSE(oracle, e) do
4: if e(x) ≠ e′(x) ∧ Re(x) is UNSAT then
5: REPLACE(e, e′)
6: break � trivially simplified
7: if e(x) ≠ e′(x) ∧ Re(x) ∧ ∆(x) is UNSAT then
8: REPORT(e)
9: REPLACE(e, e′)

10: break � unstable code simplified

Figure 6. The simplification algorithm. It asks an oracle to propose
a set of possible e′, and reports if any of them is equivalent to e with
the well-defined program assumption.

MARCH 2016 | VOL. 59 | NO. 3 | COMMUNICATIONS OF THE ACM 105

Intel Xeon E7-8870 2.4 GHz processors. For 3471 (40%) out
of these 8575 packages, Stack issued at least one warning.

The results show that undefined behavior is widespread,
and that Stack is useful for identifying undefined behavior.
Please see our paper for more complete details.44

6. RELATED WORK
To the best of our knowledge, we present the first definition
and static checker to find unstable code, but we build on sev-
eral pieces of related work. In particular, earlier surveys25, 35, 42
and blog posts27, 33, 34 collect examples of unstable code, which
motivated us to tackle this problem. We were also motivated
by related techniques that can help with addressing unstable
code, which we discuss next.

6.1. Testing strategies
Our experience with unstable code shows that in practice
it is difficult for programmers to notice certain critical
code fragments disappearing from the running system as
they are silently discarded by the compiler. Maintaining a
comprehensive test suite may help catch “vanished” code
in such cases, though doing so often requires a substantial
effort to achieve high code coverage through manual test
cases. Programmers may also need to prepare a variety of
testing environments as unstable code can be hardware-
and compiler-dependent.

Automated tools such as KLEE9 can generate test cases
with high coverage using symbolic execution. These tools,
however, often fail to model undefined behavior correctly.
Thus, they may interpret the program differently from the
language standard and miss bugs. Consider a check x + 100 < x,
where x is a signed integer. KLEE considers x + 100 to wrap
around given a large x; in other words, the check catches a
large x when executing in KLEE, even though gcc discards
the check. Therefore, to detect unstable code, these tools
need to be augmented with a model of undefined behavior,
such as the one we proposed in this paper.

6.2. Optimization strategies
We believe that programmers should avoid undefined behav-
ior. However, overly aggressive compiler optimizations are
also responsible for triggering these bugs. Traditionally, com-
pilers focused on producing fast and small code, even at the
price of sacrificing security, as shown in Section 2. Compiler
writers should rethink optimization strategies for generating
secure code.

Consider x + 100 < x with a signed integer x again. The lan-
guage standard does allow compilers to consider the check to
be false and discard it. In our experience, however, it is unlikely
that the programmer intended the code to be removed.
A programmer- friendly compiler could instead generate
efficient overflow checking code, for example, by exploiting
the overflow flag available on many processors after evaluat-
ing x + 100. This strategy, also allowed by the language stan-
dard, produces more secure code than discarding the check.
Alternatively, the compiler could produce warnings when
exploiting undefined behavior in a potentially surprising way.8

Currently, gcc provides several options to alter the com-
piler’s assumptions about undefined behavior, such as

• −fwrapv, assuming signed integer wraparound for
addition, subtraction, and multiplication;

• -fno-strict-overflow, assuming pointer arith-
metic wraparound in addition to −fwrapv; and

• -fno-delete-null-pointer-checks,37 assuming
unsafe null pointer dereferences.

These options can help reduce surprising optimizations, at
the price of generating slower code. However, they cover an
incomplete set of undefined behavior that may cause unsta-
ble code (e.g., no options for shift or division). Another down-
side is that these options are specific to gcc; other compilers
may not support them or interpret them in a different way.42

6.3. Checkers
Many existing tools can detect undefined behavior as listed
in Figure 4. For example, gcc provides the −ftrapv option to
insert runtime checks for signed integer overflows (Section
3.18 in Ref.36); IOC15 (now part of clang’s sanitizers12) and
Kint43 cover a more complete set of integer errors; Saturn16
finds null pointer dereferences; several dedicated C interpret-
ers such as kcc19 and Frama-C10 perform checks for undefined
behavior. See Chen et al.’s survey11 for a summary.

In complement to these checkers that directly tar-
get undefined behavior, Stack finds unstable code that
becomes dead due to undefined behavior. In this sense,
Stack can be considered as a generalization of Engler et
al.’s inconsistency cross-checking framework.16, 20 Stack,
however, supports more expressive assumptions, such as
pointer and integer operations.

As explored by existing checkers,2, 21, 39 dead code is an
effective indicator of likely bugs. Stack finds undefined
behavior bugs by finding subtly unnecessary code under dif-
ferent interpretations of the language specification.

6.4. Language design
Language designers may reconsider whether it is neces-
sary to declare certain constructs as undefined behavior,
since reducing undefined behavior in the specification is
likely to avoid unstable code. One example is left-shifting
a signed 32-bit one by 31 bits. This is undefined behavior
in C (Section 6.5.7 in Ref.23), even though the result is con-
sistently 0x80000000 on most modern processors. The
committee for the C++ language standard has assigned
well-defined semantics to this operation in the latest
specification.29

7. SUMMARY
This paper demonstrates that undefined behavior bugs are
much more prevalent than was previously believed, that they
lead to a wide range of significant problems, that they are
often misunderstood by system programmers, and that
many popular compilers already perform unexpected opti-
mizations, leading to misbehaving or vulnerable systems.
We introduced a new approach for identifying undefined
behavior, and developed a static checker, Stack, to help
system programmers identify and fix bugs. We hope that
compiler writers will also rethink optimization strategies
against undefined behavior. Finally, we hope this paper

research highlights

106 COMMUNICATIONS OF THE ACM | MARCH 2016 | VOL. 59 | NO. 3

on Formal Methods (FM) (Eindhoven,
the Netherlands, Nov. 2009),
338–353.

 22. Intel 64 and IA-32 Architectures
Software Developer’s Manual, Volume
2: Instruction Set Reference, A–Z,
Jan. 2013.

 23. ISO/IEC 9899:2011, Programming
languages – C, Dec. 2011.

 24. Jack, B. Vector rewrite attack:
Exploitable NULL pointer
vulnerabilities on ARM and XScale
architectures. White paper, Juniper
Networks, May 2007.

 25. Krebbers, R., Wiedijk, F. Subtleties
of the ANSI/ISO C standard.
Document N1639, ISO/IEC, Sept.
2012.

 26. Lane, T. Anyone for adding −fwrapv
to our standard CFLAGS? Dec.
2005. http://www.postgresql.org/
message-id/1689.1134422394@sss.
pgh.pa.us.

 27. Lattner, C. What every C programmer
should know about undefined
behavior, May 2011. http://blog.
llvm.org/2011/05/what-every-c-
programmer-should-know.html.

 28. Lattner, C., Adve, V. LLVM:
A compilation framework for
lifelong program analysis &
transformation. In Proceedings of
the 2004 International Symposium
on Code Generation and Optimization
(CGO) (Palo Alto, CA, Mar. 2004),
75–86.

 29. Miller, W.M. C++ standard core
language defect reports and
accepted issues, issue 1457:
Undefined behavior in left-shift,
Feb. 2012. http://www.open-std.org/
jtc1/sc22/wg21/docs/cwg_defects.
html#1457.

 30. Power ISA Version 2.06 Revision B,
Book I: Power ISA User Instruction
Set Architecture, Jul. 2010.

 31. Ranise, S., Tinelli, C., Barrett, C.
QF_BV logic, Jun. 2013. http://smtlib.
cs.uiowa.edu/logics/QF_BV.smt2.

 32. Rationale for International Standard –
Programming Languages – C,
Apr. 2003.

 33. Regehr, J. A guide to undefined
behavior in C and C++, Jul. 2010.
http://blog.regehr.org/archives/213.

 34. Regehr, J. Undefined behavior
consequences contest winners,
Jul. 2012. http://blog.regehr.org/
archives/767.

 35. Seacord, R.C. Dangerous
optimizations and the loss of

causality, Feb. 2010. https://www.
securecoding.cert.org/confluence/
download/attachments/40402999/
Dangerous+Optimizations.pdf.

 36. Stallman, R.M., the GCC Developer
Community. Using the GNU Compiler
Collection for GCC 4.8.0. GNU Press,
Free Software Foundation, Boston,
MA, 2013.

 37. Teo, E. [PATCH] add -fno-delete-
null-pointer-checks to gcc
CFLAGS, Jul. 2009. https://lists.
ubuntu.com/archives/kernel-
team/2009-July/006609.html.

 38. Tinnes, J. Bypassing Linux NULL
pointer dereference exploit prevention
(mmap_min_addr), Jun. 2009.
http://blog.cr0.org/2009/06/
bypassing-linux-null-pointer.html.

 39. Tomb, A., Flanagan, C. Detecting
inconsistencies via universal
reachability analysis. In Proceedings
of the 2012 International Symposium
on Software Testing and Analysis
(Minneapolis, MN, Jul. 2012),
287–297.

 40. Torvalds, L. Re: [patch] CFS
scheduler, -v8, May 2007. https://lkml.
org/lkml/2007/5/7/213.

 41. Tourrilhes, J. Invalid compilation
without -fno-strict-aliasing,
Feb. 2003. https://lkml.org/
lkml/2003/2/25/270.

 42. Wang, X., Chen, H., Cheung, A., Jia, Z.,
Zeldovich, N., Kaashoek, M.F.
Undefined behavior: What happened
to my code? In Proceedings of the
3rd Asia-Pacific Workshop on Systems
(Seoul, South Korea, Jul. 2012).

 43. Wang, X., Chen, H., Jia, Z., Zeldovich, N.,
Kaashoek, M.F. Improving
integer security for systems with
Kint. In Proceedings of the 10th
Symposium on Operating Systems
Design and Implementation
(OSDI) (Hollywood, CA, Oct. 2012),
163–177.

 44. Wang, X., Zeldovich, N., Kaashoek, M.F.,
Solar-Lezama, A. Towards
optimization-safe systems:
Analyzing the impact of undefined
behavior. In Proceedings of the
24th ACM Symposium on Operating
Systems Principles (SOSP)
(Farmington, PA, Nov. 2013),
260–275.

 45. Woods, J.F. Re: Why is this legal?
Feb. 1992. http://groups.google.
com/group/comp.std.c/msg/
dfe1ef367547684b.

Copyright held by authors. Publication rights licensed to ACM. $15.00.

References
 1. Bessey, A., Block, K., Chelf, B., Chou, A.,

Fulton, B., Hallem, S., Henri-Gros, C.,
Kamsky, A., McPeak, S., Engler, D.
A few billion lines of code later:
Using static analysis to find bugs
in the real world. Commun.
ACM 53, 2 (Feb. 2010),
66–75.

 2. Blackshear, S., Lahiri, S. Almost-
correct specifications: A modular
semantic framework for assigning
confidence to warnings. In
Proceedings of the 2013 ACM
SIGPLAN Conference on
Programming Language Design
and Implementation (PLDI)
(Seattle, WA, Jun. 2013), 209–218.

 3. Boehm, H.-J. Threads cannot
be implemented as a library.
In Proceedings of the 2005
ACM SIGPLAN Conference on
Programming Language Design and
Implementation (PLDI) (Chicago,
IL, Jun. 2005), 261–268.

 4. Brummayer, R., Biere, A. Boolector:
An efficient SMT solver for bit-vectors
and arrays. In Proceedings of the 15th
International Conference on Tools
and Algorithms for the Construction
and Analysis of Systems (York, UK,
Mar. 2009), 174–177.

 5. Bug 30475 – assert(int+100 >
int) optimized away, 2007.
http://gcc.gnu.org/bugzilla/show_
bug.cgi?id=30475.

 6. Bug 14287 – ext4: fixpoint divide
exception at ext4_fill_super,
2009. https://bugzilla.kernel.org/
show_bug.cgi?id=14287.

 7. Bug 49820 – explicit check for integer
negative after abs optimized away,
2011. http://gcc.gnu.org/bugzilla/
show_bug.cgi?id=49820.

 8. Bug 53265 – warn when undefined
behavior implies smaller iteration
count, 2013. http://gcc.gnu.org/
bugzilla/show_bug.cgi?id=53265.

 9. Cadar, C., Dunbar, D., Engler, D.
KLEE: Unassisted and automatic
generation of high-coverage tests
for complex systems programs.
In Proceedings of the 8th
Symposium on Operating Systems
Design and Implementation (OSDI)
(San Diego, CA, Dec. 2008).

 10. Canet, G., Cuoq, P., Monate, B.
A value analysis for C programs.
In Proceedings of the 9th IEEE
International Working Conference
on Source Code Analysis and
Manipulation (Edmonton, Canada,
Sept. 2009), 123–124.

 11. Chen, H., Mao, Y., Wang, X., Zhou, D.,
Zeldovich, N., Kaashoek, M.F. Linux

kernel vulnerabilities: State-of-the-
art defenses and open problems. In
Proceedings of the 2nd Asia-Pacific
Workshop on Systems (Shanghai,
China, Jul. 2011).

 12. Clang Compiler User’s Manual:
Controlling Code Generation, 2014.
http://clang.llvm.org/docs/
UsersManual.html#controlling-
code-generation.

 13. Corbet, J. Fun with NULL pointers,
part 1, July 2009. http://lwn.net/
Articles/342330/.

 14. Cuoq, P., Flatt, M., Regehr, J.
Proposal for a friendly dialect of C,
Aug. 2014. http://blog.regehr.org/
archives/1180.

 15. Dietz, W., Li, P., Regehr, J., Adve, V.
Understanding integer overflow
in C/C++. In Proceedings of the
34th International Conference on
Software Engineering (ICSE) (Zurich,
Switzerland, Jun. 2012), 760–770.

 16. Dillig, I., Dillig, T., Aiken, A.
Static error detection using
semantic inconsistency inference.
In Proceedings of the 2007
ACM SIGPLAN Conference on
Programming Language
Design and Implementation
(PLDI) (San Diego, CA, Jun. 2007),
435–445.

 17. Dougherty, C.R., Seacord, R.C. C
compilers may silently discard some
wraparound checks. Vulnerability
note VU#162289, US-CERT,
2008. http://www.kb.cert.org/
vuls/id/162289, original version:
http://www.isspcs.org/render.
html?it=9100, also known as
CVE-2008-1685.

 18. Ellison, C., Roşu, G. Defining the
Undefinedness of C. Technical report,
University of Illinois, Apr. 2012. http://
hdl.handle.net/2142/30780.

 19. Ellison, C., Roşu, G. An executable
formal semantics of C with
applications. In Proceedings of the
39th ACM Symposium on Principles
of Programming Languages (POPL)
(Philadelphia, PA, Jan. 2012),
533–544.

 20. Engler, D., Chen, D.Y., Hallem, S.,
Chou, A., Chelf, B. Bugs as deviant
behavior: A general approach to
inferring errors in systems code.
In Proceedings of the 18th ACM
Symposium on Operating Systems
Principles (SOSP) (Chateau Lake
Louise, Banff, Canada, Oct. 2001),
57–72.

 21. Hoenicke, J., Leino, K.R.M., Podelski,
A., Schäf, M., Wies, T. It’s doomed;
we can prove it. In Proceedings of
the 16th International Symposium

Xi Wang ({xi}@cs.washington.edu),
University of Washington, Seattle, WA.

Nickolai Zeldovich, M. Frans Kaashoek,
and Armando Solar-Lezama
({nickolai, kaashoek, asolar}@csail.
mit.edu), Massachusetts Institute of
Technology, Cambridge, MA.

research highlights

encourages language designers to be careful with using
undefined behavior in the language specification. Almost
every language allows a developer to write programs that
have undefined meaning according to the language specifi-
cation. This research indicates that being liberal with what
is undefined can lead to subtle bugs. All of Stack’s source
code is publicly available at http://css.csail.mit.edu/stack/.

Acknowledgments
We thank Xavier Leroy for helping improve this paper, and
many others for their feedback on earlier papers.42, 44 This
research was supported by the DARPA Clean-slate design of
Resilient, Adaptive, Secure Hosts (CRASH) program under con-
tract \#N66001-10-2-4089, and by NSF award CNS-1053143.

Copyright of Communications of the ACM is the property of Association for Computing
Machinery and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

