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Abstract The paper is devoted to the study of tilt-stable local minimizers of general
optimization problems in finite-dimensional spaces and its applications to classical
nonlinear programs with twice continuously differentiable data. The importance of
tilt stability has been well recognized from both theoretical and numerical aspects of
optimization, and this notion has been extensively studied in the literature. Based on
advanced tools of second-order variational analysis and generalized differentiation, we
develop a new approach to tilt stability, which allows us to derive not only qualitative
but also quantitative characterizations of tilt-stable minimizers with calculating the
corresponding moduli. The implementation of this approach and general results in the
classical framework of nonlinear programming provides complete characterizations of
tilt-stable minimizers under new second-order qualification and optimality conditions.

Mathematics Subject Classification 49J53 · 90C31 · 90C99

1 Introduction

The notion of tilt-stable local minimizers introduced by Poliquin and Rockafellar
[19] and then studied in [1,9] among other publications has recently attracted strong
attention in the literature; see, e.g., [2,4,10,14,16,17]. Roughly speaking, tilt stability
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postulates single-valued Lipschitzian behavior of local minimizers with respect to a
special class of “tilt” perturbations. This property of local minimizers is important
not only for theoretical aspects of optimization but also plays a fundamental role in
the justification of numerical algorithms, which was the original motivation in [19].
The authors of [19] studied tilt stability in the unconstrained format of optimiza-
tion described by extended-real-valued functions and established a characterization of
tilt-stable minimizers under rather general requirements via the second-order subdif-
ferential/generalized Hessian in the sense of Mordukhovich [12].

The first goal of this paper is to develop a new approach to tilt stability in the
general optimization framework deriving in this way comprehensive second-order
characterizations of tilt stable minimizers that improve, in particular, the major results
of [19]. In contrast to [19] and other publications on tilt stability, we establish not only
qualitative but also quantitative characterizations of tilt stability. By qualitative results
we mean those, which establish relationships between tilt stability and other notions
without involving numerical quantities (constants, moduli) in these results; see, e.g.,
the tilt stability characterization (3.19) in Theorem 3.6 and the sufficient conditions
for tilt stability in Corollary 4.4. The quantitative results are those, which explicitly
indicate relationships between the corresponding constant/moduli of tilt stability and
its verifiable characterizations; see, our main results in Theorems 3.2, 3.5, 3.6, and 4.3.

The second goal is to study in detail tilt stability in classical nonlinear programs
(NLP) with C2 initial data. In this setting we provide complete qualitative and quanti-
tative characterizations of tilt-stable minimizers entirely in terms of the initial data via
new second-order optimality conditions under the weakest constraint qualifications
allowing us, in particular, to treat non-unique Lagrange multipliers.

Note that our approach and main results also hold, under appropriate modifications
and using more involved tools of variational analysis, for optimization problems in
infinite-dimensional spaces. This is contrary to [19] and other publications. We select
here the finite-dimensional framework for simplicity and the reader’s convenience.

The rest of the paper is organized as follows. To make the paper is largely self-
contained, Sect. 2 recalls some basic definitions and facts from variational analysis
widely used below. Besides known constructions, we give here a new notion of the
combined second-order subdifferential of extended-real-valued functions important
for subsequent results.

Section 3 presents several qualitative and quantitative characterizations (in the
aforementioned sense) of tilt stability in the general extended-real-value format of
finite-dimensional optimization including those given via second-order growth and
second-order subdifferential conditions. As a consequence, we recover here the main
result of [19] with a new, much simpler proof and a precise formula for calculating
the exact bound of tilt stability moduli, which has never been done in the literature.

Section 4 is devoted to applications of the general results obtained to classical
nonlinear programs with C2 data. We introduce here the new uniform second-order
sufficient condition (USOSC), which is strictly weaker than the more conventional
strong second-order sufficient condition (SSOSC), and use it for characterizing tilt-
stable local minimizers in NLP under additional qualification conditions. In particular,
we show that tilt stability of local minimizers in this setting is equivalent to USOSC
under the simultaneous validity of Mangasarian-Fromovitz constraint qualification
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(MFCQ) and constant rank constraint qualification (CRCQ) without imposing the
essentially more restrictive linear independence constraint qualification. On the other
hand, the example given in this section demonstrates that the validity of both MFCQ
and CRCQ does not ensure the fulfillment of SSOSC for a three-dimensional NLP
with linear constraints and a quadratic cost function.

Finally, in Sect. 5 we present concluding remarks on the results obtained and further
developments and discuss some open questions of the future research.

Our notation is basically standard in variational analysis and generalized differen-
tiation; cf. [13,21]. Everywhere R

n stands for the n-dimensional Euclidian space with
the norm ‖ · ‖ and the inner product 〈·, ·〉. We denote by B the closed unit ball in the
space in question and by Bη(x) := x + ηB the closed ball centered at x with radius
η > 0. Given a set-valued mapping F : R

n ⇒ R
m , the symbol

Lim sup
x→x̄

F(x) :=
{

y ∈ R
m
∣∣∣∃ sequences xk → x̄, yk → y such that

yk ∈ F(xk) for all k ∈ N := {1, 2, . . .}
} (1.1)

signifies the Painlevé-Kuratowski outer limit of F(x) as x → x̄ .

2 Preliminaries from variational analysis

It has been realized in convex and variational analysis that it is convenient to consider
extended-real-valued functions f : R

n → R := (−∞,∞] that unify, in particular,
standard functions with sets and allow to incorporate constraints in the unconstrained
framework. We always assume that f is proper, i.e., dom f :={x ∈ X | f (x)<∞} 	= ∅.
The regular subdifferential of f at x̄ ∈ dom f (known also as the presubdifferential
and as the Fréchet or viscosity subdifferential) is

∂̂ f (x̄) :=
{
v ∈ R

n
∣∣∣ lim inf

x→x̄

f (x) − f (x̄) − 〈v, x − x̄〉
‖x − x̄‖ ≥ 0

}
. (2.1)

Then the limiting subdifferential of f at x̄ (known also as the general/basic or Mor-
dukhovich subdifferential) is defined via the outer limit (1.1) by

∂ f (x̄) := Lim sup

x
f→x̄

∂̂ f (x), (2.2)

where x
f→ x̄ signifies that x → x̄ with f (x) → f (x̄). Observe that both regular and

limiting subdifferentials reduce to the subdifferential of convex analysis for convex
functions.

Given a set � ⊂ R
n with its indicator function δ�(x) equal to 0 for x ∈ � and

to ∞ otherwise, the regular and limiting normal cones to � at x̄ ∈ � are defined,
respectively, via the corresponding subdifferentials (2.1) and (2.2) by

N̂ (x̄;�) := ∂̂δ�(x̄) and N (x̄;�) := ∂δ�(x̄). (2.3)
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Consider further a set-valued mapping F : R
n ⇒ R

m and associate with it the
domain dom F and the graph gph F given by

dom F := {
x ∈ R

n
∣∣ F(x) 	= ∅}

and gph F := {
(x, y) ∈ R

n × R
m
∣∣ y ∈ F(x)

}
.

Then the regular coderivative of F at (x̄, ȳ) ∈ gph F is defined by

D̂∗F(x̄, ȳ)(w) := {
z ∈ R

n| (z,−w) ∈ N̂ ((x̄, ȳ); gph F)
}

for all w ∈ R
m

(2.4)

and the limiting coderivative of F at (x̄, ȳ) is

D∗F(x̄, ȳ)(w) := {
z ∈ R

n
∣∣ (z,−w) ∈ N ((x̄, ȳ); gph F)

}
for all w ∈ R

m . (2.5)

It has been well recognized that the coderivative constructions (2.4) and (2.5) are
appropriate tools for the study and characterizations of well-posedness and sensitivity
in variational analysis; see, e.g., [13, Chapter 4] and [21, Chapter 9] for more details
and references. The following property of this type is used in the paper: a set-valued
mapping F : R

n ⇒ R
m is Lipschitz-like with modulus � > 0 around (x̄, ȳ) ∈ gph F

(it is also known as the pseudo-Lipschitz or Aubin property) if there are neighborhoods
U of x̄ and V of ȳ such that

F(x) ∩ V ⊂ F(u) + �‖x − u‖B for all x, u ∈ U. (2.6)

The infimum of all such {�}, denoted by lip F(x̄, ȳ), is called the exact Lipschitzian
bound of F at (x̄, ȳ). When F is single-valued around x̄ , we omit ȳ in the above
notation.

Next we formulate two significant concepts of variational analysis taken from [18,
21]. A lower semicontinuous (l.s.c.) function f : X → R is prox-regular at x̄ ∈ dom f
for v̄ ∈ ∂ f (x̄) if there are r, ε > 0 such that for all x, u ∈ Bε(x̄) with | f (u)− f (x̄)| ≤ ε

we have

f (x) ≥ f (u) + 〈v, x − u〉 − r

2
‖x − u‖2 whenever v ∈ ∂ f (u) ∩ Bε(v̄). (2.7)

We say that f is subdifferentially continuous at x̄ ∈ dom f for v̄ ∈ ∂ f (x̄) if the
function (x, v) �→ f (x) is continuous relative to the subdifferential graph gph ∂ f at
(x̄, v̄).

When f is subdifferentially continuous at x̄ for v̄ ∈ ∂ f (x̄), it is easy to observe that
the condition | f (u) − f (x̄)| ≤ ε can be omitted in the definition of prox-regularity.
Moreover, the graph of ∂ f is closed near (x̄, v̄) in the latter setting. The class of
prox-regular and subdifferentially continuous functions is rather broad including, in
particular, strongly amenable functions, convex l.s.c. functions etc.; see [18,21] for
further details.

As shown in [18], the limiting subdifferential of prox-regular functions is strongly
connected to monotonicity; in particular, the mapping Mγ in (2.8) below is monotone.
Recall that T : R

n ⇒ R
n is monotone if
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〈y − v, x − u〉 ≥ 0 whenever (x, y), (u, v) ∈ gph T .

Furthermore, T : R
n ⇒ R

n is said to be maximal monotone if T = S for any
monotone mapping S : R

n ⇒ R
m with gph T ⊂ gph S. For any neighborhood

U × V ⊂ R
n × R

n we say T is monotone relative to U × V if its localization relative
to U × V is monotone. Recall also that T̂ is a localization of T relative to U × V if
gph T̂ = gph T ∩ (U × V ). Moreover, T is maximal monotone relative to U × V if
for any monotone mapping S : R

n ⇒ R
n with gph T ∩ (U × V ) ⊂ gph S we have

the equality gph T ∩ (U × V ) = gph S ∩ (U × V ).
Now we are ready to formulate the main optimization property studied in this paper.

Definition 2.1 (tilt stability, [19]). Given f : R
n → R, a point x̄ ∈ dom f is a tilt-

stable local minimizer of f if there is a number γ > 0 such that the mapping

Mγ : v �→ argmin
{

f (x) − 〈v, x〉∣∣ x ∈ Bγ (x̄)
}

(2.8)

is single-valued and Lipschitz continuous on some neighborhood of 0 ∈ R
n with

Mγ (0) = x̄ .

We also consider in what follows a quantitative version of this notion that specifies
a modulus of tilt stability. Namely, x̄ is a tilt-stable minimizer of f with modulus
κ > 0 if the mapping Mγ is Lipschitz continuous with constant κ in the framework
of Definition 2.1.

As mentioned above, Poliquin and Rockafellar characterized in [19] tilt-stable min-
imizers of extended-real-valued l.s.c. functions via the second-order subdifferential
(generalized Hessian) by Mordukhovich [12]. Let us recall this construction and define
its new counterpart crucial for the major results of the paper.

Definition 2.2 (second-order subdifferentials). Let f : R
n → R with x̄ ∈ dom f ,

and let v̄ ∈ ∂ f (x̄). Then we say that:

(i) The second- order subdifferential of f at x̄ relative to v̄ is the set-valued
mapping ∂2 f (x̄, v̄) : R

n ⇒ R
n with the values

∂2 f (x̄, v̄)(w) := (
D∗∂ f

)
(x̄, v̄)(w) for all w ∈ R

n . (2.9)

(ii) The combined second- order subdifferential of f at x̄ relative to v̄ is the
set-valued mapping ∂̆2 f (x̄, v̄) : R

n ⇒ R
n with the values

∂̆2 f (x̄, v̄)(w) := (
D̂∗∂ f

)
(x̄, v̄)(w) for all w ∈ R

n . (2.10)

Note that a version of ∂̆2 f (x̄, v̄) with the normal cone ∂ f (·) = N (·;�) in (2.10)
has been recently used in [5,6] for different purposes. When f is C2 around x̄ with
v̄ = ∇ f (x̄), both ∂̆2 f (x̄, v̄) and ∂2 f (x̄, v̄) reduce to the classical symmetric single-
valued Hessian operator:

∂̆2 f (x̄, v̄)(w) = ∂2 f (x̄, v̄)(w) = {∇2 f (x̄)w
}

for all w ∈ R
n .
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3 Second-order characterizations of tilt stability

We begin with the following lemma from convex analysis given in [9, Lemma 5.2];
see also [17, Lemma 3.7] for more details.

Lemma 3.1 (convex functions with smooth conjugates). Let h : R
n → R be convex

and l.s.c., and let its conjugate h∗ be differentiable on a neighborhood O of v̄ ∈
dom h∗. Moreover, assume that ∇h∗ is Lipschitz continuous on O with constant κ > 0.
Then there are neighborhoods U of x̄ and V of v̄ with x̄ := ∇h∗(v̄) such that

h(x) ≥ h(u) + 〈v, x − u〉
+ 1

2κ
‖x − u‖2 for all x ∈ U, (u, v) ∈ gph ∂h ∩ (U × V ). (3.1)

Now we derive a characterization of tilt stability with a precise modulus relationship
via a certain uniform second-order growth condition formulated in the next theorem.
To the best of our knowledge, this condition first appeared in [1] under the name of
“uniform second-order growth condition with respect to the tilt parameterization” and
was used in [1, Theorem 5.36] to characterize tilt-stable local minimizers for conic
programs with C2 data. Quite recently [2, Theorem 3.3] this condition has also been
used to characterize tilt stability in the general extended-real-valued framework under
consideration with a different proof while without establishing the important modulus
relationship as in the next theorem.

Theorem 3.2 (tilt stability via uniform second-order growth). Let f : R
n → R be an

l.s.c. function such that 0 ∈ ∂ f (x̄). Assume that f is both prox-regular and subdiffer-
entially continuous at x̄ for v̄ = 0. Then the following assertions are equivalent:

(i) The point x̄ is a tilt-stable local minimizer of the function f with modulus κ > 0.
(ii) There are neighborhoods U of x̄ and V of v̄ such that the mapping (∂ f )−1 admits

a single-valued localization ϑ : V → U around (v̄, x̄) and that for any pair
(v, u) ∈ gph ϑ = gph (∂ f )−1 ∩ (V × U ) we have the uniform second- order
growth condition

f (x) ≥ f (u) + 〈v, x − u〉 + 1

2κ
‖x − u‖2 whenever x ∈ U. (3.2)

Proof To justify (i)�⇒(ii), suppose that x̄ is a tilt-stable local minimizer of f with
modulus κ > 0. Thus there is γ > 0 such that the mapping Mγ in (2.8) is single-valued
and Lipschitz continuous on a neighborhood V of v̄ with Mγ (v̄) = x̄ . By shrinking
V if necessary, we have that Mγ (V ) ⊂ U with U := int Bγ (x̄). It is easy to check
from (2.8) that Mγ is monotone. Due to the Lipschitzian continuity of Mγ on V , it
is maximal monotone relative to V × U . Consider next the (Fenchel) conjugate of
f + δU given by

g(v) := ( f + δU )∗(v) = sup
x∈U

{〈v, x〉 − f (x)
}

for all v ∈ R
n,
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which is a proper l.s.c. convex function. For any v ∈ V we get from (2.8) the repre-
sentation g(v) = 〈v, Mγ (v)〉 − f (Mγ (v)) and observe that

g(w) − g(v) ≥ 〈w, Mγ (v)〉 − f (Mγ (v)) − (〈v, Mγ (v)〉 − f (Mγ (v))
)

= 〈w − v, Mγ (v)〉

for all w ∈ R
n . This ensures that Mγ (v) ∈ ∂g(v). Since g is convex, its subdifferential

∂g is monotone. This together with the maximal monotonicity of Mγ relative to V ×U
implies that g(v) = Mγ (v) for all v ∈ V . Hence ∂g is single-valued and Lipschitz
continuous on V . Therefore g is differentiable and Lipschitz continuous with constant
κ on V . By Fermat rule we have that ∇g(v) = Mγ (v) ⊂ (∂ f )−1(v) for all v ∈ V .
Since f is prox-regular and subdifferentially continuous at x̄ for v̄, by shrinking U
and V , we may assume that

f (x)≥ f (u)+〈v, x − u〉 − r

2
‖x − u‖2 for all x ∈ U, (u, v) ∈ gph ∂ f ∩ (U × V )

with some r > 0. Taking now a localization T of ∂ f relative to U × V and the identity
mapping I : R

n → R
n , we get from the above inequality that T + r I is monotone;

see [21, Theorem 13.26]. Since Mγ is maximal monotone relative to V × U with
gph M−1

γ ⊂ gph T and T + r I is monotone, it is not hard to check (see, e.g., [19,
Lemma 3.1]) that M−1

γ and T must coincide locally around (x̄, v̄); thus we suppose
without loss of generality that

gph ∂ f ∩ (U × V ) = gph (∇g)−1 ∩ (U × V ) = gph M−1
γ ∩ (U × V ). (3.3)

Define further h := g∗ and deduce from the biconjugate theorem of convex analysis
[21, Theorem 11.1] that h∗ = g. It follows from Lemma 3.1 that there are neighbor-
hoods U1 ⊂ U of x̄ and V1 ⊂ V of v̄ such that

h(x) ≥ h(u) + 〈v, x − u〉 + 1

2κ
‖x − u‖2

for all x ∈ U1, (u, v) ∈ gph ∂h ∩ (U1 × V1). (3.4)

With (u, v) ∈ gph ∂ f ∩ (U1 × V1) := gph ϑ we note from (3.3) that u = ∇g(v) =
Mγ (v). Therefore v ∈ ∂g∗(u) = ∂h(u) in the sense of convex analysis and that

h(u) = g∗(u) = 〈u, v〉 − g(v) = 〈u, v〉 − (〈v, Mγ (v)〉 − f (Mγ (v))
)

= 〈u, v〉 − 〈v, u〉 + f (u) = f (u).

Combining this with (3.4) gives us for any x ∈ U1 and (u, v) ∈ gph ϑ that

f (x) ≥ ( f + δU )∗∗(x) = h(x) ≥ f (u) + 〈v, x − u〉 + 1

2κ
‖x − u‖2,

which readily ensures the single-valuedness of ϑ and inequality (3.2), and thus justifies
(ii).

123



90 B. S. Mordukhovich, T. T. A. Nghia

To verify (ii)�⇒(i), take any (u, v), (x, y) ∈ gph ϑ and get from (3.2) that

‖y − v‖ · ‖x − u‖ ≥ 〈y − v, x − u〉 = 〈y, x − u〉 + 〈v, u − x〉
≥

[
f (x) − f (u) + 1

2κ
‖x − u‖2

]

+
[

f (u) − f (x) + 1

2κ
‖u − x‖2

]

≥ 1

κ
‖x − u‖2.

(3.5)

Observe from (3.2) that f (x) ≥ f (x̄) for all x ∈ U , which ensures that x̄ is a local
minimizer. Let us show ϑ(v) = Mγ (v) for all v ∈ Bδ(v̄) with δ, γ > 0 satisfying
γ > 2κδ, Bγ (x̄) ⊂ U , and Bδ(v̄) ⊂ V , where κ > 0 and the neighborhoods U and
V are taken from (ii). Indeed, picking any v ∈ Bδ(v̄) and any u ∈ Mγ (v), we deduce
from (2.8) and (3.2) that

f (x̄) − 〈v, x̄〉 ≥ f (u) − 〈v, u〉 ≥ f (x̄) + 1

2κ
‖u − x̄‖2 − 〈v, u〉,

which gives us in turn the estimates

‖v‖ · ‖u − x̄‖ ≥ 〈v, u − x̄〉 ≥ 1

2κ
‖u − x̄‖2.

This yields γ > 2κδ > ‖u − x̄‖, which ensures that u ∈ int Bγ (x̄). By the Fermat
rule we have v ∈ ∂ f (u), or equivalently u ∈ (∂ f )−1(v) ∩ U = ϑ(v). Since ϑ is
single-valued, it follows that ϑ(v) = u = Mγ (v) for all v ∈ Bδ(v̄). By (3.5) this tells
us that Mγ is single-valued and Lipschitz continuous on Bδ(v̄) with modulus κ , which
verifies (i) and thus completes the proof of the theorem. ��

The following observation is useful in several proofs of the subsequent results.

Remark 3.3 (on single-valued localization). Observe from the proof of (ii)�⇒(i) in
the above theorem that whenever the uniform second-order growth condition (3.2) is
satisfied, the mapping Mγ is a single-valued localization of (∂ f )−1 around (0, x̄) for
some number γ > 0 sufficiently small.

Next we present a lemma of its own interest, which gives a useful sufficient condition
for tilt stability and is employed in the proofs of the main results below.

Lemma 3.4 (tilt stability via the Lipschitz-like property of the inverse subdifferen-
tial). Let f : R

n → R be l.s.c. with v̄ := 0 ∈ ∂ f (x̄). Assume that (∂ f )−1 is Lipschitz-
like with modulus κ > 0 around (0, x̄) and that there is some δ > 0 such that

f (x) ≥ f (u) + 〈v, x − u〉 for all x ∈ Bδ(x̄), (u, v) ∈ gph ∂ f ∩ Bδ(x̄, v̄). (3.6)

Then x̄ is a tilt-stable local minimizer of the function f with modulus κ .
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Proof Let T be a localization of (∂ f )−1 relative to int Bδ(v̄, x̄). It is easy to check
from (3.6) that T is monotone. Since T is Lipschitz-like around (v̄, x̄), the classical
Kenderov theorem [7] on the single-valuedness of monotone operators tells us that
T is single-valued around v̄. Thus we may consider T as Lipschitz continuous with
constant κ on V := int Bδ(v̄). Define now Mδ as in (2.8) and get from (3.6) that
T (v) ⊂ Mδ(v) for v ∈ V . Noting by (2.8) that Mδ is monotone while T is maximal
monotone relative to int Bδ(v̄)× int Bδ(x̄) due to its Lipschitz continuity, we conclude
that T (v) = Mδ(v) when v ∈ V . Hence x̄ is a tilt-stable local minimizer of f with
modulus κ , which completes the proof. ��

As mentioned above, the main result of [19, Theorem 1.3] provides a characteri-
zation of tilt stability via the second-order subdifferential (2.9). In the next theorem
we derive a new characterization of tilt stability with calculating the exact bound of
stability moduli via the combined second-order subdifferential (2.10).

Theorem 3.5 (characterization of tilt-stable minimizers via the combined second-
order subdifferential). Let f : R

n → R be a l.s.c. function having 0 ∈ ∂ f (x̄). Assume
that f is both prox-regular and subdifferentially continuous at x̄ for v̄ = 0. Then the
following assertions are equivalent:

(i) The point x̄ is a tilt-stable local minimizer of the function f with modulus κ > 0.
(ii) There is a constant η > 0 such that for all w ∈ R

n we have

〈z, w〉 ≥ 1

κ
‖w‖2

whenever z ∈ ∂̆2 f (u, v)(w) with (u, v) ∈ gph ∂ f ∩ Bη(x̄, 0). (3.7)

Furthermore, the exact Lipschitzian bound of the mapping Mγ from (2.8) for all
γ > 0 sufficiently small is calculated by the formula

lip Mγ (0)

= inf
η>0

sup
{ ‖u‖2

〈u∗, u〉
∣∣∣ u∗ ∈ ∂̆2 f (x, x∗)(u), (x, x∗) ∈ gph ∂ f ∩ Bη(x̄, 0)

}

(3.8)

with the convention that 0/0 = 0.

Proof To justify (i)�⇒(ii), note first that Theorem 3.2 ensures the existence of a
single-valued localization ϑ of (∂ f )−1 relative to a neighborhood V × U of (v̄, x̄)

such that (3.2) holds. Due to Remark 3.3 we find γ > 0 so small that Mγ (v) = ϑ(v)

for v around v̄, and thus we assume that it holds for all v ∈ V . Similarly to (3.5) it
follows from (3.2) that

〈y − v, x − u〉≥ 1

κ
‖x − u‖2 whenever (x, y), (u, v) ∈ gph ∂ f ∩ (U × V ). (3.9)

To verify (3.7), pick any z ∈ ∂̆2 f (u, v)(w) with (u, v) ∈ gph ∂ f ∩(U ×V ) and w ∈ R
n

and deduce from (2.10) that for any ε > 0 there is some δ > 0 with Bδ(u, v) ⊂ U ×V
such that
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〈z, x − u〉 − 〈w, y − v〉 ≤ ε
(‖x − u‖ + ‖y − v‖)

whenever (x, y) ∈ gph ∂ f ∩ Bδ(u, v). (3.10)

For any t > 0 sufficiently small define ut := ϑ(vt ) = Mγ (vt ) with vt := v + t (z −
2κ−1w) ∈ V and get due to the Lipschitzian continuity of Mγ that (ut , vt ) → (u, v)

as t ↓ 0. Suppose with no loss of generality that (ut , vt ) ∈ Bδ(u, v) for all t > 0.
Replacing (x, y) in (3.10) by (ut , vt ) and using (3.9) give us that

ε
(‖ut − u‖ + ‖vt − v‖) ≥ 〈z, ut − u〉 − 〈w, vt − v〉
= 〈t−1(vt − v) + 2κ−1w, ut − u〉 − t〈w, z − 2κ−1w〉
≥ (κt)−1‖ut − u‖2 + 2κ−1〈w, ut − u〉 − t〈w, z − 2κ−1w〉
≥ (κt)−1‖ut − u‖2 − 2κ−1‖w‖ · ‖ut − u‖ − t〈w, z − 2κ−1w〉
≥ −tκ−1‖w‖2 − t〈w, z − 2κ−1w〉 = −t〈z, w〉 + tκ−1‖w‖2.

(3.11)

Observe further from the Lipschitz continuity of Mγ with modulus κ that

ε
(‖ut − u‖ + ‖vt − v‖) = ε

(‖Mγ (vt ) − Mγ (v)‖ + ‖vt − v‖)
≤ ε

(
κ‖vt − v‖ + ‖vt − v‖)

= ε(κ + 1)‖vt − v‖ = ε(κ + 1)t‖z − 2κ−1w‖,

which together with (3.11) yields 〈z, w〉 + ε(κ + 1)‖z − 2κ−1w‖ ≥ κ−1‖w‖2, and
so 〈z, w〉 ≥ κ−1‖w‖2 while taking ε ↓ 0. This ensures (3.7) and completes the first
part of the proof.

To verify (ii)�⇒(i), let (3.7) hold with some η, κ > 0. Since f is prox-regular and
subdifferentially continuous at x̄ for v̄, there are r, ε > 0 with ε < η satisfying

f (x) ≥ f (u) + 〈v, x − u〉
− r

2
‖x − u‖2 if x ∈ Bε(x̄), (u, v) ∈ gph ∂ f ∩ Bε(x̄, v̄). (3.12)

For g(x) := f (x)+ r
2‖x − x̄‖2 as x ∈ R

n , we have ∂g(x) = ∂ f (x)+r(x − x̄). Define
further W := J (Bε(x̄, v̄)) with J (u, v) := (u, v + r(u − x̄)) for (u, v) ∈ R

n × R
n

and observe that W contains B2δ(x̄, v̄) for some δ > 0 sufficiently small. It is easy to
check from (3.12) that

g(x) ≥ g(u) + 〈v, x − u〉 whenever x ∈ Bδ(x̄), (u, v) ∈ gph ∂g ∩ Bδ(x̄, v̄).

(3.13)

Since gph ∂ f is closed around (x̄, v̄) due to the prox-regularity and subdifferential
continuity of f at x̄ for v̄, we have that gph ∂g is also closed around this point.
Moreover, it follows from (2.10) and [13, Theorem 1.62(i)] that

z − rw ∈ ∂̆2 f (u, v − r(u − x̄))(w) if z ∈ ∂̆2g(u, v)(w)

with (u, v) ∈ gph ∂g ∩ Bδ(x̄, v̄).
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Taking into account that (u, v − r(u − x̄)) = J−1(u, v) ⊂ J−1(W ) = Bε(x̄, v̄) ⊂
Bη(x̄, v̄), this implies together with (3.7) that 〈z − rw,w〉 ≥ κ−1‖w‖2. Thus

‖z‖ · ‖w‖ ≥ 〈z, w〉 ≥ (r + κ−1)‖w‖2, (3.14)

which ensures that ‖z‖ ≥ (r + κ−1)‖w‖. By the regular coderivative criterion from
[13, Theorem 4.7] we conclude that (∂g)−1 is Lipschitz-like around (v̄, x̄).

Next we show that (∂g)−1 is Lipschitz continuous around v̄ with constant � := (r +
κ−1)−1 around (v̄, x̄). Indeed, let T be a localization of (∂g)−1 relative to int Bδ(v̄)×
int Bδ(x̄). It follows from (3.13) that T is a monotone mapping. By the classical
Kenderov theorem [7] on the single-valuedness of monotone operators, the mapping
T is single-valued around v̄, and thus it is Lipschitz continuous around this point. It
follows from the mean value inequality in [13, Corollary 3.50] that for any z ∈ B and
v1, v2 ∈ V1 := int B δ

2
(v̄) we have

‖〈z, T (v1)〉 − 〈z, T (v2)〉‖ ≤ ‖v1 − v2‖ sup
{‖w‖∣∣ w ∈ ∂̂〈z, T (·)〉(v), v ∈ V1

}
.

(3.15)

Furthermore, the Lipschitz continuity of T on Bε(v̄) easily ensures the representations

∂̂〈z, T (·)〉(v) = D̂∗T (v)(z) = D̂∗(∂g)−1(v)(z), z ∈ B,

which gives us together with (3.14) and (3.15) that

‖T (v1) − T (v2)‖ = sup
z∈B

‖〈z, T (v1) − T (v2)〉‖ ≤ (r + κ−1)−1‖v1 − v2‖ (3.16)

for all v1, v2 ∈ V1, and hence (∂g)−1 is Lipschitz continuous around v̄ with constant
�.

Taking into account that g satisfies (3.13), the above conclusion together with
Lemma 3.4 and Remark 3.3 shows that x̄ is a tilt-stable local minimizer of g with
modulus �. Employing now Theorem 3.2 allows us to find neighborhoods U of x̄ and
V of v̄ such that

g(x) ≥ g(u) + 〈v, x − u〉 + 1

2�
‖x − u‖2 if x ∈ U, (u, v) ∈ gph ∂g ∩ (U × V ).

(3.17)

Since ∂ f (x) = ∂g(x) − r(x − x̄) and f (x) = g(x) − r
2‖x − x̄‖2, we get from (3.17)

that for all (u, v) ∈ gph ∂ f ∩ J−1(U × V ) and x ∈ U

f (x) = g(x) − r

2
‖x − x̄‖2 ≥ g(u) + 〈v + r(u − x̄), x − u〉 + r + κ−1

2
‖x − u‖2

− r

2
‖x − x̄‖2
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= g(u) + 〈v, x − u〉 + 1

2κ
‖x − u‖2 + 〈r(u − x̄), x − u〉 + r

2
‖x − u‖2

− r

2
‖x − x̄‖2

= g(u) + 〈v, x − u〉 + 1

2κ
‖x − u‖2 − r

2
‖u − x̄‖2

= f (u) + 〈v, x − u〉 + 1

2κ
‖x − u‖2.

Applying Theorem 3.2 again verifies (i). It is easy to observe that the exact bound
formula (3.8) follows directly from (3.7). ��

As a consequence of the results above, we derive now a characterization of tilt
stability of local minimizers for extended-real-valued functions via the second-order
subdifferential (2.9). From one hand, it gives a new and easier proof of the main result
(3.19) of [19, Theorem 1.3] while from the other hand, it provides a new quantitative
information including condition (3.18) with the modulus relationship in (ii) as well as
the exact bound formula (3.20).

Theorem 3.6 (characterization of tilt-stable minimizers via the second-order subdif-
ferential). Let f : R

n → R be l.s.c. with 0 ∈ ∂ f (x̄) and such that f is prox-regular
and subdifferentially continuous at x̄ for v̄ = 0. Consider the statements:

(i) The point x̄ is a tilt-stable local minimizer of f with modulus κ > 0.
(ii) ∂2 f (x̄, 0) is positive- definite with modulus μ > 0 in the sense that

〈z, w〉 ≥ μ‖w‖2 whenever z ∈ ∂2 f (x̄, 0)(w). (3.18)

Then implication (i) �⇒ (ii) holds with μ = κ−1 while implication (ii) �⇒ (i)
is satisfied with any κ > μ−1. Furthermore, the validity of (i) with some modulus
κ > 0 is equivalent to positive- definiteness of ∂2 f (x̄, 0) in the sense that

〈z, w〉 > 0 whenever z ∈ ∂2 f (x̄, 0)(w), w 	= 0. (3.19)

Finally, the exact Lipschitzian bound of the mapping Mγ in (2.8) is calculated by

lip Mγ (0) = max

{ ‖w‖2

〈z, w〉
∣∣∣ z ∈ ∂2 f (x̄, 0)(w)

}
. (3.20)

for all γ > 0 sufficiently small, with the convention that 0/0 = 0, provided that x̄
is a tilt-stable local minimizer of f .

Proof Implication (i)�⇒(ii) with μ = κ−1 follows from Theorem 3.5 by passing to
the limit in (3.7) as η ↓ 0 and using definition (2.9) of the second-order subdifferential.

To justify the converse implication (ii)�⇒(i), we proceed similarly to the proof
of (ii)�⇒(i) in Theorem 3.5 with some modifications. Since f is prox-regular and
subdifferentially continuous at x̄ for v̄, inequality (3.12) holds for some r, ε > 0.
Defining g(x) := f (x)+ r

2‖x − x̄‖2 for x ∈ R
n , we have ∂g(x) = ∂ f (x)+ r(x − x̄).

��

123



Second-order characterizations of tilt stability 95

Claim Suppose that the following condition holds with some ν ≥ 0:

〈z, w〉 ≥ ν‖w‖2 whenever z ∈ ∂2 f (x̄, 0)(w). (3.21)

Then for any λ ∈ (0, r + ν) there are some neighborhoods U of x̄ and W of (x̄, v̄)

such that

f (x) ≥ f (u) + 〈v, x − u〉 + ν − λ

λ
‖x − u‖2 if x ∈ U, (u, v) ∈ gph ∂ f ∩ W.

(3.22)

To prove this claim, we verify the Lipschitz-like property of (∂g)−1 around (v̄, x̄) with
modulus (r + ν − λ)−1 as λ ∈ (0, r + ν). Given z ∈ ∂2g(x̄, v̄)(w), it follows from
[13, Theorem 1.62(ii)] that z −rw ∈ ∂2 f (x̄, v̄)(w). By (3.21) we have 〈z −rw,w〉 ≥
ν‖w‖2, which yields

‖z‖ · ‖w‖ ≥ 〈z, w〉 ≥ (r + ν)‖w‖2.

Thus the Mordukhovich/coderivative criterion of [21, Theorem 9.40] tells us that for
any λ ∈ (0, r + ν) the mapping (∂g)−1 is Lipschitz-like around (v̄, x̄) with modulus
(r + ν − λ)−1. Furthermore, since g also satisfies (3.13), combining Lemma 3.4 and
Theorem 3.2 shows that there are neighborhoods U of x̄ and V of v̄ such that

g(x) ≥ g(u) + 〈v, x − u〉 + r + ν − λ

2
‖x − u‖2

for all x ∈ U, (u, v) ∈ gph ∂g ∩ (U × V ).

This yields (3.22) with W := J−1(U × V ) and J (u, v) := (u, r(v − x̄)) and justifies
the claim.

Let us go back to the main proof of (ii)�⇒(i). By (3.18) the above Claim shows
that inequality (3.22) holds with ν = μ. Since λ > 0 can be chosen arbitrarily
small, Theorem 3.2 tells us that x̄ is the tilt-stable local minimizer of f with modulus
κ := (μ − λ)−1, which can be any number larger than μ−1. This verifies the claimed
implication (ii)�⇒(i).

Next we prove the equivalence between (i) with some modulus κ > 0 and con-
dition (3.19). Implication (i)�⇒(3.19) is trivial due to (3.18). To check the converse
implication, observe from (3.19) that D∗(∂ f )−1(v̄, x̄)(0) = {0}, which tells us by
Mordukhovich [13, Corollary 4.11] and Rockafellar [21, Theorem 9.40] that (∂ f )−1

is Lipschitz-like around (v̄, x̄) with some modulus � > 0. Moreover, it is clear by
(3.19) that (3.21) holds with ν = 0. For each λ ∈ (0, min{r, �−1}) we find from the
above Claim such neighborhoods U of x̄ and W of (x̄, v̄) that

f (x) ≥ f (u) + 〈v, x − u〉 − λ

2
‖x − u‖2 for all x ∈ U, (u, v) ∈ gph ∂ f ∩ W.

(3.23)

123



96 B. S. Mordukhovich, T. T. A. Nghia

Define h(x) := f (x) + λ
2 ‖x − x̄‖2 with ∂h(x) = ∂ f (x) + λ(x − x̄). It is similar to

(3.13) seeing that inequality (3.23) implies the existence of δ > 0 sufficiently small
with

h(x) ≥ h(u) + 〈v, x − u〉 whenever x ∈ Bδ(x̄), (u, v) ∈ gph ∂h ∩ Bδ(x̄, v̄).

(3.24)

Picking any (z, w) ∈ R
n × R

n with z ∈ ∂2h(x̄, v̄)(w), we get from [13, The-
orem 1.62(ii)] that z − λw ∈ ∂2 f (x̄, v̄)(w) for all w ∈ R

n . Since (∂ f )−1 is
Lipschitz-like around (v̄, x̄) with modulus �, it follows from [13, Theorem 1.44] that
�‖z − λw‖ ≥ ‖w‖, which yields

�‖z‖ ≥ �‖z − λw‖ − �λ‖w‖ ≥ ‖w‖ − �λ‖w‖ = (1 − �λ)‖w‖.

Again, the aforementioned coderivative criterion ensures that (∂h)−1 is Lipschitz-like
around (v̄, x̄) with modulus �

1−�λ
+ λ. Since h satisfies inequality (3.24), combining

Lemma 3.4 and Theorem 3.2 gives us the existence of neighborhoods U2 of x̄ and V2
of v̄ with

h(x) ≥ h(u) + 〈u, x − u〉 + 1

2 �
1−�λ

+ 2λ
‖x − u‖2

for all x ∈ U2, (u, v) ∈ gph ∂h ∩ (U2 × V2).

By f (x) = h(x) − λ
2 ‖x − x̄‖2 it easily implies that

f (x) ≥ f (u) + 〈u, x − u〉 +
[

1

2 �
1−�λ

+ 2λ
− λ

2

]
‖x − u‖2

for all x ∈ U2, (u, v) ∈ gph ∂ f ∩ W2

with W2 := J−1
λ (U2 × V2) and Jλ(u, v) := (u, v + λ(u − x̄)) as (u, v) ∈ R

n × R
n .

Choosing now λ > 0 with
(

�
1−�λ

+ λ
)−1 − λ > 0 and applying Theorem 3.2 ensure

that x̄ is a tilt-stable local minimizer of f and thus justify implication (3.19)�⇒(i).
To complete the proof of the theorem, it remains to verify the exact bound formula

(3.20). If dom ∂2 f (x̄, 0)(·) = {0}, then we always have (3.18) for any μ > 0. It
follows that x̄ is a tilt-stable local minimizer for any modulus κ > 0, which implies that
lip Mγ (x̄) = 0. Thus we derive (3.20) in which the maximum is attained at (0, 0) due to
0 ∈ ∂2 f (x̄, 0)(0) and the convention 0/0 = 0. Now suppose that dom ∂2 f (x̄, 0)(·) 	=
{0} and observe from the quantitative relationship between moduli in (i) and (ii) that

lip Mγ (0) = sup

{ ‖w‖2

〈z, w〉
∣∣∣ z ∈ ∂2 f (x̄, 0)(w)

}
, (3.25)

and thus we only need to show that the maximum is achieved in (3.25). By (3.25) there

is a sequence (zk, wk) with zk ∈ ∂2 f (x̄, 0)(wk) and ‖wk‖2

〈zk ,wk 〉 → lip Mγ (x̄) as k → ∞.
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If zk = 0 for large k ∈ N, we have wk = 0 and thus lip Mγ (x̄) = 0 by the convention
that 0/0 = 0, which verifies that the maximum in (3.20) is achieved at (wk, zk).
Otherwise, suppose that ‖zk‖ > 0 for all k ∈ N and then define z̄k := zk‖zk‖−1 and
w̄k := wk‖zk‖−1. This gives

‖wk‖2

〈zk, wk〉 = ‖w̄k‖2

〈z̄k, w̄k〉 ≥ ‖w̄k‖
‖z̄k‖ = ‖w̄k‖, k ∈ N.

Hence the sequence {w̄k} is bounded, we suppose that z̄k → z̄ and w̄k → w̄ as
k → ∞. It follows from z̄k ∈ ∂2 f (x̄, v̄)(w̄k) that z̄ ∈ ∂2 f (x̄, v̄)(w̄), which shows
that the supremum in (3.25) is attained at (w̄, z̄) and thus completes the proof of the
theorem.

4 Applications to tilt stability in nonlinear programming

This section is devoted to applications of the general results obtained in the previous
sections to problems of nonlinear programming (NLP) given by:

{
minimize ϕ0(x) subject to x ∈ R

n,

ϕi (x) ≤ 0 for i = 1, . . . , m,
(4.1)

where all ϕi are C2 around the reference point x̄ . Define the feasible solution set to
(4.1) by

� := {
x ∈ X | ϕ(x) ∈ �

}
with � := R

m− and ϕ(x) := (
ϕ1(x), . . . , ϕm(x)

)

(4.2)

and observe that problem (4.1) can be written in the equivalent unconstrained format:

minimize f (x) := ϕ0(x) + δ�(x) with x ∈ R
n . (4.3)

If x̄ ∈ � is a local minimizer of (4.1), it satisfies the following first-order optimality
condition via the normal cone to the feasible set � (see, e.g., [13, Proposition 5.1]):

0 ∈ ∂ f (x̄) = ∇ϕ0(x̄) + N (x̄;�). (4.4)

We say that x̄ is a tilt-stable local minimizer of the nonlinear program (4.1) with
modulus κ > 0 if it satisfies all the requirements of Definition 2.1 with respect to the
extended-real-valued function f in (4.3) and the Lipschitz constant κ for the mapping
Mγ therein.

Let us now recall some well-known qualification conditions used in this section; see
[13,21] for more details. The first one is the linear independent constraint qualification
(LICQ) for (4.1) at x̄ ∈ �, which means that the gradients

{∇ϕi (x̄)| i ∈ I (x̄)
}

are linearly independent in R
n along the set of active constraint indices I (x̄) :=

{i ∈ {1, . . . , m}| ϕi (x̄) = 0}. The second condition strictly weaker than LICQ is the
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Mangasarian-Fromovitz constraint qualification for (4.1) at x̄ ∈ � meaning that there
is d ∈ R

n such that

〈∇ϕi (x̄), d〉 < 0 for i ∈ I (x̄). (4.5)

It is worth noting that both LICQ and MFCQ are robust in the sense that if either
MFCQ or LICQ holds at x̄ , then it must be satisfied at all x in a neighborhood O of
x̄ . In these cases the normal cone to � at x ∈ O ∩ � is equivalently calculated by the
formulas

N (x;�) = ∇ϕ(x)∗N
(
ϕ(x);�

)

= {∇ϕ(x)∗λ
∣∣ 〈λ, ϕ(x)〉 = 0, λ ∈ R

m+ for i ∈ I (x)
}
. (4.6)

Let us further consider the standard Lagrange function

L(x, λ) := ϕ0(x) +
m∑

i=1

λiϕi (x) with x ∈ R
n and λ ∈ R

m

and then define the set-valued mapping � : R
n ⇒ R

n by

�(x) := {∇x L(x, λ)
∣∣ λ ∈ N

(
ϕ(x);�

)}
. (4.7)

It is well known that if x̄ is a local minimizer of problem (4.1), then we have
the stationary condition 0 ∈ �(x̄) written equivalently in the form of the KKT
system

0 ∈ ∇ϕ0(x̄) + ∇ϕ(x̄)∗λ = ∇x L(x̄, λ) with some λ ∈ N
(
ϕ(x̄);�

)
(4.8)

provided that MFCQ holds at x̄ . Taking into account the explicit form of � in (4.6)
allows us to describe the set of Lagrange multipliers satisfying (4.8) as

�(x̄) := {
λ ∈ R

m+ × R
r
∣∣ 0 ∈ ∇x L(x̄, λ), 〈λ, ϕ(x̄)〉 = 0

}
. (4.9)

Based on (4.9), we introduce the parameterized set of multipliers useful in the sequel:

�(x, v) := {
λ ∈ R

m+
∣∣ v ∈ ∇x L(x, λ), 〈λ, ϕ(x)〉 = 0

}
with v ∈ �(x), (4.10)

where the mapping � is defined in (4.7). It is clear that �(x) = �(x, 0) and that
�(x, v) is singleton for any v ∈ �(x) with x ∈ O provided that LICQ holds at x̄ .

In the second-order framework, a well-recognized condition for NLP (4.1) was
introduced by Robinson [20] under the name of strong second-order sufficient condi-
tion. Recall that SSOSC holds at x̄ if for all λ ∈ �(x̄) we have

〈w,∇2
xx L(x̄, λ)w〉 > 0 whenever 〈∇ϕi (x̄), w〉 = 0 for i ∈ I+(x̄, λ), w 	= 0,

(4.11)

123



Second-order characterizations of tilt stability 99

where I+(x̄, λ) := {
i ∈ {1, . . . , m}∣∣ λi > 0

}
.

Another second-order condition for the classical NLP (4.1) in finite dimensions,
labeled as the standard second-order sufficient condition (standard SOSC), is formu-
lated as follows: for all λ ∈ �(x̄) we have 〈w,∇2

xx L(x̄, λ)w〉 > 0 (or, equivalently,
〈w,∇2

xx L(x̄, λ)w〉 ≥ α‖w‖2 with some constant α > 0) whenever w 	= 0 satisfies

〈∇ϕi (x̄), w〉 = 0 for i ∈ I+(x̄, λ) and 〈∇ϕi (x̄), w〉 ≥ 0 for i ∈ I (x̄)\I+(x̄, λ).

It has been recognized that SSOSC (4.11) is stronger than the standard SOSC; see
[20]. Now we introduce a new condition that is a uniform version of the standard SOSC,
being stronger than the latter, while playing a crucial role in the characterization of
tilt stability.

Definition 4.1 (uniform second-order sufficient condition) We say that the uniform
second- order sufficient condition (USOSC) holds for (4.1) at x̄ with modulus
� > 0 if there is a constant η > 0 such that

〈w,∇2
xx L(x, λ)w〉 ≥ �‖w‖2

whenever (x, v) ∈ gph � ∩ Bη(x̄, 0), λ ∈ �(x, v),

〈∇ϕi (x), w〉 = 0 for i ∈ I+(x, λ) and 〈∇ϕi (x), w〉 ≥ 0
for i ∈ I (x)\I+(x, λ),

(4.12)

where the mapping � and the set �(x, v) are defined in (4.7) and (4.10), respectively.

The next proposition shows that under the validity of MFCQ at x̄ the introduced
USOSC is implied by SSOSC (4.11).

Proposition 4.2 (SSOSC implies USOSC under MFCQ). Let x̄ be a feasible solu-
tion to (4.1) satisfying the first-order optimality condition (4.4) under the validity of
MFCQ at x̄ . Assume also that SSOSC (4.11) holds at this point. Then USOSC from
Definition 4.1 is satisfied at x̄ with some modulus � > 0.

Proof Having SSOSC at x̄ , we argue by contradiction and assume that there is no
number � > 0 such that USOSC holds at x̄ with modulus �. This allows us to find a
sequence {xk, vk, wk, λk} ⊂ R

n × R
n × R

n × R
m satisfying

xk → x̄, vk → 0, λk ∈ �(xk, vk), ‖wk‖ = 1, 〈wk,∇2
xx L(xk, λk)wk〉 ≤ k−1,

and〈∇ϕi (xk), wk〉 = 0 for i ∈ I+(xk, λk), 〈∇ϕi (xk), wk〉 ≥ 0

for i ∈ I (xk)\I+(xk, λk). (4.13)

It follows from the inclusion λk ∈ �(xk, vk) in (4.13) and construction (4.10) that

vk = ∇ϕ0(xk) +
m∑

i=1

λki ∇ϕi (xk) with λk ∈ R
m+ and 〈λk, ϕ(xk)〉 = 0, (4.14)

123



100 B. S. Mordukhovich, T. T. A. Nghia

where λki signifies the i th component of the vector λk . We get from MFCQ (4.5) at x̄
that there are d ∈ R

n and δ > 0 such that

〈∇ϕi (x̄), d〉 < −2δ for i ∈ I (x̄). (4.15)

Since xk → x̄ as k → ∞, we suppose without loss of generality that 〈∇ϕi (xk), d〉 <

−δ for all i ∈ I (xk) ⊂ I (x̄) and k ∈ N. Note further that λki = 0 for i ∈ {1, . . . , m} \
I (xk). Hence we get λki 〈∇ϕi (xk), d〉 ≤ −δλki whenever i ∈ {1, . . . , m}. Combining
this with the relationships in (4.14) and (4.15) gives us the estimates

−‖vk‖ · ‖d‖ ≤ 〈vk, d〉 = 〈∇ϕ0(xk), d〉 +
m∑

i=1

λki 〈∇ϕi (xk), d〉

≤ ‖∇ϕ0(xk)‖ · ‖d‖ − δ

m∑
i=1

λki ,

which ensures that the sequence {λk} is bounded in R
m+. By passing to subsequences,

we assume that λk → λ ∈ R
m+ and wk → w ∈ R

n as k → ∞ with ‖w‖ = 1. Noting
that I+(x̄, λ) ⊂ I+(xk, λk) for sufficiently large k ∈ N, we get from (4.13) that

λ ∈ �(x̄), 〈w,∇2
xx L(x̄, λ)w〉 ≤ 0, and 〈∇ϕi (x̄), w〉 = 0 for i ∈ I+(x̄, λ),

which contradicts (4.11) and thus completes the proof of the proposition. ��
In what follows we show (see Theorem 4.3 and Example 4.5) that the introduced

USOSC is strictly weaker than its SSOSC counterpart (4.11) even under the simulta-
neous fulfillment of MFCQ and the well-known constant rank constraint qualification
formulated below.

It is worth mentioning that SSOSC characterizes of tilt-stable minimizers of (4.1)
under LICQ [16, Theorem 5.2]. Recently paper [14] has employed the combination of
MFCQ and the constant rank constraint qualification (CRCQ), which is strictly weaker
than LICQ to derive separately necessary conditions and sufficient conditions (but not
characterizations) for tilt-stable minimizers in NLP. Recall that CRCQ holds at x̄ if
there is a neighborhood W of x̄ such that the gradient system {∇ϕi (x)| i ∈ J } has the
same rank in W for any index J ⊂ I (x̄); see, e.g., [5,11,14] and the references therein
for historical remarks and recent developments. Note that I (x) ⊂ I (x̄) provided that
x is sufficiently close to x̄ , i.e., the CRCQ condition is robust.

Note further that MFCQ and CRCQ are independent in the sense that one can not
imply another. It is proved in [14, Theorem 3.5] that SSOSC (4.11) is sufficient for
tilt-stability of local minimizers of (4.1) under the simultaneous validity of MFCQ and
CRCQ. Our next result shows that the new USOSC have a complete characterization
of tilt-stable minimizers in the same setting.

Theorem 4.3 (USOSC characterization of tilt-stable minimizers under MFCQ and
CRCQ). Let x̄ be a feasible solution to (4.1) satisfying (4.4). Assume that both MFCQ
and CRCQ hold at x̄ . Then the following assertions are equivalent:
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(i) The point x̄ is a tilt-stable local minimizer of (4.1) with modulus κ > 0.
(ii) The USOSC from Definition 4.1 holds at x̄ with modulus � = κ−1.

Proof Let η > 0 be sufficiently small so that both MFCQ and CRCQ hold at all
x ∈ Bη(x̄). Pick any z ∈ ∂̆2 f (x, v)(w) with (x, v) ∈ gph ∂ f ∩ Bη(x̄, 0) = gph � ∩
Bη(x̄, 0) and any λ ∈ �(x, x∗). It follows from [13, Theorem 1.62] that

∂̆2 f (x, v)(w) = D̂∗(∇ϕ0 + N (·;�)
)
(x, v)(w) = ∇2ϕ0(x)w

+D̂∗N (·;�)
(
x, v − ∇ϕ0(x)

)
(w).

Employing this with the exact calculation of D̂∗N (·;�)(x, v − ∇ϕ0(x))(w) given in
[5, Theorem 6] ensures that z ∈ ∂̆2 f (x, v)(w) if and only if

z − ∇2
xx L(x, λ)w ∈ K (x, v − ∇ϕ0(x))∗ and − w ∈ K (x, v − ∇ϕ0(x)) (4.16)

for some λ ∈ �(x, v), where K (x, v−∇ϕ0(x)) := N̂ (x;�)∗∩{v−∇ϕ0(x)}⊥ for the
critical cone to (4.2) with the notation A∗ := {

b ∈ R
n| 〈b, a〉 ≤ 0, a ∈ A

}
standing

for the (negative) dual cone of A ⊂ R
n . It is well known that the assumed MFCQ

ensures that

N̂ (x;�)∗ = {
u ∈ R

n
∣∣ 〈∇ϕi (x), u〉 ≤ 0, i ∈ I (x)

}
.

Using this formula and the fact that v − ∇ϕ0(x̄) = ∑
i∈I (x) λi∇ϕi (x), we conclude

that

− w ∈ K (x, v−∇ϕ0(x))⇐⇒
{ 〈∇ϕi (x), w〉 = 0 for i ∈ I+(x, λ),

〈∇ϕi (x), w〉 ≥ 0 for i ∈ I (x)\I+(x, λ).
(4.17)

If (ii) holds, we derive (i) from Theorem 3.5 by checking that (3.7) is satisfied due
that 〈z, w〉 ≥ 1

κ
‖w‖2. Indeed, note from (4.17) and the imposed USOSC that

〈∇2
xx L(x, λ)w,w〉 ≥ 1

κ
‖w‖2. (4.18)

Moreover, it follows from (4.16) and the definition of the dual cone that

〈z − ∇2
xx L(x, λ)w,w〉 ≥ 0.

This together with (4.18) verifies that 〈z, w〉 ≥ 1
κ
‖w‖2 thus ensuring (i).

Conversely, suppose that (i) is satisfied. Pick w with

〈∇ϕi (x), w〉 = 0 as i ∈ I+(x, λ) and 〈∇ϕi (x), w〉 ≥ 0 as i ∈ I (x)\I+(x, λ)

with any λ ∈ �(x, v) and select z := ∇2
xx L(x, λ)w+v−∇ϕ0(x). Then observe from

the definition of K (x, v−∇ϕ0(x)) that v−∇ϕ0(x) ∈ K (x, v−∇ϕ0(x))∗. This implies
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together with (4.16) and (4.17) that z ∈ ∂̆2 f (x, v)(w) and 〈v−∇ϕ0(x), w〉 = 0, which
yields in turn by combining with (3.7) that

〈∇2
xx L(x, λ)w,w〉 = 〈z, w〉 − 〈v − ∇ϕ0(x), w〉 = 〈z, w〉 ≥ 1

κ
‖w‖2.

It ensures USOSC with modulus � = κ−1 and thus completes the proof. ��
Now we recover the aforementioned sufficient condition for tilt stability from

[14, Theorem 3.5] derived by a different approach.

Corollary 4.4 (sufficiency of SSOSC for tilt stability under MFCQ and CRCQ). Let
x̄ ∈ � satisfy (4.4), and let both MFCQ and CRCQ hold at x̄ . If SSOSC holds at x̄ ,
then x̄ is a tilt-stable local minimizer of (4.1).

Proof We know from Proposition 4.2 that SSOSC at x̄ implies the fulfillment of
USOSC at this point with some modulus � > 0. Thus the result of the corollary is an
immediate consequence of Theorem 4.3. ��

The next example shows that SSOSC is not necessary for tilt stability of local
minimizers under the validity of both MFCQ and CRCQ.

Example 4.5 (SSOSC is not a necessary condition for tilt stability under MFCQ and
CRCQ). Consider the following nonlinear problem in R

3:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

minimize ϕ0(x) := x3 + 1
4 x1 + x2

3 − x1x2 subject to
ϕ1(x) := x1 − x3 ≤ 0
ϕ2(x) := −x1 − x3 ≤ 0
ϕ3(x) := x2 − x3 ≤ 0
ϕ4(x) := −x2 − x3 ≤ 0,

x = (x1, x2, x3) ∈ R
3.

(4.19)

It is easy to check that both MFCQ and CRCQ hold at x̄ = (0, 0, 0). Taking any vector
v = (v1, v2, v3) with |v1| < 1

12 and |v2|, v3 < 1
3 and writing the function f from

(4.4) in this case, we have in this case 0 ≤ max{|x1|, |x2|} ≤ x3 and

f (x) − 〈v, x〉 = x3 + 1

4
x1 − v1x1 − v2x2 − v3x3 + x2

3 − x1x2

≥ 1

3
x3 +

(1

4
− v1

)
x1 + 1

3
x3 − v2x2 +

(1

3
− v3

)
x3

≥ 1

3
|x1| +

(1

4
− v1

)
x1 + 1

3
|x2| − v2x2 +

(1

3
− v3

)
x3

≥
( 1

12
− |v1|

)
|x1| +

(1

3
− |v2|

)
|x2| +

(1

3
− v3

)
x3 ≥ 0,

where the last equality holds due to the choice of v. It follows that Mγ (v) = {x̄}
whenever v is sufficiently close to 0 ∈ R

3. Thus x̄ is a tilt-stable local minimizer of
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program (4.19), and we only need to check that SSOSC does not hold at x̄ . It is easy
to see that

( 3
8 , 5

8 , 0, 0
) ∈ �(x̄), and so w = (0, 1, 0) 	= 0 satisfies the equation

〈∇ϕi (x̄), w〉 = 0 for i ∈ I+(x̄, λ) = {1, 2}.

At the same time 〈w,∇2
xx L(x̄, λ)w〉 = 0, which shows that SSOSC does not hold at

x̄ .

Note that the generalized equation/KKT system associated with problem (4.19) is
not strongly regular in the sense of Robinson [20] at the tilt-stable minimizer x̄ and
the corresponding Lagrange multiplier in Example 4.5 since the converse assertion
yields LICQ and thus contradicts [3, Theorem 6]. Observe also that we do not have
strong stability in the sense of Kojima [8] in this example. Indeed, it has been well
recognized (see the original version in [8, Theorem 7.2] and the improved one in
[1, Proposition 5.37] with the references therein) that strong stability of NLP can be
characterized, under the validity of MFCQ, via a uniform quadratic growth condition
equivalent in this case to SSOSC. As shown in Example 4.5, SSOSC does not hold
at the tilt-stable minimizer x̄ in problem (4.19) while MFCQ is satisfied. Thus strong
stability fails in this setting.

5 Concluding remarks

This paper presents a systematic and largely self-contained study of the important
concept of tilt stability for local minimizers in general optimization problems via
advanced tools of second-order variational analysis and generalized differentiation.
We develop a new approach to tilt stability and establish its qualitative and quantitative
characterizations in finite-dimensional spaces. The applications are given to classical
NLP with twice continuously differentiable data, where the developed approach allows
us to derive new characterizations of tilt stability via both conventional and novel
optimality and qualification conditions expressed entirely in terms of the initial data.

The call for further research is to implement this approach in the study of other
remarkable classes of problems in mathematical programming of theoretical and prac-
tical interest. Among them are problems of conic programming for which some results
have been recently obtained in [15] for programs with C2 data under the conventional
nondegeneracy condition ensuring the uniqueness of the corresponding Lagrange mul-
tipliers similarly to the classical LICQ in nonlinear programming. We feel that our
approach is able to relax this rather restrictive assumption and to obtain new charac-
terizations of tilt stability in conic programming. Another important topic of further
research is full stability of optimal solutions in the sense of [9], which is a far-going
extension of tilt stability. After initial developments in [9] in the extended-real-valued
framework of finite-dimensional optimization, recent advances have been given in [17]
for some classes of mathematical programs with polyhedral structures. The approach
presented in this paper seems to be promising for further developments and applica-
tions of full stability in optimization.
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