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Abstract A finite-dimensional mathematical programming problem with convex data
and inequality constraints is considered. A suitable definition of condition number
is obtained via canonical perturbations of the given problem, assuming uniqueness
of the optimal solutions. The distance among mathematical programming problems
is defined as the Lipschitz constant of the difference of the corresponding Kojima
functions. It is shown that the distance to ill-conditioning is bounded above and below
by suitable multiples of the reciprocal of the condition number, thereby generalizing
the classical Eckart–Young theorem. A partial extension to the infinite-dimensional
setting is also obtained.
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1 Introduction

Consider the finite-dimensional convex programming problem Q, to minimize the
objective function f (x) subject to the inequality constraints

g1(x) ≤ 0, . . . , gq(x) ≤ 0.

The purpose of this paper is twofold. First, to find an appropriately defined condition
number of Q. Second, to relate such condition number to the suitably defined distance
of Q from the set of ill-conditioned problems of the same form. In this way we
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196 T. Zolezzi

generalize to the convex programming setting the classical Eckart–Young theorem in
its optimization version, see [16]. According to such result and to its generalizations,
see [17] and [18], the distance to ill-conditioning is bounded from below and above
by constant multiples of the reciprocal of the condition number.

Such results are of interest for the analysis of the computational complexity (see
[4]), for the sensitivity and stability properties of the problem under perturbations, and
for evaluating the performance of numerical methods of solution. Quoting [4, p. 232],
“a very general theme in numerical analysis is a relationship between the condition
number of a problem and the reciprocal of the distance to the set of ill-conditioned
problems”. However, as shown in [18], there exist classes of minimum norm least
squares problems for which a condition number theorem as before cannot hold. This
adds interest in finding classes of optimization problems for which a condition number
theorem is available. To the knowledge of this author, no such result is known for
convex programming problems. Moreover, the definition we shall employ of distance
among mathematical programming problems, based on their Kojima functions (see
below), is new. The results of Renegar [12,13] deal with the distance to instability (a
different notion than ill-conditioning) within linear programming problems (following
a different approach).

In this paper we consider a condition number as a measure of the sensitivity of the
optimal solution with respect to a given class of data perturbations, according to stan-
dard notions of conditioning in numerical analysis. Hence the notion of conditioning
crucially depends on the choice of the perturbations. We consider here the canonical
perturbations Q(p) of problem Q, defined by the parameter p = (a, b), with the
objective function f (x) − aT x subject to the constraints

g1(x) ≤ b1, . . . , gq(x) ≤ bq ,

where (b1, . . . , bq)T = b. Such canonical perturbations play a significant role in
the analysis of stability and sensitivity of mathematical programming problems, see
[9, chapter 8]. We assume existence, uniqueness and boundedness of the optimal
solutions s(p) = [m(p), u(p)] of Q(p) for p sufficiently small, where m(p) is the
corresponding minimizer and u(p) is the corresponding multiplier. Then the condition
number of Q is defined as the Lipschitz modulus of s at p = 0. Problem Q is then
declared well-conditioned if its condition number is finite. A solvable program is called
here ill-conditioned iff either the unique optimal solution of the canonically perturbed
problem is not locally Lipschitz around 0 with respect to the perturbation parameter,
or the perturbed problems have many solutions.

We note that a sufficient condition for uniqueness and Lipschitz continuity of locally
optimal solutions to (nonconvex) mathematical programming problems under (not
necessarily canonical) perturbations can be obtained from [15, Th. 4.1]. See also [6],
and [5, Cor. 3] for a necessary and sufficient condition of well-conditioning in the
smooth convex case under more general perturbations.

In the present setting of mathematical programming problems with inequality con-
straints, a significant modification of the Lagrangean function of the problem is given
by the Kojima function (see [10]). The (pseudo-)distance between two programs is
then defined as the Lipschitz constant of the difference of their Kojima functions. Then
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we characterize well-conditioning by properties of the Kojima function, and show that
a lower bound of the distance to ill-conditioning is given by a constant multiple of the
reciprocal of the condition number. This result holds true in the Banach space setting
(with the same proof), so generalizing results of [17] obtained for unconstrained prob-
lems. Finally we prove an upper bound of the same form for the distance, exploiting
the implicit function theorem of [8]. In both cases, the constants are explicitly obtained
in terms of problem’s data.

The results here generalize (for the finite-dimensional setting) the main results of
[17] about unconstrained optimization problems. Results dealing with more general
perturbations of unconstrained optimization problems are obtained in [2], and exten-
sions to multiobjective optimization can be found in [3].

Section 2 describes the problem and the assumptions. Section 3 contains three
examples of well- and ill-conditioned problems. Section 4 is devoted to the main
results. Section 5 deals with an extension to the Banach space setting. Section 6
collects the proofs and some auxiliary results.

2 Problem statement and assumptions

We consider an open ball B ⊂ Rn , functions

f, g1, . . . , gq : B → R

and points a ∈ Rn, b ∈ Rq . For simpler notation we write p = (a, b) with a ∈ Rn, b ∈
Rq instead of p = (aT , bT )T . Then we consider the mathematical programming
problem Q(p) to minimize f (x) − aT x subject to the constraints

g1(x) ≤ b1, . . . , gq(x) ≤ bq (1)

where (b1, . . . , bq)T = b. We denote by g the vector with components g1, . . . gq and
write Q = ( f, g). Under suitable assumptions (specified later) we denote by m(p) the
minimizer of Q(p), by u(p) the corresponding multiplier, and by

s(p) = [m(p), u(p)] (2)

the optimal solution of Q(p). We consider the Kojima function K associated to prob-
lem Q = Q(0), namely

K : B × Rq → Rn+q

given by

K (x, y) =
⎛
⎝� f (x) +

q∑
j=1

y+
j � g j (x), g1(x) − y−

1 , . . . , gq(x) − y−
q

⎞
⎠ . (3)

Here y+ = max {y, 0}, y− = min {y, 0} and (3) means that the first n components of
K (x, y) are those of � f (x)+∑q

j=1 y+
j �g j (x) and the remaining are given by gi (x)−
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y−
i , i = 1, . . . , q. We denote by | · | the l1 norm of Rm , namely |(x1, . . . , xm)T | =∑m

j=1 |x j |.
For every problem Q as before we are given a nonempty set � ⊂ Rn+q containing

0, such that 0 is a cluster point of �. Then we consider the canonically perturbed
problems Q(p) as p ∈ �. Problem Q will be called well-conditioned if the following
properties hold. First, Q(p) has a unique global optimal solution s(p) as in (2) for
each sufficiently small p ∈ �. Second, the condition number of Q, namely

cond Q = limsupp′,p′′→0
|s(p′′) − s(p′)|

|p′′ − p′| (4)

is finite. Of course, in (4) we consider p′, p′′ ∈ �. We posit the following conditions.

(A1) f, g1, . . . , gq are convex, their gradients exist and are Lipschitz continuous on
B;

(A2) there exist x0 ∈ B, ε > 0 such that g j (x0) ≤ −ε, j = 1, . . . , q;
(A3) there exists δ ∈ (0, ε) such that for each p ∈ � with |p| < δ there exists a

unique optimal solution s(p) of Q(p).

We denote by IC the set of all mathematical programming problems Q fulfilling
(A1) and (A2), assuming that Q(p) has optimal solutions for each p sufficiently small,
such that Q is ill-conditioned. So Q ∈ IC if either Q(pm) has infinitely many solutions
for some sequence pm → 0, pm ∈ �, or Q(p) has a unique optimal solution s(p) for
each p ∈ � sufficiently small and its Lipschitz modulus cond Q = +∞ as defined
by (4).

Remarks (1) The central property of ill-conditioning is the non Lipschitz behavior
under perturbations. The lack of uniqueness is in some sense a secondary reason
of ill-conditioning. An extension of some results of this paper to mathematical
programming problems with many solutions will be presented elsewhere.

(2) Let J be a class of problems Q = ( f, g) such that the following properties hold.
f, g1, . . . , gq : Rn → R, the admissible region is unbounded, the restriction to
it of f (x) goes to +∞ faster that |x | as x → ∞ uniformly with respect to f ,
(A2) holds and there exists a constant N such that |x0| ≤ N , f (x0) ≤ N for every
Q ∈ J . Then, as easily checked, the minimizers m(p) are uniformly bounded
within J if p is, hence the existence of the ball B we assume from the beginning
is guaranteed.

The Slater condition (A2), which plays no role in the definition of conditioning, will
be however required in defining the distance between two mathematical programming
problems. Indeed, if Q fulfills (A1) and (A2) and Q(p) has optimal solutions for every
p ∈ � sufficiently small, then the set of the optimal solutions (not necessarily unique)
to Q(p) is bounded, and there exists an open ball in Rq , centered at 0, which contains
all points of the form

u(p) + g[m(p)] − b

where [m(p), u(p)] is an optimal solution of Q(p), as p ∈ � is sufficiently small, see
Proposition 1 of Sect. 6. Moreover its radius can be estimated by using problem’s data,
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A condition number theorem in convex programming 199

as we show in Proposition 1. Thus, given Q fulfilling (A1) and (A2), such that Q(p)

has optimal solutions if p ∈ � and |p| < δ for some sufficiently small δ > 0, we
consider the infimum r∗ of all r > 0 such that |u(p) + g[m(p)] − b| ≤ r as |p| < δ,
and denote by D = D(Q) the open ball in Rq of radius r∗ if r∗ > 0; let D = {0}
if r∗ = 0. Given two mathematical programming problems Q1, Q2 such that Q1(p)

and Q2(p) have optimal solutions if p is sufficiently small, fulfilling (A1) and (A2),
let K1, K2 denote their corresponding Kojima functions and write K = K1 − K2. Let
D1, D2 be the corresponding balls in Rq as defined above, and denote by D the largest
between them. Then the pseudo-distance is defined by

dist (Q1, Q2) = sup

{ |K (x ′′, y′′) − K (x ′, y′)|
|x ′′ − x ′| + |y′′ − y′| : x ′, x ′′ ∈ B; y′, y′′ ∈ D

}
, (5)

namely the Lipschitz constant of K1 − K2 over B × D.
We compare the previous definition with the setting of [17], dealing with (infinite-

dimensional) unconstrained optimization problems. The definition here of well-
conditioned problems contains as a special case the one adopted in [17] (in the finite-
dimensional case of course). Moreover, definition (4) of the condition number reduces
to the one used there, namely the Lipschitz modulus c2 of the unique minimizer with
respect to the canonical (tilt) perturbations of Q. The definition (5) contains the one
used in [17] for the unconstrained case (of course the Lipschitz constant of the dif-
ference of the Kojima functions there reduces to that of the gradients of the objective
functions).

Remark By (5), the mapping dist (·, ·) fulfills all properties of a metric except that
dist (Q1, Q2) = 0 does not imply Q1 = Q2; it is instead equivalent to the following
(as easily checked). Writing Qi = ( fi , gi ), then f1 − f2 is an affine function, while
g1 − g2 is constant, and conversely. Thus Q2 is a canonical perturbation of Q1 (up to
an additive constant on the objective function).

3 Examples

(1) Every linear programming problem (with inequality constraints as before) is well-
conditioned provided there exists a unique optimal solution for each sufficiently
small perturbation, and the constraints of the primal and the dual problem are
regular in the sense of Robinson, see Theorem 1 of [14].

(2) Let n = 2, q = 1, denote by ‖ · ‖ the euclidean norm and let � = R2. Let
c, x̄ ∈ R2 be fixed, with c �= 0. Consider a sufficiently large disk B, p sufficiently
small and let

f (x) = ‖x − x̄‖2, g(x) = cT x .

Then for each small (a, b), Q(p) denotes the problem of minimizing ‖x − x̄‖2 −
aT x subject to the constraint cT x ≤ b. Conditions (A1), (A2) and (A3) are
fulfilled. The optimal solution s(p) is Lipschitz around 0 by Theorem 4.1 of [15],
since c �= 0 and the strong second order sufficient condition holds.
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(3) Let n = q = 1 and consider

� = {(a, b) ∈ R2 : a ≤ 0, b ≥ 0}, f (x) = x4

4
, g1(x) = ex − 1, B = (−1, 0).

Then conditions (A1), (A2) and (A3) are fulfilled. For (a, b) ∈ � sufficiently
small we have

m(a, b) = 3
√

a, u(a, b) = 0

hence this problem is ill-conditioned.

4 Main results

A characterization of well-conditioned mathematical programming problems in our
setting can be obtained making use of properties of their Kojima functions. We exploit
the known link between critical points, optimal solutions and the behavior of the
Kojima functions (see [9], chapter 7).

Theorem 1 Given problem Q fulfilling (A1) and (A2), let K denote its Kojima func-
tion. Then the following are equivalent:

Q is well-conditioned;
K is one-to-one with K −1 Lipschitz continuous around 0.

In order to obtain a condition number theorem, we start by establishing a lower
bound of the distance of a given problem to ill-conditioning by the reciprocal of its
condition number. We obtain an estimate of the size of perturbations acting on a well-
conditioned problem, which do not destroy well-conditioning. We consider a problem
Q = ( f, g) and denote by L the Lipschitz constant of g on B.

Theorem 2 Let Q, Q̄ be given problems fulfilling (A1) and (A2). Let Q be well-
conditioned such that

(1 + L) cond Q dist (Q, Q̄) < 1. (6)

Then Q̄ is well-conditioned.

Let now

dist (Q, I C) = inf {dist (Q, Q̄) : Q̄ ∈ I C}.

As an immediate corollary of Theorem 2 we get

Corollary 1 Let Q be well-conditioned fulfilling (A1) and (A2), with cond Q > 0.
Then

dist (Q, I C) ≥ 1

(1 + L) cond Q
. (7)
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Corollary 1 extends the finite-dimensional version of [17, Th. 3.1] dealing with
unconstrained problems (where of course L = 0). In a sense, (7) can be considered
one half of a condition number theorem. To obtain the second half, we need an upper
bound of the distance to ill-conditioning in terms of the condition number. The estimate
of the Lipschitz constant obtained in [8] will be used to this purpose.

Let Q = ( f, g) be well-conditioned fulfilling (A1), (A2) and (A3), let K be its
Kojima function. Let c(0) be the critical point of problem Q, see [9, p. 150]. Suppose
that Clarke’s generalized Jacobian ∂K [c(0)] of K at c(0) is nonsingular. Then consider
the (n + q) × (n + q) matrices W , the vectors v ∈ Rn+q , and positive numbers

ω > sup {|A−1| : A ∈ ∂K [c(0)]},
α = min

{∣∣∣
(

A + W

ω

)
v

∣∣∣ : A ∈ ∂K [c(0)], |W | = 1, |v| = 1

}
. (8)

Denote by F the Lipschitz constant of � f on B, and let L (as before) be the Lipschitz
constant of g on B.

Theorem 3 Let Q fulfill (A1),(A2),(A3). Let ∂K [c(0)] be nonsingular. Then Q is
well-conditioned, and if cond Q > 0 we have

dist (Q, I C) ≤ F(2 + L)

α cond Q
. (9)

Summarizing, by Corollary1 and Theorem 3 we obtain the following final result.

Condition number theorem For every problem Q which is well-conditioned with
cond Q > 0, and fulfills (A1), (A2) and (A3), if ∂K [c(0)] is non singular, we have

1

(1 + L) cond Q
≤ dist (Q, I C) ≤ F(2 + L)

α cond Q
.

Remarks (1) An explicit characterization on nonsingularity of ∂K at a given point is
obtained in [8, Th. 3.1] (under suitable regularity conditions).

(2) The second order condition we require in Theorem 3, namely nonsingularity of
∂K [c(0)], is a natural assumption here, since Theorem 3 generalizes the result of
[11] about tilt stability of minimizers, which is intimately related to the second
order condition for unconstrained problems.

5 Extension to the infinite dimensional setting

Theorem 2 and Corollary 1 hold true in the Banach space setting, as follows. Let E be
a real Banach space, let B be an open ball of E with positive radius, let f, g1, . . . , gq :
B → R be convex functions which are Frèchet differentiable at each point of B, such
that their gradients can be extended to the closure of B so to be Lipschitz continuous
there. Given the mathematical programming problem Q = ( f, g) let p = (a, b) ∈
E∗ × Rq , where E∗ denotes the dual space of E , and consider the problem Q(p), of
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minimizing f (x)− < a, x > subject to the constraints (1). Here < ·, · > denotes the
duality pairing between E∗ and E . We denote by ‖ · ‖ the norm in E and in E∗, and
(abusing notation) we write here

‖(a, b)‖ = ‖a‖ + |b|.

The definition of the Kojima function

K : B × Rq → E∗ × Rq

of problem Q is exactly (3) as before. Let Q1, Q2 be two programs with data
f, g1, . . . , gq as before, fulfilling (A2), such that Q1(p) and Q2(p) have optimal
solutions if p is sufficiently small. Then the definition of the distance of the programs
Q1, Q2 is the same as (5) (up to obvious changes in notation), namely

dist (Q1, Q2) = sup

{‖K (x ′′, y′′) − K (x ′, y′)‖
‖x ′′ − x ′‖ + ‖y′′ − y′‖ : x ′, x ′′ ∈ B; y′, y′′ ∈ D

}
,

owing to the uniform boundedness of the multipliers of Q(p) for ‖p‖ sufficiently
small, which is true also in the infinite dimensional setting. With the same notations
of Sect. 4 we obtain

Theorem 4 Let Q, Q̄ be given problems as before, fulfilling (A2). Let Q be well-
conditioned such that (6) holds. Then Q̄ is well-conditioned. Moreover, if cond Q > 0,
then (7) holds.

6 Auxiliary results and proofs

The following lemma will be used in the sequel.

Lemma 1 Let Q = ( f, g) and assume (A1), (A2) and (A3). Let p = (a, b) with
a ∈ Rn, b ∈ Rq. For x ∈ B, y ∈ Rq the following are equivalent:

x = m(p), y = u(p); (10)

� f (x) +
q∑

i=1

(yi + gi (x) − bi )
+ � gi (x) = a, and gi (x) − (yi + gi (x) − bi )

−

= bi , i = 1, . . . , q. (11)

Proof We need to prove that (11) is equivalent to the optimality system

� f (x) +
q∑

i=1

yi � gi (x)

= a, gi (x) ≤ bi , yi (gi (x) − bi ) = 0, yi ≥ 0, i = 1, . . . , q. (12)

Assume (12). Let l be such that (without restriction)

yi + gi (x) ≥ bi , i = 1, . . . , l; yi + gi (x) < bi , i = l + 1, . . . , q (13)
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with the obvious modifications if l = q or l = 0. Then remembering the first equality
of (12) we get

� f (x) +
q∑

i=1

(yi + gi (x) − bi )
+ � gi (x) = a

−
q∑

i=l+1

yi � gi (x) +
l∑

i=1

(gi (x) − bi ) � gi (x). (14)

Since yi ≥ −gi (x) + bi , i = 1, . . . , l, we have

0 = yi [bi − gi (x)] ≥ (gi (x) − bi )
2

hence gi (x) = bi and the last sum of (14) is 0. Moreover yi < bi − gi (x), i =
l + 1, . . . , q hence

0 ≤ y2
i ≤ yi [bi − gi (x)] = 0

whence yi = 0, and by (14) the first equality of (11) is proved. The second equality
follows by the previous calculations. Then (12) implies (11). Conversely, assume (11).
With l as in (13), we have

� f (x) +
q∑

i=1

yi � gi (x) = a −
l∑

i=1

(gi (x) − bi ) � gi (x) +
q∑

i=l+1

yi � gi (x).

(15)

If 1 ≤ i ≤ l then gi (x) = bi by (11) hence the first sum in the right-hand side of
(15) is 0. If l + 1 ≤ i ≤ q then yi = 0 by (11) and also the second sum is 0, so
that the first equality of (12) is proved. Moreover yi = 0 if i = l + 1, . . . , q, while
yi ≥ bi −gi (x) = 0 if i = 1, . . . , l, hence yi ≥ 0 for all i . It follows that all conditions
in (12) are fulfilled, and this completes the proof of the lemma. ��

The following proposition extends to the parameterized problems Q(p) known
results about bounds of the multipliers (see Sect. 2.3 of chapter 7 in [7]).

Proposition 1 Let Q fulfill (A1) and (A2). Suppose that Q(p), p ∈ �, has optimal
solutions if |p| < δ for some δ > 0. Then if |p| < δ < ε, for every multiplier uk of
Q(p) we have

uk ≤ (M + |p|) diamB

ε − δ
, k = 1, . . . , q

where

M = sup {| � f (x)| : x ∈ B}.

Proof Given p let (x, u) be any optimal solution of Q(p). If g j (x) = b j we have by
convexity and the Slater condition (A2)
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� g j (x)T (x0 − x) ≤ g j (x0) − b j ≤ δ − ε. (16)

Let d = x − x0, then by the Kuhn–Tucker conditions and (16)

q∑
j=1

u j � g j (x)T d = [a − � f (x)]T d ≤ (δ − ε)

q∑
j=1

u j

hence for every k = 1, . . . , q

0 ≤ uk ≤
q∑

j=1

u j ≤ [� f (x) − a]T d

ε − δ

whence the conclusion. ��
Proof of Theorem 1 Let Q be well-conditioned, hence (A3) holds. Let x1, x2 ∈
B, z1, z2 ∈ Rq be such that

K (x1, z1) = K (x2, z2) = p = (a, b).

Consider

yi = zi − g(xi ) + b, i = 1, 2.

Then

K (x1, y1 + g(x1) − b) = K (x2, y2 + g(x2) − b) = p

hence

x1 = x2 = m(p), y1 = y2 = u(p)

by Lemma 1, thus z1 = z2 too and K is one-to-one. Moreover

K −1(p) = (m(p), u(p) + g[m(p)] − b). (17)

Then

|K −1(p′′) − K −1(p′)| ≤ |s(p′′) − s(p′)| + |g[m(p′′)] − g[m(p′)]|

if s(p) = [m(p), u(p)] is the unique optimal solution of Q(p). Then Lipschitz con-
tinuity of K −1 comes from well-conditioning of Q and the Lipschitz continuity of g.
The first half of Theorem 1 is thereby proved. Conversely, let Q be ill-conditioned.
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If Q(p) has a unique optimal solution for each sufficiently small p ∈ �, then K is
one-to-one as checked above, and we prove that

K ∗ = limsupp′,p′′→0
|K −1(p′′) − K −1(p′)|

|p′′ − p′| = +∞, (18)

ending the proof for this case. By ill-conditioning, at least one between

m∗ = limsupp′,p′′→0
|m(p′′) − m(p′)|

|p′′ − p′| , u∗ = limsupp′,p′′→0
|u(p′′) − u(p′)|

|p′′ − p′| ,

is +∞. If m∗ = +∞ then K ∗ = +∞ since

|K −1(p′′) − K −1(p′)| ≥ |m(p′′) − m(p′)|.

Finally if

u∗ = +∞ and m∗ < +∞, (19)

let

y(p) = u(p) + g[m(p)] − b, y∗ = limsupp′,p′′→0
|y(p′′) − y(p′)|

|p′′ − p′| .

Suffices to prove that y∗ = +∞ since by (17)

|K −1(p′′) − K −1(p′)| ≥ |y(p′′) − y(p′)|.

Indeed

|u(p′′) − u(p′)| ≤ |y(p′′) − y(p′)| + |g[m(p′′)] − g[m(p′)]|

and the conclusion follows by (19), thus (18) is proved. If finally Q(p) has many
optimal solutions, then K cannot be one-to-one, and this ends the proof. ��
Proof of Theorem 2 Let K be the Kojima function of Q. By well-conditioning and
Theorem 1, K −1 is Lipschitz continuous around 0. Let K̄ be the Kojima function
of Q̄. We prove that K̄ is one-to-one and K̄ −1 is Lipschitz continuous around 0. By
Theorem 1, this will prove that Q̄ is well-conditioned. Write K̄ = K̄ − K + K , and
consider the balls D1 = D(Q), D̄ = D(Q̄). Let D = D1 ∪ D̄ and

d = dist (Q, Q̄),

then K̄ − K is Lipschitz continuous on B × D with Lipschitz constant d. Let K ∗
denote the Lipschitz modulus of K −1 at 0, and consider for α > 0 sufficiently small

H(α) = sup

{ |K −1(p′′) − K −1(p′)|
|p′′ − p′| : p′, p′′ ∈ �, |p′| < α, |p′′| < α

}
,
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then H(α) → K ∗ as α → 0. By (17) we have

K ∗ ≤ (1 + L) cond Q

hence by (6) K ∗d < 1, whence H(α)d < 1 if α > 0 is sufficiently small. By
Lemma 3.1 of [17] it follows that K̄ −1 is Lipschitz continuous around 0, thus Q̄ is
well-conditioned. ��
Remarks (1) From the proof of Theorem 2 we see that the condition number of Q̄ is

≤ K ∗/(1 − d K ∗).
(2) The solution map s(p) of Q(p) is implicitly obtained by solving the equation

K (x, y) = p, as shown by (17). This suggests that some connection could be
established with metric regularity theory.

Proof of Theorem 3 We show that Q is well-conditioned. Let K denote the Kojima
function of Q. The implicit function theorem of [8] can be applied to the equation
K (x, y) = 0. It follows that the equation K (x, y) = p has a unique solution c(p) for
each sufficiently small p ∈ �. Thus c(p) is the unique Kojima critical point of Q(p).
Moreover by the implicit function theorem, there exists a constant T > 0 such that

|c(p′′) − c(p′)| ≤ T |p′′ − p′| (20)

provided p′, p′′ are sufficiently small. By (17)

c(p) = (m(p), u(p) + g[m(p)] − b).

Write

y(p) = u(p) + g[m(p)] − b,

then by (20) we have

|m(p′′) − m(p′)| ≤ T |p′′ − p′|,
|u(p′′) − u(p′)| ≤ |y(p′′) − y(p′)| + L|m(p′′) − m(p′)| ≤ T (L + 1)|p′′ − p′|

where L is the Lipschitz constant of g on B. Hence

|s(p′′) − s(p′)| ≤ T (L + 2)|p′′ − p′| (21)

proving well-conditioning of Q. Now we estimate cond Q from above. By assumption,
all matrices A ∈ ∂K [c(0)] are nonsingular. Given A, by the Eckart–Young theorem
[4, Theorem 1 p. 203], if W ∈ Rn+q,n+q and |W | ≤ 1, we have that A + W/ω

is nonsingular. Thus, remembering (8), by the proof of Theorem 2.1 of [8] we see
(p. 130 there) that T = 1/α. Hence by (21)

cond Q ≤ 2 + L

α
. (22)
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Now we estimate dist (Q, I C). Let Q̄ = ( f̄ , g) where f̄ (x) = 0 for every x . Of
course Q̄ ∈ I C by (A2), and

dist (Q, I C) ≤ dist (Q, Q̄) = F,

hence by (22)

dist (Q, I C) cond Q ≤ F(2 + L)

α
,

proving (9). ��
Proof of Theorem 4 As well known, the multiplier theorem holds in the Banach space
setting (see Corollary 1.1 p. 177 of [1]). An inspection of the proofs shows that, in the
Banach space setting, Lemma 1 and Proposition 1 hold true (with obvious changes in
the proof of Proposition 1). Then also the proofs of Theorem 1 and 2 are unchanged,
thus proving Theorem 3. ��
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