
Math. Program., Ser. A (2015) 149:329–359
DOI 10.1007/s10107-014-0759-z

FULL LENGTH PAPER

Set intersection problems: supporting hyperplanes
and quadratic programming

C. H. Jeffrey Pang

Received: 7 January 2013 / Accepted: 28 January 2014 / Published online: 7 February 2014
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014

Abstract We study how the supporting hyperplanes produced by the projection
process can complement the method of alternating projections and its variants for
the convex set intersection problem. For the problem of finding the closest point in
the intersection of closed convex sets, we propose an algorithm that, like Dykstra’s
algorithm, converges strongly in a Hilbert space. Moreover, this algorithm converges
in finitely many iterations when the closed convex sets are cones in R

n satisfying
an alignment condition. Next, we propose modifications of the alternating projection
algorithm, and prove its convergence. The algorithm converges superlinearly in R

n

under some nice conditions. Under a conical condition, the convergence can be finite.
Lastly, we discuss the case where the intersection of the sets is empty.
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1 Introduction

For finitely many closed convex sets K1, . . . , Kr in a Hilbert space X , the set inter-
section problem (SIP) is stated as:

(SIP): Find x ∈ K :=
r⋂

i=1

Ki , where K �= ∅. (1.1)

One assumption on the sets Ki is that projecting a point in X onto each Ki is a relatively
easy problem.

A popular method of solving the SIP is the Method of Alternating Projections
(MAP), where one iteratively projects a point through the sets Ki to find a point in K .
Another problem related to the SIP is the Best Approximation Problem (BAP): Find
the closest point to x0 in K , that is,

(BAP): min
x∈X
‖x − x0‖

s.t. x ∈ K :=
r⋂

i=1

Ki . (1.2)

for closed convex sets Ki , i = 1, . . . , r . One can easily construct an example in R
2

involving a circle and a line such that the MAP converges to a point in K that is
not PK (x0). Fortunately, Dykstra’s algorithm [7,15] reduces the problem of finding
the projection onto K to the problem of projecting onto Ki individually by adding
correction vectors after each iteration. It was rediscovered in [22] using mathematical
programming duality. For more on the background and recent developments of the
MAP and its variants, we refer the reader to [3,9,16], as well as [14, Chapter 9] and
[10, Subsubsection 4.5.4].

We quote [13], where it is mentioned that the MAP has found application in at least
ten different areas of mathematics, which include: (1) solving linear equations; (2)
the Dirichlet problem which has in turn inspired the “domain decomposition” indus-
try; (3) probability and statistics; (4) computing Bergman kernels; (5) approximating
multivariate functions by sums of univariate ones; (6) least change secant updates;
(7) multigrid methods; (8) conformal mapping; (9) image restoration; (10) computed
tomography. See also [12] for more information.

One problem of the MAP and Dykstra’s algorithm is slow convergence. A few
acceleration methods were explored. The papers [8,18,21] explored the acceleration
of the MAP using a line search in the case where Ki are linear subspaces of X . See
[13] for a survey. One can easily rewrite the SIP as a Convex Inequality Problem (CIP):
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(CIP): Find x ∈ X satisfying g(x) ≤ 0,

where g : X → R
r is such that each gi : X → R, where i = 1, . . . , r , is convex:

Just set gi (x) to be the distance from x to Ki . In the case where X = R
n and each

gi (·) is differentiable with Lipschitz gradient, the papers [19,20] proved a superlinear
convergent algorithm for the CIP. They make use of the subgradients of g(·) to define
separating hyperplanes to the feasible set, and make use of quadratic programming to
achieve superlinear convergence. Another related work is [26], where the interest is on
problems where r , the number of closed convex sets Ki , is large. In the case where gi (·)
were not assumed to be convex in the CIP, Fletcher and Leyffer [17] designed SQP
algorithms that are globally convergent and handles the case of infeasible problems.

We elaborate on the quadratic programming approach. Given x1 ∈ X and the pro-
jection x2 = PK1(x1), provided x2 �= x1, a standard result on supporting hyperplanes
gives us K1 ⊂ {x | 〈x1 − x2, x〉 ≤ 〈x1 − x2, x2〉}. The aim of this work is make use
of the supporting hyperplanes generated in the projection process to accelerate the
convergence to a point in K . A relaxation of (1.2) is

min
x∈X
‖x − x0‖2

s.t. 〈ai , x〉 ≤ bi for i = 1, . . . , k, (1.3)

where each constraint 〈ai , x〉 ≤ bi corresponds to a supporting hyperplane obtained
by the projection operation onto one of the sets Ki , where 1 ≤ i ≤ r . Even though
there is no nice solution for the minimizer of (1.3), we can make use of quadratic
programming to find this minimizer in practice. Let S = span{ai | i = 1, . . . , k}, and
let V = {v1, . . . , vk′ } be a set of orthonormal vectors spanning S, where k′ ≤ k. We
can write ai = ∑k′

j=1 αi, jv j , x0 = y0 + z0 and x = ∑k′
j=1 λ jv j + z, where y0 ∈ S

and z0, z ∈ S⊥. Then (1.3) can be rewritten as

min
λ∈Rk′ ,z∈S⊥

∥∥∥∥∥∥

k′∑

j=1

λ jv j − y0

∥∥∥∥∥∥

2

+ ‖z0 − z‖2

s.t.

〈
k′∑

j=1

αi, jv j ,

k′∑

j=1

λ jv j

〉
≤ bi for i = 1, . . . , k. (1.4)

Therefore (1.3) can be easily solved using convex quadratic programming, especially
when k and k′ are small. (See for example [31, Chapter 16].)

The quadratic programming formulation (1.3) gathers information from the sup-
porting hyperplanes to many of the closed convex sets Ki , and so is a good approxima-
tion to (1.2); the intersection of the halfspaces defined by the supporting hyperplanes
can produce a set that is a better approximation of K than each Ki taken singly. Hence
there is good reason to believe that (1.3) can achieve better convergence than simple
variants of the MAP. As Fig. 1 illustrates, the supporting hyperplanes can provide a
good outer estimate of the intersection K . Furthermore, as more constraints are added
in the quadratic programming formulation (1.3), it is possible to use warm starts from
previous iterations to accelerate convergence. In this paper, we shall only pursue the
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Fig. 1 The method of alternating projections on two convex sets K1 and K2 in R
2 with starting iterate x0

arrives at x3 in three iterations. But the point x4 generated by the cutting planes of K1 and K2 at x1 and x2
respectively is much closer to the point x̄ , especially when the boundary of K1 and K2 have fewer second
order effects and when the angle between the boundary of K1 and K2 is small. On the other hand, the point
x3 is ruled out by the supporting hyperplane of K2 passing through x2

idea of supplementing the MAP with supporting hyperplanes and quadratic program-
ming, but not on the details of the quadratic programming subproblem.

We remark that the idea using supporting halfspaces to approximate the set K was
also considered before. In [33], Pierra suggested an extrapolation to find a point in the
polyhedron produced by two projections, but not by using QP, and this idea was further
studied in [5]. In [11], cutters were defined based on the property that the halfspaces
generated contain the intersection of the sets, and studied as a generalization of the
projection operation. In [6], the hyperplanes were used to simplify the projections onto
the sets Ki rather than accelerating convergence.

1.1 Contributions of this paper

In this paper, we prove theoretical properties of the alternating projection method
supplemented with the insight on supporting hyperplanes. Sections 3–6 are mostly
independent of each other.

First, we propose Algorithm 3.1 for the Best Approximation Problem (1.2) in
Sect. 3. We prove norm convergence, and the finite convergence of Algorithm 3.1
with (3.1b) when Kl ⊂ R

n have a local conic structure and satisfy a normal condition.
We also show that the normal condition cannot be dropped.

In Sect. 4, we propose modifications of the alternating projection algorithm for
the set intersection problem (1.1), and prove their convergence. We also prove the
superlinear convergence of a modified alternating projection algorithm in R

2.
In Sect. 5, we prove the most striking result of this paper, which is the superlinear

convergence of an algorithm for the set intersection problem (1.1) in R
n under theo-

retically reasonable conditions. Instead of assuming smoothness of the sets similiar to
[19,20], we make the much weaker assumption of local metric inequality (commonly
known as linear regularity; See Definition 5.9), but at the expense of having to solve
large QPs. (Note also that if the size of the QPs were too small, then there is no super-
linear convergence in the case of a line intersecting a plane in R

3. See Example 4.7.)
The convergence can be finite if there is a local conic structure at the limit point. The
proofs of superlinear convergence are quite different from the proof in Sect. 4.

Lastly, in Sect. 6, we discuss the behavior of Algorithm 3.1 in the case when the
intersection of the closed convex sets is empty.
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1.2 Notation

We write down some of the relatively standard notation in convex analysis that will
be used for the later sections. For more details, we refer the reader to [23,34].

Br (x) The closed ball with radius r and center x . If r = 1 and x = 0, then we
simply write B.
PC (·) The projection operation onto a set C ⊂ X , where X is a Hilbert space.

Let X be a Hilbert space. For a closed convex set C ⊂ X and a point x ∈ C ,

NC (x) The normal cone NC (x) at x is the set {v | 〈v, y − x〉 ≤ 0 for all y ∈ C}.
TC (x) The tangent cone TC (x) at x is the set of all vectors v ∈ X such that there
exists sequences xk → x and tk ↘ 0 such that xk−x

tk
→ v.

We say that a set C ⊂ X is a cone if kC = C for all k > 0 and 0 ∈ C . A cone that is
convex is a convex cone. For a convex cone C ⊂ X ,

C− The negative polar cone C− is defined by {v | 〈v, x〉 ≤ 0 for all x ∈ C}.
We also recall the definition of linear and superlinear convergence.

Definition 1.1 (Superlinear convergence) For a sequence of points {xi } converging
to x̄ , we say that the convergence is linear if

lim sup
i→∞

‖xi+1 − x̄‖
‖xi − x̄‖ ∈ (0, 1),

and superlinear if

lim sup
i→∞

‖xi+1 − x̄‖
‖xi − x̄‖ = 0.

2 Some useful results

In this section, we recall or prove some useful results that will be useful in two or more
of the sections later. The reader may wish to skip this section and come back to refer
to the results as needed.

The result below shows that supporting hyperplanes near a point in a convex set
behave well.

Theorem 2.1 (Supporting hyperplane near a point) Suppose C ⊂ R
n is convex, and let

x̄ ∈ C. Then for any ε > 0, there is a δ > 0 such that for any point x ∈ [Bδ(x̄)∩C]\{x̄}
and supporting hyperplane A of C with unit normal v ∈ NC (x) at the point x, we

have d(x̄,A)
‖x−x̄‖ ≤ ε.

Since d(x̄, A) = −〈v, x̄ − x〉, the conclusion of this result can be replaced by
0 ≤ −〈v,x̄−x〉

‖x̄−x‖ ≤ ε instead.

Proof We refer to Fig. 2. For a given ε1 > 0, there is some δ > 0 such that if
x ∈ Bδ(x̄) ∩ C and v ∈ NC (x) is a unit vector, then by the outer semicontinuity
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Fig. 2 Diagram in the proof of
Theorem 2.1 x

x

v’

vv

θ

α

of the normal cone mapping (see [35, Proposition 6.6]), there is some unit vector
v̄ ∈ NC (x̄) such that ‖v − v̄‖ < ε1. This means that the angle between v and v̄ is at
most 2 sin−1(ε1/2).

One can easily check that x− x̄ is not a multiple of v̄. Consider the two dimensional
affine space that contains the vector v̄ and the points x and x̄ , and project the point x+v

onto this affine space. Let this projection be x + v′. It is easy to check that the angle
between v′ and v̄, marked as α in Fig. 2, is bounded from above by 2 sin−1(ε1/2).
(The lines with arrows at both ends passing through x and x̄ respectively represent the
intersection of supporting hyperplanes with the two dimensional affine space.)

The angle θ in Fig. 2 is an upper bound on the angle between x−x̄ and the supporting
hyperplane A, and is easily checked to satisfy θ ≤ α. We thus have

d(x̄, A)

‖x − x̄‖ ≤ sin θ ≤ sin α ≤ sin
(
2 sin−1(ε1/2)

)
.

So for a given ε > 0, if ε1 were chosen to be such that sin
(
2 sin−1(ε1/2)

)
< ε, then

we are done. ��
Next, we recall Moreau’s Theorem, and remark on how it will be used. For more

on Moreau’s Theorem, see for example [23, Theorem III.3.2.5] .

Theorem 2.2 [29] (Moreau’s Decomposition Theorem) Suppose C ⊂ X is a closed
convex cone in a Hilbert space X. Then for any x ∈ X, we can write x = PC (x) +
PC−(x), and moreover, 〈PC (x), PC−(x)〉 = 0.

The following result will be used in Theorems 3.5 and 5.12.

Proposition 2.3 (Projection onto cones) Suppose C ⊂ X is a closed convex cone in a
Hilbert space X. Then the supporting hyperplane formed by projecting a point y onto
C contains the origin.

Proof By Moreau’s Theorem, the projection PC (y) satisfies

y = PC (y)+ PC−(y) and 〈PC (y), PC−(y)〉 = 0.

The supporting halfspace produced by projecting y onto C would be

{x | 〈x, y − PC (y)〉 ≤ 〈PC (y), y − PC (y)〉} ,

which equals {x | 〈x, PC−(y)〉 ≤ 0}. It is clear that the origin is in the supporting
hyperplane. ��
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3 Convergence for the best approximation problem

In this section, we discuss algorithms for the Best Approximation Problem (1.2). We
describe Algorithm 3.1, and show strong convergence to the closest point in the inter-
section of the closed convex sets (Theorem 3.3). Furthermore, in the finite dimensional
case where the sets have a local conic structure (3.5), Algorithm 3.1 with (3.1b) con-
verges in finitely many iterations (Theorem 3.5) under a normal condition (3.6). We
give an example to show that the condition (3.6) cannot be dropped.

For each n ∈ N, let [n] denote “n mod r”; that is,

[n] := {1, 2, . . . , r} ∩ {n − kr | k = 0, 1, 2, . . .}.

We present our algorithm for this section.

Algorithm 3.1 (Best approximation) For a point x0 and closed convex sets Kl , l =
1, 2, . . . , r , of a Hilbert space X, find the closest point to x0 in K := ∩r

l=1 Kl .

Step 0: Let i = 1.
Step 1: Choose Ji ⊂ {1, . . . , r}. Some examples of Ji are

Ji = {[i]}, (3.1a)

and Ji = {1, . . . , r}. (3.1b)

For j ∈ Ji , define x ( j)
i ∈ X, a( j)

i ∈ X and b( j)
i ∈ R by

x ( j)
i = PK j (xi−1),

a( j)
i = xi−1 − x ( j)

i ,

and b( j)
i =

〈
a( j)

i , x ( j)
i

〉
.

Define the set Fi ⊂ X by

Fi :=
{

x |
〈
a( j)

l , x
〉
≤ b( j)

l for all l = 1, . . . , i and j ∈ Jl

}
. (3.2)

Let xi = PFi (x0).
Step 2: Set i ← i + 1, and go back to step 1.

When Ji is chosen using (3.1a) and x ([i])
i ∈ K[i] so that x ([i])

i = PK[i](xi−1), then

a([i])
i = 0 and b([i])

i = 0, and the algorithm stalls for one step. These values of a([i])
i

and b([i])
i are still valid, though any implementation should treat this case separately.

When the algorithm stalls for r iterations in a row, then we have found the closest
point from x0 to

⋂r
l=1 Kl .

Remark 3.2 (Projecting to sets with greater second order behavior) In Step 1 of Algo-
rithm 3.1, one needs to choose Ji . When the size of the quadratic programs are small
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and easy to solve, it would be ideal to choose Ji so that |Ji | = 1. The cyclic choice
in (3.1a) is a natural choice. But as remarked in Fig. 1, one factor in our strategy is
the second order behavior of the sets Kl . Another strategy is to record the distances
in the most recent projections to the set Kl , and choose Ji to contain the index where
the highest distance was recorded. In the case where one of the sets Kl is a subspace
(and has fewer second order effects), the computations would be focused on the other
sets. However, one may want to ensure that all sets are projected onto every once in a
while so that Algorithm 3.1 is not fooled in regions where the boundary is locally but
not globally affine. Possible strategies are:

There exists p such that for all ī,
ī+p⋃

i=ī

Ji = {1, . . . , r},

or For each l = 1, . . . , r , there are infinitely many Ji containing l.

The following theorem addresses the convergence of Algorithm 3.1. This theorem
can be compared to the Boyle-Dykstra Theorem [7], which establishes the convergence
of Dykstra’s algorithm [15].

Theorem 3.3 (Strong convergence of Algorithm 3.1) For any starting point x0, the
sequences {xi } produced by Algorithm 3.1 using (3.1a) or (3.1b) converge strongly to
PK (x0).

Proof We shall only prove the result for the choice (3.1a), since the proof for (3.1b)
is similar. By considering a translation if necessary, we can let x0 be 0. We can also
assume that 0 /∈ K . The iterates xi satisfy ‖xi‖ ≤ d(0, K ), so {xi } has a weak cluster
point z. Since xi is the closest point from 0 to Fi , and

Fi+1 ⊂ Fi for all i, (3.3)

we see that ‖xi‖ is an increasing sequence, so M := limi→∞ ‖xi‖ exists.
Step 1: z is actually a strong cluster point. It is clear that limi→∞ ‖xi‖ ≥ ‖z‖. We

only need to prove that
‖z‖ = lim

i→∞‖xi‖, (3.4)

since this condition together with the weak convergence of the subsequence of xi

implies the strong convergence to z. Suppose instead that limi→∞ ‖xi‖ > ‖z‖. Then
there is some k such that ‖xk‖ > ‖z‖. By (3.3), we have, for all i > k,

〈xk, xi 〉 ≥ 〈xk, xk〉 = ‖xk‖2 > ‖xk‖‖z‖ ≥ 〈xk, z〉 ,

contradicting z being a weak cluster point of {xi }. Therefore z is a strong cluster point
of {xi }.

Step 2: Any z is in K. Suppose on the contrary that z /∈ K . Then there is some l∗ such
that z /∈ Kl∗ , or PKl∗ (z) �= z. Algorithm 3.1 generates a hyperplane that separates z
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from Kl∗ . The halfspace {x | 〈az, x〉 ≤ bz} separates z and K , where for y ∈ X, ay

and by are defined by

ay = y − PKl∗ (y), bz =
〈
y − PKl∗ (y), PKl∗ (y)

〉
.

The distance D from 0 to the intersection of halfspaces

{
x | 〈−z, x〉 ≤ −‖z‖2 and 〈az, x〉 ≤ bz

}

would satisfy D > ‖z‖.
Next, the variables ay and by depend continuously on the parameter y, at y = z.

This means that if xi is sufficiently close to z and [i] = l∗, then the distance d(0, xi+1)

would be sufficiently close to D. This would mean that ‖xi‖ > ‖z‖ ≥ ε, where ε > 0
is some constant, for i large enough, which is a contradiction to (3.4). Thus z ∈ K as
needed.

Step 3 : z = PK (x0). To see this, observe that z ∈ K implies that d(0, K ) ≤ ‖z‖.
The fact that ‖z‖ = limi→∞ ‖xi‖ from step 1 gives d(0, K ) = ‖z‖.

Thus we are done. ��

Remark 3.4 (Reducing number of supporting hyperplanes in defining Fi ) In the proof
of Theorem 3.3, step 1 relies on the fact that Fi+1 ⊂ Fi for all i in the choice of Fi

in (3.2). If X = R
n , then step 1 of the proof would be unnecessary, but the sequence

{‖xi − x0‖} needs to be increasing in order for step 2 to work. This can be enforced
by adding the halfspace with normal (x0 − xi−1) through xi−1 in constructing Fi .
To ensure that each quadratic programming problem that needs to be solved is easy,
the polyhedron Fi can be chosen such that the number of inequalities that define Fi

is small. One can take only the active halfspace in solving the projection problem
xi = PFi (x0), or by aggregating some of the active halfspace to one active halfspace
when building up the polyhedron Fi .

When the K j satisfies a local conical property (3.5) at the limit x̄ of Algorithm 3.1
in R

n , the convergence is actually finite.

Theorem 3.5 (Finite convergence for conical problems in R
n) For Algorithm 3.1 with

(3.1b), suppose that X = R
n. Convergence is guaranteed by Theorem 3.3. Suppose

PK (x0) = x̄ , and K j are such that

For some ε̄ > 0, [K j − x̄] ∩ ε̄B = TK j (x̄) ∩ ε̄B for j = 1, . . . , r, (3.5)

(in other words, the sets K j are conical in a neighborhood of x̄) and

x0 − x̄ ∈ int
(
NK (x̄)

)
. (3.6)

Then Algorithm 3.1 with (3.1b) converges to x̄ in finitely many iterations.

123



338 C. H. J. Pang

Proof We can assume x̄ = 0. Suppose on the contrary that the convergence to 0
requires infinitely many iterations. We seek a contradiction. Let {xi } be the sequence
generated by Algorithm 3.1, and let {x̃i } be a subsequence such that ‖x̃i − 0‖ < ε̄ for
all i , and limi→∞ x̃i‖x̃i‖ exists, say x̃ .

Step 1: x̃ lies in TK (0). Suppose on the contrary that x̃ /∈ TK (0). Then x̃ /∈ K j

for some j . Assume without loss of generality that j = 1. Let PTK1 (0)(x̃) = z, and

x̃ − z ∈ NK1(0). Let vi = x̃i‖x̃i‖ − PTK1 (0)

(
x̃i‖x̃i‖
)

and v = x̃ − z. By the continuity

of the projection, we must have vi → v. Since the hyperplane {x | 〈x, v〉 = 〈z, v〉}
separates x̃ from K1 and 〈z, v〉 = 0 by Moreau’s Theorem, we have 〈x̃, v〉 > 0.

Let y be any point in ε̄B, taking into account (3.5) and x̄ = 0. By Moreau’s
Theorem (See Proposition 2.3), the supporting hyperplane produced by projecting y
onto K1 contains 0 on its boundary. By the design of Algorithm 3.1, we must have
〈x̃i+1, vi 〉 ≤ 0, which gives

〈
x̃i+1

‖x̃i+1‖ , vi

〉
≤ 0.

Taking limits, we get 〈x̃, v〉 ≤ 0, which contradicts 〈x̃, v〉 > 0 earlier.
Step 2: x̃ cannot lie in TK (0). Suppose otherwise. Then the condition (3.6) implies

that if x̃ ∈ K and i is large enough, then d(x0, 0) < d(x0, x̃i ), contradicting that
d(x0, 0) > d(x0, x̃i ) in the choice of x̃i .

The statements proved in Steps 1 and 2 are clearly contradictory, which ends our
proof. ��

In view of the above result, we would expect Algorithm 3.1 (especially with (3.1b))
to converge quickly to the closest point under condition (3.6).

The number of iterations needed before convergence depends on, among other
things, the ε̄. In the case where K j are cones and (3.6) does not hold, step 2 in the
proof of Theorem 3.5 may fail, and there may be no finite convergence. We give an
example.

Example 3.6 (No finite convergence) Consider X = R
3. Consider the rays

r1 = R+(1,−1,−1)T and r2 = R+(−1,−1,−1)T .

For a vector v ∈ R
3, let θ1 be the angle r1 makes with v, and let θ2 be similarly defined.

Let K1 and K2 be the ice cream cones defined by

Ki = {v | cos(θi ) ≤ 1/
√

3} for i = 1, 2.

Let x0 = (0, 0, 1)T . A few consequences are immediate.

(1) The ray R+(0,−1, 0)T is on the boundaries of K1, K2 and K := K1 ∩ K2.
(2) PK (x0) = 0.
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Fig. 3 This figure illustrates
Example 3.6, where K1 and K2
are two cones in R

3 that are
mirror reflections of each other
about the subspace S. Whenever
a point in S outside K1 ∩ K2 is
projected onto K1 and K2, the
supporting hyperplanes intersect
in a line in S containing the
origin 0. The projection of x0
onto this line will never be the
origin, so Algorithm 3.1 cannot
converge in finitely many
iterations

1

K2 S
0

x0

K

(3) There is only one unit vector in NK1

(
(0,−1, 0)T

)
, say u. Let the subspace S be

{x | (1, 0, 0)x = 0}. Then

[R+{u} + {(0,−1, 0)T }] ∩ S = (0,−1, 0)T .

A similar statement holds when K1 is replaced by K2.

We now show that the convergence of Algorithm 3.1 with (3.1b) is infinite. One might
find Fig. 3 helpful. By symmetry, the iterates xi lie in S. If Algorithm 3.1 with (3.1b)
converges in finitely many iterations, then property (3) would imply that the next to
last iterate is of the form (0,−α, 0)T , where α > 0, and that cannot happen. In the
case where x0 = (0, ε, 1)T , where ε > 0 is arbitrarily small, we will still get finite
convergence to 0, but the number of iterations needed will be arbitrarily large as ε ↘ 0.

4 Convergence for the set intersection problem

In this section, we analyze a modified alternating projection algorithm (Algorithm 4.1).
The global convergence of this algorithm is proved in Theorem 4.5. The insight on
using supporting hyperplanes and quadratic programming to accelerate convergence
allows us to obtain local superlinear convergence in R

2 (Theorem 4.6), although Algo-
rithm 4.1 in its current form does not converge superlinearly in R

3 (Example 4.7). A
locally superlinearly convergent algorithm will be presented and analyzed in Sect. 5
using very different methods.

We shall analyze the following algorithm.

Algorithm 4.1 (Modified MAP) For a point x0 and closed convex sets K1 and K2 of
a Hilbert space X, find a point in K := K1 ∩ K2.

Step 0: Set i = 1.
Step 1: Choose Ji ⊂ {1, 2}. Some examples are

Ji = {[i]}, (4.1a)

and Ji = {1, 2}. (4.1b)
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Step 2: For j ∈ Ji , define x ( j)
i ∈ X, a( j)

i ∈ X and b( j)
i ∈ R by

x ( j)
i = PK j (xi−1),

a( j)
i = xi−1 − x ( j)

i ,

and b( j)
i =

〈
a( j)

i , x ( j)
i

〉
.

Define the set Fi ⊂ X by

Fi :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
x |
〈
a([l])

l , x
〉
≤ b([l])

l for l = i − 1, i
}

if Ji = {[i]} and i > 1,
{

x |
〈
a(1)

1 , x
〉
≤ b(1)

1

}
if Ji = {[i]} and i = 1,

{
x |
〈
a( j)

i , x
〉
≤ b( j)

i for j = 1, 2
}

if Ji = {1, 2}.

Let xi = PFi (x ([i])
i ).

Step 3: Set i ← i + 1, and go back to step 1.

As mentioned in Remark 3.2, there are good reasons for choosing Ji to be such
that |Ji | = 1 but not cyclic, but the construction of Fi has to be amended accordingly.
It may turn out that xi could be in K1 already, so PK1(xi ) will not give a new sup-
porting hyperplane. In this case, we can just use the supporting hyperplane obtained
from previous iterations. When Ji = {1, 2}, we can check that xi lies in the plane
containing xi−1, x (1)

i and x (2)
i , and that xi = PFi (x ([i])

i ) = PFi (xi−1). We shall prove
the superlinear convergence of this case in R

2 in Theorem 4.6.
We now recall some results on Fejér monotonicity to prove convergence of Algo-

rithm 4.1. We take our results from [10, Theorem 4.5.10 and Lemma 4.5.8].

Definition 4.2 (Fejér monotone sequence) Let X be a Hilbert space, let C ⊂ X be a
closed convex set and let {xi } be a sequence in X . We say that {xi } is Fejér monotone
with respect to C if

‖xi+1 − c‖ ≤ ‖xi − c‖ for all c ∈ C and i = 1, 2, . . .

Theorem 4.3 (Properties of Fejér monotonicity) Let X be a Hilbert space, let C ⊂ X
be a closed convex set and let {xi } be a Fejér monotone sequence with respect to C.
Then

(1) {xi } is bounded and d(C, xi+1) ≤ d(C, xi ).
(2) {xi } has at most one weak cluster point in C.
(3) If int(C) �= ∅, then {xi } converges in norm.

Lemma 4.4 (Attractive property of projection) Let X be a Hilbert space and let
C ⊂ X be a closed convex set. Then PC : X → X is 1-attracting with respect to C:
For every x /∈ C and y ∈ C, we have

‖PC (x)− x‖2 ≤ ‖x − y‖2 − ‖PC (x)− y‖2.
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We now prove the convergence of Algorithm 4.1. We note that Algorithm 4.1 can
be easily extended to the case of r > 2 closed convex sets, and the corresponding
extension of Theorem 4.5 will still be true.

Theorem 4.5 (Convergence of Algorithm 4.1) Suppose K1 and K2 are closed convex
sets in a Hilbert space X such that K := K1∩K2 �= ∅. Then the iterates in Algorithm
4.1 with either (4.1a) or (4.1b) are such that xi converges weakly to some z ∈ K . The
convergence is strong if either int(K ) �= ∅ or X = R

n.

Proof We shall first prove convergence when Ji is chosen by (4.1a).
The sequences {x (1)

2i+1}i and {x (2)
2i }i lie in K1 and K2 respectively. Construct the

sequence {x̃i } such that

x̃i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x j if i = 2 j

x (1)
2 j+1 if i = 4 j + 1

x (2)
2 j+2 if i = 4 j + 3.

Note that {x̃i } lines up the points in {xi } and {x ([i])
i } in the order in which they were

produced in Algorithm 4.1.
Step 1: {x̃i } is Fejér monotone with respect to K . Since K ⊂ K1, K ⊂ K2 and

K ⊂ Fi for all i , the projections PK1 , PK2 and PFi are nonexpansive. So

‖x ([i])
i − y‖ = ‖PK[i](xi−1)− y‖ ≤ ‖xi−1 − y‖

and ‖xi − y‖ = ‖PFi (x (i)
i )− y‖ ≤ ‖x ([i])

i − y‖ for all y ∈ K and i ≥ 1.

This means that {x̃i } is a Fejér monotone sequence with respect to K .
Step 2: {x̃i } is asymptotically regular, i.e.,

lim
i→∞‖x̃i − x̃i+1‖ = 0.

Fix any ȳ ∈ K . Applying Lemma 4.4, we get

‖x ([i])
i − xi−1‖2 = ‖PK[i](xi−1)− xi−1‖2 ≤ ‖xi−1 − ȳ‖2 − ‖x ([i])

i − ȳ‖2
and ‖xi − x ([i])

i ‖2 ≤ ‖x ([i])
i − ȳ‖2 − ‖xi − ȳ‖2 for all i ≥ 1.

This tells us that ‖x̃i − x̃i−1‖2 ≤ ‖x̃i−1 − ȳ‖2 −‖x̃i − ȳ‖2 for all i ≥ 1. Since {x̃i } is
Fejér monotone with respect to K , ‖x̃i − ȳ‖2 is a decreasing sequence. We thus have
the asymptotic regularity of {x̃i }.

Step 3: Wrapping up. By Theorem 4.3(1), the sequence {x̃i } is bounded. So {x̃i } has
a weakly convergent subsequence, say {x̃ik }k . By the asymptotic regularity of {x̃i }, the
sequence {x̃ik+1}k has the same limit as {x̃ik }k , so we can take a different subsequence
if necessary and assume that infinitely many of the ik are odd. We can choose yet
another subsequence of {x̃ik } if necessary so that all terms are in either K1, or all terms
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Fig. 4 Diagram for the proof of
Theorem 4.6

θ i

xi
(2)

xi
(1)

(1)α i p1

p2

x
xi

xi−1
(2)α i

are in K2. For the sake of argument, assume that all terms lie in K1. So the weak limit
of {x̃ik }k , say x , lies in K1. By the asymptotic regularity of {x̃ik }k and considering
{x̃ik+2}k , we see that x ∈ K2. So the weak cluster point must lie in K . By Theorem
4.3(2), we conclude that {x̃i } converges to a point in K . The last sentence of the result
follows from Theorem 4.3(3).

For the case of using (4.1b), the steps are very similar, so we only give an outline:
One proves that the sequences {xi } and {x ( j)

i } are Fejér monotone with respect to K

for j = 1, 2. Next, the sequence x0, x ( j)
1 , x1, x ( j)

1 , x2, . . . is asymptotically regular,

which implies that the sequences {xi } and {x ( j)
i } have the same weak cluster points.

Since j is arbitrary, the weak cluster points must lie in K , and by Theorem 4.3(2),
such a weak cluster point is unique. ��

The problem of whether the MAP can converge strongly in a Hilbert space has only
been recently resolved to be negative in [24], so it remains to be seen how Theorem
4.5 can be strengthened.

We now move on to the fast local convergence of Algorithm 4.1. Even though the
result below is only valid for R

2 and a result establishing superlinear convergence for
R

n is presented in Sect. 5, Theorem 4.6 has value because the proof is simpler than
and very different from the proof in Sect. 5, and the assumptions needed are quite
different.

Theorem 4.6 (Superlinear convergence in R
2) Suppose K1 and K2 are closed convex

sets in R
2 such that

(1) Algorithm 4.1 with (4.1b) converges to a point x̄ such that ∂ NK1(x̄) ∩
∂[−NK2(x̄)] = {0}, and

(2) There is some iterate xi such that xi /∈ int(K j ) for j = 1, 2.

Then the sequence {xi } thus produced converges locally superlinearly to x̄ .

Proof We refer to Fig. 4. Let α
(1)
i be the angle between xi − x (1)

i and x̄ − x (1)
i , and

let α
(2)
i be similarly defined. As i → ∞, the points x (1)

i and x (2)
i converge to x̄ , so

Theorem 2.1 says that the angles α
(1)
i and α

(2)
i converge to zero.

Let θi be the angle between x (1)
i − xi and x (2)

i − xi as marked. Since ∂ NK1(x̄) ∩
∂[−NK2(x̄)] = {0}, the angle θi is bounded from below by θ̄ > 0. It is also easy
to check that if xi /∈ int(K j ) for j = 1, 2, then the same property holds for all i
afterward.
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The points p1 and p2 are obtained by projecting xi onto the line segments [x (1)
i , x̄]

and [x (2)
i , x̄]. To show that {xi } converges superlinearly to x̄ , it suffices to show that

lim
i→∞

‖xi − x̄‖
‖xi−1 − xi‖ = 0, (4.2)

since ‖xi−1− x̄‖ ≥ ‖xi−1− xi‖. Let Li = ‖xi−1− xi‖. By the sine rule, the distance
‖x (1)

i − xi‖ equals Li sin γ
(1)
i , where γ

(1)
i is some angle in the interval [0, π−θi ]. The

distance ‖p1 − xi‖ can be calculated to be bounded above by Li sin α
(1)
i sin γ

(1)
i ,

while the distance ‖p2 − xi‖ is easily computed to be bounded from above by
Li sin α

(2)
i sin γ

(2)
i , where γ

(2)
i is similarly defined. The distance ‖xi − x̄‖ is eas-

ily seen to be the diameter of the circumcircle of the cyclic quadrilateral with vertices
xi , x̄, p1 and p2. The angle between p1 − xi and p2 − xi is easily calculated to be
π − θi + α

(1)
i + α

(2)
i . (Note that x (2)

i , xi and p1 need not be collinear.) The distance
of ‖p1 − p2‖ can be estimated by

‖p1 − p2‖ ≤ ‖p1 − xi‖ + ‖p2 − xi‖
≤ sin(min{π/2, π − θi })[sin α

(1)
i + sin α

(2)
i ]Li .

The value ‖xi − x̄‖ can be obtained by the sine rule to be

‖p1 − p2‖
sin(π − θi + α

(1)
i + α

(2)
i )

,

so we have

‖xi − x̄‖ ≤ sin(min{π/2, π − θi })
sin(π − θi + α

(1)
i + α

(2)
i )

Li

[
sin α

(1)
i + sin α

(2)
i

]
.

Thus to prove that (4.2), it suffices to prove that

lim
i→∞

sin(min{π/2, π − θi })
sin([π − θi ] + α

(1)
i + α

(2)
i )

[
sin α

(1)
i + sin α

(2)
i

]
= 0. (4.3)

We have shown that lim inf i→∞ θi ≥ θ̄ > 0. The limit (4.3) holds because the limits
of α

(1)
i and α

(2)
i are zero and θi ∈ [θ̄ , π ] for all i . Hence we are done. ��

The superlinear convergence in Theorem 4.6 does not extend to R
3 however, even

when K1 and K2 are linear subspaces.

Example 4.7 (No superlinear convergence in R
3 for Algorithm 4.1) We give an exam-

ple of subspaces K1 and K2 in R
3 such that ∂ NK1(x̄)∩∂[−NK2(x̄)] = {0} but there is

no superlinear convergence to x̄ in Algorithm 4.1 using (4.1b) for some starting point.
Consider K1 and K2 defined by

123



344 C. H. J. Pang

K1 = R(1, 0, 1)T ,

and K2 = {(x, y, 0)T | x, y ∈ R}.

For the starting point x0 = (4,−1, 0)T , we compute the iterates of Algorithm 4.1. We
calculate

x (1)
1 = PK1(x0) = (2, 0, 2)T ,

x (2)
1 = x0,

x1 =
(

2

5
,

4

5
, 0

)T

,

x (1)
2 = PK1(x1) =

(
1

5
, 0,

1

5

)T

,

x (2)
2 = x1,

and x2 =
(

16

85
,
−4

85
, 0

)T

= 4

85
x0.

(4.4)

To verify that x1 and x2 are the correct iterates, we can check that x0, x (1)
1 , x (2)

1

and x1 lie in the plane {x | (1, 2, 0)x = 2}, and that x1, x (1)
2 , x (2)

2 and x2 lie in
the plane {x | (4,−1, 0)x = 4/5}. Another condition helpful for the verification is
that

〈
xi − x (1)

i , xi−1 − x (1)
i

〉
= 0 for i = 1, 2.

From (4.4), we see that the convergence to zero of Algorithm 4.1 using (4.1b) is
linear and not superlinear. But the rate of convergence for our choice of starting iterate
is 4

85 for every four projections, which is more than twice as fast of the rate of 1
4 for

every four projections for the usual MAP.
We show that if there were more supporting hyperplanes used in approximating K ,

then we get finite convergence to zero for this example. The projection of xi onto x (1)
i+1

generates the supporting hyperplanes

{x | (2,−1, 2)x = 0} if i is even, and

{x | (1, 4,−1)x = 0} if i is odd.

The projection of any point of the form (t, 0, t)T , where t > 0, onto the set

⎧
⎨

⎩x |
⎛

⎝
2 −1 2
1 4 −1
0 0 1

⎞

⎠ x ≤ 0

⎫
⎬

⎭

is equal to the zero vector, which is the only point in K .
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5 Superlinear convergence for the set intersection problem

Our main result in this section is Theorem 5.12, where we prove the superlinear
convergence of an algorithm for the set intersection problem (1.1) when the normal
cones at the point of intersection are pointed cones satisfying appropriate alignment
conditions.

We first describe our algorithm for this section.

Algorithm 5.1 (Mass projection algorithm) For a starting iterate x0 and closed con-
vex sets Kl ⊂ R

n, where 1 ≤ l ≤ r , find a point in K := ∩r
l=1 Kl .

Step 0: Set i = 1, and let p̄ be some positive integer.
Step 1: Choose Ji = {1, . . . , r}.
Step 2: For j ∈ Ji , define x ( j)

i ∈ R
n, a( j)

i ∈ R
n and b( j)

i ∈ R by

x ( j)
i = PK j (xi−1),

a( j)
i = xi−1 − x ( j)

i ,

and b( j)
i =

〈
a( j)

i , x ( j)
i

〉
.

Define the set F̃i ⊂ R
n by

F̃i :=
{

x |
〈
a( j)

l , x
〉
≤ b( j)

l for 1 ≤ j ≤ r, max(1, i − p̄) ≤ l ≤ i
}

.

Let xi = PF̃i
(xi−1).

Step 3: Set i ← i + 1, and go back to step 1.

The modifications in Algorithm 5.1 from Algorithm 4.1 are that we set X = R
n ,

the number of sets r is arbitrary, and the set F̃i approximating K is created using more
of the previous separating halfspaces produced earlier.

Algorithm 5.1 produces a sequence {xi } Fejér monotone with respect to K and
converging to a point x̄ ∈ K . The proof is an easy adaptation of that of Theorem 4.5.

We need to recall a few well known properties of convex sets in R
n to proceed.

These properties may be found in standard convex analysis texts, for example [23,34].

Definition 5.2 (Properties of convex sets) The linearity space lin(C) of a convex set
C ⊂ R

n is the set of all directions y such that for every x ∈ C , the line {x} +R{y} is
contained in C . In the case where C is a convex cone, lin(C) = C ∩ (−C).

A convex cone is said to be pointed if lin(C) = {0}, or in other words, C does not
contain a line.

The affine hull aff(C) of C is the smallest affine space containing C . We shall write
lin(aff(·)) as lin ◦ aff(·).

We recall a well known fact about convex cones. See for example [34, Page 65].

Proposition 5.3 (Convex cone decomposition) A closed convex cone C ⊂ R
n can be

written as the direct sum C = L ⊕ [L⊥ ∩ C], where L = lin(C), and L⊥ ∩ C is a
pointed convex cone.
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As a consequence of Proposition 5.3, we have the following result on the normal cones
of convex sets.

Proposition 5.4 (Linearity spaces of normals of convex sets) Suppose C ⊂ R
n is

a convex set. Then for any x ∈ C, [lin ◦ aff(C)]⊥ = lin(NC (x)). In particular,
lin ◦ aff(C) ∩ NC (x) is a pointed convex cone.

Proof v ∈ lin(NC (x)) ⇐⇒ ±v ∈ NC (x) ⇐⇒ 〈v, x − c〉 = 0 for all c ∈ C ⇐⇒
v ∈ [lin ◦ aff(C)]⊥.

To see that lin◦aff(C)∩NC (x) is a pointed cone, apply [lin◦aff(C)]⊥ = lin(NC (x))

to Proposition 5.3. ��
In our quest to prove Theorem 5.12, we need the next three lemmas to prove the

intermediate result Proposition 5.8.

Lemma 5.5 (Intermediate estimate) Suppose v1 and v2 are nonzero vectors in R
n

such that ‖v1−v2‖‖v2‖ ≤ β. Then
∥∥∥ v1‖v1‖ − v2‖v2‖

∥∥∥ ≤ 2β.

Proof We have

∥∥∥∥
v1

‖v1‖ −
v2

‖v2‖
∥∥∥∥ ≤

∥∥∥∥
v1

‖v2‖ −
v2

‖v2‖
∥∥∥∥+

∥∥∥∥
v1

‖v1‖ −
v1

‖v2‖
∥∥∥∥

≤ β + ‖v1‖
∣∣‖v1‖ − ‖v2‖

∣∣
‖v1‖‖v2‖

≤ β + ‖v1 − v2‖
‖v2‖ ≤ 2β.

��
For the following result, recall that the cone K+ := −K− is the positive polar cone

(or more commonly, the dual cone) of K .

Lemma 5.6 (Pointed cone) For a closed pointed convex cone K ⊂ R
n, there is a unit

vector d in K+, the positive polar cone of K , and some c > 0 such that Bc(d) ⊂ K+.
Next, for any unit vector v ∈ K , we have dT v ≥ c.

Moreover, suppose λi ≥ 0, and vi are unit vectors in K for all i , and
∑∞

i=1 λivi

converges to v̄. Clearly, v̄ ∈ K . Then ‖∑∞i=1 λivi‖ ≥ c
∑∞

i=1 λi , which also implies
that

∑∞
i=1 λi is finite.

Proof It is well known that the positive polar cone (or dual) of a closed pointed
convex cone has an interior (see for example [34, Corollary 14.6.1]), so the first
sentence follows. For the unit vector v ∈ K , we have (d − cv) ∈ K+, which gives
〈d − cv, v〉 ≥ 0, from which the first part follows.

Next,
∥∥∥∥∥

∞∑

i=1

λivi

∥∥∥∥∥ ≥
〈

d,

∞∑

i=1

λivi

〉
≥ c

∞∑

i=1

λi ,

and the second part follows. ��
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Lemma 5.7 (Limit estimates involving pointed cones) Suppose {vi }i are unit vectors
in R

n and {λi }i is a sequence of nonnegative numbers such that the cluster points of
{vi }i belong to a closed pointed convex cone K ⊂ R

n. Then

(1) If
∑∞

i=1 λi = ∞, then cluster points of

{ ∑ j
i=1 λi vi

‖∑ j
i=1 λi vi‖

}∞

j=1
belong to K .

(2) Take c > 0 to be the constant in Proposition 5.6. If
∑∞

i=1 λivi is convergent and
there are unit vectors ṽi ∈ K such that ‖vi − ṽi‖ ≤ ε, then

∥∥∥∥∥

∑∞
i=1 λivi∥∥∑∞
i=1 λivi

∥∥ −
∑∞

i=1 λi ṽi∥∥∑∞
i=1 λi ṽi

∥∥

∥∥∥∥∥ ≤
2

c
ε. (5.1)

Proof Statement (1): Since the cluster points of {vi } belong to K , for any ε > 0, we
can find Iε such that for all i ≥ Iε , there exists ṽi ∈ K such that ‖vi − ṽi‖ < ε. Then

∥∥∥∥∥∥

j∑

i=1

λivi −
j∑

i=1

λi ṽi

∥∥∥∥∥∥
=
∥∥∥∥∥∥

j∑

i=1

λi (vi − ṽi )

∥∥∥∥∥∥
≤

j∑

i=Iε

λiε +
Iε−1∑

i=1

2λi .

Next, Proposition 5.6 implies that
∥∥∥
∑ j

i=1 λi ṽi

∥∥∥ ≥ c
∑ j

i=1 λi . So

∥∥∥
∑ j

i=1 λivi −∑ j
i=1 λi ṽi

∥∥∥
∥∥∥
∑ j

i=1 λi ṽi

∥∥∥
≤
∑ j

i=Iε
λiε +∑Iε−1

i=1 2λi

c
∑ j

i=1 λi

.

Proposition 5.5 gives

∥∥∥∥∥∥

∑ j
i=1 λivi∥∥∥

∑ j
i=1 λivi

∥∥∥
−

∑ j
i=1 λi ṽi∥∥∥

∑ j
i=1 λi ṽi

∥∥∥

∥∥∥∥∥∥
≤ 2

∑ j
i=Iε

λiε +∑Iε−1
i=1 2λi

c
∑ j

i=1 λi

.

The RHS of the above can be made arbitrarily small since ε can be made arbitrar-

ily small and j can be made arbitrarily big. The term
∑ j

i=1 λi ṽi∥∥∥
∑ j

i=1 λi ṽi

∥∥∥
belongs to K , so

Statement (1) holds.

Statement (2): First, since
∑∞

i=1 λi ṽi is convergent, Proposition 5.6 implies

∥∥∥∥∥

∞∑

i=1

λi ṽi

∥∥∥∥∥ ≥ c
∞∑

i=1

λi ,

which also implies that
∑∞

i=1 λi is finite, and

∥∥∥∥∥

∞∑

i=1

λivi −
∞∑

i=1

λi ṽi

∥∥∥∥∥ =
∥∥∥∥∥

∞∑

i=1

λi (vi − ṽi )

∥∥∥∥∥ ≤
∞∑

i=1

λiε.
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Then
∥∥∑∞

i=1 λivi −∑∞i=1 λi ṽi
∥∥

∥∥∑∞
i=1 λi ṽi

∥∥ ≤ ε

c
.

By Proposition 5.5, we get the conclusion (5.1) as needed. ��
The following result shows that under certain conditions, the directions from

which the iterates converge to the limit must lie inside the normal cone of K at the
limit.

Proposition 5.8 (Approach of iterates to x̄) Consider the problem of finding a point
x ∈ K , where K = ∩r

l=1 Kl and Kl ⊂ R
n are closed convex sets. Suppose Algorithm

5.1 produces a sequence {xi } that converges to a point x̄ ∈ K and is Fejér monotone
with respect to K . Assume that:

(1) If
∑r

l=1 vl = 0 for some vl ∈ NKl (x̄), then vl = 0 for all l = 1, . . . , r .

Then provided none of the xi equals x̄ , we have

lim
i→∞
‖PNK (x̄)(xi − x̄)‖
‖xi − x̄‖ = 1. (5.2)

Proof By the way Algorithm 5.1 is designed, the KKT conditions for the problem of
projecting xi−1 onto the polyhedron to obtain xi give

xi = xi−1 −
r∑

l=1

i∑

k=max(1,i− p̄)

[λ(i,k)
l vk

l + w
(i,k)
l ],

where λ
(i,k)
l vk

l + w
(i,k)
l is a multiple of the vector a(l)

k = xk−1 − PKl (xk−1), w
(i,k)
l ∈

[lin ◦ aff(Kl)]⊥, vk
l is a unit vector in lin ◦ aff(Kl)∩ NKl (PKl (xk−1)), and λ

(i,k)
l ≥ 0.

(The relationship [lin ◦ aff(Kl)]⊥ = lin(NKl (PKl (xk−1))) follows from Proposition
5.4.) For j > i , we can write xi−1 − x j as

xi−1 − x j =
j∑

s=i

r∑

l=1

s∑

k=max(1,s− p̄)

[λ(s,k)
l vk

l + w
(s,k)
l ]

=
r∑

l=1

⎡

⎣

⎡

⎣
j∑

s=i

s∑

k=max(1,s− p̄)

λ
(s,k)
l vk

l

⎤

⎦+ w̃
(i−1, j)
l

⎤

⎦ ,

where w̃
(i−1, j)
l ∈ [lin ◦ aff(Kl)]⊥. Let ṽ

(i, j)
l ∈ R

n be the vector

ṽ
(i, j)
l :=

∑ j
s=i

∑s
k=max(1,s− p̄) λ

(s,k)
l vk

l∥∥∥
∑ j

s=i

∑s
k=max(1,s− p̄) λ

(s,k)
l vk

l

∥∥∥
. (5.3)
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Claim 1: All cluster points of {vk
l }∞k=1 lie in lin◦aff(Kl)∩NKl (x̄) for l = 1, . . . , r .

In view of the fact that the normal cone mapping NC (·) : C ⇒ R
n has closed

graph (see [35, Proposition 6.6]), all cluster points of {vk
l }∞k=1 lie in NKl (x̄). Since

vk
l ∈ lin ◦ aff(Kl), all cluster points of {vk

l }∞k=1 lie in lin ◦ aff(Kl). Thus this claim is
proved.

Claim 2: For each i , the infinite sum

zl,i :=
∞∑

s=i

s∑

k=max(1,s− p̄)

λ
(s,k)
l vk

l (5.4)

exists as a limit for l = 1, . . . , r . Hence lim j→∞ ṽ
(i, j)
l exists.

Suppose on the contrary that zl,i does not exist as a limit for some l, 1 ≤ l ≤ r . It
follows that ∞∑

s=i

s∑

k=max(1,s− p̄)

λ
(s,k)
l = ∞, (5.5)

because if the sum in (5.5) were finite, zl,i would exist as a limit. Note that the cone
lin ◦ aff(Kl)∩ NKl (x̄) is pointed. Using Claim 1 and Lemma 5.7(1), the subsequence

{ṽ(i, j)
l }∞j=1 has cluster points in lin ◦ aff(Kl) ∩ NKl (x̄). Let

αi, j := max
1≤l≤r

⎧
⎨

⎩

∥∥∥∥∥∥

j∑

s=i

s∑

k=max(1,s− p̄)

λ
(s,k)
l vk

l

∥∥∥∥∥∥
, ‖w̃(i−1, j)

l ‖
⎫
⎬

⎭ . (5.6)

We have lim j→∞ αi, j = ∞ since (5.5) holds for some l, λ
(s,k)
l ≥ 0, and by Lemma

5.6, there is a constant m dependent only on lin ◦ aff(Kl) ∩ NKl (x̄) such that

∥∥∥∥∥∥

j∑

s=i

s∑

k=max(1,s− p̄)

λ
(s,k)
l vk

l

∥∥∥∥∥∥
≥ m

j∑

s=i

s∑

k=max(1,s− p̄)

λ
(s,k)
l .

Consider the equation

1

αi, j
[xi−1 − x j ] =

r∑

l=1

[
1

αi, j

⎛

⎝
j∑

s=i

s∑

k=max(1,s− p̄)

λ
(s,k)
l vk

l

⎞

⎠

︸ ︷︷ ︸
tl,i, j

+ 1

αi, j
w̃

(i−1, j)
l

︸ ︷︷ ︸
t ′l,i, j

]
. (5.7)

It is clear that the LHS converges to zero as j → ∞. We can, by the definition
of αi, j in (5.6), choose a subsequence such that the limits tl,i := lim j→∞ tl,i, j and
t ′l,i := lim j→∞ t ′l,i, j , where tl,i, j and t ′l,i, j are defined in (5.7), exist and are not
all zero for 1 ≤ l ≤ r . This would contradict Condition (1), ending the proof of
Claim 2.
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In view of Claim 2, define

ṽ
(i)
l := lim

j→∞ ṽ
(i, j)
l . (5.8)

Define the matrix A(i, j) ∈ R
n×r whose lth column is ṽ

(i, j)
l . We can write

A(i, j)γ (i, j) =
r∑

l=1

j∑

s=i

s∑

k=max(1,s− p̄)

λ
(s,k)
l vk

l , (5.9)

where γ (i, j) ∈ R
r is such that γ

(i, j)
l := ‖∑ j

s=i

∑s
k=max(1,s− p̄) λ

(s,k)
l vk

l ‖ for l =
1, . . . , r . Let A(i) := lim j→∞ A(i, j) and γ (i) ∈ R

r be such that

γ
(i)
l := ‖zl,i‖ =

∥∥∥∥∥∥

∞∑

s=i

s∑

k=max(1,s− p̄)

λ
(s,k)
l vk

l

∥∥∥∥∥∥
.

Then

A(i)γ (i) =
r∑

l=1

zl,i =
r∑

l=1

∞∑

s=i

s∑

k=max(1,s− p̄)

λ
(s,k)
l vk

l .

Let

A := {A ∈ R
n×r | The lth column of A is a

unit vector in lin ◦ aff(Kl) ∩ NKl (x̄) for 1 ≤ l ≤ r},

L :=
r⋂

l=1

lin ◦ aff(Kl),

and β := inf

{‖PL(Aγ )‖
‖γ ‖ | A ∈ A and γ ∈ R

r+\{0}
}

. (5.10)

In view of the fact that [S1 + S2]⊥ = S⊥1 ∩ S⊥2 for linear subspaces S1 and S2, L also
equals

L =
[

r∑

l=1

[lin ◦ aff(Kl)]⊥
]⊥

. (5.11)

Claim 3: β > 0. Suppose otherwise. Then there are sequences of matrices Ã(i) ∈ A
and unit vectors γ̃ (i) ∈ R

r such that γ̃ (i) ≥ 0 and PL( Ã(i)γ̃ (i))→ 0 as i ↗ ∞. By
taking cluster points of Ã(i) and γ̃ (i), we obtain PL( Ãγ̃ ) = 0 for some Ã ∈ A and
γ̃ �= 0, where γ̃ ≥ 0.

We now check that this contradicts Condition (1). Since PL( Ãγ̃ ) = 0, we can
find some w̃ ∈ L⊥ so that Ãγ̃ + w̃ = 0. We can write w̃ as w̃ = ∑r

l=1 w̃l , where
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w̃l ∈ lin ◦ aff(Kl)
⊥. Letting Ãl be the lth column of Ã, we see that Ãl γ̃l + w̃l ∈

[lin ◦ aff(Kl)∩ NKl (x̄)] + lin ◦ aff(Kl)
⊥ = NKl (x̄). Since Ãl γ̃l + w̃l are not all zero,

this concludes our proof of Claim 3.
Claim 4: limi→∞[inf A∈A ‖A−A(i)‖] = 0. The lth column of A(i) is the unit vector

ṽ
(i)
l as defined in (5.3) and (5.8), and each vk

l lies in lin◦aff(Kl)∩NKl

(
Bδ(x̄)

)
, where

δ = ‖xk−1 − x̄‖. Since {xi } converges to x̄ and is Fejér monotone, for any δ > 0, we
can find i ′ large enough so that ‖xi − x̄‖ < δ for all i > i ′. This would mean that
for all ε > 0, we can find i large enough so that each vk

l in the sum (5.3) satisfies
‖vk

l − v̄k
l ‖ < ε for some unit vector v̄k

l ∈ lin ◦ aff(Kl) ∩ NKl (x̄).
Let

v̂
(i)
l :=

∑ j
s=i

∑s
k=max(1,s− p̄) λ

(s,k)
l v̄k

l∥∥∥
∑ j

s=i

∑s
k=max(1,s− p̄) λ

(s,k)
l v̄k

l

∥∥∥
.

Recall that ṽ
(i)
l is the lth column of A(i). By Lemma 5.7(2), there is a constant m

dependent only on lin ◦ aff(Kl) ∩ NKl (x̄) such that

‖ṽ(i)
l − v̂

(i)
l ‖ ≤ εm.

Since ε ↘ 0 as i ↗∞, we can see that the conclusion to Claim 4 holds.
Claim 5: To prove that the conclusion (5.2) holds, it suffices to prove

lim
i→∞

(
inf
A∈A
‖Aγ (i) − A(i)γ (i)‖
‖xi−1 − x̄‖

)
= 0. (5.12)

The vector γ (i) has nonnegative components, and xi−1 − x̄ = A(i)γ (i) +∑r
l=1 w̃

(i)
l

for some w̃
(i)
l ∈ [lin ◦ aff(Kl)]⊥. Condition (1) and [35, Theorem 6.42] imply that

NK (x̄) =
r∑

l=1

NKl (x̄). (5.13)

Then Aγ (i) +∑r
l=1 w̃

(i)
l would lie in NK (x̄) for any A ∈ A by (5.13). Moreau’s

Theorem implies that for any vector v ∈ R
n ,

v = PTK (x̄)(v)+ PNK (x̄)(v) and ‖PTK (x̄)(v)‖2 + ‖PNK (x̄)(v)‖2 = ‖v‖2,

If (5.12) holds, then

lim
i→∞
‖PTK (x̄)(xi−1 − x̄)‖
‖xi−1 − x̄‖ = lim

i→∞
‖[xi−1 − x̄] − PNK (x̄)(xi−1 − x̄)‖

‖xi−1 − x̄‖
= lim

i→∞

(
min

v∈NK (x̄)

‖[xi−1 − x̄] − v‖
‖xi−1 − x̄‖

)
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(by the definition of PNK (x̄)(·))

≤ lim
i→∞

(
inf
A∈A
‖A(i)γ (i) − Aγ (i)‖
‖xi−1 − x̄‖

)
= 0.

(In the last formula, we chose v = inf A∈A Aγ (i)+∑r
l=1 w̃

(i)
l .) By Moreau’s Theorem,

(5.2) holds, ending the proof of Claim 5.
Claim 6: (5.12) holds. Since γ (i) ≥ 0, it is clear from the definition of β and Claim

4 that if the γ (i)’s are nonzero, then

lim inf
i→∞

‖PL(A(i)γ (i))‖
‖γ (i)‖ ≥ β. (5.14)

In the case where γ (i) are zero, the numerator in (5.12) is zero, so things are
straightforward. So we shall look only at the subsequence for which γ (i) are nonzero.
(We do not relabel.) For the denominator, we have

‖xi−1 − x̄‖ =
∥∥∥∥∥A(i)γ (i) +

r∑

l=1

w̃
(i)
l

∥∥∥∥∥

≥
∥∥∥∥∥PL

(
A(i)γ (i) +

r∑

l=1

w̃
(i)
l

)∥∥∥∥∥ = ‖PL(A(i)γ (i))‖.

The last equality holds because PL is linear and, in view of w̃
(i)
l ∈ [lin ◦ aff(Kl)]⊥

and (5.11), PL(w̃
(i)
l ) = 0 for all l. Then Claim 4 and (5.14) implies

0 ≤ lim
i→∞

(
inf
A∈A
‖Aγ (i) − A(i)γ (i)‖
‖PL(A(i)γ (i))‖

)
≤ lim

i→∞
inf A∈A ‖A − A(i)‖

β
= 0,

from which (5.12) follows easily, ending the proof of Claim 6.
By applying Claim 5 to Claim 6, we prove the result at hand. ��
Next, we give conditions for estimating the distance to the point of convergence

using the distance to the respective sets. We recall the definition of local linear regu-
larity.

Definition 5.9 (Local metric inequality) We say that a collection of closed sets Kl , l =
1, . . . , r satisfies the local metric inequality at x̄ if there are β > 0 and δ > 0 such
that

d(x,∩r
l=1 Kl) ≤ β max

1≤l≤r
d(x, Kl) for all x ∈ Bδ(x̄). (5.15)

In this paper, we shall only consider the case where Kl are all convex. The term
linear regularity is used in two different ways in [27, after (15)] and [28, Proposition
2.3], so we refrain from using the term here. A concise summary of further studies on
the local metric inequality appears in [27], who in turn referred to [4,25,30,32] on the
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topic of local metric inequality and their connection to metric regularity. Definition
5.9 is sufficient for our purposes. The local metric inequality is useful for proving the
linear convergence of alternating projection algorithms [2,28]. See [3] for a survey.

With the additional assumption of local metric inequality, we have the following
result.

Lemma 5.10 (Estimates under local metric inequality) Let Kl ⊂ R
n, where 1 ≤ l ≤

r , be closed convex sets. Suppose a sequence {xi } converges to the point x̄ ∈ K :=
∩r

l=1 Kl , {Kl}rl=1 satisfies the local metric inequality at x̄ , and

lim
i→∞
‖PNK (x̄)(xi − x̄)‖
‖xi − x̄‖ = 1. (5.16)

Then there is a β > 0 such that

‖xi − x̄‖ ≤ β max
1≤l≤r

d(xi , Kl) for all i large enough. (5.17)

Proof By Moreau’s Theorem, we have

‖PTK (x̄)(xi − x̄)‖2 = ‖xi − x̄‖2 − ‖PNK (x̄)(xi − x̄)‖2

⇒ lim
i→∞
‖PTK (x̄)(xi − x̄)‖2
‖xi − x̄‖2 = lim

i→∞

(
1− ‖PNK (x̄)(xi − x̄)‖2

‖xi − x̄‖2
)
= 0. (5.18)

Let x̃i be such that x̃i − x̄ = PNK (x̄)(xi − x̄), and xi − x̃i = PTK (x̄)(xi − x̄). Formulas
(5.16) and (5.18) give us

lim
i→∞
‖x̃i − x̄‖
‖xi − x̄‖ = 1 and lim

i→∞
‖x̃i − xi‖
‖xi − x̄‖ = 0. (5.19)

Since x̃i − x̄ ∈ NK (x̄), we have d(x̃i , K ) = ‖x̃i − x̄‖. So, by the Lipschitzness of the
projection operation, we have

d(x̃i , K )− ‖x̃i − xi‖ ≤ d(xi , K ) ≤ d(x̃i , K )+ ‖x̃i − xi‖
⇒ ‖x̃i − x̄‖ − ‖x̃i − xi‖ ≤ d(xi , K ) ≤ ‖x̃i − x̄‖ + ‖x̃i − xi‖. (5.20)

The formulas (5.19) and (5.20) give limi→∞ d(xi ,K )
‖xi−x̄‖ = 1. Together with the definition

of local metric inequality (5.15), we can obtain what we need. ��
Local metric inequality follows from Condition (1) in Proposition 5.8. We para-

phrase the result from [28], where the authors remarked that the theorem is well
known. For example, a globalized version appears in the survey [1, Theorem 3.7]
without attribution.

Lemma 5.11 (Condition for local metric inequality) Suppose x̄ ∈ K , where K =
∩r

l=1 Kl and Kl ⊂ R
n for 1 ≤ l ≤ r , and that Condition (1) of Proposition 5.8 holds.

Then {Kl}rl=1 satisfies the local metric inequality at x̄ .
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Proof In [28, Section 3], it was proved that if Condition (1) of Proposition 5.8 holds,
then there is a constant κ ≥ 0 such that

d
(

x,
⋂

i

(Ki − zi )
)
≤ κ

√∑

i

d2(x, Ki − zi ) for all (x, z) near (x̄, 0),

This is easily seen to be stronger than the conclusion since we only need zi = 0 for
1 ≤ i ≤ r . ��

We state the key result of this section.

Theorem 5.12 (Superlinear convergence) Consider the problem of finding a point
x ∈ K , where K = ∩r

l=1 Kl and Kl ⊂ R
n. Suppose Algorithm 5.1 produces a

sequence {xi } that converges to a point x̄ ∈ K . Suppose also that the conditions in
Proposition 5.8 hold, i.e.,

(1) If
∑r

l=1 vl = 0 for some vl ∈ NKl (x̄), then vl = 0 for all l = 1, . . . , r .

If p̄ in Algorithm 5.1 is sufficiently large, then we have

lim sup
i→∞

‖xi+ p̄ − x̄‖
‖xi − x̄‖ = 0. (5.21)

Moreover, for that choice of p̄, if

for some ε̄ > 0, [Kl − x̄] ∩ ε̄B = TKl (x̄) ∩ ε̄B for all l = 1, . . . , r, (5.22)

then the convergence of {xi } to x̄ is finite.

Proof In Algorithm 5.1, let li ∈ {1, . . . , r} be such that

li ∈ arg max
1≤l≤r

‖xi − PKl (xi )‖ = arg max
1≤l≤r

d(xi , Kl).

Let v∗i be the unit vector v∗i :=
xi−PKli

(xi )

‖xi−PKli
(xi )‖ . In other words, v∗i is the unit vector of

the hyperplane that separates xi from Kli .
Without loss of generality, suppose that x̄ = 0. From Lemma 5.11, we deduce that

{Kl}rl=1 satisfies the local metric inequality at x̄ . Suppose β > 0 is chosen such that
(5.17) holds.

The sphere Sn−1 := {w ∈ R
n | ‖w‖ = 1} is compact. Suppose p̄ is such that we

can cover Sn−1 with p̄ balls of radius 1
4β

.
Next, among the vectors {v∗i , v∗i+2, . . . , v

∗
i+ p̄}, there must exist j and k such that

i ≤ j < k ≤ i + p̄, and v∗j and v∗k belong to the same ball of radius 1
4β

covering

Sn−1. We thus have ‖v∗j − v∗k‖ ≤ 1
2β

. We can assume, using Theorem 2.1, that i is
large enough so that

〈v∗j , xk〉 ≤ ε‖x j‖. (5.23)
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On the other hand, if i is large enough, we can apply Lemma 5.10 to get

〈v∗j , xk〉 = 〈v∗k , xk〉 + 〈v∗j − v∗k , xk〉
≥ d(xk,Klk )−

1

2β
‖xk‖

≥ 1

2β
‖xk‖. (5.24)

The methods in Theorem 4.5 can be easily adapted to prove that the sequence {xi } is
Fejér monotone with respect to K . The inequalities (5.23) and (5.24), and the Fejér
monotonicity of {xi } combine to give

‖xi+ p̄‖ ≤ ‖xk‖ ≤ 2βε‖x j‖ ≤ 2βε‖xi‖.
As the factor ε can be made arbitrarily close to 0, we proved (5.21).

Next, under the added condition (5.22), the formula (5.23) becomes 〈v∗j , xk〉 ≤ 0
instead by an application of Moreau’s Theorem (see Proposition 2.3), and the same
steps show us that 1

2β
‖xk‖ ≤ 0, which forces xk = 0, or xk = x̄ . ��

Even though the choice of p̄ in the proof of Theorem 5.12 is impractical, The-
orem 5.12 gives justification that the idea of supporting hyperplanes and quadratic
programming can lead to fast convergence.

5.1 Alternative estimates

We close this section with a result that might be helpful for estimating the distance of
an iterate to the limit x̄ .

Lemma 5.13 (Alternative estimate) Let K := ∩r
l=1 Kl , where Kl are closed convex

sets in R
n for 1 ≤ l ≤ r .

(1) Let hyperplanes Hj := {x |
〈
a j , x

〉 = b j } and points a j ∈ R
n be such that ‖a j‖ =

1, each Hj is a supporting hyperplane to some Kl j , and Kl j ⊂ {x |
〈
a j , x

〉 ≤ b j }
for j = 1, . . . , J .

(2) Let x̃ j ∈ R
n be such that x̃ j ∈ Hj ∩ Kl j for j = 1, . . . , J

(3) Choose x∗ ∈ R
n so that x∗ lies on the all hyperplanes Hj .

(4) Let x̄ ∈ K , and let L := max j ‖x̃ j − x̄‖.
(5) Let ε > 0 be such that −ε ≤ 〈a j ,x̄−x̃ j〉

‖x̄−x̃ j‖ ≤ 0 for all j = 1, . . . , J .

Let the matrix A ∈ R
n×J be such that the j th column of A is a j , and let its smallest

singular value be σ . We assume σ > 0. Let α be such that

‖M‖∞,2 ≤ α‖M‖2,2 for all M ∈ R
n×J , (5.25)

where ‖M‖p,q := supv �=0
‖Mv‖q
‖v‖p

. Let S be span{a1, . . . , aJ }. Then

‖PS(x∗ − x̄)‖ ≤ Lεασ−1. (5.26)
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Proof Since x∗ is in Hj , we have
〈
a j , x∗

〉 = b j . By Conditions (3) and (4), we get

−εL ≤ −ε‖x̄ − x̃ j‖ ≤
〈
a j , x̄ − x̃ j

〉 ≤ 0.

Since
〈
a j , x̃ j

〉 = b j =
〈
a j , x∗

〉
, we have

0 ≤ 〈a j , x∗ − x̄
〉 ≤ εL . (5.27)

By standard linear least squares, we have

‖PS(x∗ − x̄)‖2 = ‖A(AT A)−1 AT (x∗ − x̄)‖2
≤ ‖A(AT A)−1‖∞,2‖AT (x∗ − x̄)‖∞

By (5.27), we have ‖AT (x∗ − x̄)‖∞ ≤ εL . Furthermore, using standard properties of
the singular value decomposition, we have

‖A(AT A)−1‖∞,2 ≤ α‖A(AT A)−1‖2,2 = ασ−1.

The required bound follows immediately. ��
To apply Lemma 5.13 to Algorithm 5.1, note that Condition (4) follows from

properties of the projection, while Condition (5) is an attempt to apply Theorem 2.1.
Lemma 5.13 is closer to the spirit of Theorem 4.6. However, the term σ−1 is hard to
control, so we have not had success in applying Lemma 5.13 so far.

6 Infeasibility

We now discuss the case where the K := ∩r
l=1 Kl = ∅. For any algorithm pro-

ducing a sequence {xi } in the hope of converging to a limit x̄ ∈ K , there are three
possibilities:

(1) An infinite sequence cannot be produced because the intersection of the halfspaces
is an empty set at some point.

(2) The sequence {xi } contains a cluster point x̄ .
(3) The sequence {xi } does not contain a cluster point x̄ .

We first show that case 2 is not possible for Algorithm 3.1 in the case of strong cluster
points.

Theorem 6.1 (No cluster point) For Algorithm 3.1 using (3.1b), in the case where
K = ∅, the sequence {xi } cannot contain a strong cluster point.

Proof Suppose on the contrary that {xi } contains a strong cluster point, say x̃ . Since
x̃ /∈ K , we assume without loss of generality that x̃ /∈ K1. Then let z := PK1(x̃), and
v = x̃ − z. Let ax = x − PK1(x) and bx = 〈ax , PK1(x)〉. By elementary properties of
the projection, we have 〈ax̃ , x̃〉 > bx̃ . The parameters ax and bx depend continuously
on x . By the description of Algorithm 3.1, we have
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〈
axi , xi+1

〉 ≤ bxi .

As we take limits as i →∞, we get 〈ax̃ , x̃〉 ≤ bx̃ . This is a contradiction. ��
One can easily check that Case 3 can happen. Consider the sets K1 and K2 defined

by

K1 = {(x, y) ∈ R
2 | y ≥ e−x },

and K2 = {(x, y) ∈ R
2 | y ≤ −e−x }.

If x0 is chosen to be the origin in Algorithm 3.1, then the iterates xi cannot converge
to a limit by Theorem 6.1, and therefore must move in the direction of the positive x
axis. We understand more about such behavior with the result below.

Theorem 6.2 (Recession directions) If {xi } is a sequence of iterates for Algorithm 3.1
using (3.1b) in the case where K = ∅ and X = R

n, then any cluster point of { xi‖xi‖ }
must lie in R(Kl), the recession cone of Kl , for all l = 1, . . . , r .

Proof Let { x̃i‖x̃i‖ } be a subsequence of { xi‖xi‖ } which has a limit v. We show that such
a limit has to lie in R(Kl). Seeking a contradiction, suppose that v /∈ R(Kl).

We show that there is a unit vector w ∈ R
n and M ∈ R such that 〈w, c〉 ≤ M

for all c ∈ Kl and 〈w, v〉 > 0. Take any point y ∈ Kl . Since v /∈ R(Kl), there is
some γ ≥ 0 such that y + γ v ∈ Kl , but y + γ ′v /∈ Kl for all γ ′ > γ . It follows that
there exists a unit vector w ∈ NKl (y + γ v) such that 〈w, v〉 > 0, and we can take
M = 〈w, y + γ v〉. Since 〈w, v〉 > 0, we shall assume that 〈w, x̃i 〉 > M for all i .

Let ci := PKl (x̃i ), and let ui be the unit vector in the direction of x̃i − ci . We write
x̃i − ci = αi ui . We have

〈ui , ci 〉 = 〈ui , x̃i − αi ui 〉
= 〈ui , x̃i − αi 〉.

Also

αi 〈w, ui 〉 = 〈w, x̃i 〉 − 〈w, ci 〉
≥ 〈w, x̃i 〉 − M.

Since αi 〈w, ui 〉 = 〈w, x̃i − ci 〉 > M − M = 0, we have 〈w, ui 〉 > 0, and hence
αi ≥ 〈w, x̃i 〉 − M . Therefore,

〈ui , ci 〉 ≤ 〈ui , x̃i 〉 − 〈w, x̃i 〉 + M.

By the workings of Algorithm 3.1, we have 〈ui , x̃i 〉 > 〈ui , ci 〉 and 〈ui , x̃ j 〉 ≤ 〈ui , ci 〉
for all j > i . This gives 〈ui , x̃ j − x̃i 〉 ≤ 0, which gives 〈ui , v〉 ≤ 0.

Let u be a cluster point of {ui }. We can consider subsequences so that limi→∞ ui

exists. For any point c ∈ Kl , we have
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〈u, c〉 = lim
i→∞〈ui , c〉
≤ lim inf

i→∞ 〈ui , ci 〉
≤ lim inf

i→∞ [〈ui , x̃i 〉 − 〈w, x̃i 〉 + M]

= lim inf
i→∞ ‖x̃i‖

(〈
ui ,

x̃i

‖x̃i‖
〉
−
〈
w,

x̃i

‖x̃i‖
〉)
+ M

= lim inf
i→∞ ‖x̃i‖[〈ui , v〉 − 〈w, v〉] + M

= −∞,

which is absurd. The contradiction gives v ∈ R(Kl). ��

7 Conclusion

In this paper, we focus on the theoretical properties of using supporting hyperplanes
and quadratic programming to accelerate the method of alternating projections and its
variants. It appears that as long as a separating hyperplane is obtained for K and the
quadratic programs are not too big, it is a good idea to solve the associated quadratic
program to obtain better iterates. Other issues to consider in a practical implementa-
tion would be to either remove or combine loose constraints so that the size of the
intermediate quadratic programs do not get too big. The ideas in [26] for example
can be useful. It remains to be seen whether the theoretical properties in this paper
translate to effective algorithms in practice.
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