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Abstract The bulk synchronous parallel (BSP) model, as well as parallel program-
ming interfaces based on BSP, classically target distributed-memory parallel archi-
tectures. In earlier work, Yzelman and Bisseling designed a MulticoreBSP for Java
library specifically for shared-memory architectures. In the present article, we fur-
ther investigate this concept and introduce the new high-performance MulticoreBSP
for C library. Among other features, this library supports nested BSP runs. We show
that existing BSP software performs well regardless whether it runs on distributed-
memory or shared-memory architectures, and show that applications in MulticoreBSP
can attain high-performance results. The paper details implementing the Fast Fourier
Transform and the sparse matrix–vector multiplication in BSP, both of which outper-
form state-of-the-art implementations written in other shared-memory parallel pro-
gramming interfaces. We furthermore study the applicability of BSP when working
on highly non-uniform memory access architectures.
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1 Introduction

The bulk synchronous parallel (BSP) model [19], introduced by Valiant, describes a
powerful abstraction of parallel computers. It enables the design of theoretically opti-
mal parallel algorithms, and inspired many interfaces for parallel programming. The
BSP model consists of three parts: (1) an abstraction of a parallel computer, (2) an
abstraction of a parallel algorithm, and (3) a cost model. A BSP computer has p homo-
geneous processors, each one with access to local memory. They cannot access remote
memory, but may communicate through a black-box network interconnect. Preparing
the network for all-to-all communication while synchronising the p processors at the
start and end of communication costs l units; sending a data word during the all-to-all
communication costs g units. Measuring l and g in seconds does not directly relate to
any work done; instead, if the speed r of each processor is measured in floating-point
operations per second (flop/s), we express l and g in flops as well. The four parameters
(p, r, l, g) completely define a BSP computer.

A BSP algorithm runs on a BSP computer and adheres to the Single Program, Mul-
tiple Data (SPMD) paradigm. Each BSP process consists of alternating computation
and communication phases. During computation, each process executes sequential
code and cannot communicate with other BSP processes; during communication all
processes are involved in an all-to-all data interchange and cannot perform any compu-
tations. BSP synchronises all processors in-between phases. We define one superstep
as one computation phase combined with the communication phase that directly fol-
lows it.

This definition of a BSP computer and a BSP algorithm immediately leads to the
BSP cost model. If the algorithm consists of T supersteps, and if process s has w

(s)
i

work to perform in superstep i , then the total computation cost is
∑T −1

i=0 maxs w
(s)
i . We

assume that the network allows the simultaneous sending and receiving of messages,
and that the sending and the receiving of messages form the bottleneck of the commu-
nication. Writing r (s)

i for the number of words received by process s during superstep

i , t (s)i for the number of words transmitted (sent), and hi = max{maxs r (s)
i , maxs t (s)i }

for the h-relation of the i th superstep, the communication cost is g ·∑T −1
i=0 hi . Account-

ing for the latency costs of synchronisation and network initialisation incurred at each
superstep yields the full BSP cost:

C =
T −1∑

i=0

(
max

s
w

(s)
i + g · hi + l

)
. (1)

Here, we express C in flops; C/r yields the time taken in seconds.
The h-relation is a central concept of BSP. Just as it is natural to induce load balance

(minimise maxs w
(s)
i ), minimising the h-relation induces low communication require-

ments while also providing an incentive to balance the communication among the
processes; i.e., all processes should send and receive roughly the same amount of data.

To illustrate, consider a one-to-all broadcast involving all p processes. One process
transmits p − 1 words and receives none, while all other processes transmit none and
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receive one word. This is an unbalanced (p −1)-relation in the BSP model; the source
of the broadcast is the bottleneck. An all-to-all broadcast where each process sends
and receives (p − 1) words is a balanced (p − 1)-relation. A situation where each
process sends and receives exactly 1 word (e.g., a pairwise swap or a one-directional
ring exchange), corresponds to a perfectly balanced 1-relation independent of p.

We present a new shared-memory interface for BSP programming in C, called Mul-
ticoreBSP for C. Previous work on BSP programming interfaces include BSP++ [8],
a hybrid library targeting systems with both shared and distributed memory such as
clusters of symmetric multiprocessors. It is object-oriented and its performance on
inner product, FFT, and LU decomposition benchmarks is demonstrated to be similar
to that of BSPedupack [1], with a performance gain of 7 % on the LU decomposition of
a matrix of size 4,096. BSML [16] is a library that combines the BSP model with the
functional programming language Objective Caml. A combination of the high-level
Python language and BSP is provided by the Python BSP package [10], part of Scien-
tificPython, which can run on top of BSPlib [9] (an MPI version is also available); thus
the Python BSP package can also be run on top of our MulticoreBSP for C library.
The Orléans Skeleton Library [13] provides BSP algorithmic skeletons in C++, built
on top of MPI. Implementations of the 1D heat equation and the FFT test favourably
compared to other skeleton-based implementations.

The remainder of the paper will first briefly introduce all MulticoreBSP updates to
the standard BSPlib programming interface in Sect. 2 (the Appendix includes a more
detailed discussion of all available primitives). Section 3 describes the two applications
we use to attain high performance and demonstrate backward compatibility, as shown
by the experiments reported in Sect. 4. Conclusions and suggestions for future work
appear in Sect. 5.

2 The MulticoreBSP Programming Interface

The MulticoreBSP for C programming interface adheres to the ANSI C99 standard,
directly derives from the BSPlib [9] interface by Hill et al., and is inspired by the Java
MulticoreBSP library by Yzelman and Bisseling [24]. Compared to BSPlib, Multi-
coreBSP for C adds two new high-performance primitives and updates the interface
of existing primitives. A compatibility mode ensures full support for existing BSPlib
programs. For maximum portability, the library depends on only two established stan-
dards: POSIX threads (PThreads) and the POSIX realtime extension [11]. The new
library is freely available via http://www.multicorebsp.com.

While MulticoreBSP targets shared-memory computing specifically and thus
employs thread-based parallelisation, BSPlib and its implementations aim at distribut-
ed-memory supercomputing and thus explicitly start separate processes on supercom-
puter nodes. We keep the process terminology for the remainder of the paper, but the
use of threading does have implications on the user level; Sect. 2.3 discusses these.

The updated interface consists of 22 primitive function calls. For each primitive,
we now state the interface declarations.1 To help users better understand what to

1 For brevity, we omit the const and restrict keywords.

123

http://www.multicorebsp.com


622 Int J Parallel Prog (2014) 42:619–642

expect from calling a BSP primitive, the declarations include the asymptotic run-
time complexity of each primitive. The MulticoreBSP for C library indeed attains
these asymptotic time complexities. Those in big-Theta notation indicate that a lower
bound is not possible, while those in big-Oh notation leave room for improvement.
Readers unfamiliar with the original BSPlib interface may find brief descriptions of
each primitive in the Appendix. Section 2.3 highlights the differences with respect to
the original BSPlib interface. For brevity, we still refer to the updated interface as the
BSPlib interface.

First, we list primitives that control the flow of the SPMD sections of BSP programs.
MulticoreBSP does not add new primitives in this category.

– void bsp_init( void (*spmd)(void), int argc, char **argv );
Θ(1).

– void bsp_begin( unsigned int P ); O(P).
– void bsp_end(); O(l).
– unsigned int bsp_nprocs(); Θ(1).
– unsigned int bsp_pid(); Θ(1).
– void bsp_sync(); Θ(l + g · hi ), see Eq. 1.
– void bsp_abort( char *error, … ); Θ(1).
– double bsp_time(); Θ(1).

The MulticoreBSP ‘hello-world’ program in Algorithm 1 illustrates the use of the
first five primitives. Note that it consists of a single computation phase; in BSPlib all
SPMD code is part of a computation phase. Communications, either in the form of
direct remote memory access (DRMA) or bulk synchronous message passing (BSMP),
are initiated through calls during a computation phase. Thus BSPlib communication
primitives do not immediately execute communication, but instead queue the commu-
nication requests. These are processed at the end of the current superstep, as indicated
by bsp_sync.

Algorithm 1 A ‘hello world’ example program in MulticoreBSP
#include <mcbsp.h> //the MulticoreBSP for C header file

#include <stdio.h>

void spmd() {

        bsp_begin( bsp_nprocs() );

        printf( "Hello world from process %d!\n", bsp_pid() );

        bsp_end();

}

int main( int argc, char **argv ) {

        bsp_init( &spmd, argc, argv );

        spmd();

        return 0;

}

BSPlib provides DRMA communication via ‘put’ and ‘get’ primitives. When a
process issues a put, it copies data from a local memory area into remote memory. The
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‘get’ does the reverse; it retrieves data from a remote memory area and copies it to local
memory. If an SPMD program defines a local variable, each of the p processes has its
own memory area associated with that variable. To make DRMA work, processes must
become aware of which memory address relates to which variable. BSPlib defines two
primitives to facilitate this registration process:

– void bsp_push_reg( void *address, size_t size ); Θ(1).
– void bsp_pop_reg( void *address ); Θ(1).

Registration and deregistration necessitate one all-to-all broadcast during synchro-
nisation per call, in the worst case. These should be taken into account when calculating
the BSP h-relations for estimating the execution time of the bsp_sync. Registration
enables using the following communication primitives:

– void bsp_put( unsigned int pid, void *source,
void *destination, size_t offset, size_t size ); Θ(size).

– void bsp_get( unsigned int pid, void *source,
size_t offset, void *destination, size_t size ); Θ(1).

Algorithm 2 illustrates the use of DRMA primitives in the computation of an inner
product of two vectors. Each process has local vectors x, y of size np (which equals
the global problem size n divided by p). It calculates the local contribution α = 〈x, y〉,
and then uses bsp_put to broadcast α to all other processes. Note the use of offsets
to write to unique positions in the p local ip_buffer arrays (of length p each). The
second computation phase redundantly computes the global inner product and returns
the final result. To initialise and register the buffer used in broadcasting α, one call to
ip_init must precede one or more calls to ip; a single initialisation superstep of a
BSPlib program typically contains several such initialisation calls.

BSMP enables the sending of messages to remote processes. Messages have two
parts: (1) a fixed-size tag that may describe the purpose of the message, and (2) a
payload of arbitrary size. Calling the BSP ‘send’ primitive constructs and queues a
BSMP message, which is sent during the next bsp_sync. Received messages end up
in a local BSMP queue. BSPlib allows querying the number of in-queue messages,
allows reading the tag of the first in-queue message, and allows moving the payload
of that message into user-managed memory. Moving a message removes it from the
queue. No registration process is required for BSMP communication, and the full
interface is as follows:

– void bsp_set_tagsize( size_t *size ); Θ(1).
– void bsp_send( unsigned int pid, void *tag,

void *payload, size_t size ); Θ(size).
– void bsp_qsize( unsigned int *packets,

size_t *accumulated_size ); O(packets).
– void bsp_get_tag( size_t *status, void *tag ); Θ(1).
– void bsp_move( void *payload,

size_t max_copy_size ); Θ(size).
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Algorithm 2 A BSP inner-product algorithm using DRMA
#include <mcbsp.h>

#include <iostream>

//initialisation function for ip

void ip_init( double **ip_buffer ) {

        const size_t size = bsp_nprocs() * sizeof(double);

        *ip_buffer = malloc( size );

        bsp_push_reg( *ip_buffer, size );

}

//calculates the inner-product from the local vectors

double ip( double *x, double *y, double *ip_buffer, size_t np ) {

        double alpha = 0.0;

        for( size_t i = 0; i < np; ++i )

                alpha += x[ i ] * y[ i ];

        for( unsigned int k = 0; k < bsp_nprocs(); ++k ) {

                bsp_put( k, &alpha, ip_buffer,

                         bsp_pid() * sizeof(double), sizeof(double) );

        }

        bsp_sync();

        for( unsigned int k = 1; k < bsp_nprocs(); ++k )

                ip_buffer[ 0 ] += ip_buffer[ k ];

        return ip_buffer[ 0 ];

}

//example usage

void spmd() {

        bsp_begin( bsp_nprocs() );

        double *ip_buffer, *x, *y;

        size_t np;

        ip_init( &ip_buffer );

        ... //more initialisation calls to set x, y, np, and others

        bsp_sync();

        ... //calculations, until we need alpha=<x,y>:

        double alpha = ip( x, y, ip_buffer, np );

        ... //calculations using alpha

        bsp_end();

}

2.1 High-Performance Variants

BSPlib defines high-performance (hp) variants of DRMA and BSMP primitives. These
are bsp_hpput,bsp_hpget, and the newbsp_hpsend. They allow communication
to occur immediately after calling the hp-primitive, but still ensure communication to
have occurred after the next bsp_sync. The gains over non-hp primitives are two-
fold: hp-primitives allow for overlap of computation and communication whenever
possible, and they avoid the inefficiency in time and memory of buffering commu-
nication. Users must guarantee that the source and destination memory areas remain
unchanged until the end of the current computation phase. Errors in the use of hp-
variants may cause non-deterministic behaviour that cannot be caught by the BSP
run-time system; users should consider the added costs of ensuring correctness of
their applications when considering hp-primitives.

123



Int J Parallel Prog (2014) 42:619–642 625

Although the bsp_hpsend avoids buffering-on-send, messages still enter a buffer
upon receipt: the BSMP queue. Instead of copying messages from this buffer, the
following hp-primitive avoids copying by directly returning pointers to the tag and
payload in the receive buffers:

– size_t bsp_hpmove(void **p_tag, void **p_payload); Θ(1).

The primitive also returns the payload size in bytes, or the largest possible value
(SIZE_MAX) if the queue is empty.2 This is the only hp-primitive for which the inter-
face differs from its non-hp version.

To exploit the shared-memory architecture and avoid synchronisations where pos-
sible, Yzelman and Bisseling introduced the bsp_direct_get primitive [24, Sec-
tion 2]. Its semantics is exactly that of the bsp_hpget, but the primitive immediately
starts communication and waits for completion thereof. Like with the bsp_hpget, the
user must ensure that the remote data remains unchanged during the current computa-
tion phase. Using the direct-get allows this superstep to be merged with the next one
if no other communication primitives were called, thus saving a BSP synchronisation.
The bsp_direct_get is the only hp-primitive that runs in Θ(size) time instead
of Θ(1) time.

2.2 Hierarchical Execution

MulticoreBSP for C supports hierarchical execution of BSP programs. This means
that BSP processes may call bsp_init and bsp_begin within SPMD sections. A
BSP process doing this is considered the initialising process for the upcoming nested
BSP run, and must adhere to the same rules as a regular initial process that starts
a BSP run. After a bsp_begin, the initialising process will spawn the processes
required for the nested BSP run, and will itself continue as (nested) process 0. Nested
processes have no knowledge of the BSP processes that spawned them; previous
variable registrations are no longer valid, and all BSP primitives only relate to the
sibling processes corresponding to the nested BSP run.

It is thus possible to create c groups of p/c BSP processes by first starting a BSP
run with c processes, after which each process starts its own BSP run using p/c
processes. An example use-case is avoiding global synchronisations: a bsp_sync in
the nested run will involve only p/c processes, while one on the top level involves
only c processes; nowhere will BSP synchronise over all p processes. When process
0 in a nested run exits by a bsp_end, its ID will reset to its original ID and the
parent SPMD program continues as normal. All BSP primitives called now again
correspond to the original run over c processes. All previous data is retained, and
earlier variable registrations are again valid. This concept is not new for BSP: Valiant
allows for nested BSP computers with Multi-BSP [20], as earlier also investigated by
de la Torre and Kruskal [5]. The PUB library [2] and NestStep [14] implement similar
functionality.

2 Note that the original BSPlib used an int as return type and returned -1 if the queue was empty.
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2.3 Changes with Respect to BSPlib

BSP primitives that existed in the original BSPlib take the same arguments, but their
data types have been updated. Values that reflect byte-sizes now have type size_t,
while values that reflect process IDs and that count incoming BSMP messages now are
of typeunsigned int. These choices can be adapted at compile-time, and compiling
in compatibility mode resets all types to those defined in the original BSPlib.

One of the new primitives that MulticoreBSP for C defines, the bsp_hpsend, is
expected to be of use in a distributed-memory setting as well. The bsp_direct_get
specifically targets shared-memory architectures, however. Both additions are in the
spirit of the hp-variants already available in BSPlib; they allow overlap of communi-
cation with computation to gain in practical performance. The BSP cost model then
remains an upper bound on performance of the algorithm. Just as with the BSPlib
bsp_hpput and bsp_hpget, both new primitives should be used with care.

MulticoreBSP for C employs POSIX threads within its run-time system. The thread-
ing model implies that all globally declared variables are visible from all threads; all
BSP processes thus share global variables in MulticoreBSP for C. Variables used
locally by functions in an SPMD area thus must be declared within functions in the
SPMD area. Programs usually already follow this principle: e.g., all applications in
BSPedupack [1] run without modification under MulticoreBSP for C (with compati-
bility mode enabled).

The C language was chosen for this high-performance implementation of Mul-
ticoreBSP as it enables BSP programming in both C and C++. We do provide a
C++-specific header that includes all BSP primitives described above, and addition-
ally defines a BSP_program class that wraps the C interface. The full object-oriented
approach of the Java MulticoreBSP library [24] has not been ported. Communicating
arbitrary C++ objects often requires explicit marshalling, thus incurring a performance
penalty.

A class of type BSP_program is an SPMD program, and each class instance
corresponds to a single BSP process. It defines three functions:

– virtual void BSP_program::spmd()
– virtual BSP_program *BSP_program::newInstance()
– void BSP_program::begin( unsigned int P = bsp_nprocs() )

The latter function starts a BSP run corresponding to its class, and replaces calls to
bsp_init, bsp_begin, and bsp_end. It spawns P −1 sibling processes and creates
a new class instance for each process. The first function is the entry-point of the SPMD
section, while the second enables MulticoreBSP to create a new class instance. Both
functions are purely virtual and must be implemented by the user. Algorithm 3 contains
a brief example that is functionally equivalent to the C code in Algorithm 1. Using
this wrapper has the advantage that all class-local variables remain local to the BSP
processes.3

3 Global variables defined outside of classes remain visible by all BSP processes, however.
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Algorithm 3 A BSP ‘hello world’ in the MulticoreBSP C++ wrapper
#include "mcbsp.hpp" //The C++ wrapper for MulticoreBSP

#include <iostream>

class Hello_World: public mcbsp::BSP_program {

      //The SPMD section each BSP process executes from its own class instance

      virtual void spmd() {

            std::cout << "Hello world from process " << bsp_pid() << "!\n";

      }

      //Used by MulticoreBSP to spawn P-1 other Hello_World instances

      virtual BSP_program *newInstance() { return new Hello_World(); }

      Hello_World() {} //A simple constructor

};

int main() {

      Hello_World p; //Construct the Hello_World instance for BSP process 0

      p.begin();     //Spawn bsp_nprocs()-1 sibling processes, execute spmd()

      return 0;      //All sibling processes have exited; process 0 terminates

}

3 Two Applications Implemented in BSP

To demonstrate that MulticoreBSP for C performs well on existing BSP software writ-
ten according to the BSPlib standard, we consider the BSP Fast Fourier Transform
(FFT) program described by Bisseling [1, Chapter 3]. To attain performance com-
parable to that of state-of-the-art parallel implementations, we modify the algorithm
to use optimised sequential FFT kernels. The resulting BSP FFT is run on a modern
distributed-memory cluster using BSPonMPI [18], and on a shared-memory machine
using MulticoreBSP for C.

To show that the library enables writing high-performance parallel codes, we create
two BSP versions of the 2D sparse matrix–vector (SpMV) multiplication described in
Yzelman and Roose [22]. Their performance is compared against the best-performing
state-of-the-art methods considered in the same paper. The following two sections
briefly discuss the implementation of both BSP algorithms.

3.1 Fast Fourier Transformation

Given a complex vector x of length n = 2m (for integer m), the matrix–vector formu-
lation of the discrete Fourier transform reads as Fn x . A radix-2 decimation-in-time
FFT splits this computation in two:

Fn = Bn(I2 ⊗ Fn/2)Sn, (2)

with Bn the butterfly matrix

Bn =
(

In/2 �n/2
In/2 −�n/2

)

,
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In the n × n identity matrix, and ‘⊗’ the Kronecker matrix product commonly used
for expressing FFT computations. The even-odd sorting matrix Sn , when applied
to a vector x , permutes all the even-indexed elements of the vector to the top and
all odd-indexed elements to the bottom. The diagonal weights-matrix �n/2 contains
n/2 Fourier weights {e−2π ık/n}, 0 ≤ k < n/2. The FFT exploits the symmetry in
the Fourier weights by recognising e−2π ı(n/2+k)/n = −e−2π ık/n , thus saving half of
the multiplications needed for the computation: the first n/2 weights need only be
multiplied by a constant −1 (a sign change). Further exploitation of symmetry yields
higher-radix formulations of the FFT, but the effectiveness deteriorates exponentially
fast while the involved constants become increasingly costly to use.

Repeated application of the decomposition in Eq. 2 leads to the full matrix–vector
FFT formulation:

Fn =
m−1∏

i=0

(I2i ⊗ Bn/2i )

m∏

i=1

(In/2i ⊗ S2i ) = Un Rn,

with Un = ∏m−1
i=0 (I2i ⊗ Bn/2i ) the unordered FFT (UFFT) of size n and Rn the bit-

reversal permutation. The order of the product notation
∏

is left-to-right for increasing
index i .

Applying Rn/p to the local elements of a cyclically distributed input vector of size
n (over p = 2q processes, q integer), results in a globally bit-reversed vector that is
block-distributed over the same p processes, but with the process IDs themselves in
bit-reverse. If p ≤ √

n, we have that q ≤ m −q, and a block distribution for x suffices
to calculate

Hn x =
m−1∏

i=m−q

(I2i ⊗ Bn/2i )x

without communicating with other processes. For i < q, the butterfly matrix Bn/2i

requires multiplication of Fourier weights with input vector elements that are not
all process-local in the block distribution. If the vector were distributed cyclically,
however, computing

Gn x =
m−q−1∏

i=0

(I2i ⊗ Bn/2i )x

would become an entirely process-local operation.
A scheme where the input vector x initially is distributed cyclically, then locally

bit-reversed, then multiplied with Hn , then re-distributed again to a cyclic distribution
(while repairing the bit-reversed process IDs), and finally multiplied with the remainder
computation Gn , is the base idea of this BSP FFT algorithm. Note that the vector
distribution is cyclic at input and cyclic at output.

The matrix Hn corresponds to n/p UFFTs of length p; these are all processor-local
UFFTs if x is block distributed. The global operation Gn x with x distributed cyclically,
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translates to p process-local computations G(s)
n x (s), 0 ≤ s < p. The (n/p) × (n/p)

matrix G(s)
n has its elements g(s)

jk equal to gs+ j p,s+kp from Gn , and can be succinctly
written as

G(s)
n =

m−q−1∏

i=0

I2i ⊗
⎛

⎝
I2m−i−q−1 �

s/p
2m−i−q−1

I2m−i−q−1 −�
s/p
2m−i−q−1

⎞

⎠ .

The matrix �α
r/2 is a diagonal matrix of size r/2 with entries {e−2π ı(k+α)/r }, 0 ≤

k < r/2. In our case, α = s/p and r = 2m−i−q = n/(2i p), so that (k + α)/r =
(s + kp)2i/n. The �α

r/2 matrix corresponds to the regular matrix-formulation of an
α-shifted generalised FFT (GFFT) of length r , defined as

yk =
r−1∑

j=0

x j e
−2π ı j (k+α)/r .

This may be implemented as a regular FFT with modified Fourier weights. Alterna-
tively, a regular FFT preceded by an extra ‘twiddling’ step, i.e., y = FFT(T α

n x), can
emulate a GFFT:

yk =
r−1∑

j=0

(
x j e

−2π ıα j/r
)

e−2π ı jk/r , (3)

with T α
r a diagonal matrix with entries {e−2π ıα j/r }, 0 ≤ j < r . Hence Gn x can be

calculated in parallel using unordered GFFTs (UGFFTs) with shifts dependent on the
unique process IDs:

G(s)
n x (s) = Un/p Rn/pT s/p

n/p Rn/px (s).

The BSP FFT algorithm can handle p >
√

n as well, by decomposing G(s)
n into

multiple UGFFTs and introducing extra communication phases that redistribute x to
group-cyclic distributions with increasing cycles. We refer to Inda and Bisseling [1,12]
for details.

The above factorisation of G(s)
n adds n/p complex multiplications, but enables

the use of highly optimised sequential UFFT codes. However, state-of-the-art FFT
libraries such as FFTW [7] or Spiral [17] do not provide such kernels by default,
instead exposing only kernels that compute the regular FFT Fn x . Since Rn = R−1

n ,
computing Un x may then be replaced by computing Fn Rn x ; this enables the use of
FFTW at the cost of additional bit-reversals. Algorithm 4 sketches the resulting BSP
FFT implementation for p ≤ √

n; the code we used in experiments handles p >
√

n
as well. This approach always outperforms using the straightforward sequential UFFT
kernel from the original BSPedupack implementation.4

4 See http://www.math.uu.nl/people/bisseling/Software/software.
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Algorithm 4 A BSP FFT algorithm using FFTW
void bspfft( double *x, unsigned long int n, signed char sign, double *tw,

             size_t *rho_k1, size_t *rho_p, fftw_plan consec, fftw_plan one ) {

//x is a complex vector of length n; this is both the input and output vector,

//sign           (1 or -1) indicates a forward or backward (inverse) FFT,

//tw             are the pre-computed weights for the twiddling (Eq. 3),

//rho_p, rho_np  the bit-reversal permutation of length p and n/p, respectively.

//consec, one    the FFTW plans for computing n/(p*p) consecutive FFTs of

//               length p on x and for computing one FFT of length n/p on x,

//               respectively. Both plans depend on the given sign.

        const unsigned int p  = bsp_nprocs();

        const unsigned int s  = bsp_pid();

        const size_t np = n / p; //local vector size

        permute( x, np, rho_np ); //perform local bit-reversal

        for( size_t r = 0; r < np/p; ++r )  //partial undo of bit-reversal,

                permute( x + r, p, rho_p ); //to enable the use of regular

        fftw_execute( consec );             //FFTs instead of UFFTs

        //Go from block to cyclic distribution

        const size_t size  = np / p;             //send a complex vector of

        const size_t SZCPL = 2 * sizeof(double); //length np/p to all other

        double *tmp = malloc( size * SZCPL );    //processes

        for( unsigned int j = 0; j < p; j++ ) {

                //get index of the j-th local element in a block distribution

                const size_t jglob = rho_p[ s ] * np + j;

                //get location in cyclic distribution

                const unsigned int destproc = jglob % p;

                const size_t destindex = jglob / p;

                //buffer all local complex elements at distance p

                for( size_t r = 0; r < size; r++ ) {

                        tmp[ 2*r ] = x[ 2*(j+r*p) ];

                        tmp[2*r+1] = x[2*(j+r*p)+1];

                }

                //put at destination vector

                bsp_put( destproc, tmp, x, destindex*SZCPL, size*SZCPL );

        }

        bsp_sync();  //perform the redistribution,

        free( tmp ); //and free the buffer

        //Perform remaining UGFFT (Eq. 3)

        twiddle( x, np, sign, tw ); //twiddle reduces the UGFFT to an UFFT

        permute( x, np, rho_np );   //undo of bit-reversal reduces the

        fftw_execute( one );        //UFFT to an optimised regular FFT

        //Apply scaling in case of backward transform

        if( sign == -1 )

                for( size_t r = 0; r < 2 * np; ++r )

                        x[ r ] /= (double)n;

}
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3.2 Sparse Matrix–Vector Multiplication

Yzelman and Roose [22] show the benefit of explicitly distributing an m × n sparse
matrix A when parallelising the SpMV product y = Ax for shared-memory archi-
tectures. They consider various one-dimensional methods that distribute A row-wise.
One of these is a fine-grained parallelisation scheme implemented in Cilk, the Com-
pressed Sparse Blocks (CSB) [3] scheme. They also introduce a new 1D method
which distributes rows of A in exactly p contiguous parts. Greedily balancing the
number of nonzeroes in each part induces load-balance during parallel computation,
assuming p equals the number of cores of the target machine. Since each proces-
sor core handles exactly one part, that part of A with the corresponding part of the
output vector y can be allocated within the fast processor-local memory. This is rele-
vant to multi-socket non-uniform memory access (NUMA) architectures, where on-
socket data movement (using local memory banks) is faster than inter-socket data
movement. The resulting method furthermore applies cache-oblivious optimisation
strategies, and is implemented in PThreads. Both 1D methods do not require inter-
process communication, nor do they require barrier synchronisations to complete a
multiplication. These methods were tested as the two best performing state-of-the-art
algorithms [22].

The same paper considers two-dimensional methods, in which individual nonze-
roes of A and elements of the vectors x and y are distributed amongst the available
processes. As a result, rows and columns of A may become shared amongst these
processes, causing explicit communication. Sparse matrix partitioning software such
as Mondriaan [21] partitions A into p disjoint parts, while minimising the cost μ

of inter-process communication. The partitioner allows a maximum load imbalance
ε · nz/p, with ε > 0 a user-defined parameter and nz the number of nonzeroes in A.
The benefit of applying this distributed-memory approach on shared-memory architec-
tures, is that local parts of A can be allocated within processor-local memory, together
with their corresponding parts of x and y; no data elements need to be accessible
from all processes, and slow inter-socket data movement only occurs on inter-process
communication, which is explicitly minimised during partitioning.

The 2D parallel multiplication itself proceeds in three supersteps [1, Chapter 4].
First, input elements required but not locally available are requested from remote
processes (fan-in). The second superstep consists of a local SpMV multiplication, after
which locally computed output elements that should be stored at remote processes are
sent out (fan-out). The final step adds all incoming remote contributions to the local
output vector. By using the MulticoreBSP bsp_direct_get, only two supersteps
are required [24]. Both versions incur Θ(m+n) additional data movement to cope with
the fan-in and fan-out steps. Yzelman and Roose reduce this overhead to Θ(μ) [22]
by exploiting the doubly Separated Block Diagonal (SBD) form of sparse matri-
ces [23]. Reordering of A to obtain a doubly SBD form can be done simultaneously
with partitioning. We obtain the MulticoreBSP for C implementation in Algorithm 5
by performing the local SpMV multiplication using the Compressed BICRS data
structure [22] with nonzeroes in row-major order. We further reduce data movement
during the fan-in and fan-out steps by transferring ranges of input and output vector
elements (instead of communicating element-by-element). Note the use of the new
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bsp_hpsend function as an additional improvement, and that this example is written
in pure C++.

Algorithm 5 The BSP 2D cache-oblivious z = Ax SpMV multiplication
#include <mcbsp.hpp> //The header file for the C++ wrapper (Sect. 2.3)

struct fanQuadlet {

        //Encodes a single fan-in or fan-out message: remote process ID,

        //local start index, remote start index, and the message length

        unsigned long int remoteP, localI, remoteI, length;

};

void BSP_SpMV_2D::mv() {

        //fan-in step; fanIn is a vector containing fanQuadlet structs

        for( size_t i = 0; i < fanIn.size(); ++i ) {

                bsp_direct_get( fanIn[i].remoteP, x,

                    fanIn[i].remoteI * sizeof(double), x + fanIn[i].localI,

                    fanIn[i].length  * sizeof(double) );

        }

        //local optimised SpMV; A is stored in Compressed BICRS form

        if( A != NULL ) A->zax( x, z ); //‘zax’ stands for z=Ax

        //fan-out step; the tag contains two unsigned long ints: the remote

        //              start index (remoteI), and the message length.

        //              fanOut is a vector containing fanQuadlet structs

        for( unsigned long int i = 0; i < fanOut.size(); ++i ) {

                bsp_hpsend( fanOut[i].remoteP, &( fanOut[i].remoteI ),

                    z + fanOut[i].localI, fanOut[i].length * sizeof(double) );

        }

        //sync to ensure fan-out is done

        bsp_sync();

        //collect remote contributions

        double *msg_payload;

        unsigned long int *msg_tag;

        while( bsp_hpmove((void**)&msg_tag, (void**)&msg_payload) != SIZE_MAX )

                for( unsigned long int i = 0; i < msg_tag[ 1 ]; ++i )

                        z[ msg_tag[ 0 ] + i ] += msg_payload[ i ];

}

4 Experiments

For experiments on distributed-memory architectures, we use a cluster named Lynx,
located at the ExaScience Lab in Leuven, Belgium. Lynx has 32 nodes, connected
by a two-switch Infiniband network, with each node containing two 6-core Intel
Xeon X5660 processors. For experiments on shared-memory architectures, we use
two machines: (1) a 64-core, 8-socket HP DL980 with eight 8-core Intel Xeon E7-
2830 processors, and (2) a 40-core, 4-socket HP DL580 with four 10-core Intel Xeon
E7-4870 processors. When the number of BSP processes requested is lower than the
actual number of cores, processes may be allocated on as few sockets as possible
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(compact affinity), or evenly spread over all sockets instead (scattered affinity). Com-
pact affinity minimises inter-socket data movement, while scattered affinity maximises
the total available bandwidth. MulticoreBSP for C also supports manual affinity strate-
gies.

The FFT experiments in Sect. 4.1 are set up to run with both the MulticoreBSP for
C and the BSPonMPI communication libraries; the computational kernels used do not
change. This enables comparison between shared-memory and distributed-memory
systems (the DL980 and Lynx, respectively). By running both variants on the DL980,
the communication libraries themselves may be compared as well. Experiments for
the SpMV multiplication in Sect. 4.2 compare different algorithms on various paral-
lelisation frameworks. This checks whether the BSP 2D SpMV indeed attains state-
of-the-art performance. We also provide a PThreads implementation of the same 2D
SpMV algorithm, derived from the original code from Yzelman and Roose [22]. The
1D PThreads and all 2D methods employ the same sequential kernel for local SpMV
multiplication.

All software used in the experiments is freely available. The PThreads 1D and 2D
SpMV multiplication codes are included with the Sparse Library,5 and the updated
BSP FFT and the BSP 2D SpMV multiplication codes are available stand-alone.6 The
BSP FFT code can be compiled with support for FFTW3 [7] and Spiral [17]. The
MulticoreBSP for C library and BSPonMPI library are freely available as well.7 All
preceding software was compiled using GCC 4.4.3. We used the 2011 Cilk CSB code8

and compiled it with ICC 13.0.1.

4.1 Fast Fourier Transformation

We perform 300 forward and backward FFTs and average the execution time. We
compare this result against a sequential FFT using FFTW 3.3.3.9 All backward FFTs
are performed without scaling, since this is not done automatically within FFTW.
Table 1 shows the speedups for n = 226 on both Lynx and the DL980. We use
BSPonMPI 0.3 with MVAPICH 1.8.1 [15] on both architectures. MulticoreBSP for C
is used on the shared-memory DL980 only. We also compare the effect of compact and
scattered affinity strategies. Figure 1 shows results for 29 ≤ n ≤ 226 with p = 64 on
the DL980. Note that there is no difference between a scattered or a compact affinity
in this case.

The case of p = 1 in Table 1 shows the factor-two overhead of the multiple bit-
reversals in our BSP FFT implementation; using a sequential UFFT kernel would
completely eliminate this initial slowdown. For p = 2, the overhead of synchronisa-
tion and data redistribution tempers the initial speedup. Higher values of p incur no
additional overheads and may scale up freely.

5 See http://albert-jan.yzelman.net/software/#SL.
6 See http://albert-jan.yzelman.net/software/#HPBSP.
7 Via http://www.multicorebsp.com and bsponmpi.sourceforge.net, respectively.
8 See http://gauss.cs.ucsb.edu/~aydin/software.html.
9 Auto-tuning proceeds in the FFTW_PATIENT mode.
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Table 1 Speedups of the BSP FFT on a vector of length n = 226 relative to a sequential FFTW time of
3.4 (Lynx) or 3.9 (DL980) seconds

Machine p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64

Lynx (BSPonMPI) 0.6 0.8 1.7 3.4 7.2 15.2 24.4

DL980 (BSPonMPI) 0.5 0.7 1.1 1.7 3.3 6.2 10.5

DL980 (McBSP compact) 0.5 0.7 1.0 1.2 2.6 6.3 13.1

DL980 (McBSP scattered) 0.5 0.7 1.3 2.6 5.1 10.8 13.7

For the DL980, the table also compares BSPonMPI versus MulticoreBSP for C (McBSP), as well as the
two affinity strategies
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Fig. 1 Speed of the BSP FFT for p = 64 and varying n. Note that both axes are in logarithmic scale; the
highest measured speed is 112 Gflop/s on Lynx for n = 222

Lynx demonstrates a superlinear relative speedup for 4 ≤ p ≤ 32 every time
the number of processes doubles. For p = 64 this reduces because a single node then
contains two BSP processes. The relative speedups of the DL980 with compact affinity
are superlinear for 16 ≤ p ≤ 64. With p = 4 and 8, the shared memory hierarchy
slows down execution; threads contend with each other for caches and for the available
bandwidth. After p = 8, processes start to use other sockets. They communicate
through the slower inter-socket interconnect, retain the relative local efficiency of
the computation phases, and make use of the additionally available caches. Scattered
affinity behaves similarly with a sublinear relative speedup when doubling p from 32
to 64; this coincides with doubling the number of processes per socket from 4 to 8 in
the compact affinity. For 4 ≤ p ≤ 32 good relative speedups are attained, which are
but a constant factor apart from those attained on Lynx.

Figure 1 indicates that this BSP algorithm requires large problem sizes before
parallelisation with p = 64 becomes efficient. For small n, BSPonMPI performs
better than MulticoreBSP for C, while for larger n MulticoreBSP performs better.
Small vectors fit into cache and benefit from the corresponding higher bandwidths,
resulting in high compute speeds. As the lower-bandwidth L3 cache is referenced more
often (i.e., as n increases), the calculation speed decreases until most of the vector is
streamed from main memory. Lynx has a combined L3 cache size of 64·12 = 768 MB,
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Table 2 Sparse matrices used in SpMV multiplication

Matrix Rows Columns Nonzeroes Origin

Freescale1 3,428,755 3,428,755 17,052,626 Semiconductor industry

ldoor 952,203 952,203 42,493,817 Structural engineering

cage15 5,154,859 5,154,859 99,199,551 DNA electrophoresis

adaptive 6,815,744 6,815,744 27,248,640 Numerical simulation

road_usa 23,947,347 23,947,347 57,708,624 Road network

wiki2007 3,566,907 3,566,907 45,030,389 Link matrix

while the DL980 has 8 · 24 = 192 MB. These caches can store vectors of length 225

and 223, respectively,10 but no larger powers of two. Figure 1 indeed shows that the
speed stabilises for Lynx and the DL980, as the values of n exceed their respective
L3 vector lengths. Although our current BSP FFT implementation performs more bit-
reversals than is theoretically optimal, it still outperforms the parallel shared-memory
FFT provided by FFTW11 for 32 ≤ p ≤ 64 and 215 ≤ n ≤ 226 on the DL980; e.g.,
for p = 64 and n = 226, the BSP FFT attains a speed of 31 Gflop/s while parallel
FFTW attains 22 Gflop/s.

4.2 Sparse Matrix–Vector Multiplication

We use a subset of large matrices from Yzelman and Roose [22] to test the performance
of two implementations of the BSP 2D SpMV multiplication. One implementation uses
the new bsp_hpsend and bsp_direct_get primitives, while the other uses the
regular BSPlib primitives. Both are tested with on the DL580 and DL980 machines.
Table 2 shows the sparse matrices we use, which are preprocessed using Mondri-
aan [21] version 3.11 with ε = 0.03 and SBD reordering enabled. We compare their
performance to that of the Cilk CSB and the PThreads 1D SpMV multiplication meth-
ods discussed in Sect. 3.2, and to that of a PThreads implementation of Algorithm 5.

We take the average execution time of 1,000 SpMV multiplications for each matrix
while varying the number of threads on the DL580 and DL980 machines. For each
matrix and machine, we compare timings with a sequential SpMV multiplication using
the standard Compressed Row Storage (CRS) scheme. To maximise bandwidth use, we
employ a scattered affinity in all experiments. The results in Table 3 show significantly
higher speedups for the 2D methods compared to the competing methods. The cage15
matrix is a notable exception, but this matrix is known to be hard to partition [22].

Note that the non-hp BSP 2D SpMV usually outperforms the PThreads 2D SpMV
implementation. While the fan-out step is similar and the local SpMV multiplication
step uses the same computational kernel, the fan-in step does contain a major imple-
mentation difference. In the BSP implementation, processes ‘put’ non-local contribu-

10 226 complex values take 16 bytes each, resulting in 230 bytes of storage. This equals 1 GB of data. A
224-length vector thus takes 256 MB.
11 FFTW 3.3.3 linked against fftw3_threads.
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Table 3 Maximum speedups for the SpMV multiplication on a 40-core HP DL580 and a 64-core HP DL980
using Cilk, PThreads, and BSP implementations

Seq. speed
(Mflop/s)

Cilk PThreads PThreads BSP BSP (hp)
CSB 1D 2D 2D 2D

DL580

Freescale1 396 12.2 (30) 16.7 (40) 16.3 (32) 17.3 (40) 18.3 (40)

ldoor 298 24.3 (40) 18.5 (40) 15.9 (40) 16.1 (40) 16.2 (40)

cage15 482 12.9 (40) 14.6 (40) 12.6 (40) 13.0 (40) 13.8 (40)

adaptive 124 28.7 (40) 13.8 (40) 19.5 (30) 22.3 (40) 23.3 (40)

road_usa 95 26.0 (40) 14.5 (40) 23.0 (32) 25.3 (40) 25.9 (40)

wiki2007 191 22.8 (40) 22.1 (40) 22.0 (40) 19.2 (40) 22.8 (40)

DL980

Freescale1 435 16.4 (64) 15.8 (64) 14.6 (56) 20.7 (64) 22.7 (64)

ldoor 341 20.2 (64) 15.3 (64) 15.2 (64) 17.6 (64) 18.8 (64)

cage15 540 17.7 (64) 16.1 (64) 9.3 (56) 13.8 (56) 13.5 (56)

adaptive 123 18.0 (64) 19.2 (64) 23.3 (40) 34.5 (64) 36.3 (64)

road_usa 93 15.1 (64) 19.2 (64) 31.2 (56) 43.4 (64) 46.6 (64)

wiki2007 178 21.6 (64) 27.7 (64) 25.1 (64) 23.5 (64) 29.7 (64)

The number of processes for which the reported maxima are attained appears in parentheses. The speed of
sequential SpMV multiplication in plain CRS is added for reference

tions into remote BSMP queues in one phase, and add remote contributions locally
in the following phase. In the PThreads implementation, processes synchronise once,
and then ‘get’ remote contributions from remote memory and immediately add the
value locally. The results indicate that BSP programming accelerates computation as
it induces greater data locality.

The 2D methods exhibit better scalability than the 1D methods. The parallel effi-
ciencies12 of the 1D methods are lower on the highly NUMA DL980 machine than
on the DL580, while the efficiencies for the 2D methods remain similar. Consider
for example the road_usa matrix. The parallel efficiency of the 1D PThreads method
decreases from 36 to 30 % as we move from the DL580 to the DL980. The 2D hp-BSP
version attains a higher efficiency of 64 % on the DL580, which furthermore increases
to 73 % on the DL980. Yzelman and Roose already noted that as the NUMA com-
plexity of architectures increases, 2D methods will outperform 1D methods [22]. We
now indeed achieve these predicted results, due to the improved scalability of barrier
synchronisation; MulticoreBSP for C uses spin-locks instead of mutex-based synchro-
nisation since version 1.1, as do the updated 1D and 2D PThreads implementations.

5 Conclusion

We propose an update to the BSPlib standard, which includes two new high-
performance primitives. The proposed interface has been implemented in Multi-

12 The parallel efficiency of an algorithm is defined as speedup
p .
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coreBSP for C, written specifically for shared-memory architectures. We ran an exist-
ing distributed-memory BSP algorithm for the Fast Fourier Transform on a shared-
memory machine, and showed that the algorithm behaves similarly as on a distributed-
memory cluster. Differences were explained by comparing the compact and scattered
affinities on a highly-NUMA architecture. The algorithm exceeded the performance of
shared-memory parallel FFTW code for large vectors and a large number of proces-
sors in a highly-NUMA configuration. We demonstrated the use of the new high-
performance primitives by extending a state-of-the-art 2D SpMV multiplication algo-
rithm. This extended algorithm tested faster than the non-hp version in all experiments
but one. The BSP 2D SpMV implementation exceeded the performance of a PThreads
implementation, and that of other state-of-the-art SpMV multiplication kernels as
well.

5.1 Future Work

While we only investigated two problems here, the ratio of flops per data element
for the FFT and the SpMV multiply is low; hence the communication library has a
great impact on algorithm performance. Nevertheless, future research should involve
a wider scope of applications. Further optimisation of the MulticoreBSP for C library
is warranted as well, as it was outperformed by BSPonMPI for the FFT on small input
vectors.

The FFT algorithm can be further improved by using an optimised sequential kernel
for the unordered FFT. A comparison with techniques for multi-threaded FFT [6] may
suggest further improvements, or indicate whether there are limits to the applicability
of BSP in high-performance shared-memory computing. The SpMV algorithms used
here are high-level and would benefit from known low-level optimisations for the
SpMV multiplication [4].

NUMA issues demand a good strategy for distributing BSP processes over the avail-
able hardware. This does not fit into the BSP model since the processor interconnect
is assumed uniform. Since MulticoreBSP for C supports nested BSP runs, the explo-
ration of algorithms designed in the Multi-BSP model [20] is a next logical step. The
FFT algorithm is an especially good candidate to re-implement using nested SPMD
sections; instead of calling sequential UFFT (or FFTW) kernels, we can recursively
call the same BSP FFT implementation. In this fashion, we may first distribute the
computation over the available sockets of a machine, upon which each top-level BSP
process delegates its local UFFTs to a parallel BSP FFT that runs within its assigned
socket.

Although this increases the number of synchronisations and data redistributions to at
least three, the top-level and bottom-level values for g and l are typically lower than the
(g, l) corresponding to the entire machine. Depending on these machine parameters,
and on the input vector length, the BSP cost model can furthermore decide when a
Multi-BSP FFT is preferred over a flat BSP version.

Acknowledgments Part of this work is funded by Intel and by the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT).
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Appendix: Semantics of BSP Primitives

This appendix briefly describes each BSP primitive listed in Sect. 2.

– void bsp_init( void(*spmd)(void),int argc,char **argv ).
Indicates which function is the entry-point of the parallel SPMD part of the pro-
gram; new processes spawned by bsp_begin will start at the function pointed
to by the spmd parameter. bsp_init must be called before bsp_begin, unless
the SPMD section is the C main-function itself. The spmd function should have
bsp_begin as its first executable statement, and bsp_end as its last. The parame-
ters argc and argv should correspond with those supplied to the C main function.
MulticoreBSP does not require them for successful initialisation, but other BSP
libraries might; the arguments are retained for portability.

– void bsp_begin( unsigned int P ). Indicates the start of an SPMD sec-
tion using P processes. This should be the first executable statement of the function
designated as the SPMD entry-point. The process that initially calls this function
spawns P−1 sibling processes each with a unique BSP ID from {1, 2, . . . ,P−1},
and then joins the same SPMD group with BSP ID 0; the calling process will thus
retain all its process-local data. Only code between bsp_begin and bsp_end
may call the DRMA or BSMP communication primitives listed in Sect. 2.

– void bsp_end(). The last statement of a parallel SPMD section, thus neces-
sarily following a bsp_begin. Threads with BSP ID larger than 0 will terminate
after calling this function. The process with ID 0 will continue sequentially with
any remaining statements. Subsequent calls to bsp_init and bsp_begin can
be used to start other parallel SPMD sections.

– unsigned int bsp_nprocs(). When called outside an SPMD environment,
bsp_nprocs() returns the number of hardware-supported processes. When
called within an SPMD environment, it returns the number of processes involved
with the current parallel SPMD run.

– unsigned int bsp_pid(). Returns the BSP ID of the current process. The
process-unique integer returned is between 0 (inclusive) and bsp_nprocs (exclu-
sive). Calling bsp_pid outside an SPMD section raises a run-time error.

– void bsp_sync(). Signals the end of the current computation phase and starts a
global synchronisation. It then starts a BSP communication phase which executes
all communication requests made prior to calling bsp_sync(). The communi-
cation phase is then followed by another global synchronisation. This guarantees
that all communication requested in the previous computation phase is executed
before starting the next computation phase, which starts with code following this
bsp_sync. All processes should issue an equal number of bsp_syncs; otherwise,
a mismatched bsp_end and bsp_sync will raise a run-time error.

– void bsp_abort( char *error, ... ). This will halt parallel execution
at the earliest opportunity, which may be earlier than the end of the current com-
putation phase. The format of the error message equals that of the standard C
printf function, and takes a variable number of parameters.

– double bsp_time(). Returns the elapsed time since the start of the current
process within the current SPMD section. The time returned is in seconds and
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is in high precision. Timers among the various SPMD processes need not be
synchronised. MulticoreBSP depends on the POSIX realtime extension to deliver
high-resolution timers.

– void bsp_push_reg( void *address, size_t size ). Registers the
memory area defined by its starting address and its size (in bytes) for DRMA
communications, after the next bsp_sync. The order of registration of variables
must be the same across all SPMD processes, but the size parameter may differ
across processes. Registering a NULL pointer indicates that the current process will
never communicate using the registered remote addresses. Multiple registrations
of the same addresses are allowed; newer ones will (temporarily) replace the older
registrations.

– void bsp_pop_reg( void *address ). Removes the registration of a vari-
able previously registered using bsp_push_reg. Like registration, this only takes
effect in the next superstep. The order of deregistration has to match across all
SPMD processes. If the same variable was registered several times (while, e.g.,
using different values for the size parameter), bsp_pop_reg removes the last
registration only.

– void bsp_put( unsigned int pid, void *source,
void *destination, size_t offset, size_t size ). Copies the
local data from address source up to and including source+size− 1 into the
memory of process pid. The destination address is determined by the previously
registered destination variable, at the given offset (with the size and off-
set in bytes). Changing the source memory area after a bsp_put will not affect
the communication request. Communication occurs during the next bsp_sync,
ensuring remote availability upon exiting the synchronisation.

– void bsp_get( unsigned int pid, void *source, size_t offset,
void *destination, size_t size ). Requests size bytes of data from
the previously registered source variable at process pid, at the given offset
(in bytes). The communication remains queued until the next bsp_sync, after
which the requested data is locally available at address destination. Unlike
bsp_put, the bsp_get does not (and cannot) buffer the requested data when
called; the communicated data corresponds to the source memory area at the time
the next bsp_sync was entered at process pid.

– void bsp_set_tagsize( size_t *size ). Each BSMP message has a tag
to help receiving processes discern the purpose of that message. The amount
of memory reserved for message tags is constant during supersteps, but can be
changed from one superstep to the next by using this primitive. The new size
of the BSMP tags is in bytes. All SPMD processes should request identical tag
sizes, or BSP will abort. On function exit, size will be set equal to the old tag
size.

– void bsp_send( unsigned int pid, void *tag, void *payload,
size_t size ). Combines size bytes of data starting at the local address
payloadwith the giventag, and sends this message to processpid. Absp_send
buffers the tag and payload; like bsp_put, the contents of the tag and payload may
change after issuing a bsp_sendwithout affecting the queued message. Processes
receive BSMP messages in an unspecified order.
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– void bsp_qsize( unsigned int *packets,
size_t *accumulated_size ). Queries the size of the local BSMP queue,
and sets packets to the number of messages received during the last communi-
cation phase. If accumulated_size is not NULL, it will be set to the combined
size of all message payloads (in bytes).

– void bsp_get_tag( size_t *status, void *tag ). Retrieves the tag
value from the first message in the BSMP queue and stores it in tag. Does not
modify the BSMP queue. The variable corresponding to status will be set to
the payload size of the first message. If there are no messages in the queue, it
will instead be set to the highest possible value size_t can take. (In the original
BSPlib interface, a signed integer -1 was returned instead.)

– void bsp_move( void *payload, size_t max_copy_size ).
Removes the first message from the local BSMP queue, while copying the data
into payload. At most max_copy_size bytes are copied.

– void bsp_hpput( unsigned int pid, void *source,
void *destination, size_t offset, size_t size ). Copies the
local data from address source up to and including source+size− 1 into the
memory of process pid. The destination address is determined by the previously
registered destination variable, at the given offset (with the size and offset
in bytes). Unlike bsp_put, transmitted data is not buffered, and the requested
communication may occur at any time between calling this primitive and the end
of the next bsp_sync; the source memory area must remain unchanged during
the current superstep, while the destination memory area may only be changed by
this communication request.

– void bsp_hpget( unsigned int pid, void *source,
size_t offset, void *destination, size_t size ). Requests
size bytes of data from the previously registered source variable at process
pid, at the given offset (in bytes). Unlike bsp_get, the requested communi-
cation may occur at any time between calling this primitive and the end of the
next bsp_sync; the source memory area must remain unchanged during the cur-
rent superstep, while the destination memory area may only be changed by this
communication request.

– void bsp_hpsend( unsigned int pid, void *tag, void *payload,
size_t size ). Combines size bytes of data starting at the local address
payload with the given tag, and sends this message to process pid. Unlike
bsp_send, transmitted data is not buffered, and the requested communication
may occur at any time between calling this primitive and the end of the next
bsp_sync. The message is available for inspection at the destination process
after the next bsp_sync. The source memory area must remain unchanged dur-
ing the current superstep. Processes receive BSMP messages in an unspecified
order.

– size_t bsp_hpmove( void **p_tag, void **p_payload ).
Removes the first message from the local BSMP queue, sets the provided pointers
to the tag and payload memory addresses inside the incoming BSMP buffer, and
returns the payload size (in bytes). Pointers will remain valid until the end of this
computation phase. Only messages sent in the previous superstep are available for
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inspection. If the local queue is empty, the primitive returns the maximum size_t
value (SIZE_MAX). Note that this differs from the original BSPlib where a signed
integer with value -1 was returned instead. The message resides in memory man-
aged by the BSP run-time system: message data must not be freed manually, and
erroneously touching data outside of the message bounds may result in undefined
behaviour of the run-time system.

– void bsp_direct_get( unsigned int pid, void *source, size_t
offset, void *destination, size_t size ). Copies size bytes of
data from the previously registered source variable at process pid at the given
offset (in bytes), into local memory starting at address destination. Com-
munication is executed immediately; this is a blocking one-sided communication
which does not require a subsequent bsp_sync to ensure communication has
completed. The source memory area must remain unchanged during the current
computation phase.
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