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� Semidefinite positiveness of operators on Euclidean spaces is characterized. Using this
characterization, we compute in a direct way the first-order and second-order tangent sets to the
cone of semidefinite positive operators on such a space. These characterizations are useful for
optimality conditions in semidefinite programming.
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1. INTRODUCTION

The knowledge of the expression of the tangent cone and of the
normal cone to the set defining the constraints of a mathematical
programming problem enables to formulate first-order optimality
conditions in primal or dual form. For second-order optimality conditions,
the knowledge of the second-order tangent sets is usually not enough
[5, 20, 24, 32] and additional “curvature” terms must be introduced in
second-order optimality conditions. However, such a knowledge cannot be
neglected. In [3] and [10], the second-order tangent sets of the positive
cones of some classical function spaces are identified. It is the purpose of
this article to do the same for the cone of positive semidefinite operators
on a Hilbert space or a finite dimensional Euclidean space. In exploring
this question, we detect the difficulties linked to the fact that not all
symmetric operators have a closed range. However, the method we use
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seems to be the only one that is available in the infinite dimensional case.
A second objective of our article is to offer a clear analysis of the additional
“curvature” terms appearing in second-order optimality conditions. A
third aim is the application of recent second-order optimality conditions
(see [33]) to the case of semidefinite programming.

Although the cone of positive semidefinite operators on some
Euclidean space is not polyhedral, it enjoys remarkable properties [5, 36–
41]. Among them are the fact that this set is parabolically derivable in
the sense of [35, Definition 13.11] (see Proposition 9 below) and the fact
that its second-order tangent set is convex, a property that is not always
satisfied [5]. We give a more precise form to such a result, showing that
this set is locally a translate of a closed convex cone. This property is a
consequence of the fact that the cone of positive semidefinite operators
has the nice geometric structure of manifolds with corners. This structure
is slightly more precise than the one revealed in [5].

The present study confirms the special place semidefinite
programming occupies among mathematical programming problems (see
[2, 14, 15, 18, 22, 27, 36, 40, 41]).

The article is organized as follows. In the next section, we revisit
a characterization of positivite semidefiniteness when the space is
split into an orthogonal decomposition (Schur’s decomposition). This
characterization is the basis of our study in section 3 of first-order and
second-order tangent sets to the cone of positive semidefinite operators.
It is geometric, natural and intrinsic. In [5, 37] these sets are described
through a study of the least eigenvalue of the operator. Other approaches
use the principal minors of order k ≤ n, n × n being the format of
the matrix, or the principal invariants of the matrix. Such analytical
approaches are not as direct and simple as the one here and they
cannot be extended to the infinite dimensional case. The route we take
to optimality conditions is closely linked to the geometry of the set
of symmetric operators. Section 4 is devoted to a review of optimality
conditions for mathematical programming problems when the constraints
are defined by abstract cones. In section 5, we specialize these conditions
to the case the cone is the cone of positive semidefinite operators.

The importance of semidefinite programming for algorithms and
applications (see [1, 2, 12, 28–30] for instance) justifies a fresh look at its
fundamental features.

2. A CHARACTERIZATION OF POSITIVE SEMIDEFINITENESS

Let Z be a Hilbert space or a finite dimensional Euclidean space; for
w, z ∈ Z we write w∗z for the scalar product (w | z), w∗ being the image of
w by the Riesz isomorphism. If W and X are Euclidean or Hilbert spaces
and A is an element of the space L(W ,X ) of continuous linear operators
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from W into X , A∗ : X → W denotes the adjoint of A characterized by
(A∗x |w) = (Aw | x) or w∗A∗x = x∗Aw for all w ∈ W , x ∈ X � We recall that
if X is a closed linear subspace of Z , then the adjoint of the orthogonal
projector PX ∈ L(Z ,X ) from Z onto X is the canonical injection JX of X
into Z � Here PX is not considered as an operator from Z into Z , so that the
orthogonal projector of Z onto X ⊥ cannot be written as IZ − PX (where
IZ is the identity map on Z ) but as IZ − JX ◦ PX (when considered as an
element of L(Z ,Z )).

An element M of L(Z ,Z ) is said to be symmetric, and we write M ∈
�(Z ), or M ∈ � when there is no risk of confusion, if M ∗ = M � If Z
is a Hilbert space, we denote by � c(Z ) or � c the space of symmetric
continuous linear maps with closed ranges. We write M � 0 (resp. M � 0)
to mean that M is positive semidefinite (resp. positive definite) and M �
N (resp. M � N ) stands for M − N � 0 (resp. M − N � 0). We denote by
�+ the cone of positive semidefinite operators. Given M ∈ � (identified
with a matrix when Z is finite dimensional), let us suppose that the space
Z splits into an orthogonal sum Z = X ⊕ Y of two closed linear subspaces,
in such a way that we can write

M :=
(
A B
B∗ C

)
(1)

with A nonsingular. The following characterization of positive
semidefiniteness is akin an elementary fact about polynomial functions of
degree two. It is well known as an application of the Schur Complement.
For the sake of completeness we provide a proof valid in the infinite
dimensional case.

Lemma 1. Let M be a symmetric operator decomposed as above, with A
invertible. Then a necessary and sufficient condition in order that M be positive
semidefinite is that A be positive definite and C − B∗A−1B be positive semidefinite:

(M � 0) ⇔ (
A � 0, C � B∗A−1B

)
�

Proof. Suppose M is is positive semidefinite. Then, for each x ∈ X , we
have x∗Ax = x∗Mx ≥ 0, so that A is positive semidefinite and nonsingular,
hence is positive definite (or elliptic), by a well known result. Moreover,
for any z := x + y ∈ X ⊕ Y , since y∗B∗x = x∗By, one has

z∗Mz = x∗Ax + 2x∗By + y∗Cy

= (x + A−1By)∗A(x + A−1By) − y∗B∗A−1By + y∗Cy

= (x + A−1By)∗A(x + A−1By) + y∗(C − B∗A−1B)y�

Taking x = −A−1By with y ∈ Y arbitrary, we see that C − B∗A−1B � 0.
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Conversely, if the two conditions A � 0, C � B∗A−1B are satisfied, then
the preceding relations show that M � 0. �

Remark. When X is infinite dimensional and B ∈ L(Y ,X ) is onto, for
every C ∈ �(Y ) and every A ∈ �(X ) that is not invertible but satisfies
x∗Ax > 0 for all x ∈ X \�0� one can find z ∈ Z such that z∗Mz < 0.

A similar proof yields the following characterization.

Lemma 2. Let M be a symmetric operator decomposed as above, with A
nonsingular. Then a necessary and sufficient condition in order that M be
positive definite is that A be positive definite and C − B∗A−1B be positive definite:
(M � 0) ⇔ (

A � 0, C � B∗A−1B
)
.

Now we detect a property that is slightly more exacting than the notion
of cone reduction introduced in [5]. It has the advantage of corresponding
to a concept relevant to differential geometry.

Definition 3. A subset C of a normed vector space (n.v.s.) space Z
is said to be a C 2-manifold with corners around c ∈ C if there exists
a C 2-diffeomorphism � : U → V from a neighborhood U of c onto a
neighborhood V of 0 in a n.v.s. W and a closed convex cone Q (with vertex
0) of W such that �(C ∩ U ) = Q ∩ V � It is a C 2-manifold with corners if it
is a C 2-manifold with corners around each of its points.

When Q is a half-space, we recover the classical notion of manifold with
boundary. The notion of manifold with corners is almost equivalent to the
notion of cone reducible set, as the following example shows.

Example. Suppose Y ,Z are Banach spaces and there exists a map � :
U → Y of class C 2 such that �′(c)(Z ) = Y , Z is the topological sum of
ker�′(c) and of a closed subspace X of Z and C ∩ U = �−1(Q ) for some
neighborhood U of c in Z and some closed convex cone Q of Y � Then,
the submersion theorem ensures that C is a C 2-manifold with corners
around c � Shrinking U if necessary, one can take W := X × Y , �(z) :=
(pX (z),�(z)), where pX is the projection of Z onto Y associated with the
direct sum Z = X ⊕ ker �′(c). In particular, when Z is finite dimensional,
any cone reducible subset C of Z is a manifold with corner (the converse
is always true).

Proposition 4. The set �+ of positive semidefinite operators of Z is a C 2-
manifold with corners: for all M0 ∈ �+ there exist a closed convex cone � of � ,
open neighborhoods U of M0, V of 0 and a diffeomorphism � : U → V of class
C∞ such that �(U ∩ �+) = V ∩ �, �(M0) = 0.



1178 J.-P. Penot

Proof. Given M0 ∈ �+, let U be the set of M ∈ � such that PMP ∗ is
invertible and positive definite, P being the orthogonal projector of Z onto
X := Y ⊥ with Y := kerM0� Such a set is an open neighborhood of M0 since
M �→ PMP ∗ is continuous and the set �++(X ) of positive definite elements
of L(X ,X ) is an open neighborhood of A0 := PM0P ∗ in L(X ,X ). Now,
using the decomposition (1) of M ∈ U , let us define � : U → �(X ) ×
L(Y ,X ) × �(Y ) by

�(M ) := (A − A0,B,C − B∗A−1B)�

Clearly, � is a diffeomorphism of class C∞ from U onto its image V :=
�(U ) with inverse

�−1(M ′) := (A′ + A0,B ′,C ′ + B ′∗(A′ + A0)
−1B ′) for M ′ := (A′,B ′,C ′)

Then �(U ∩ �+) = (�++(X ) − A0) × L(Y ,X ) × �+(Y ), �(M0) = 0, and
� := �(X ) × L(Y ,X ) × �+(Y ) is a closed convex cone. �

Such a structure has important consequences for optimality conditions
in semidefinite programming, as shown later.

Remark. The cone of positive semidefinite matrices and the Lorentz
cone (or second-order cone) have been studied simultaneously by means
of Jordan algebras (see [11, 25]). However, the Lorentz cone has a more
classical structure. Defining it as the set

K := �(x , t) ∈ X × � : ‖x‖2 − t 2 ≥ 0�,

where X := �n (or a Hilbert space), one can show that for every (a, b) �=
(0, 0) in the boundary of K (i.e., such that ‖a‖2 − b2 = 0), the set K is
a submanifold with boundary of X × �, a special case of manifold with
corners.

3. TANGENT SETS TO THE CONE �+

Let us recall that the tangent cone (also called contingent cone or
Bouligand tangent cone) to a subset S of a normed vector space X at some
x ∈ S is the set T (S , x) := lim supt→0+ t−1(S − x), that is, the set of v ∈ X
such that there exist sequences (tn) → 0+, (vn) → v with x + tnvn ∈ S for
each n.

The incident cone (or intermediate, or adjacent cone or derivate cone)
is the set T i(S , x) := lim inft→0+ t−1(S − x), that is, the set of v ∈ X such
that, for any sequence (tn) → 0+, there exists a sequence (vn) → v with
x + tnvn ∈ S for each n� When S is convex, the two cones coincide (it is also
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the case in many situations of practical interest); in such a case the tangent
cone is convex but in general it differs from the radial tangent cone
T r (S , x) := �+(S − x)� In fact, when S is convex, T (S , x) is the closure of
T r (S , x) and quite often a convenient way of computing T (S , x) consists
in characterizing first T r (S , x).

The second-order tangent set to S at (x , v), where x ∈ S and v ∈ X is the
set

T 2(S , x , v) := lim sup
t→0+

2t−2(S − tv − x),

that is, the set of w ∈ X such that there exist sequences (tn) → 0+, (wn) →
w with x + tnv + 1

2 t
2
nwn ∈ S for all n� The second-order incident set to S at

(x , v), where x ∈ S and v ∈ X is the set

T ii(S , x , v) := lim inf
t→0+

2t−2(S − tv − x),

that is, the set of w ∈ X such that, for any sequence (tn) → 0+, there exists
a sequence (wn) → w with x + tnv + 1

2 t
2
nwn ∈ S for all n� Even when S is

convex these two second-order sets may be different and T 2(S , x , v) may
be nonconvex (see [5]). Of course, if T 2(S , x , v) is nonempty, one has
v ∈ T (S , x)� It is easy to see that v ∈ T i(S , x) iff there exists some arc c :
[0, 1] → S such that c(0) = x , c has v as a right derivative at 0; similarly, w ∈
T ii(S , x , v) iff there exists some arc c : [0, 1] → S such that c(0) = x , c has
v as a right derivative at 0 and can be expanded as c(t) = x + tv + 1

2 t
2wt

with wt → w as t → 0+.
The following characterization is well known in the finite-dimensional

case ([5, p. 472], [13], e.g.). The direct proof we provide has some interest
even in the finite-dimensional case. It uses the preceding characterization
of positive semidefinite operators.

Proposition 5. The tangent cone to the set �+ at some M0 ∈ � c
+ is the set of

V ∈ � such that the “restriction” of V to the kernel Y of M0 is positive semidefinite:
if P := PY ∈ L(Z ,Y ) is the orthogonal projector onto Y , then V ∈ T (�+,M0) iff
C := PVP ∗ ∈ �+(Y ).

Moreover, for all V ∈ T (�+,M0), one has d(M0 + tV ,�+) = O(t 2).

Thus, denoting by PX ∈ L(Z ,X ) (resp. PY ∈ L(Z ,Y )) the orthogonal
projector of Z onto the complement X of Y (resp. onto Y ) and
decomposing M0 and V as

M0 :=
(
A0 0
0 0

)
, V :=

(
A B
B∗ C

)
,
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where A0 := PXM0P ∗
X is the restriction (and corestriction) of M0 to the

subspace X orthogonal to the kernel Y of M0 and C := PY VP ∗
Y , one has

V ∈ T (�+,M0) iff C � 0.

Proof. Since M0 ∈ � c
+ and X := (Ker M0)

⊥, the operator A0 is positive
definite. Let us suppose that V ∈ T (�+,M0)� Then V is the limit of a
sequence (Vn) such that M0 + tnVn ∈ �+ for all n ∈ � and some sequence
(tn) → 0+. Decomposing Vn as we did above for V , we get operators An ,
Bn , Cn with limits A, B, C respectively. For n large enough, the operator
A0 + tnAn is nonsingular and the characterization of the preceding section
yields

tnCn � tnB∗
n(A0 + tnAn)

−1tnBn �

Simplifying by tn and taking limits, we get C � 0.
Conversely, let us suppose V decomposed as above is such that C � 0.

Then, setting for t > 0 small enough (so that A0 + tA is invertible)

Ct := C + tB∗(A0 + tA)−1B,

we see that Ct → C as t → 0 and that tCt − t 2B∗(A0 + tA)−1B = tC � 0, so
that if

Vt :=
(
A B
B∗ Ct

)
�

one has Mt := M0 + tVt ∈ �+ for t > 0 small enough. Since Vt → V as
t → 0+, that shows that V is tangent to �+ at M0 (and even that V ∈
T i(�+,M0), but that is the same as T (�+,M0) = T i(�+,M0), as recalled
above). Moreover, in view of the decomposition of M0 + tV − Mt , by an
obvious property of the norm on L(Z ,Z ), one has

‖M0 + tV − Mt‖ = ‖tC − tCt‖ = t 2
∥∥B∗(A0 + tA)−1B

∥∥ = O(t 2),

so that d(M0 + tV ,�+) = O(t 2).
The characterization in terms of the orthogonal projector P onto the

kernel Y of M0 stems from the fact that C = PVP ∗. �

We just considered the case of a point in the set � c
+ of operators in �+

with closed range. The following counterexample explains that choice: if
M0 ∈ �+\� c

+ the preceding characterization may not hold.

Example. Let Z = X ⊕ Y with X infinite-dimensional and let M0 :
(x , y) �→ (A0x , 0) with (A0x | x) > 0 for all x ∈ X \�0� but A0 �� c

+(X ), so
that for all c > 0 there exists some u ∈ X satisfying (A0u |u) < c ‖u‖2. Let
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V : (x , y) �→ (−2x , 0)� Then C := PY VP ∗
Y = 0 � 0 but V is not tangent to

�+ at M0 since for any V ′ ∈ B(V , 1) and any sequence (tn) → 0+ there
exists a sequence (xn) of unit vectors in X such that (A0xn | xn) < tn , hence,
((M0 + tnV ′)xn | xn) < ((A0 − 2tnIX )xn | xn) + tn ‖V ′ − V ‖ < 0.

As expected for a nonpolyhedral set, the tangent cone T (�+,M0) is
much larger than the radial tangent cone T r (�+,M0) := �+(�+ − M0)�
A precise analysis is given in the following proposition; it completes the
assertions of [5, p. 473]. It can be extended to the infinite-dimensional
case when considering operators with closed ranges and when the kernel
Y of M0 is finite dimensional.

Proposition 6. Let M0 ∈ � c
+ be such that Y := Ker M0 is finite dimensional.

The radial tangent cone to the set �+ at M0 is the set of V ∈ � such that PVP ∗ ∈
�+(Y ) and there exists some linear operator K ∈ L(Y ,Z ) from Y into Z with
values in X := Y ⊥ such that (I − P ∗P )VP ∗ = KPVP ∗�

Thus, in terms of the decomposition of M0 and V along the subspaces
X and Y of Z , identifying I − P ∗P with P ∗

X ◦ PX and considering K as an
element of L(Y ,X ), one has

V ∈ T r (�+,M0) ⇔ C � 0, ∃K ∈ L(Y ,X ) : B = KC �

Proof. Decomposing V as above, one has V ∈ T r (�+,M0) iff for t > 0
small enough one has M0 + tV � 0 or

C � tB∗(A0 + tA)−1B� (2)

When C � 0 and B = KC for some K ∈ L(Y ,X ) this condition is satisfied
for t > 0 small enough since the right-hand side of this relation is a small
operator induced by an operator from (Ker C)⊥ into itself (again, one
applies Lemma 1 in the decomposition of Y into (Ker C)⊥ ⊕ (Ker C).

Conversely, if relation (2) holds for t > 0 small enough, then, for
all x ∈ Ker C one has 0 ≥ x∗tB∗(A0 + tA)−1Bx , hence Bx = 0, the operator
(A0 + tA)−1 being positive definite. The existence of some K ∈ L(Y ,X )
satisfying B = KC follows. �

Using the bijection V �→ (A,B,C) from � onto �(X ) × L(Y ,X ) ×
�(Y ), Proposition 5 ensures that T (�+,M0) can be identified with
�(X ) × L(Y ,X ) × �+(Y )� Thus, introducing the orthogonal projector
Q ∈ L(Y ,Y ∩ kerV ) from Y onto Y ∩ kerV , we have the following
characterization obtained by replacing Z with Y .

Corollary 7. Given M0 ∈ � c
+ and V ∈ T (�+,M0), one has W ∈

T (T (�+,M0),V ) if, and only if, QPWP ∗Q ∗ � 0�
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The following consequence of Proposition 5 will be improved soon.

Corollary 8. If Z is finite dimensional, for any M0 ∈ �+ and any V ∈
T (�+,M0) the set T 2(�+,M0,V ) is nonempty.

Proof. For any M0 ∈ �+ and any V ∈ T (�+,M0), we have seen that we
can find c > 0 and a curve t �→ Mt in �+ such that Mt = M0 for t = 0,(
d
dt

)
t=0

Mt = V and ‖M0 + tV − Mt‖ ≤ ct 2� Then, as � is finite dimensional,
one can find a limit point W of (t−2(Mt − M0 − tV )) as t → 0+; such a W
belongs to T 2(�+,M0,V ). �

In order to characterize the second-order tangent set to the set �+ at
some M0 ∈ � c

+ in the direction V ∈ T (�+,M0), let us decompose the space
Y := Ker M0 into Ker M0 ∩ Ker V and its orthogonal subspace, so that C ,
M0, V , and W ∈ T 2(�+,M0,V ) take the forms

C :=
(
D 0
0 0

)
,

M0 :=
A0 0 0

0 0 0
0 0 0

 , V :=
A E F
E ∗ D 0
F ∗ 0 0

 , W =
A′′ G H
G ∗ D ′′ J
H ∗ J ∗ K

 �

Let us suppose C has a closed range, so that D is invertible. Note
that the relation V ∈ T (�+,M0) amounts to D � 0, whereas the relation
V ∈ T r (�+,M0) amounts to D � 0, F = 0 and E = LD for some L ∈
L((Ker M0 ∩ Ker V )⊥,Ker M⊥

0 )� Again, let us denote by P (resp. PX ) the
orthogonal projector from Z onto Y := Ker M0 (resp. X := (Ker M0)

⊥) and
let us denote by Q the orthogonal projector from Y onto Y ∩ Ker V , so
that QP (:= Q ◦ P ) is the orthogonal projector from Z onto Y ∩ Ker V �
Let R := IY − Q ∗Q considered as the orthogonal projector from Y onto
the orthogonal complement of Y ∩ Ker V in Y . Then A0 = PXM0P ∗

X , D =
RCR ∗ = RPVP ∗R ∗, D ′′ = RPWP ∗R ∗, E = BR ∗ = PXVP ∗R ∗, F = PXVP ∗Q ∗,
G = PXWP ∗R ∗, H = PXWP ∗Q ∗, J = RQWP ∗R ∗, K = QPWP ∗Q ∗.

Proposition 9. The second-order tangent set to the set �+ at some M0 ∈ � c
+ in a

direction V ∈ � such that C = PVP ∗ has a closed range coincides with the second-
order incident set at M0 ∈ T (�+,M0) in the direction V � It is the set of W ∈ �
such that K � 2F ∗A−1

0 F for the preceding decompositions, that is,

QPWP ∗Q ∗ � 2QPV ∗P ∗
X

(
P ∗
XM0PX

)−1
PXVP ∗Q ∗� (3)

Moreover, for any W ∈ T 2(�+,M0,V ), one has d(M0 + tV + 1
2 t

2W ,�+) =
O(t 3).
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Proof. Suppose W ∈ T 2(�+,M0,V )� Let (tn) → 0+ and (Wn) → W be
such that Mn = M0 + tnV + 1

2 t
2
nWn ∈ �+ for all n� Let us decompose Wn

as we did for W , introducing operators A′′
n , � � � ,Kn with limits A′′, � � � ,K

respectively. For n large enough, the operator An := A0 + tnA + 1
2 t

2
nA

′′
n is

invertible, hence positive definite, and we can apply Lemma 1 to the
decomposition of Mn = M0 + tnV + 1

2 t
2
nWn along X ⊕ Y as

Mn = M0 + tnV + 1
2
t 2nWn =

(
An Bn

B∗
n Cn

)
The condition Cn − B∗

nA
−1
n Bn � 0 of this lemma can be written(

Dn
1
2 t

2
n Jn

1
2 t

2
n J

∗
n

1
2 t

2
nKn

)
− (

En Fn
)∗
A−1

n

(
En Fn

) � 0,

where Dn = tnD + 1
2 t

2
nD

′′
n , En = tnE + 1

2 t
2
nGn , Fn = tnF + 1

2 t
2
nHn , or(

Dn
1
2 t

2
n Jn

1
2 t

2
n J

∗
n

1
2 t

2
nKn

)
−

(
E ∗
nA

−1
n En E ∗

nA
−1
n Fn

F ∗
n A

−1
n En F ∗

n A
−1
n Fn

)
� 0�

Since

Ln := t−1
n

(
Dn − E ∗

nA
−1
n En

) = D + 1
2
tnD ′′

n − tn(E ∗ + 1
2
tnG ∗

n )A
−1
n (E + 1

2
tnGn)

is positive definite for n large enough, applying Lemma 1 again, the
preceding condition is equivalent to

1
2
t 2nKn − F ∗

n A
−1
n Fn �

(
1
2
t 2n J

∗
n − F ∗

n A
−1
n En

)
t−1
n L−1

n

(
1
2
t 2n Jn − E ∗

nA
−1
n Fn

)
,

or, after simplification by 1
2 t

2
n , setting Ĵn := Jn − 2t−2

n E ∗
nA

−1
n Fn = Jn −

2
(
E + 1

2 tnGn

)∗
A−1

n

(
F + 1

2 tnHn

)
,

Kn − 2(F ∗ + 1
2
tnH ∗

n )A
−1
n (F + 1

2
tnHn) � 1

2
tn Ĵ ∗

n L
−1
n Ĵn �

Taking limits, and using the fact that
(
A−1

n

) → A−1
0 ,

(̂
Jn

) → J − 2E ∗A−1
0 F

and
(
L−1
n

) → D−1, we get K − 2F ∗A−1
0 F � 0, a rewriting of relation (3).

Conversely, let us suppose that W decomposed as above is such that
K � 2F ∗A−1

0 F � Let us introduce for t > 0 small enough the operators

At := A0 + tA + 1
2
t 2A′′, Et := tE + 1

2
t 2G Ft := tF + 1

2
t 2H



1184 J.-P. Penot

Dt := tD + 1
2
t 2D ′′, Jt := 1

2
t 2J − E ∗

t A
−1
t Ft ,

Kt := (K − 2F ∗A−1
0 F ) + 2t−2F ∗

t A
−1
t Ft − 2t−2J ∗

t L
−1
t Jt ,

Lt := D + 1
2
tD ′′ − t−1E ∗

t A
−1
t Et

and note that Lt is invertible for t small enough. We rewrite the assumption
K � 2F ∗A−1

0 F as

1
2
t 2Kt � F ∗

t A
−1
t Ft − J ∗

t L
−1
t Jt ,

hence, applying again Lemma 1,(
Dt

1
2 t

2J
1
2 t

2J ∗ 1
2 t

2Kt

)
− (

Et Ft
)∗
At

(
Et Ft

) � 0� (4)

Setting Mt := M0 + tV + 1
2 t

2Wt with

Wt :=
A′′ G H
G ∗ D ′′ J
H ∗ J ∗ Kt

 , Mt :=
(
At Bt

B∗
t Ct

)
,

and twice applying Lemma 1, Condition (4) means that Ct − B∗
t A

−1
t Bt �

0, or Mt := M0 + tV + 1
2 t

2Wt ∈ �+ for t > 0 small enough. Moreover, since
t−2F ∗

t A
−1
t Ft → F ∗A−1

0 F and t−2J ∗
t L

−1
t Jt → 0 as t → 0, we have Kt → K as

t → 0+� Thus, Wt → W and W ∈ T ii(�+,M0,V )� Moreover, as ‖K − Kt‖ =
O(t), we note that

∥∥M0 + tV + 1
2 t

2W − Mt

∥∥ = O(t 3). �

One can notice that, as predicted by [35, Proposition 13.12], for any
V ∈ T (�+,M0) one has

T 2(�+,M0,V ) + T (T (�+,M0),V ) = T 2(�+,M0,V )�

In fact, given W ∈ T 2(�+,M0,V ), W ′ ∈ T (T (�+,M0),V ), Corollary 7
ensures that the element K ′ of the decomposition of W ′ satisfies K ′ � 0�
Thus, since K � 2F ∗A−1

0 F , we also have K + K ′ � 2F ∗A−1
0 F , hence W +

W ′ ∈ T 2(�+,M0,V )� Since 0 ∈ T (T (�+,M0),V ), the reverse inclusion
T 2(�+,M0,V ) ⊂ T 2(�+,M0,V ) + T (T (�+,M0),V ) is obvious and equality
holds. One can even write

T 2(�+,M0,V ) = W0 + T (T (�+,M0),V ),
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where

W0 =
0 0 0
0 0 0
0 0 2F ∗A−1

0 F


Corollary 10. For any M0 ∈ �+,V ∈ T (�+,M0) the set T 2(�+,M0,V ) is
convex and stable by addition of elements of �+, T (�+,M0), T (T (�+,M0),V ).

Remark. One may wonder whether one can replace the assumption
that C has a closed range with the assumption that V has a closed
range. However, as shown by the following counterexample, the closed
range property is not always inherited by restrictions. To see that, let Z =
X ⊕ X , where X is an infinite dimensional Hilbert space and let T ∈
�+(X )\� c

+(X )� Let us define S ∈ �(Z ) by S(x , y) = (Tx + y, x) for (x , y) ∈
Z , so that S(x , 0) = (Tx , 0) and T is the restriction of S to X × �0�. Then
S has a closed range: if (S(xn , yn)) → (u, v) one has (xn) → v and (Txn +
yn) → u, so that (yn) → u − Tv and (u, v) = (Tv + (u − Tv), v) ∈ S(Z ).

Remark. It is of interest to make a comparison with semi-infinite
programming. For that purpose, we consider the embedding j : � →
C(SZ ) of � into the space of continuous functions on the unit sphere SZ
of Z defined by j(M ) := qM | SZ , the restriction to SZ of the quadratic form
qZ : z �→ (Mz | z)� Clearly, one has j(�+) = j(�) ∩ C(SZ )+ where C(SZ )+ is
the cone of nonnegative continuous functions on SZ � The map j is a linear
isomorphism onto its image and j maps T (�+,M ) onto T (j(�+), j(M ))�

It is known that C(SZ )+ is derivable in the sense of [35, p. 198] that
T (C(SZ )+, f ) coincides with the incident cone T i(C(S)+, f ) for all f ∈
C(SZ ); however, in general the cone C(SZ )+ is not parabolically derivable,
on the contrary of �+.

Let us turn now to the so-called augmented second-order tangent
cone introduced in [33, Proposition 3.1, 3.4]. It is defined as follows:
the augmented second-order tangent cone T̂ 2(� ,M0,V ) to the set �+ at some
M0 ∈ �+ in the direction V ∈ � is the set of (W , r ) ∈ � × �+ such that
there exist sequences (Wn) → W in � , (tn), (rn) in � with limits 0 and r ,
respectively, satisfying

(
r−1
n tn

) → 0 and

Mn := M0 + tnV + t 2n
2
Wn

rn
∈ �+�

Replacing Wn with Wn/rn in the proof of Proposition 9, we get the
following characterization.
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Proposition 11. The augmented second-order tangent cone T̂ 2(� ,M0,V ) to the
set �+ at some M0 ∈ �+ in the direction V is the set of (W , r ) ∈ � × �+ such
that K � 2rF ∗A−1

0 F for the preceding decompositions, that is,

QPWP ∗Q ∗ � 2rQPV ∗P ∗
X

(
P ∗
XM0PX

)−1
PXVP ∗Q ∗� (5)

The preceding characterization enables to apply the optimality
conditions of [33, Proposition 3.1, 3.4]. Given a function f : � → � that
is twice differentiable at a local minimizer M0 ∈ �+ of f on �+, [33,
Proposition 3.1] asserts that for all V ∈ T (� ,M0) one has f ′(M0)V ≥ 0,
and if f ′(M0)V = 0 one has

∀(W , r ) ∈ T̂ 2(� ,M0,V ) f ′(M0)W + rf ′′(M0)VV ≥ 0�

This condition can be decomposed into the case r = 1 yielding f ′(M0)W +
f ′′(M0)VV ≥ 0 for all W ∈ T 2(� ,M0,V ) and the case r = 0 yielding
f ′(M0)W ≥ 0 for all W ∈ � such that QPWP ∗Q ∗ � 0, that is, for all W ∈
T (T (� ,M0),V ) by Corollary 7. A similar analysis can be conducted for the
related sufficient condition.

Before applying the preceding results to semidefinite programming, we
review the general case of cone programming.

4. OPTIMALITY CONDITIONS IN CONE PROGRAMMING

Let us consider the conic programming problem

(P) minimize f (x) subject to g (x) ∈ C ,

where X , Z are Banach spaces, f : X → �, g : X → Z are twice
differentiable maps and C is a closed convex cone in Z . A well-known first-
order necessary local optimality condition is that the set

M (a) := �y ∈ N (C , g (a)) : f ′(a) + y ◦ g ′(a) = 0�

of multipliers at the local minimizer a be nonempty provided a constraint
qualification condition is satisfied; here N (C , g (a)) is the normal cone to
C at g (a), that is, the set of y ∈ Y := Z ∗ such that 〈y,w〉 ≤ 0 for all w ∈
C and 〈y, g (a)〉 = 0� Second-order conditions are not as simple. In order
to state the general condition of [32, Theorem 3.5], let us introduce a
convenient formalism.

Let V ,W be n.v.s. and let (ht)t>0 be a family of maps from V into
W � Suppose W is ordered by a closed convex cone W+� Let epi ht :=
�(v,w) ∈ V × W : w ≥ ht(v)�� Then the set H := lim supt→0+ epi ht is a
pseudo-epigraph in the sense that it is closed and for any (v,w) ∈ H and
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w ′ ≥ w one has (v,w ′) ∈ H � Then, we write symbolically w ≥ h(v) with
h := e − lim inft→0+ ht although the existence of such an epi-limit can be
guaranteed just when W is a complete lattice for the order induced by W+
assumed to be pointed.

Returning to problem (P), given a ∈ F := g−1(C), we consider the
maps ht : X → W := Z × � (t ∈ � := (0,+∞)) given by

ht(x) := 2t−2 �(g (a), 0) + t(g ′(a)x , f ′(a)x)� �

In such a case, we have (−z, r ) ≥ h(v) if, and only if, there exist sequences
(tn) → 0+, ((vn , zn , rn)) → (v, z, r ) such that (−zn , rn) ∈ htn (vn) + Z+ × �+
for all n ∈ � with Z+ := −C , W+ := Z+ × �+. That means that

(z,−r ) ∈ Sv

:= lim sup
(t ,u)→(0+,v)

2
t 2

�C × (f (a) − �+) − (g (a), f (a)) − t(g ′(a)u, f ′(a)u)� ,

the set introduced in [32, Theorem 3.5]. Let us note that a third formalism
using a true epi-limit can be introduced. It involves the functions kt : X ×
Z → �∞ := � ∪ �+∞� given for t ∈ � := (0,+∞) by

kt(x , z) := 2
t
f ′(a)x + �C(g (a) + tg ′(a)x + t 2

2
z)

where �C is the indicator function of C given by �C(z) := 0 for z ∈ C ,
�C(z) := +∞ for z ∈ Z \C � In fact, one easily checks that r ≥ k(v, z) :=
e − lim inft→0+ kt(v, z) if, and only if (−z, r ) ≥ h(v), that is, (v,−z, r ) ∈ H
or (z,−r ) ∈ Sv � Thus, k(v, z) = inf�r : (v,−z, r ) ∈ H �� We call k the critical
function of (P) at a� We notice that for v ∈ g ′(a)−1(T (C , g (a))) we have
k(v, z) = +∞ whenever z ∈ Z \T 2

G(C , g (a), g
′(a)v), where, for G := g ′(a),

T 2
G(C , g (a), g

′(a)v) is the (second-order) compound tangent set of C at g (a)
in the direction g ′(a)v defined by

T 2
G(C , g (a), g

′(a)v) := lim sup
(t ,u)→(0+,v)

2
t 2

�C − g (a) − tg ′(a)u� �

We notice that Sv is the compound tangent set of C × (f (a) − �+)
at (g (a), f (a)) in the direction (g ′(a)v, f ′(a)v) for the map x �→
(g ′(a)x , f ′(a)x)�

We also introduce the critical cone C(a) of (P) at a ∈ F := g−1(C),

C(a) = �v ∈ X : f ′(a)v = 0, g ′(a)v ∈ T (C , g (a))�
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and the qualification condition

Za := g ′(a)(X ) − T (C , g (a)) = −Za = cl(Za)� (6)

This condition means that Za is a closed linear subspace. It is obviously
more general than Robinson’s qualification condition:

g ′(a)(X ) − �+(C − g (a)) = Z � (7)

We say that g is metrically regular in the direction v (with respect to C) if there
exist some c > 0, 	 > 0 such that

∀u ∈ B(v, 	), t ∈ (0, 	) d(a + tu, g−1(C)) ≤ cd(g (a + tu),C)�

Such a condition is satisfied when (7) holds. On the other hand, it
ensures that v ∈ T (F , a), with F := g−1(C), whenever g ′(a)v ∈ T (C , g (a))
and then that w ∈ T 2(F , a, v) if g ′(a)w + g ′′(a)vv ∈ T 2(C , g (a), g ′(a)v), as
easily checked.

Theorem 12. Let a be a local minimizer of (P ) for which the qualification
condition (6) is satisfied. If g is metrically regular in the direction v ∈ C(a), in
particular if condition (7) holds, then for all z ∈ Z there exists some multiplier y ∈
M (a) such that

f ′′(a)vv + 〈y, g ′′(a)vv〉 ≥ 〈y, z〉 − k(v, z)�

The proof being almost the same as the proof of [32, Theorem 3.5],
we omit it. It suffices to use the preceding analysis and to observe that the
metric regularity of g in the direction v is enough to obtain [32, Lemma
3.2] in which we take B = X , Sv,B = −�(z, r ) : (v, z, r ) ∈ H ��

In [32, Theorem 3.7] it has been shown that the necessary condition of
Theorem 12 corresponds as precisely as possible to a sufficient condition.
We present a proof since here we show that a is not just a strict local
minimizer of f on F but is an essential local minimizer of second-order of (P)
in the sense of [33]: There exist 
, �, � > 0 such that

x ∈ B(a, �) ∩ �u : d(g (u),C) ≤ � ‖u − a‖2� �⇒ f (x) ≥ f (a) + 
 ‖x − a‖2 �

This notion is even stronger than the notion of quadratic growth condition
of [5, Definition 3.1] since in the preceding implication one can take x
outside the feasible set F .

Theorem 13. Suppose X is finite dimensional, a ∈ F := g−1(C) and that for
all v ∈ C(a) and all z ∈ Z there exists some multiplier y ∈ M (a) such that

f ′′(a)vv + 〈y, g ′′(a)vv〉 > 〈y, z〉 − k(v, z)� (8)

Then a is an essential local minimizer of second-order of (P).
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Moreover, the proof below shows that it suffices to have (8) satisfied
for all v ∈ C(a) and z = g ′′(a)vv.

Proof. Suppose on the contrary that there exist sequences (xn) →
a in X , (n) → 0+ such that d(g (xn),C) ≤ n ‖xn − a‖2, f (xn) < f (a) +
n ‖xn − a‖2 � Setting tn := ‖xn − a‖ > 0, we may assume that vn := t−1

n (xn −
a) converges to some v� Then v ∈ C(a) and, for z := g ′′(a)vv, one has
−f ′′(a)vv ≥ k(v, z) since, by Taylor expansions, there exist (zn) → z and
(rn) → −f ′′(a)vv such that g (a) + tng ′(a)vn + (1/2)t 2n zn ∈ C and f (a) +
tnf ′(a)vn − (1/2)t 2n rn ≤ f (a), that is, rn ≥ 2t−1

n f ′(a)vn := ktn (vn , zn)� Thus,
we get a contradiction with (8). �

As in [33, Proposition 5.1], one can formulate the preceding result in
terms of a John’s multiplier (y, t) ∈ N (C , g (a)) × �+ by replacing f by tf
in the preceding proof. Such a result differs from [5, Theorem 3.63] by
the presence of the auxiliary terms 〈y, z〉 − tk(v, z) in (9).

Proposition 14. Suppose X is finite dimensional, a ∈ F := g−1(C) and that
for all v ∈ C(a) and all z ∈ Z there exists some y ∈ N (C , g (a)), t ∈ �+ such
that tf ′(a) + y ◦ g ′(a) = 0 and

tf ′′(a)vv + 〈y, g ′′(a)vv〉 > 〈y, z〉 − tk(v, z)� (9)

Then a is an essential local minimizer of second-order of (P).

One may wonder whether one can drop the assumption that X is finite
dimensional by replacing C(a) by some approximate critical set and k
by some approximate critical function. Such a direction is taken in [5,
Theorem 3.63 (i)], but at the expense of replacing the right-hand side
of (9) by � ‖v‖2 for some � > 0, whereas the right-hand side of (9) is
nonpositive by the definition of k(v, z).

Let us observe that for any v ∈ C(a) and z ∈ T 2(C , g (a), g ′(a)v) we
have k(v, z) ≤ 0 since there exists a sequence ((tn , zn)) → (0+, z) such
that g (a) + tng ′(a)v + (1/2)t 2n zn ∈ C and t−1

n f ′(a)v ≤ 0, or ktn (v, zn) ≤ 0�
Thus, the conclusion of the following statement is a consequence of the
conclusion of Theorem 12. However, it relies on the assumption

Za,v := g ′(a)(X ) − T (T (C , g (a)), g ′(a)v) = −Za,v = cl(Za,v) (10)

meaning that Za,v is a closed linear subspace. Let us note that this
assumption is weaker than (6). In fact, since C is convex we have T (C , b) ⊂
T (T (C , b),w) for b := g (a), w := g ′(a)(v) ∈ T (C , b), hence Za ⊂ Za,v �
Conversely, given z ∈ T (T (C , b),w), one can find sequences (tn) → 0+,
(wn) in T (C , b) such that z = limn t−1

n (wn − w) ∈ cl(−Za) = Za when (6)
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holds and since 0 ∈ T (C , b) we also have g ′(a)(X ) ⊂ Za so that Za,v =
Za � Since the assumptions of Theorem 12 and those of [5, 3.45], [9,
Theorem 4.2] are weakened, a proof is required.

Proposition 15. Let a be a local minimizer of (P ) and let v ∈ C(a) be such
that g is metrically regular in the direction v and such that the qualification
condition (10) is satisfied. Then, for all z ∈ T 2(C , g (a), g ′(a)v) there exists some
y ∈ M (a) such that

f ′′(a)vv + 〈y, g ′′(a)vv〉 ≥ 〈y, z〉� (11)

Moreover, for any convex subset T of T 2(C , g (a), g ′(a)v) there exists some y ∈
M (a) such that

f ′′(a)vv + 〈y, g ′′(a)vv〉 ≥ sup
z∈T

〈y, z〉� (12)

Proof. Given z ∈ T 2(C , g (a), g ′(a)v) ⊂ T (T (C , g (a)), g ′(a)v)) (by [5,
Relation (3.63)]), let x ∈ X and z ′′ ∈ T (T (C , g (a)), g ′(a)v) be such that
g ′(a)x − z ′′ = z − g ′′(a)vv. Then, by [9, Proposition 3.1],

z ′ := z + z ′′ ∈ T 2(C , g (a), g ′(a)v) + T (T (C , g (a)), g ′(a)v)

⊂ T 2(C , g (a), g ′(a)v),

so that there exist sequences (tn) → 0+, (z ′
n) → z ′ such that g (a) +

tng ′(a)v + (1/2)t 2n z
′
n ∈ C � Since there exists c > 0 such that

d(a + tv + (1/2)t 2x , g−1(C)) ≤ cd(g (a + tv + (1/2)t 2x),C)

for t > 0 small enough, and g (a + tv + (1/2)t 2x) = g (a) + tg ′(a)v +
(1/2)t 2z ′ + o(t 2), we can find a sequence (xn) → x such that a + tnv +
(1/2)t 2nxn ∈ g−1(C) for all n� Since a is a local minimizer and f ′(a)v = 0,
using again a Taylor expansion, we get

f ′(a)x + f ′′(a)vv ≥ 0,

or f ′(a)x ≥ −f ′′(a)vv for any x ∈ X satisfying g ′(a)x + g ′′(a)vv − z ∈
T (T (C , g (a)), g ′(a)v). Since (10) holds, the Lagrange multiplier rule of
[32, Corollary 3.4] yields some y in the polar cone of T (T (C , g (a)), g ′(a)v)
such that

f ′(a)x + 〈y, g ′(a)x + g ′′(a)vv − z〉 ≥ −f ′′(a)vv

for every x ∈ X � Thus, y ∈ N (C , g (a)), 〈y, g (a)〉 = 0, f ′(a) + y ◦ g ′(a) = 0
and 〈y, g ′′(a)vv − z〉 ≥ −f ′′(a)vv. Thus, y ∈ M (a) and (11) holds.
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Now let T be a convex subset of T 2(C , g (a), g ′(a)v). Using [31,
Theorem 3.6] with Y := Za,v , u := g ′(a), F := �f ′(a)�, M := X , P :=
T (T (C , g (a)), g ′(a)v), we get that

M ′(a) := �y′ ∈ Z ∗
a,v : y′ ∈ T (T (C , g (a)), g ′(a)v)0, f ′(a) + y′ ◦ g ′(a) = 0�

is bounded, hence, weak∗ compact. Then, setting �′′
xx(x , y) := f ′′(x) +

〈y, g ′′(x)〉, using the Moreau’s minimax theorem, we get

max
y′∈M ′(a)

inf
z∈T

(�′′
xx(a, y

′)vv − 〈y, z〉) = inf
z∈T

max
y′∈M ′(a)

(�′′
xx(a, y

′)vv − 〈y, z〉) ≥ 0�

Thus there exists y′ ∈ M ′(a)) such that �′′
xx(a, y

′)vv ≥ 〈y, z〉 for all z ∈ T .
Taking y ∈ Z ∗ such that y|Za,v = y′, we get y ∈ M (a) and �′′

xx(a, y)vv =
�′′
xx(a, y

′)vv ≥ 〈y, z〉 �

Let us end this section with another second-order necessary condition
avoiding constraint qualifications. For such a purpose, let us introduce the
performance function (or value function) p : Z → � given by

p(z) := inf�f (x) : g (x) + z ∈ C��

Its directional subdifferential (or Dini-Hadamard subdifferential) at 0 is the
set

�Dp(0) := �y ∈ Y : ∀z ∈ Z 〈y, z〉 ≤ lim inf
(t ,w)→(0+,z)

p(tw) − p(0)
t

��

Clearly, when p is directionally differentiable at 0 in the sense that the
above liminf is a limit and is a continuous linear form in z, one has
�Dp(0) = �p ′(0)�.

Proposition 16. Let a be a solution to (P ). Then, �Dp(0) ⊂ M (a) and for any
y ∈ �Dp(0), any critical direction v ∈ C(a) and any z ∈ Z the following second-
order necessary condition is satisfied:

f ′′(a)vv + 〈y, g ′′(a)vv〉 ≥ 〈y, z〉 − k(v, z)�

Denoting by k∗
v the Fenchel conjugate of kv := k(v, ·) this condition can

be written

∀v ∈ C(a) f ′′(a)vv ≥ sup�k∗
v (y) − 〈y, g ′′(a)vv〉 : y ∈ �Dp(0)��

Proof. The inclusion �Dp(0) ⊂ M (a) is well known (see [34,
Proposition 4.125]).
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Let y ∈ �Dp(0), v ∈ C(a) and z ∈ Z be given. If k(v, z) = +∞ the
inequality is obvious. Thus, we may suppose k(v, z) < +∞. Let (vn) →
v, (zn) → z, (tn) → 0+ be such that k(v, z) = limn ktn (vn , zn)� Thus (2t−1

n
f ′(a)vn) → k(v, z) and cn := g (a) + tng ′(a)vn + (t 2n/2)zn ∈ C for all n ∈ �.
Then, for some sequence (wn) → 0, we have

g (a + tnvn) − cn = (t 2n/2)(g
′′(a)vnvn − zn + wn)

Since g (a + tnvn) + (t 2n/2)(zn − wn − g ′′(a)vnvn) = cn ∈ C , we have

p((1/2)t 2n(zn − wn − g ′′(a)vnvn) ≤ f (a + tnvn),

hence, since p(0) = f (a),

〈y, z − g ′′(a)vv〉 ≤ lim inf
n

2
t 2n
(f (a + tnvn) − f (a))

≤ lim inf
n

2
t 2n
(tnf ′(a)vn + t 2n

2
f ′′(a)vnvn) = k(v, z) + f ′′(a)vv�

That is the announced inequality. �

5. OPTIMALITY CONDITIONS IN SEMIDEFINITE
PROGRAMMING

In this section, we take advantage of the special structure of the second-
order tangent set to the set �+ of semidefinite matrices. That enables to
give simplified optimality conditions. We first present such a condition in
that special mathematical programming case. Then we show that the set
�+ enjoys a special geometric property that entails such a special structure
of the second-order tangent set.

Let us say that a subset T of a n.v.s. Z is an affine cone if there exists
some w ∈ T and some cone P of Z containing 0 such that T = P + w�
Then w is called a vertex of T � When P is pointed (i.e., P ∩ (−P ) = �0�),
w is unique.

Lemma 17. Let T = P + w be an affine cone with vertex w in a n.v.s. Z . If Q
is a subset of Z such that T + Q ⊂ T , then one has P + Q ⊂ P , Q ⊂ P .

If Q is a closed cone of Z such that T ⊂ Q , then one has P ⊂ Q .
Thus, if Q is a closed cone such that T + Q ⊂ T ⊂ Q one has P = Q .

Proof. The inclusion T + Q ⊂ T can be written w + P + Q ⊂ w + P , so
that one has P + Q ⊂ P � Taking 0 ∈ P , we get Q ⊂ P � Suppose now that
T ⊂ Q , where Q is a closed cone of Z . Then, for any p ∈ P and any r > 0
one has rp + w ∈ Q or p + r−1w ∈ r−1Q ⊂ Q � Taking the limit as r → +∞,
we get p ∈ Q since Q is closed. �
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Given a convex cone C of a Banach space Z , z ∈ C , z ′ ∈ T (C , z), we
deduce from the preceding lemma and the inclusions

T 2(C , z, z ′) + T (T (C , z), z ′) ⊂ T 2(C , z, z ′) ⊂ T (T (C , z), z ′) (13)

of [9, Proposition 3.1] that when T 2(C , z, z ′) is an affine cone with vertex
w, then T 2(C , z, z ′) = w + T (T (C , z), z ′)� In such a case, the necessary
condition of Proposition 15 can be restricted to taking the multiplier y
corresponding to z := w in (11).

Proposition 18. Suppose that a ∈ F := g−1(C) is a local minimizer of f on
F such that for some v ∈ C(a) the set T 2(C , g (a), g ′(a)v) is an affine convex
cone with vertex w(v) and (10) holds. Suppose that g is metrically regular in the
direction v. Then, there exists some multiplier y ∈ M (a) such that

f ′′(a)vv + 〈y, g ′′(a)vv〉 ≥ 〈y,w(v)〉� (14)

Moreover the term 〈y,w(v)〉 is equal to sup�〈y, z〉 : z ∈ T 2(C , g (a), g ′(a)v)�,
hence does not depend on the choice of the vertex w(v) in T 2(C , g (a), g ′(a)v).

Proof. The existence of a multiplier y ∈ M (a) satisfying (14) is obtained
in taking z := w(v) in Proposition 15. It remains to prove the last
assertion. Let w ′ ∈ T 2(C , g (a), g ′(a)v). Since 〈y, g ′(a)v〉 = −f ′(a)v = 0, y
is in the polar cone of T (T (C , g (a)), g ′(a)v), and since w ′ − w(v) ∈
T (T (C , g (a)), g ′(a)v), we get 〈y,w ′ − w(v)〉 ≤ 0, so that 〈y,w(v)〉 =
max�〈y, z〉 : z ∈ T 2(C , g (a), g ′(a)v)�. �

Question. It would be interesting to know whether the condition

∀v ∈ C(a) f ′′(a)vv + 〈y, g ′′(a)vv〉 > sup�〈y, z〉 : z ∈ T 2(C , g (a), g ′(a)v)�

suffices to ensure that a is a local solution to (P). We give a positive answer
in Proposition 20 in the case C is a manifold with corners.

When C is a manifold with corners, let us show that T 2(C , z, z ′) is an
affine cone.

Proposition 19. If C is a C 2-manifold with corners around c ∈ C , then, for all
v ∈ T (C , c), the second-order tangent set T 2(C , c , v) is an affine cone.

If C is a C 2-manifold with boundary around c ∈ C , then, for all v ∈ T (C , c),
the second-order tangent set T 2(C , c , v) is an affine half-space or the whole space.

Proof. Given a diffeomorphism � as in Definition 3, we have z ∈T 2(C , c , v)
if, and only if �′(c)z +�′′(c)vv ∈T 2(Q , 0,�′(c)v)=T (Q ,�′(c)v), as easily
seen, if, and only if

z ∈ �′(c)−1(T (Q ,�′(c)v)) − �′(c)−1
(
�′′(c)vv

)
�

Thus, w(v) := −�′(c)−1 (�′′(c)vv) is a vertex of T 2(C , c , v).
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If C is a C 2-manifold with boundary around c ∈ C , then Q is a half-
space, so that T (Q ,�′(c)v) is either Q (when �′(c)v ∈ Q \intQ ) or the
whole space (when �′(c)v ∈ intQ ) �

In the following proposition, we deduce the sufficient condition of [5,
Theorem 3.137] from Theorem 13.

Proposition 20. Suppose X is finite dimensional, a ∈ F := g−1(C), C is a C 2-
manifold with corners around c := g (a) and that for all v ∈ C(a) there exists some
y ∈ M (a) such that

f ′′(a)vv + 〈y, g ′′(a)vv〉 > sup�〈y,w〉 : w ∈ T 2(C , c , g ′(a)v)�� (15)

Then a is a local minimizer of f on F .

Proof. Using a chart � as in the preceding definition, we may suppose
C is a cone and g (a) = 0� Note that substituting �′(0)−1 ◦ � to �, we may
suppose that �′(0) is the identity mapping, so that multipliers for the
original problem are multipliers for the reduced problem and vice versa.
Using Theorem 13, it suffices to show that for every z ∈ Z one has

sup�〈y,w〉 : w ∈ T 2(C , 0, g ′(a)v)� ≥ 〈y, z〉 − k(v, z)� (16)

The left-hand side is 0 since T 2(C , 0, g ′(a)v) is the cone T (C , g ′(a)v) =
cl(C + �g ′(a)v) and y ∈ M (a), v ∈ C(a). The right-hand side is −∞
when k(v, z) = +∞� When k(v, z) < +∞, there exist sequences (tn) →
0+, (vn) → v, (zn) → z, (rn) → k(v, z), with cn := g (a) + tng ′(a)vn +
(1/2)t 2n zn ∈ C ,

rn ≥ 2t−1
n f ′(a)vn = −2t−2

n 〈y, tng ′(a)vn〉
≥ −2t−2

n 〈y, cn − (1/2)t 2n zn〉 ≥ 〈y, zn〉�
Passing to the limit, we get k(v, z) ≥ 〈y, z〉 and inequality (16) holds. �

Conclusion. The structure of �+ as a manifold with corners revealed in
Proposition 4 allows to give simplified optimality conditions in semidefinite
programming. In particular, in the right-hand side of Relation (15)
the single term 〈y,w(v)〉 involving the vertex w(v) corresponding to
the critical direction v can be substituted to the supremum of y
over T 2(C , g (a), g ′(a)v). Setting w := g ′(a)v and using the notation of
Proposition 9, the vertex w(v) can be identified with the element w of
� all elements A′′, ����, J of which are null but the term K = 2F ∗A−1

0 F =
2QPV ∗P ∗

X

(
P ∗
XM0PX

)−1
PXVP ∗Q ∗� Thus the additional “sigma term” in the

terminology of [5] can be easily computed.
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