Назад Вперёд

4.4.     Технологические особенности изготовления диодов СВЧ диапазона

Характерной особенностью p-n-переходов диодов и транзисторов СВЧ-диапазона является их малая емкость, что достигается уменьшением площади перехода. Конструкция приборов на основе р-n-переходов и технология их изготовления должны обеспечивать точное и воспроизводимое выполнение как поперечных размеров перехода, так и толщины слоев полупроводниковых материалов, а также требуемый уровень и профиль легирования.

Первые СВЧ-диоды были изготовлены точечно-контактным методом. Для этого к предварительно отполированной и протравленной пластине Si или Ge прижималась игла из вольфрама или фосфористой бронзы (часто в виде пружины) с диаметром острия от нескольких микрометров до 20 — 30 мкм. При электроформовке, заключающейся в разогреве области контакта при пропускании мощных коротких импульсов тока, образовывался контакт типа барьера Шоттки.

Диффузионный метод создания переходов основан на диффузии в полупроводник примеси, находящейся в газообразной, жидкой или твердой фазе (рис. 4.3). В зависимости от глубины залегания перехода х0 он может быть плавным или резким. При малой толщине р-области переход можно считать резким со ступенчатым изменением концентрации примеси.

Рис. 4.3 Формирование диффузионного p-n-перехода (а) и распределение примесей в переходе (б)

 

Для уменьшения последовательного сопротивления объема полупроводника при изготовлении переходов часто используют эпитаксиальные слои. Метод эпитаксиального наращивания позволяет получать пленки полупроводникового материала с требуемой концентрацией примеси на поверхности исходного монокристалла (подложки). Структура кристаллической решетки эпитаксиального слоя при этом идентична структуре подложки. Для получения эпитаксиального слоя на поверхности монокристалла разлагают химические соединения полупроводникового материала с примесью веществ, необходимых для легирования слоя. Можно получать эпитаксиальные слои как с тем же типом электропроводности, что и исходный материал подложки, но с другим удельным сопротивлением, так и с противоположным типом электропроводности. В первом случае, например, на поверхности сильнолегированной низкоомной подложки формируют слаболегированный высокоомный слой нужной толщины. Во втором — эпитаксиальный р-n-переход.

По конструкции переходы делятся на планарные и мезаструктуры. На рис. 4.4 приведена схема технологического процесса изготовления планарного перехода на эпитаксиальной подложке. Исходная подложка с нанесенным на нее эпитаксиальным слоем (рис. 4.4 а) имеет толщину порядка долей миллиметра, толщина высокоомной пленки Iэп, являющейся базой перехода, может составлять от долей до нескольких десятков микрометров. Малые площади переходов получают за счет использования прецизионной фотолитографии. Для этого эпитаксиальную пленку окисляют, в результате чего на ее поверхности образуется слой двуокиси кремния толщиной порядка 1 мкм. Далее наносят слой фоточувствительного материала — фоторезиста (ФР) (рис. 4.4 б). При освещении фоторезиста ультрафиолетовым светом через маску (фотошаблон) экспонированные участки полимеризуются. После растворения неэкспонированных участков фоторезиста в пленке окисла протравливают окна заданной конфигурации и размеров (рис. 4.4 в). Диаметр окна (или его ширина) при изготовлении приборов СВЧ равен обычно нескольким микрометрам — десятым долям миллиметра. Через полученные окна проводят локальную диффузию акцепторной примеси, например бора, для формирования р-области в эпитаксиальном слое n-Si (рис. 4.4  г). При малых размерах окна следует учитывать, что примесь проникает не только в глубь подложки, но и под края окон, образуя краевые области, имеющие обычно сферическую или цилиндрическую форму.

Эпитаксиальная технология позволяет получать переходы с малой толщиной базы. Отметим, что при малой толщине высокоомного эпитаксиального слоя Iэп область, обедненная основными носителями, может перекрыть весь эпитаксиальный слой и достигнуть сильнолегированной подложки (эффект смыкания).

Рис. 4.4 Схема технологического процесса изготовления диффузионного планарного р-n-перехода на эпитаксиальной подложке

 

Важное место в изготовлении приборов занимают процессы формирования невыпрямляющих (омических) контактов (ОК на рис. 4.4 г), служащих выводами прибора. Такие контакты должны иметь малое сопротивление, не зависящее от полярности приложенного напряжения. Омические контакты выполняются чаще всего в виде соединения металла с сильнолегированным полупроводником. В простейшем случае сильнолегированный слой полупроводника образуется при сплавлении металла с полупроводником (при этом металл является донором или акцептором). Омические контакты могут быть многослойными, т. е. состоять из различных металлов. Например, омические контакты в приборах из GaAs получают, напыляя вольфрам и никель с последующим осаждением золота.

На одной исходной подложке обычно получают несколько десятков и даже сотен переходов. При производстве многослойных приборов, например транзисторов, процессы фотолитографии и локальной диффузии повторяют несколько раз.

Планарную технологию применяют также при создании приборов из Ge и GaAs. Пленку SiO2 в этом случае осаждают на поверхности полупроводника при термическом разложении кремнийорганических соединений.

Устройство диода с мезаструктурой показано на рис. 4.5 На подложке полупроводника n-типа формируют область p-типа и омические контакты (рис. 4.5 а). Затем верхний контакт защищают фоторезистом и через маску формируют вывод р-области требуемого диаметра. После вытравливания металла и полупроводника остается участок диаметром а и высотой А, возвышающийся над подложкой в виде столбика (рис. 4.5 б). Подложка может быть выполнена по эпитаксиальной технологии, что позволяет изготовлять переходы с толщиной базы, составляющей единицы микрометров. Диаметр мезаструктуры а (рис. 4.5 б) определяется емкостью перехода и составляет обычно десятки — сотни микрометров; высота  зависит от назначения прибора и, как правило, равна единицам — десяткам микрометров. Боковая поверхность мезаструктуры может быть защищена слоем SiO2 для уменьшения токов утечки и увеличения пробивного напряжения.

Рис. 4.5  Эпитаксиальная мезаструктура:

а ) исходная пластина с p-n-переходом  и   омическими   контактами; б)устройство диода

 

В последние годы для создания переходов с малой толщиной полупроводниковых слоев применяют метод ионного легирования (ионной имплантации), при котором поверхность полупроводника бомбардируют пучком ионов (акцепторов или доноров), сфокусированных и ускоренных до высоких энергий. Глубина проникновения ионов определяется их энергией, а степень легирования — продолжительностью облучения мишени. При энергия частиц 100 кэВ глубина имплантированного слоя обычно около 1 мкм.

Приборы с выпрямляющим контактом типа барьера Шоттки могут иметь планарную конструкцию (рис. 4.6) или выполняться в виде мезаструктуры. При их создании используется полупроводниковый материал с одним типом электропроводности, поэтому в технологическом процессе отсутствуют операции диффузии (или ионного легирования). Основным методом получения выпрямляющего контакта является вакуумное напыление металлических слоев на монокристалл полупроводника. Большое значение для получения качественного контакта с барьером Шоттки имеют состояние поверхности полупроводника и выбор материала металлического электрода. Металлическую пленку обычно напыляют на полупроводник, после чего ее толщину увеличивают электролитическим осаждением или повторным напылением. Контакты чаще всего бывают многослойными и состоят из различных металлов. Металл для внешнего покрытия выбирают с учетом последующих паек при монтаже прибора.

Рис. 4.6. Структура диода с барьером Шоттки, изготовленного методами планарной технологии

 

Уменьшить сопротивление объема полупроводника и улучшить отвод теплоты от перехода в планарных и мезаструктурах можно путем уменьшения толщины полупроводниковой подложки и замены ее материалом с большей теплопроводностью, например медью или золотом. Конструкции таких структур, называемых приборами с интегральным теплоотводом, показаны на рис. 4.7 Толщина полупроводниковой структуры lстр может быть доведена до 10 — 20 мкм. Толщина медной подложки lм обычно составляет несколько десятков — сотни микрометров.

Рис.  4.7.  Планарная  (а)  и   мезаструктура (б) с интегральным теплоотводом; в, г, д — последовательности    технологических    операций при изготовлении структуры

 При изготовлении таких структур на исходной (например, из низкоомного полупроводника n+-типа) подложке толщиной lп0 эпитаксиальным наращиванием получают пленку n-материала толщиной lэп, а затем полупроводника p+-типа с образованием р+-n-перехода (рис. 4.7 в). После выполнения на p+-материале омического контакта на структуре с этой же стороны гальваническим методом осаждают слой меди большой толщины (рис.4.7г). С противоположной стороны шлифовкой и селективным травлением уменьшают толщину исходной подложки  до lп  так,  что   толщина всей полупроводниковой структуры становится небольшой (рис. 4.7 д). Далее методом фотолитографии формируют мезаструктуру (рис. 4.7 б), При монтаже структуры в корпус медное основание припаивают к массивному держателю, поэтому такие переходы могут рассеивать мощность в десятки ватт.

Назад Вперёд