CS206 Data Structures

Sorting and Selection |

Sung-eui Yoon (=3 9))
Department of Computer Science
KAIST

http://sglab.kaist.ac.kr/~sungeul
KAIST
o and

Korea Advanced Institute of Scienceé and Technology
eI=ais7Ied

Class Objectives (Ch. 13)

Understand divide-and-conquer sorting methods: merge
and quick sorts

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Merge Sort

KAIST
o

Korea Advanced Institute of Sciene€ and Technology
eI=ais7Ied

Divide-and-Conquer

Divide-and-conquer is a
general algorithm design
paradigm:
e Divide: divide the input
data S in two disjoint
subsets S, and S,

e Recur: solve the
subproblems associated
with S; and S,

e Conquer: combine the
solutions for S; and S, Into
a solution for S

The base case for the
recursion are subproblems
of sizeOorl

Merge-sort Is a sorting
algorithm based on the
divide-and-conquer
paradigm
Like heap-sort
e |t uses a comparator
e |t has O(n log n) running
time
Unlike heap-sort
e |t does not use an auxiliary
priority queue

e |t accesses data In a
sequential manner
(suitable to sort data on a

disk) KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Merge-Sort

Merge-sort on an input
sequence S with n

elements consists of three Algorithm mergeSort(S, C)
steps: Input sequence S with n

- Divide: partition S into 5 elements, Com%arator Ocli
two sequences S, and S, of “;’Zgg I‘Sdei?\uetrcl)cf: sorte
about n/2 elements each J

_ If S.size() > 1
e Recur: recursively sort S, (S,, S,) < partition(S, n/2)
and S, mergeSort(S,, C)
e Conquer: merge S; and S, mergeSort(S,, C)
Into a unigue sorted S < merge(S;, S,)

seqguence

KAIST

Korea Advanced Institute of Science and Technology

eI=ais7Ied

Merging Two Sorted Sequences

The conquer step of
merge-sort consists of
merging two sorted
sequences A and B into a
sorted sequence S
containing the union of
the elements of A and B

Merging two sorted
sequences, each with
n/2 elements and
Implemented by means
of a doubly linked list,
takes O(n) time

Algorithm merge(A, B)

Input sequences A and B with
n/2 elements each

Output sorted sequence of AU B

S < empty sequence

while —A.IsEmpty() A =B.IsEmpty()
If A.first().element() < B.first().element()
S.insertLast(A.remove(A.first()))
else
S.insertLast(B.remove(B.first()))

while —A.iIsEmpty()
S.insertLast(A.remove(A.first()))

while —B.isEmpty()
S.insertLast(B.remove(B.first()))

return S

KAIST

Korea Advanced Institute of Science and Technology

eI=ais7Ied

Merge-Sort Tree

An execution of merge-sort is depicted by a binary tree

e each node represents a recursive call of merge-sort and
stores

e unsorted sequence before the execution and its partition
e sorted sequence at the end of the execution

e the root Is the initial call
e the leaves are calls on subsequences of size 0 or 1

[72|94—>2479]

[7|2;>27] [9|4_—>49]

157) (159 (359 154

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Execution Example

Partition

| 72943861 |

— o o w ——— — — —— o —— —— o — — e — ————

(

~

I |
I |

_7\"_1
_— L - —
(I I{ :
| i 1
_______________ ! [E——

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Execution Example (cont.)

Recursive call, partition

| I
] I
\—7\"_1
(= (T T
I
I
-_— e em e Y T Emeameeaeamf e e e .- ' — - - -

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Execution Example (cont.)

Recursive call, partition

__

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Execution Example (cont.)

Recursive call, base case

[7294|3861]
/\
(72094] []

N A] A

g) O) 1

J
I(AIST

Execution Example (cont.)

Recursive call, base case

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Execution Example (cont.)

Merge

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Execution Example (cont.)

Recursive call, ..., base case, merge

(72094]

T

(712527] |94 409]

N AN

757] [252] |99 [454

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Execution Example (cont.)

Merge

[7294|3861]

/\ —————————
f I
|
i I

J

|7 21945 2479

AN

[7|2—>27] [94—>49}

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Execution Example (cont.)

Recursive call, ..., merge, merge
[7294|3861]
(72|94 24709 38615 13638]
/\ /N
712527 |94 ->409] 38— 3 g (6116

/N N AN N

757 [252] |99 |44 [353] (88 [656] (151

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Execution Example (cont.)

Merge

[7294|3861—>12346789]

= =

(72|94 24709 (38615 1368]

\l
N
L
N
\]
©
~
1
N
©
w
(@)
L
w
(@)
03
H
\
H
G)

AR AT AT

757 [252] |99 |44 [353] (88 [656] (151

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Analysis of Merge-Sort

The height h of the merge-sort tree is O(log n)

e at each recursive call we divide in half the sequence,
The overall amount or work done at the nodes of depth i is
O(n)

e we partition and merge 2' sequences of size n/2’

« we make 2'*1 recursive calls

Thus, the total running time of merge-sort is O(n log n)

depth #seqgs size
0 1 n [J

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Summary of Sorting Algorithms

Algorithm Time |Notes

= slow
selection-sort O(n?) = in-place
= for small data sets (< 1K)

= slow
iInsertion-sort O(n?) = in-place
= for small data sets (< 1K)

= fast

heap-sort O(nlogn) |= in-place

= for large data sets (1K — 1M)
= fast

merge-sort | O(nlogn) |= sequential data access
= for huge data sets (> 1M)

KAIST

Korea Advanced Institute of Science and Technology

eI=ais7Ied

Quick Sort

KAIST

Korea Advanced Institute of Soi‘nUand Technology

d
eI=ais7Ied

Quick-Sort

Quick-sort is a randomized
sorting algorithm based on
the divide-and-conquer s
paradigm:

e Divide: pick a random

element x (called pivot)
and partition S into X

L elements less than x — Y ——
 E elements equal x L E G
e G elements greater than x

e Recur: sort L and G

e Conquer: join L, E and G X

KAIST

Korea Advanced Institute of Science and Technology

eI=ais7Ied

Partition

We partition an input Algorithm partition(S, p)
sequence as follows: Input sequence S, position p of pivot
e \We remove, in turn, each Output subsequences L, E, G of the
lements of S | han I
element y from S and gregrgatt;rothgn ?ﬁse tpi?/c;t,e?eus?a.to’
e« Weinsertyinto L, E or G, L, E, G « empty sequences
depending on the result of X < S.remove(p)
the comparison with the while —S.isEmpty()
pivot X y < S.remove(S.first())
_ _ ify <x
Each insertion and removal L .insertLast(y)
IS at the beginning or at else if y = x
the end of a sequence, and E.insertLast(y)
hence takes O(1) time 388 Y= x;
G.insertLast(y)
Thus, the partition step of return L E, G

guick-sort takes O(n) time
KAIST

Korea Advanced Institute of Science and Technology

eI=ais7Ied

Quick-Sort Tree

An execution of quick-sort is depicted by a binary tree

e Each node represents a recursive call of quick-sort and stores
e Unsorted sequence before the execution and its pivot
e Sorted sequence at the end of the execution

e The root is the initial call
e The leaves are calls on subsequences of size 0 or 1

[714962 ->24671739]
[4 2 > 2 4] [7179 > 179]

KAIST

Korea Advanced Institute of Science and Technology

eI=ais7Ied

Execution Example

Pivot selection

| 72943761 |

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Execution Example (cont.)

Partition, recursive call, pivot selection

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Execution Example (cont.)

Partition, recursive call, base case

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Execution Example (cont.)

Recursive call, ..., base case, join

[729437@1]

/\ —————————
f I
|
i I

J

243151234}

AN

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Execution Example (cont.)

Recursive call, pivot selection

| 72943761]
A
(2431 51234| 797]
= @mm W

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Execution Example (cont.)

Partition, ..., recursive call, base case

| 72943761]
/\
(2431 51234| (797]

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Execution Example (cont.)

Join, join

| 729437615123468779 |

= ==

(2431 51234| | 797 > 779 |

[151] (43534 e 99

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Worst-case Running Time

The worst case for quick-sort occurs when the pivot is the
unigue minimum or maximum element

One of L and G has size n - 1 and the other has size 0

The running time is proportional to the sum
n+(n-1)+..+2+1

Thus, the worst-case running time of quick-sort is O(n?)

depth time

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Expected Running Time

Consider a recursive call of quick-sort on sequence of size s

e Good call: the sizes of L and G are each less than 3s/74
e Bad call: one of L and G has size greater than 3s/4

72943761

/\

2431

797

Good call

A call Is good with probability 1/2

l 72943761 |
&~ ~

| 7294376 |
Bad call

e 1/2 of the possible pivots cause good calls:

| 12345678910111213141516 |

\ J \\

Bad pivots

S \ J

Good pivots Bad pivots

KAIST

Korea Advanced Institute of Science and Technology

eI=ais7Ied

Expected Running Time (continued)

L1 Probabilistic Fact: The expected number of coin tosses required iIn
order to get k heads is 2k
[1 For a node of depth I, we expect
e 1/2 ancestors are good calls
e The size of the input sequence for the current call is at most (3/4)"2n

[J Therefore, we have Number of size Expected time per
groups , size group
e For a node of depth i size group 0

N J SETOTIRR R O(n)

2log, /5N, the expected
Input size is one

e The expected height of
the quick-sort treeis ~ O(logn) L T S A size group 2
O(log n) [(/)1£(<] 7
[1 The amount or work done at .
the nodes of the same depth
IS O(n)
[1 Thus, the expected running
time of quick-sort is O(n log n) KAIST

Korea Advanced Institute of Science and Technology

eI=ais7Ied

size group 1

................. O(n)

Total expected time: O(n log n)

In-Place Quick-Sort

L1 Quick-sort can be implemented to

run in-place

L1 In the partition step, we use
replace operations to rearrange
the elements of the input
sequence such that

e the elements less than the pivot
have rank less than h

e the elements equal to the pivot
have rank between h and k

e the elements greater than the
pivot have rank greater than k

Algorithm inPlaceQuickSort(S, I, r)
Input sequence S, ranks | and r

Output sequence S with the
elements of rank between l and r
rearranged in increasing order

ifl>r

return
| < a random integer between | and r
X «— S.elemAtRank(i)
(h, k) «— inPlacePartition(x)
InPlaceQuickSort(S, |, h — 1)
InPlaceQuickSort(S, k + 1, r)

[1 The recursive calls consider
e elements with rank less than h
e elements with rank greater than k

KAIST

Korea Advanced Institute of Science and Technology

eI=ais7Ied

In-Place Partitioning

Perform the partition using two indices to split S into L and
E U G (a similar method can split E U G into E and G).

] K

[325107359279897@9 } (pivot = 6)

Repeat until j and k cross:

e Scan j to the right until finding an element > x.
e Scan k to the left until finding an element < x.
e Swap elements at indices j and k

> <

K
2

g
[325107359 79897@9}

u

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

Summary of Sorting Algorithms

Algorithm Time Notes
: @ in-place
- 2
selection-sort O(n) @ slow (good for small inputs)
: fi t O(n2) ® in-place
RS IN=EAo @ slow (good for small inputs)
. O(n log n # in-place, randomized
guick-sort (nlog n) P .
expected @ fastest (good for large inputs)
@ in-place
heap-sort O(n Iog n) @ fast (good for large inputs)
® sequential data access
merge-sort O(n log n) ¥

@ fast (good for huge inputs)

KAIST

Korea Advanced Institute of Science and Technology

eI=ais7Ied

Class Objectives were:

Understand divide-and-conquer sorting methods: merge
and quick sorts

KAIST

Korea Advanced Institute of Science and Technology
eI=ais7Ied

PA ©

Implement the quick sort

KAIST

Korea Advanced Institute of Science and Technology

eI=ais7Ied

Next Time

Radix sort and selection

Questions:

e Come up with one question on what we have discussed in the
class and submit at the end of the class

e 1 for typical questions and 2 for questions with thoughts or
that surprised me

e Write questions at least 4 times; you can type at KLMS

HW:
e GO over the next lecture slides before the class

e Just 10 min ~ 20 min should be okay

KAIST

Korea Advanced Institute of Science and Technology

srI=a1s7Ied

