CS206 Data Structures

Sorting and Selection I

Sung-eui Yoon (윤성의) Department of Computer Science KAIST

http://sglab.kaist.ac.kr/~sungeui

Class Objectives (Ch. 13)

□ Understand divide-and-conquer sorting methods: merge and quick sorts

Merge Sort

Divide-and-Conquer

- Divide-and-conquer is a general algorithm design paradigm:
 - Divide: divide the input data S in two disjoint subsets S₁ and S₂
 - Recur: solve the subproblems associated with S₁ and S₂
 - Conquer: combine the solutions for S₁ and S₂ into a solution for S
- The base case for the recursion are subproblems of size 0 or 1

- Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm
- Like heap-sort
 - It uses a comparator
 - It has O(n log n) running time
- □ Unlike heap-sort
 - It does not use an auxiliary priority queue
 - It accesses data in a sequential manner (suitable to sort data on a disk)

Merge-Sort

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S_1 and S_2 of about n/2 elements each
 - Recur: recursively sort ${\rm S_1}$ and ${\rm S_2}$
 - Conquer: merge S₁ and S₂ into a unique sorted sequence

Algorithm *mergeSort(S, C)*

Input sequence S with n elements, comparator C Output sequence S sorted according to C if S.size() > 1 $(S_1, S_2) \leftarrow partition(S, n/2)$ mergeSort(S₁, C) mergeSort(S₂, C) $S \leftarrow merge(S_1, S_2)$

Merging Two Sorted Sequences

 The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B

Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes O(n) time Algorithm *merge*(A, B) **Input** sequences *A* and *B* with n/2 elements each **Output** sorted sequence of $A \cup B$ $S \leftarrow$ empty sequence while $\neg A.isEmpty() \land \neg B.isEmpty()$ **if** *A*.*first*().*element*() < *B*.*first*().*element*() S.insertLast(A.remove(A.first())) else S.insertLast(B.remove(B.first())) while $\neg A.isEmpty()$ S.insertLast(A.remove(A.first())) while ¬*B.isEmpty*() S.insertLast(B.remove(B.first())) return S

Merge-Sort Tree

 \Box An execution of merge-sort is depicted by a binary tree

- each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
- the root is the initial call
- the leaves are calls on subsequences of size 0 or 1

□ Partition

□ Recursive call, partition

□ Recursive call, partition

□ Recursive call, base case

KAIST Korea Advanced Institute of Science and Technology 한국과학기술원

□ Recursive call, base case

KAIST Korea Advanced Institute of Science and Technology 한국과학기술원

□ Merge

□ Recursive call, ..., base case, merge

Korea Advanced Institute of Science and Technology 한국과학기술원

□ Merge

KAIST Korea Advanced Institute of Science and Technology 한국과학기술원

□ Recursive call, ..., merge, merge

KAIST Korea Advanced Institute of Science and Technology 한국과학기술원

□ Merge

Korea Advanced Institute of Science and Technology 한국과학기술원

Analysis of Merge-Sort

- \Box The height h of the merge-sort tree is O(log n)
 - at each recursive call we divide in half the sequence,
- □ The overall amount or work done at the nodes of depth i is O(n)
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2^{i+1} recursive calls

□ Thus, the total running time of merge-sort is O(n log n)

KAIST Korea Advanced Institute of Science and Technology 한국과학기술웜

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	O (n ²)	 slow in-place for small data sets (< 1K)
insertion-sort	O (n ²)	 slow in-place for small data sets (< 1K)
heap-sort	O (n log n)	 fast in-place for large data sets (1K — 1M)
merge-sort	O (n log n)	 fast sequential data access for huge data sets (> 1M)

Quick Sort

Quick-Sort

- Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
 - Divide: pick a random element x (called pivot) and partition S into
 - L elements less than x
 - E elements equal x
 - G elements greater than x
 - Recur: sort L and G
 - Conquer: join L, E and G

Partition

□ We partition an input sequence as follows:

- We remove, in turn, each element y from S and
- We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- □ Thus, the partition step of quick-sort takes O(n) time

Algorithm *partition(S, p)*

Input sequence *S*, position *p* of pivot Output subsequences *L*, *E*, *G* of the elements of *S* less than, equal to, or greater than the pivot, resp. $L, E, G \leftarrow$ empty sequences $x \leftarrow S.remove(p)$ while ¬*S*.*isEmpty*() $y \leftarrow S.remove(S.first())$ if y < x*L.insertLast*(y) else if y = x*E.insertLast*(y) else $\{ y > x \}$ G.insertLast(y) return L, E, G

Quick-Sort Tree

□ An execution of quick-sort is depicted by a binary tree

- Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1

\Box Pivot selection

□ Partition, recursive call, pivot selection

□ Partition, recursive call, base case

□ Recursive call, ..., base case, join

□ Recursive call, pivot selection

□ Partition, ..., recursive call, base case

□ Join, join

Worst-case Running Time

- □ The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- \Box One of L and G has size n 1 and the other has size 0
- □ The running time is proportional to the sum

n + (n - 1) + ... + 2 + 1

 \Box Thus, the worst-case running time of quick-sort is O(n²)

Korea Advanced Institute of Science and Technology 한국과학기술원

Expected Running Time

□ Consider a recursive call of quick-sort on sequence of size s

- Good call: the sizes of L and G are each less than 3s/4
- Bad call: one of L and G has size greater than 3s/4

- \Box A call is good with probability 1/2
 - 1/2 of the possible pivots cause good calls:

Expected Running Time (continued)

- Probabilistic Fact: The expected number of coin tosses required in order to get k heads is 2k
- \Box For a node of depth i, we expect
 - i/2 ancestors are good calls
 - The size of the input sequence for the current call is at most $(3/4)^{i/2}n$
- □ Therefore, we have
 - For a node of depth 2log_{4/3}n, the expected input size is one
 - The expected height of the quick-sort tree is O(log n)
- The amount or work done at the nodes of the same depth is O(n)
- Thus, the expected running time of quick-sort is O(n log n)

Total expected time: $O(n \log n)$

In-Place Quick-Sort

- Quick-sort can be implemented to run in-place
- In the partition step, we use replace operations to rearrange the elements of the input sequence such that
 - the elements less than the pivot have rank less than h
 - the elements equal to the pivot have rank between h and k
 - the elements greater than the pivot have rank greater than k
- □ The recursive calls consider
 - elements with rank less than h
 - elements with rank greater than k

Algorithm *inPlaceQuickSort*(*S*, *l*, *r*)

Input sequence *S*, ranks *l* and *r* Output sequence *S* with the elements of rank between *l* and *r* rearranged in increasing order if l > r

return

 $i \leftarrow$ a random integer between l and r $x \leftarrow S.elemAtRank(i)$ $(h, k) \leftarrow inPlacePartition(x)$ inPlaceQuickSort(S, l, h - 1)inPlaceQuickSort(S, k + 1, r)

In-Place Partitioning

□ Perform the partition using two indices to split S into L and E U G (a similar method can split E U G into E and G).

 \Box Repeat until j and k cross:

- Scan j to the right until finding an element $\geq x$.
- Scan k to the left until finding an element < x.
- Swap elements at indices j and k

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	O (n ²)	in-placeslow (good for small inputs)
insertion-sort	O (n ²)	in-placeslow (good for small inputs)
quick-sort	O(n log n) expected	 in-place, randomized fastest (good for large inputs)
heap-sort	O (n log n)	 in-place fast (good for large inputs)
merge-sort	O (n log n)	 sequential data access fast (good for huge inputs)

Class Objectives were:

Understand divide-and-conquer sorting methods: merge and quick sorts

PA 6

□ Implement the quick sort

Next Time

□ Radix sort and selection

Questions:

- Come up with one question on what we have discussed in the class and submit at the end of the class
- 1 for typical questions and 2 for questions with thoughts or that surprised me
- Write questions at least 4 times; you can type at KLMS

HW:

- Go over the next lecture slides before the class
- Just 10 min ~ 20 min should be okay

