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Class Objectives (Ch. 13)
 Understand divide-and-conquer sorting methods: merge 

and quick sorts
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Merge Sort



Divide-and-Conquer
 Divide-and-conquer is a 

general algorithm design 
paradigm:
• Divide: divide the input 

data S in two disjoint 
subsets S1 and S2

• Recur: solve the 
subproblems associated 
with S1 and S2

• Conquer: combine the 
solutions for S1 and S2 into 
a solution for S

 The base case for the 
recursion are subproblems
of size 0 or 1

 Merge-sort is a sorting 
algorithm based on the 
divide-and-conquer 
paradigm 

 Like heap-sort
• It uses a comparator
• It has O(n log n) running 

time

 Unlike heap-sort
• It does not use an auxiliary 

priority queue
• It accesses data in a 

sequential manner 
(suitable to sort data on a 
disk)



Merge-Sort
 Merge-sort on an input 

sequence S with n 
elements consists of three 
steps:
• Divide: partition S into 

two sequences S1 and S2 of 
about n/2 elements each

• Recur: recursively sort S1
and S2

• Conquer: merge S1 and S2
into a unique sorted 
sequence

Algorithm mergeSort(S, C)
Input sequence S with n

elements, comparator C
Output sequence S sorted

according to C
if S.size() > 1

(S1, S2)  partition(S, n/2) 
mergeSort(S1, C)
mergeSort(S2, C)
S  merge(S1, S2)



Merging Two Sorted Sequences
 The conquer step of 

merge-sort consists of 
merging two sorted 
sequences A and B into a 
sorted sequence S 
containing the union of 
the elements of A and B

 Merging two sorted 
sequences, each with 
n/2 elements and 
implemented by means 
of a doubly linked list, 
takes O(n) time

Algorithm merge(A, B)
Input sequences A and B with

n2 elements each 
Output sorted sequence of A  B

S  empty sequence
while A.isEmpty()   B.isEmpty()

if A.first().element() < B.first().element()
S.insertLast(A.remove(A.first()))

else
S.insertLast(B.remove(B.first()))

while A.isEmpty()
S.insertLast(A.remove(A.first()))

while B.isEmpty()
S.insertLast(B.remove(B.first()))

return S



Merge-Sort Tree
 An execution of merge-sort is depicted by a binary tree

• each node represents a recursive call of merge-sort and 
stores

• unsorted sequence before the execution and its partition
• sorted sequence at the end of the execution

• the root is the initial call 
• the leaves are calls on subsequences of size 0 or 1

7  2  9  4   2  4  7  9

7  2   2  7 9  4   4  9

7  7 2  2 9  9 4  4



Execution Example

 Partition

7  2  9  4   2  4  7  9 3  8  6  1   1  3  8  6

7  2   2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9



Execution Example (cont.)

 Recursive call, partition

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2   2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9



Execution Example (cont.)

 Recursive call, partition

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9



Execution Example (cont.)

 Recursive call, base case

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9



Execution Example (cont.)

 Recursive call, base case

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9



Execution Example (cont.)

 Merge

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9



Execution Example (cont.)

 Recursive call, …, base case, merge

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4  4  9 3  8   3  8 6  1   1  6

7  7 2  2 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9

9  9 4  4



Execution Example (cont.)

 Merge

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4  4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9



Execution Example (cont.)

 Recursive call, …, merge, merge

7  2  9  4  2  4  7  9 3  8  6  1  1  3  6  8

7  2  2  7 9  4  4  9 3  8  3  8 6  1  1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9



Execution Example (cont.)

 Merge

7  2  9  4  2  4  7  9 3  8  6  1  1  3  6  8

7  2  2  7 9  4  4  9 3  8  3  8 6  1  1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9



Analysis of Merge-Sort
 The height h of the merge-sort tree is O(log n) 

• at each recursive call we divide in half the sequence, 

 The overall amount or work done at the nodes of depth i is 
O(n) 
• we partition and merge 2i sequences of size n/2i

• we make 2i+1 recursive calls

 Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1 n

1 2 n2

i 2i n2i

… … …



Summary of Sorting Algorithms

Algorithm Time Notes

selection-sort O(n2)
 slow
 in-place
 for small data sets (< 1K)

insertion-sort O(n2)
 slow
 in-place
 for small data sets (< 1K)

heap-sort O(n log n)
 fast
 in-place
 for large data sets (1K — 1M)

merge-sort O(n log n)
 fast
 sequential data access
 for huge data sets (> 1M)
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Quick Sort



Quick-Sort
 Quick-sort is a randomized 

sorting algorithm based on 
the divide-and-conquer 
paradigm:
• Divide: pick a random 

element x (called pivot) 
and partition S into 

• L elements less than x
• E elements equal x
• G elements greater than x

• Recur: sort L and G
• Conquer: join L, E and G

x

x

L GE

x



Partition
We partition an input 

sequence as follows:
• We remove, in turn, each 

element y from S and 
• We insert y into L, E or G, 

depending on the result of 
the comparison with the 
pivot x

 Each insertion and removal 
is at the beginning or at 
the end of a sequence, and 
hence takes O(1) time

 Thus, the partition step of 
quick-sort takes O(n) time

Algorithm partition(S, p)
Input sequence S, position p of pivot 
Output subsequences L, E, G of the 

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G  empty sequences
x  S.remove(p)
while S.isEmpty()

y  S.remove(S.first())
if y < x

L.insertLast(y)
else if y = x

E.insertLast(y)
else { y > x }

G.insertLast(y)
return L, E, G



Quick-Sort Tree
 An execution of quick-sort is depicted by a binary tree

• Each node represents a recursive call of quick-sort and stores
• Unsorted sequence before the execution and its pivot
• Sorted sequence at the end of the execution

• The root is the initial call 
• The leaves are calls on subsequences of size 0 or 1

7  4  9  6 2   2  4  6 7  9

4 2   2  4 7 9   7 9

2  2 9  9



Execution Example

 Pivot selection

7  2  9  4   2  4  7  9

2  2

7  2  9  4 3  7  6 1  1  2  3  4  6  7  8  9

3  8  6  1   1  3  8  6

3  3 8  89  4   4  9

9  9 4  4



Execution Example (cont.)

 Partition, recursive call, pivot selection

2 4  3  1  2  4  7  9

9  4   4  9

9  9 4  4

7  2  9  4  3  7  6 1  1  2  3  4  6  7  8  9

3  8  6  1   1  3  8  6

3  3 8  82  2



Execution Example (cont.)

 Partition, recursive call, base case

2 4  3  1  2  4  7  

1  1 9  4   4  9

9  9 4  4

7  2  9  4 3  7  6 1   1  2  3  4  6  7  8  9

3  8  6  1   1  3  8  6

3  3 8  8



Execution Example (cont.)

 Recursive call, …, base case, join

3  8  6  1   1  3  8  6

3  3 8  8

7  2  9  4 3  7  6 1  1  2  3  4  6  7  8  9

2 4  3  1  1  2 3  4

1  1 4  3  3 4

9  9 4  4



Execution Example (cont.)

 Recursive call, pivot selection

7  9  7 1   1  3  8  6

8  8

7  2  9  4 3  7  6 1  1  2  3  4  6  7  8  9

2 4  3  1  1  2 3  4

1  1 4  3  3 4

9  9 4  4

9  9



Execution Example (cont.)

 Partition, …, recursive call, base case

7  9  7 1   1  3  8  6

8  8

7  2  9  4 3  7  6 1  1  2  3  4  6  7  8  9

2 4  3  1  1  2 3  4

1  1 4  3  3 4

9  9 4  4

9  9



Execution Example (cont.)

 Join, join

7 9  7  17 7 9

8  8

7  2  9  4  3  7  6 1   1  2  3  4  6 7  7  9

2 4  3  1  1  2 3  4

1  1 4  3  3 4

9  9 4  4

9  9



Worst-case Running Time
 The worst case for quick-sort occurs when the pivot is the 

unique minimum or maximum element
 One of L and G has size n - 1 and the other has size 0
 The running time is proportional to the sum

n + (n - 1) + … + 2 + 1
 Thus, the worst-case running time of quick-sort is O(n2)

depth time

0 n

1 n  1

… …

n  1 1



Expected Running Time
 Consider a recursive call of quick-sort on sequence of size s

• Good call: the sizes of L and G are each less than 3s/4
• Bad call: one of L and G has size greater than 3s/4

 A call is good with probability 1/2
• 1/2 of the possible pivots cause good calls:

7  9  7 1   1

7  2  9  4 3  7  6 1 9

2  4  3  1         7 2 9 4 3 7 61

7  2 9  4 3  7  6  1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots



Expected Running Time (continued)
 Probabilistic Fact: The expected number of coin tosses required in 

order to get k heads is 2k
 For a node of depth i, we expect

• i/2 ancestors are good calls
• The size of the input sequence for the current call is at most (3/4)i/2n

 Therefore, we have
• For a node of depth 

2log4/3n, the expected 
input size is one

• The expected height of 
the quick-sort tree is 
O(log n)

 The amount or work done at 
the nodes of the same depth 
is O(n)

 Thus, the expected running 
time of quick-sort is O(n log n)



In-Place Quick-Sort
 Quick-sort can be implemented to 

run in-place
 In the partition step, we use 

replace operations to rearrange 
the elements of the input 
sequence such that
• the elements less than the pivot 

have rank less than h
• the elements equal to the pivot 

have rank between h and k
• the elements greater than the 

pivot have rank greater than k

 The recursive calls consider
• elements with rank less than h
• elements with rank greater than k

Algorithm inPlaceQuickSort(S, l, r)
Input sequence S, ranks l and r
Output sequence S with the

elements of rank between l and r
rearranged in increasing order

if l  r
return

i  a random integer between l and r
x  S.elemAtRank(i)
(h, k)  inPlacePartition(x)
inPlaceQuickSort(S, l, h  1)
inPlaceQuickSort(S, k  1, r)



In-Place Partitioning
 Perform the partition using two indices to split S into L and 

E U G (a similar method can split E U G into E and G).

 Repeat until j and k cross:
• Scan j to the right until finding an element  x.
• Scan k to the left until finding an element < x.
• Swap elements at indices j and k

3  2  5  1  0  7  3  5  9  2  7  9  8  9  7  6 9

j k

(pivot = 6)

3  2  5  1  0  7  3  5  9  2  7  9  8  9  7  6 9

j k



Summary of Sorting Algorithms

Algorithm Time Notes

selection-sort O(n2) in-place
slow (good for small inputs)

insertion-sort O(n2) in-place
slow (good for small inputs)

quick-sort
O(n log n)
expected

in-place, randomized
fastest (good for large inputs)

heap-sort O(n log n) in-place
fast (good for large inputs)

merge-sort O(n log n) sequential data access
fast  (good for huge inputs)



Class Objectives were:
 Understand divide-and-conquer sorting methods: merge 

and quick sorts



PA 6
 Implement the quick sort



Next Time
 Radix sort and selection

 Questions:
• Come up with one question on what we have discussed in the 

class and submit at the end of the class
• 1 for typical questions and 2 for questions with thoughts or 

that surprised me
• Write questions at least 4 times; you can type at KLMS

 HW:
• Go over the next lecture slides before the class
• Just 10 min ~ 20 min should be okay


