
1

CS206 Data Structures

Sorting and Selection I

Sung-eui Yoon (윤성의)
Department of Computer Science

KAIST

http://sglab.kaist.ac.kr/~sungeui

Class Objectives (Ch. 13)
 Understand divide-and-conquer sorting methods: merge

and quick sorts

3

Merge Sort

Divide-and-Conquer
 Divide-and-conquer is a

general algorithm design
paradigm:
• Divide: divide the input

data S in two disjoint
subsets S1 and S2

• Recur: solve the
subproblems associated
with S1 and S2

• Conquer: combine the
solutions for S1 and S2 into
a solution for S

 The base case for the
recursion are subproblems
of size 0 or 1

 Merge-sort is a sorting
algorithm based on the
divide-and-conquer
paradigm

 Like heap-sort
• It uses a comparator
• It has O(n log n) running

time

 Unlike heap-sort
• It does not use an auxiliary

priority queue
• It accesses data in a

sequential manner
(suitable to sort data on a
disk)

Merge-Sort
 Merge-sort on an input

sequence S with n
elements consists of three
steps:
• Divide: partition S into

two sequences S1 and S2 of
about n/2 elements each

• Recur: recursively sort S1
and S2

• Conquer: merge S1 and S2
into a unique sorted
sequence

Algorithm mergeSort(S, C)
Input sequence S with n

elements, comparator C
Output sequence S sorted

according to C
if S.size() > 1

(S1, S2)  partition(S, n/2)
mergeSort(S1, C)
mergeSort(S2, C)
S  merge(S1, S2)

Merging Two Sorted Sequences
 The conquer step of

merge-sort consists of
merging two sorted
sequences A and B into a
sorted sequence S
containing the union of
the elements of A and B

 Merging two sorted
sequences, each with
n/2 elements and
implemented by means
of a doubly linked list,
takes O(n) time

Algorithm merge(A, B)
Input sequences A and B with

n2 elements each
Output sorted sequence of A  B

S  empty sequence
while A.isEmpty()  B.isEmpty()

if A.first().element() < B.first().element()
S.insertLast(A.remove(A.first()))

else
S.insertLast(B.remove(B.first()))

while A.isEmpty()
S.insertLast(A.remove(A.first()))

while B.isEmpty()
S.insertLast(B.remove(B.first()))

return S

Merge-Sort Tree
 An execution of merge-sort is depicted by a binary tree

• each node represents a recursive call of merge-sort and
stores

• unsorted sequence before the execution and its partition
• sorted sequence at the end of the execution

• the root is the initial call
• the leaves are calls on subsequences of size 0 or 1

7 2  9 4  2 4 7 9

7  2  2 7 9  4  4 9

7  7 2  2 9  9 4  4

Execution Example

 Partition

7 2 9 4  2 4 7 9 3 8 6 1  1 3 8 6

7 2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

Execution Example (cont.)

 Recursive call, partition

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7 2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

Execution Example (cont.)

 Recursive call, partition

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

Execution Example (cont.)

 Recursive call, base case

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

Execution Example (cont.)

 Recursive call, base case

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

Execution Example (cont.)

 Merge

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

Execution Example (cont.)

 Recursive call, …, base case, merge

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

9  9 4  4

Execution Example (cont.)

 Merge

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

Execution Example (cont.)

 Recursive call, …, merge, merge

7 2  9 4  2 4 7 9 3 8 6 1  1 3 6 8

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

Execution Example (cont.)

 Merge

7 2  9 4  2 4 7 9 3 8 6 1  1 3 6 8

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

Analysis of Merge-Sort
 The height h of the merge-sort tree is O(log n)

• at each recursive call we divide in half the sequence,

 The overall amount or work done at the nodes of depth i is
O(n)
• we partition and merge 2i sequences of size n/2i

• we make 2i+1 recursive calls

 Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1 n

1 2 n2

i 2i n2i

… … …

Summary of Sorting Algorithms

Algorithm Time Notes

selection-sort O(n2)
 slow
 in-place
 for small data sets (< 1K)

insertion-sort O(n2)
 slow
 in-place
 for small data sets (< 1K)

heap-sort O(n log n)
 fast
 in-place
 for large data sets (1K — 1M)

merge-sort O(n log n)
 fast
 sequential data access
 for huge data sets (> 1M)

20

Quick Sort

Quick-Sort
 Quick-sort is a randomized

sorting algorithm based on
the divide-and-conquer
paradigm:
• Divide: pick a random

element x (called pivot)
and partition S into

• L elements less than x
• E elements equal x
• G elements greater than x

• Recur: sort L and G
• Conquer: join L, E and G

x

x

L GE

x

Partition
We partition an input

sequence as follows:
• We remove, in turn, each

element y from S and
• We insert y into L, E or G,

depending on the result of
the comparison with the
pivot x

 Each insertion and removal
is at the beginning or at
the end of a sequence, and
hence takes O(1) time

 Thus, the partition step of
quick-sort takes O(n) time

Algorithm partition(S, p)
Input sequence S, position p of pivot
Output subsequences L, E, G of the

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G  empty sequences
x  S.remove(p)
while S.isEmpty()

y  S.remove(S.first())
if y < x

L.insertLast(y)
else if y = x

E.insertLast(y)
else { y > x }

G.insertLast(y)
return L, E, G

Quick-Sort Tree
 An execution of quick-sort is depicted by a binary tree

• Each node represents a recursive call of quick-sort and stores
• Unsorted sequence before the execution and its pivot
• Sorted sequence at the end of the execution

• The root is the initial call
• The leaves are calls on subsequences of size 0 or 1

7 4 9 6 2  2 4 6 7 9

4 2  2 4 7 9  7 9

2  2 9  9

Execution Example

 Pivot selection

7 2 9 4  2 4 7 9

2  2

7 2 9 4 3 7 6 1  1 2 3 4 6 7 8 9

3 8 6 1  1 3 8 6

3  3 8  89 4  4 9

9  9 4  4

Execution Example (cont.)

 Partition, recursive call, pivot selection

2 4 3 1  2 4 7 9

9 4  4 9

9  9 4  4

7 2 9 4 3 7 6 1  1 2 3 4 6 7 8 9

3 8 6 1  1 3 8 6

3  3 8  82  2

Execution Example (cont.)

 Partition, recursive call, base case

2 4 3 1  2 4 7

1  1 9 4  4 9

9  9 4  4

7 2 9 4 3 7 6 1   1 2 3 4 6 7 8 9

3 8 6 1  1 3 8 6

3  3 8  8

Execution Example (cont.)

 Recursive call, …, base case, join

3 8 6 1  1 3 8 6

3  3 8  8

7 2 9 4 3 7 6 1  1 2 3 4 6 7 8 9

2 4 3 1  1 2 3 4

1  1 4 3  3 4

9  9 4  4

Execution Example (cont.)

 Recursive call, pivot selection

7 9 7 1  1 3 8 6

8  8

7 2 9 4 3 7 6 1  1 2 3 4 6 7 8 9

2 4 3 1  1 2 3 4

1  1 4 3  3 4

9  9 4  4

9  9

Execution Example (cont.)

 Partition, …, recursive call, base case

7 9 7 1  1 3 8 6

8  8

7 2 9 4 3 7 6 1  1 2 3 4 6 7 8 9

2 4 3 1  1 2 3 4

1  1 4 3  3 4

9  9 4  4

9  9

Execution Example (cont.)

 Join, join

7 9 7  17 7 9

8  8

7 2 9 4 3 7 6 1  1 2 3 4 6 7 7 9

2 4 3 1  1 2 3 4

1  1 4 3  3 4

9  9 4  4

9  9

Worst-case Running Time
 The worst case for quick-sort occurs when the pivot is the

unique minimum or maximum element
 One of L and G has size n - 1 and the other has size 0
 The running time is proportional to the sum

n + (n - 1) + … + 2 + 1
 Thus, the worst-case running time of quick-sort is O(n2)

depth time

0 n

1 n  1

… …

n  1 1

Expected Running Time
 Consider a recursive call of quick-sort on sequence of size s

• Good call: the sizes of L and G are each less than 3s/4
• Bad call: one of L and G has size greater than 3s/4

 A call is good with probability 1/2
• 1/2 of the possible pivots cause good calls:

7 9 7 1  1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 61

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots

Expected Running Time (continued)
 Probabilistic Fact: The expected number of coin tosses required in

order to get k heads is 2k
 For a node of depth i, we expect

• i/2 ancestors are good calls
• The size of the input sequence for the current call is at most (3/4)i/2n

 Therefore, we have
• For a node of depth

2log4/3n, the expected
input size is one

• The expected height of
the quick-sort tree is
O(log n)

 The amount or work done at
the nodes of the same depth
is O(n)

 Thus, the expected running
time of quick-sort is O(n log n)

In-Place Quick-Sort
 Quick-sort can be implemented to

run in-place
 In the partition step, we use

replace operations to rearrange
the elements of the input
sequence such that
• the elements less than the pivot

have rank less than h
• the elements equal to the pivot

have rank between h and k
• the elements greater than the

pivot have rank greater than k

 The recursive calls consider
• elements with rank less than h
• elements with rank greater than k

Algorithm inPlaceQuickSort(S, l, r)
Input sequence S, ranks l and r
Output sequence S with the

elements of rank between l and r
rearranged in increasing order

if l  r
return

i  a random integer between l and r
x  S.elemAtRank(i)
(h, k)  inPlacePartition(x)
inPlaceQuickSort(S, l, h  1)
inPlaceQuickSort(S, k  1, r)

In-Place Partitioning
 Perform the partition using two indices to split S into L and

E U G (a similar method can split E U G into E and G).

 Repeat until j and k cross:
• Scan j to the right until finding an element  x.
• Scan k to the left until finding an element < x.
• Swap elements at indices j and k

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k

(pivot = 6)

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k

Summary of Sorting Algorithms

Algorithm Time Notes

selection-sort O(n2) in-place
slow (good for small inputs)

insertion-sort O(n2) in-place
slow (good for small inputs)

quick-sort
O(n log n)
expected

in-place, randomized
fastest (good for large inputs)

heap-sort O(n log n) in-place
fast (good for large inputs)

merge-sort O(n log n) sequential data access
fast (good for huge inputs)

Class Objectives were:
 Understand divide-and-conquer sorting methods: merge

and quick sorts

PA 6
 Implement the quick sort

Next Time
 Radix sort and selection

 Questions:
• Come up with one question on what we have discussed in the

class and submit at the end of the class
• 1 for typical questions and 2 for questions with thoughts or

that surprised me
• Write questions at least 4 times; you can type at KLMS

 HW:
• Go over the next lecture slides before the class
• Just 10 min ~ 20 min should be okay

